Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FORMULATION CONTAINING A HIGHLY BRANCHED POLYMER, HIGHLY BRANCHED POLYMER AND ELECTRO-OPTICAL DEVICE CONTAINING THIS HIGHLY BRANCHED POLYMER
Document Type and Number:
WIPO Patent Application WO/2020/011701
Kind Code:
A1
Abstract:
The invention relates to formulations containing at least one hyperbranched polymer, which comprises from 30 to 70 mol% of at least one hole-transport repeat unit A, from 5 to 30 mol% of at least one branching repeat unit B, from 5 to 30 mol% of at least one further repeat unit C and from 5 to 40 mol% of at least one end group E, the repeat units A, B and C being different from one another, and at least one organic solvent, characterised in that the formulation has a viscosity of ≤25 mPas. The invention further relates to the corresponding hyperbranched polymers and to methods for the production thereof. Furthermore, the present invention also relates to the use of the hyperbranched polymers according to the invention in electronic or optoelectronic devices, and to electronic or opto-electronic devices containing these polymers.

Inventors:
BURKHART BEATE (DE)
ENGEL MIRIAM (DE)
HENGST MATTHIAS (DE)
HEIL HOLGER (DE)
HAMBURGER MANUEL (DE)
LEONHARD CHRISTOPH (DE)
BÉALLE GAËLLE (DE)
Application Number:
PCT/EP2019/068227
Publication Date:
January 16, 2020
Filing Date:
July 08, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MERCK PATENT GMBH (DE)
International Classes:
H01L51/54; C08G61/00; C08G73/00
Domestic Patent References:
WO2003048225A22003-06-12
WO2004037887A22004-05-06
WO2005083812A22005-09-09
WO2004070772A22004-08-19
WO2010097155A12010-09-02
WO2004037887A22004-05-06
Foreign References:
DE102006006412A12007-08-16
EP2272894A12011-01-12
EP2832761A12015-02-04
JP2008280506A2008-11-20
EP2439804A12012-04-11
US20160329497A12016-11-10
Other References:
PAUL ET AL., MACROMOLECULES, vol. 39, 2006, pages 7789 - 7792
Download PDF:
Claims:
P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 97 -

Patentansprüche

1. Formulierung enthaltend

A) mindestens ein hochverzweigtes Polymer, welches

5 - von 30 bis 70 mol% mindestens einer lochtransportierenden

Wiederholungseinheit A,

- von 5 bis 30 mol% mindestens einer verzweigenden

Wiederholungseinheit B,

- von 5 bis 30 mol% mindestens einer weiteren

10 Wiederholungseinheit C, und

- von 5 bis 40 mol% mindestens einer Endgruppe E aufweist,

- wobei die Wiederholungseinheiten A, B und C voneinander

verschieden sind, und

B) mindestens ein organisches Lösungsmittel,

15 - dadurch gekennzeichnet, dass die Formulierung eine Viskosität von < 25 mPas ausweist.

2. Formulierung nach Anspruch 1 , dadurch gekennzeichnet, dass die Formulierung ein organisches Lösungsmittel aufweist.

20

3. Formulierung nach Anspruch 1 , dadurch gekennzeichnet, dass die Formulierung ein Gemisch aus zwei oder mehreren organischen Lösungsmitteln aufweist.

25 4. Formulierung nach einem oder mehreren der Ansprüche 1 bis 3,

dadurch gekennzeichnet, dass das mindestens eine organische Lösungsmittel einen Siedepunkt von mindestens 200°C aufweist.

5. Formulierung nach einem oder mehreren der Ansprüche 1 bis 4,

30 dadurch gekennzeichnet, dass die Konzentration des hochverzweigten

Polymeren in der Formulierung im Bereich von 5 bis 50 g/l liegt. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 98 -

6. Formulierung nach einem oder mehreren der Ansprüche 1 bis 5,

dadurch gekennzeichnet, dass das hochverzweigte Polymer ein

Molekulargewicht Mw im Bereich von 15.000 bis 1.000.000 g/mol aufweist.

5

7. Formulierung nach einem oder mehreren der Ansprüche 1 bis 6,

dadurch gekennzeichnet, dass die lochtransportierenden

Wiederholungseinheiten A ausgewählt sind aus Triarylamin-, Benzidin-, Tetraaryl-para-phenylendiamin-, Triarylphosphin-, Phenothiazin-,

10 Phenoxazin-, Dihydrophenazin-, Thianthren-, Dibenzo-para-dioxin-,

Phenoxathiin-, Carbazol-, Azulen-, Thiophen-, Pyrrol- und

Furanderivaten und weiteren O-, S- oder N-haltige Fleterocyclen, vorzugsweise aus Triarylamineinheiten.

15 8. Formulierung nach einem oder mehreren der Ansprüche 1 bis 7,

dadurch gekennzeichnet, dass die lochtransportierenden

Wiederholungseinheiten A ausgewählt sind aus Triarylamineinheiten der folgenden Formel (A)

20

Ar"

(A)

VNs 2

Ar ' Ar -

25 wobei

Ar1 bis Ar3 bei jedem Auftreten, jeweils gleich oder verschieden, ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das mit einem oder mehreren Resten R substituiert sein kann;

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I,

30 N(R1)2, CN, N02J Si(R1)3, B(OR1)2, C(=0)R1, P(=0)(R1)2, S(=0)R1,

S(=0)2R1, OS02R1, eine geradkettige Alkyl-, Alkoxy- oder Thio- alkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 99 -

cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte Chh-Gruppen durch

5 O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere

H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die

10 durch einen oder mehrere Reste R1 substituiert sein kann, oder eine

Aralkyl- oder Heteroaralkylgruppe mit 5 bis 60 aromatischen Ring- atomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder

Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R1 substituiert sein kann, oder

15 eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

R1 bei jedem Auftreten gleich oder verschieden H, D, F oder ein aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest

20

mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere Fl-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden können; und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten

25 im Polymer darstellen.

9. Formulierung nach Anspruch 8, dadurch gekennzeichnet, dass die

lochtransportierenden Wiederholungseinheiten A ausgewählt sind aus Triarylamineinheiten der Formel (I), wobei Ar1, Ar2 und Ar3 die in

Anspruch 8 angegebenen Bedeutungen annehmen können, dadurch

30 gekennzeichnet, dass Ar3 in mindestens einer, vorzugsweise in einer der beiden ortho-Positionen, mit Ar4 substituiert ist, wobei Ar4 ein mono- oder polycyclisches, aromatisches oder heteroaromatisches P18-134 DK

WO 2020/011701 PCT/EP2019/068227

100

Ringsystem mit 5 bis 60 aromatischen Ringatomen ist, das mit einem oder mehreren Resten R substituiert sein kann, wobei R die in

Anspruch 6 angegebenen Bedeutungen annehmen kann.

10. Formulierung nach einem oder mehreren der Ansprüche 1 bis 9,

dadurch gekennzeichnet, dass die verzweigenden Wiederholungs- einheiten B ausgewählt sind aus den Struktureinheiten der Formeln (B1 ) bis (B5)

10

15

20

25

wobei

Ar1 bis Ar5 bei jedem Auftreten, jeweils gleich oder verschieden, ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das mit einem oder mehreren Resten R substituiert sein kann;

30 R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R1)2,

CN, N02, Si(R1)3, B(OR1)2, C(=0)R1, P(=0)(R1)2J S(=0)R1 , S(=0)2R1 , OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 101

bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte Chh-Gruppen durch R1C=CR1, C^C,

5 Si(R1)2, C=0, C=S, C=NR1, P(=0)(R1), SO, S02, NR1, O, S oder

CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder

10 Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aralkyl- oder Heteroaralkylgruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroaryl- aminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch

15 einen oder mehrere Reste R1 substituiert sein kann, oder eine

vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

R1 bei jedem Auftreten gleich oder verschieden H, D, F oder ein aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein

20

aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere Fl-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden können;

25 Y C oder Si ist, und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen.

11. Formulierung nach einem oder mehreren der Ansprüche 1 bis 10,

dadurch gekennzeichnet, dass die weiteren Wiederholungseinheiten C

30 ausgewählt sind aus 4,5-Dihydropyrenderivaten, 4,5,9, 10-Tetrahydro- pyrenderivaten, Fluorenderivaten, 9,9‘-Spirobifluorenderivaten,

Phenanthrenderivaten, 9,10-Dihydrophenanthrenderivaten, 5,7- P18-134 DK

WO 2020/011701 PCT/EP2019/068227

102

Dihydrodibenzooxepinderivaten und cis- und trans-lndenofluoren- derivaten aber auch 1 ,2-, 1 ,3- oder 1 ,4-Phenylen-, 1 ,2-, 1 ,3- oder 1 ,4- Naphthylen-, 2,2‘-, 3,3‘- oder 4,4'-Biphenylylen-, 2,2“-, 3,3“- oder 4,4"- Terphenylylen, 2,2‘-, 3,3‘- oder 4,4'-Bi-1 ,1 '-naphthylylen- oder 2,2“‘-, 3,3“‘- oder 4,4“‘-Quarterphenylylenderivaten.

12. Formulierung nach einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, dass die Endgruppen E ausgewählt sind aus Struktureinheitern der Formeln (E1 ) bis (E13)

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 103 -

wobei

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R1)2, CN, N02, Si(R1)3, B(OR1)2, C(=0)R1, P(=0)(R1)2J S(=0)R1 , S(=0)2R1 , OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1

25 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFh-Gruppen durch R1C=CR1, C^C, Si(R1)2, C=0, C=S, C=NR1, P(=0)(R1), SO, S02, NR1, O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome

30

durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 104 -

mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aralkyl- oder Heteroaralkylgruppe mit 5 bis 60 aromatischen Ringatomen, die

5 durch einen oder mehrere Reste R1 substituiert sein kann, oder eine

Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroaryl- aminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches

10 und/oder benzoannelliertes Ringsystem bilden können;

R1 bei jedem Auftreten gleich oder verschieden H, D, F oder ein aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere H-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten

15 R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden können;

X CR2, NR, SiR2, O, S, C=0 oder P=0, vorzugsweise CR2, NR, O oder S, ist,

p 0, 1 , 2, 3, 4 oder 5,

m 0, 1 , 2, 3 oder 4,

20

n 0, 1 , 2 oder 3, und

die gestrichelte Linie die Bindung zu einer benachbarten Struktureinheit im Polymer darstellt.

13. Formulierung nach Anspruch 12, dadurch gekennzeichnet, dass die

25 Endgruppen E mindestens ein, vorzugsweise eine, vernetzbare Gruppe

Q aufweisen.

14. Formulierung nach einem oder mehreren der Ansprüche 1 bis 13,

dadurch gekennzeichnet, dass das hochverzweigte Polymer zusätzlich noch von 1 bis 35 mol% mindestens einer vernetzbaren Struktureinheit

30 D aufweist. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 105 -

15. Formulierung nach Anspruch 14, dadurch gekennzeichnet, dass die Struktureinheiten D ausgewählt sind aus den Struktureinheiten der Formeln (D1 ) bis (D7)

5

10

15

20

25

30

wobei P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 106 -

Ar1 bis Ar4 bei jedem Auftreten, jeweils gleich oder verschieden, ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das mit einem oder mehreren Resten R substituiert sein kann;

5 Q eine vernetzbare Gruppe ist;

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R1)2, CN, N02J Si(R1)3, B(OR1)2, C(=0)R1, P(=0)(R1 )2J S(=0)R1 , S(=0)2R1 , OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thio- alkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen,

10 die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFh-Gruppen durch

O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches

15 Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder Fleteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aralkyl- oder Fleteroaralkylgruppe mit 5 bis 60 aromatischen Ring- atomen, die durch einen oder mehrere Reste R1 substituiert sein kann,

20

oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder

Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

25

R1 bei jedem Auftreten gleich oder verschieden Fl, D, F oder ein aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere Fl-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten

30 R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden können; P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 107 -

X CR2, NR, S1R2, O, S, C=0 oder P=0, vorzugsweise CR2, NR, O oder S, ist,

w 0, 1 , 2, 3, 4, 5 oder 6, vorzugsweise 0, 1 ,2, 3 oder 4 ist, r 0 oder 1 , vorzugsweise 0, ist,

s und t jeweils 0 oder 1 sind, wobei die Summe (s + t) = 1 oder 2, vorzugsweise 1 ist; und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen.

16. Formulierung nach Anspruch 14, dadurch gekennzeichnet, dass die

10 Struktureinheiten D ausgewählt sind aus den Struktureinheiten der

Formeln (D8) bis (D21 )

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

108

5

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 109 -

5

wobei R und Q die in Anspruch 15 in Bezug auf die Struktureinheiten der Formeln (D1 ) bis (D7) angegebenen Bedeutungen annehmen können,

10 p 0, 1 , 2, 3, 4 oder 5,

m 0, 1 , 2, 3 oder 4,

n 0, 1 , 2 oder 3,

y 0, 1 oder 2 ist, und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen,

15

jedoch mit der Maßgabe, dass in Bezug auf eine Phenylengruppe die Summe (p + y) < 5 ist, und mit der Maßgabe dass in jeder

Struktureinheit mindestens ein y > 1 ist.

17. Hochverzweigtes Polymer enthaltend

von 30 bis 70 mol% mindestens einer lochtransportierenden Wiederholungseinheit A,

von 5 bis 30 mol% mindestens einer verzweigenden

Wiederholungseinheit B,

von 5 bis 30 mol% mindestens einer weiteren

Wiederholungseinheit C, und

von 5 bis 40 mol% mindestens einer Endgruppe E,

wobei die Wiederholungseinheiten A, B und C voneinander verschieden sind.

18. Hochverzweigtes Polymer nach Anspruch 17, dadurch gekennzeichnet, dass das hochverzweigte Polymer ein Molekulargewicht Mw im Bereich von 15.000 bis 1.000.000 g/mol aufweist. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

1 10

19. Hochverzweigtes Polymer nach Anspruch 17 oder 18, dadurch

gekennzeichnet, dass die lochtransportierenden Wiederholungs- einheiten A ausgewählt sind aus Triarylamin-, Benzidin-, Tetraaryl-

5 para-phenylendiamin-, Triarylphosphin-, Phenothiazin-, Phenoxazin-,

Dihydrophenazin-, Thianthren-, Dibenzo-para-dioxin-, Phenoxathiin-, Carbazol-, Azulen-, Thiophen-, Pyrrol- und Furanderivaten und weiteren O-, S- oder N-haltige Heterocyclen, vorzugsweise aus

Triarylamineinheiten.

10

20. Hochverzweigtes Polymer nach einem oder mehreren der Ansprüche 17 bis 19, dadurch gekennzeichnet, dass die lochtransportierenden Wiederholungseinheiten A ausgewählt sind aus Triarylamineinheiten der folgenden Formel (A)

15

wobei

Ar1 bis Ar3 bei jedem Auftreten, jeweils gleich oder verschieden, ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das mit einem oder mehreren Resten R substituiert sein kann;

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R1)2, CN, N02J Si(R1)3, B(OR1)2, C(=0)R1, P(=0)(R1 )2J S(=0)R1 , S(=0)2R1 , OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thio- alkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFh-Gruppen durch P18-134 DK

WO 2020/011701 PCT/EP2019/068227

1 1 1

O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch

5 einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aralkyl- oder Heteroaralkylgruppe mit 5 bis 60 aromatischen Ring- atomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder

10 Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

R1 bei jedem Auftreten gleich oder verschieden H, D, F oder ein

15 aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein

aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere Fl-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden können; und

20

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen.

21. Hochverzweigtes Polymer nach Anspruch 20, dadurch gekennzeichnet, dass die lochtransportierenden Wiederholungseinheiten A ausgewählt

25 sind aus Triarylamineinheiten der Formel (I), wobei Ar1, Ar2 und Ar3 die in Anspruch 8 angegebenen Bedeutungen annehmen können, dadurch gekennzeichnet, dass Ar3 in mindestens einer, vorzugsweise in einer der beiden ortho-Positionen, mit Ar4 substituiert ist, wobei Ar4 ein mono- oder polycyclisches, aromatisches oder heteroaromatisches

Ringsystem mit 5 bis 60 aromatischen Ringatomen ist, das mit einem

30 oder mehreren Resten R substituiert sein kann, wobei R die in

Anspruch 6 angegebenen Bedeutungen annehmen kann. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

1 12

22. Hochverzweigtes Polymer nach einem oder mehreren der Ansprüche 17 bis 21 , dadurch gekennzeichnet, dass die verzweigenden

Wiederholungseinheiten B ausgewählt sind aus den Struktureinheiten der Formeln (B1 ) bis (B5)

5

10

15

20

wobei

Ar1 bis Ar5 bei jedem Auftreten, jeweils gleich oder verschieden, ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das mit einem oder mehreren Resten R substituiert sein kann;

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R1)2, CN, N02, Si(R1)3, B(OR1)2, C(=0)R1, P(=0)(R1)2J S(=0)R1 , S(=0)2R1 , OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH2-Gruppen durch R1C=CR1, C^C, P18-134 DK

WO 2020/011701 PCT/EP2019/068227

113 -

Si(R1)2, C=0, C=S, C=NR1, P(=0)(R1), SO, S02, NR1, O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit

5 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder

mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aralkyl- oder Heteroaralkylgruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine

10 Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroaryl- aminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

15 R1 bei jedem Auftreten gleich oder verschieden H, D, F oder ein

aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere Fl-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder

20

aromatisches Ringsystem bilden können;

Y C oder Si ist, und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen.

25 23. Hochverzweigtes Polymer nach einem oder mehreren der Ansprüche

17 bis 22, dadurch gekennzeichnet, dass die weiteren Wiederholungs- einheiten C ausgewählt sind aus 4,5-Dihydropyrenderivaten, 4,5,9,10- Tetrahydropyrenderivaten, Fluorenderivaten, 9,9‘-Spirobifluoren- derivaten, Phenanthrenderivaten, 9,10-Dihydrophenanthrenderivaten, 5,7-Dihydrodibenzooxepinderivaten und cis- und trans-lndenofluoren-

30 derivaten aber auch 1 ,2-, 1 ,3- oder 1 ,4-Phenylen-, 1 ,2-, 1 ,3- oder 1 ,4- Naphthylen-, 2,2‘-, 3,3‘- oder 4,4'-Biphenylylen-, 2,2“-, 3,3“- oder 4,4"- 20/011701 PCT/EP2019/068227

1 14

Terphenylylen, 2,2‘-, 3,3‘- oder 4,4'-Bi-1 ,1 '-naphthylylen- oder 2,2“‘-, 3,3“‘- oder 4,4“‘-Quarterphenylylenderivaten.

24. Hochverzweigtes Polymer nach einem oder mehreren der Ansprüche 17 bis 23, dadurch gekennzeichnet, dass die Endgruppen E

ausgewählt sind aus Struktureinheitern der Formeln (E1 ) bis (E13)

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

115 -

wobei

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R1)2, CN, N02, Si(R1)3, B(OR1)2, C(=0)R1, P(=0)(R1)2J S(=0)R1 , S(=0)2R1 , OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy-

20 oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFh-Gruppen durch R1C=CR1, C^C, Si(R1)2, C=0, C=S, C=NR1, P(=0)(R1), SO, S02, NR1, O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder

25 polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit

5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder Fleteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aralkyl- oder Fleteroaralkylgruppe mit 5 bis 60 aromatischen Ringatomen, die

30

durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroaryl- aminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch P18-134 DK

WO 2020/011701 PCT/EP2019/068227

116

einen oder mehrere Reste R1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

5 R1 bei jedem Auftreten gleich oder verschieden H, D, F oder ein

aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere H-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder

10 aromatisches Ringsystem bilden können;

X CR2, NR, SiR2, O, S, C=0 oder P=0, vorzugsweise CR2, NR, O oder S, ist,

p 0, 1 , 2, 3, 4 oder 5,

m 0, 1 , 2, 3 oder 4,

n 0, 1 , 2 oder 3, und

15 die gestrichelte Linie die Bindung zu einer benachbarten Struktureinheit im Polymer darstellt.

25. Hochverzweigtes Polymer nach Anspruch 24, dadurch gekennzeichnet, dass die Endgruppen E mindestens ein, vorzugsweise eine,

vernetzbare Gruppe Q aufweisen.

20

26. Hochverzweigtes Polymer nach einem oder mehreren der Ansprüche 17 bis 25, dadurch gekennzeichnet, dass das hochverzweigte Polymer zusätzlich noch von 1 bis 35 mol% mindestens einer vernetzbaren Struktureinheit D aufweist.

25

27. Hochverzweigtes Polymer nach Anspruch 26, dadurch gekennzeichnet, dass die Struktureinheiten D ausgewählt sind aus den Struktureinheiten der Formeln (D1 ) bis (D7)

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

117 -

10

15

20

25

wobei

Ar1 bis Ar4 bei jedem Auftreten, jeweils gleich oder verschieden, ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das mit einem oder mehreren Resten R substituiert sein kann;

Q eine vernetzbare Gruppe ist; P18-134 DK

WO 2020/011701 PCT/EP2019/068227

1 18

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R1)2, CN, N02J Si(R1)3, B(OR1)2, C(=0)R1, P(=0)(R1 )2J S(=0)R1 , S(=0)2R1 , OSO2R1, eine geradkettige Alkyl-, Alkoxy- oder Thio- alkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder

5 cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFh-Gruppen durch

O, S oder CONR1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein

10 mono- oder polycyclisches, aromatisches oder heteroaromatisches

Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aryloxy- oder Fleteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Aralkyl- oder Fleteroaralkylgruppe mit 5 bis 60 aromatischen Ring-

15 atomen, die durch einen oder mehrere Reste R1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder

Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches

20

und/oder benzoannelliertes Ringsystem bilden können;

R1 bei jedem Auftreten gleich oder verschieden Fl, D, F oder ein aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere Fl-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten

25

R1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden können;

X CR2, NR, S1R2, O, S, C=0 oder P=0, vorzugsweise CR2, NR, O oder S, ist,

w 0, 1 , 2, 3, 4, 5 oder 6, vorzugsweise 0, 1 ,2, 3 oder 4 ist,

30 r 0 oder 1 , vorzugsweise 0, ist,

s und t jeweils 0 oder 1 sind, wobei die Summe (s + t) = 1 oder 2, vorzugsweise 1 ist; und P18-134 DK

WO 2020/011701 PCT/EP2019/068227

119 -

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen.

28. Hochverzweigtes Polymer nach Anspruch 26, dadurch gekennzeichnet, dass die Struktureinheiten D ausgewählt sind aus den Struktureinheiten der Formeln (D8) bis (D21 )

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

120

5

10

15

20

25

wobei R und Q die in Anspruch 15 in Bezug auf die Struktureinheiten

30 der Formeln (D1 ) bis (D7) angegebenen Bedeutungen annehmen können,

p 0, 1 , 2, 3, 4 oder 5, P18-134 DK

WO 2020/011701 PCT/EP2019/068227

121

m 0, 1 , 2, 3 oder 4,

n 0, 1 , 2 oder 3,

y 0, 1 oder 2 ist, und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen,

jedoch mit der Maßgabe, dass in Bezug auf eine Phenylengruppe die Summe (p + y) < 5 ist, und mit der Maßgabe dass in jeder

Struktureinheit mindestens ein y > 1 ist.

29. Verwendung eines hochverzweigten Polymeren nach einem oder

10 mehreren der Ansprüche 17 bis 28 in elektronischen oder

optoelektronischen Vorrichtungen, vorzugsweise in organischen Elektrolumineszenzvorrichtungen (OLED).

30. Elektronische oder optoelektronische Vorrichtungen, vorzugsweise organische Elektrolumineszenzvorrichtungen (OLED), enthaltend mindestens ein hochverzweigtes Polymer nach einem oder mehreren der Ansprüche 17 bis 28.

20

25

30

Description:
Formulierung enthaltend ein hochverzweigtes Polymer, hochverzweigtes Polymer sowie elektrooptische Vorrichtung

enthaltend dieses hochverzweigte Polymer

Die vorliegende Erfindung betrifft Formulierungen enthaltend mindestens ein hochverzweigtes Polymer, welches von 30 bis 70 mol% mindestens einer lochtransportierenden Wiederholungseinheit A, von 5 bis 30 mol% mindestens einer verzweigenden Wiederholungseinheit B, von 5 bis 30 mol% mindestens einer weiteren Wiederholungseinheit C und von 5 bis 40 mol% mindestens einer Endgruppe E aufweist, wobei die Wiederholungs- einheiten A, B und C voneinander verschieden sind, und mindestens ein organisches Lösungsmittel, dadurch gekennzeichnet, dass die

Formulierung eine Viskosität von < 25 mPas aufweist.

Die vorliegende Erfindung betrifft ferner hochverzweigte Polymere, welche von 30 bis 70 mol% mindestens einer lochtransportierenden Wieder- holungseinheit A, von 5 bis 30 mol% mindestens einer verzweigenden Wiederholungseinheit B, von 5 bis 30 mol% mindestens einer weiteren Wiederholungseinheit C und von 5 bis 40 mol% mindestens einer

Endgruppe E aufweisen, wobei die Wiederholungseinheiten A, B und C voneinander verschieden sind sowie Verfahren zu deren Flerstellung.

Die vorliegende Erfindung betrifft darüber auch hinaus die Verwendung der erfindungsgemäßen hochverzweigten Polymere in elektronischen bzw. optoelektronischen Vorrichtungen, insbesondere in organischen Elektro- lumineszenzvorrichtungen, sogenannten OLEDs (OLED = Organische lichtemittierende Diode) sowie organische Elektrolumineszenzvorrichtungen enthaltend diese Polymere.

In der JP 2008/280506 A werden vernetzbare, lichtemittierende Polymere offenbart, die in der Hauptkette lichtemittierende Iridiumkomplexe enthalten. Die offenbarten Polymere weisen Vernetzergruppen lediglich als

Endgruppen auf. Polymere mit verzweigenden Einheiten werden nicht offenbart. In der EP 2 439 804 A1 werden vernetzbare, lochtransportierende

Polymere offenbart, die in der Hauptkette Phenylgruppen als verzweigende Einheiten aufweisen. Die offenbarten Polymere weisen Vernetzergruppen lediglich als Endgruppen auf.

Vernetzbare, hochverzweigte Triarylpolymere als Lochtransportmaterialien werden von Paul et al., in Macromolecules 2006, 39, 7789-7792

beschrieben. Bei den offenbarten Polymeren handelt es sich um

Homopolymere, aus Triarylamineinheiten, wobei jede Wiederholungseinheit vernetzt und/oder verzweigt ist.

In der US 2016/0329497 A1 werden verzweigte, lochtransportierende Polymere offenbart, die zudem Verzweigungseinheiten in der Hauptkette enthalten können. Diese Polymere werden aus Lösung durch Spin-Coating verarbeitet. Ausgehend von dem bekannten Stand der Technik, kann es als Aufgabe der vorliegenden Erfindung angesehen werden, Formulierungen bereit zu stellen, die Polymere enthalten. Die Polymere müssen dabei die

gewünschten elektrooptischen Eigenschaften aufweisen und eine ausreichende Löslichkeit in dem verwendeten Lösungsmittel bzw.

Lösungsmittelgemisch aufweisen. Die Lösungsmittel müssen mit ihren Eigenschaften so ausgewählt werden, dass sie das Polymer in

ausreichender Menge lösen, und dass sie entsprechende physikalische Eigenschaften, wie zum Beispiel Viskosität und Siedepunkt aufweisen, so dass sich die erhaltenen Formulierungen durch Druck- und

Beschichtungstechniken, wie z.B. Tintenstrahldruck, verarbeiten lassen.

Gelöst wird diese Aufgabe erfindungsgemäß durch die Bereitstellung von Formulierungen enthaltend ein hochverzweigtes Polymer und mindestens ein organisches Lösungsmittel, dadurch gekennzeichnet, dass die

Formulierung eine Viskosität von < 25 mPas aufweist. Die hochverzweigten Polymere, weisen dabei:

von 30 bis 70 mol% mindestens einer lochtransportierenden

Wiederholungseinheit A, von 5 bis 30 mol% mindestens einer verzweigenden Wiederholungseinheit

B,

von 5 bis 30 mol% mindestens einer weiteren Wiederholungseinheit C, und von 5 bis 40 mol% mindestens einer Endgruppe E auf,

wobei die Wiederholungseinheiten A, B und C voneinander verschieden sind.

Gegenstand der vorliegenden Erfindung sind Formulierungen enthaltend ein hochverzweigtes Polymer, welches von 30 bis 70 mol% mindestens einer lochtransportierenden Wiederholungseinheit A, von 5 bis 30 mol% mindestens einer verzweigenden Wiederholungseinheit B, von 5 bis 30 mol% mindestens einer weiteren Wiederholungseinheit C und von 5 bis 40 mol% mindestens einer Endgruppe E aufweist, wobei die Wiederholungs- einheiten A, B und C voneinander verschieden sind, und mindestens ein organisches Lösungsmittel, dadurch gekennzeichnet, dass die

Formulierung eine Viskosität von < 25 mPas aufweist.

Gegenstand der vorliegenden Erfindung sind zudem hochverzweigte Polymere, welche von 30 bis 70 mol% mindestens einer

lochtransportierenden Wiederholungseinheit A, von 5 bis 30 mol% mindestens einer verzweigenden Wiederholungseinheit B, von 5 bis 30 mol% mindestens einer weiteren Wiederholungseinheit C und von 5 bis 40 mol% mindestens einer Endgruppe E aufweisen, wobei die

Wiederholungseinheiten A, B und C voneinander verschieden sind.

In einer ersten bevorzugten Ausführungsform enthält die erfindungs- gemäße Formulierung ein organisches Lösungsmittel. In einer zweiten bevorzugten Ausführungsform enthält die erfindungsgemäße Formulierung zwei oder mehrere, besonders bevorzugt zwei, drei oder vier, organische Lösungsmittel.

Die erfindungsgemäße Formulierung weist eine Viskosität von < 25 mPas auf. Vorzugsweise weist die Formulierung eine Viskosität im Bereich von 2 bis 20 mPas und besonders bevorzugt im Bereich von 2 bis 15 mPas auf. Die Viskosität der erfindungsgemäßen Formulierungen und der

Lösungsmittel wird mit einem 1 ° Kegel-Platte-Rotationsviskometer vom Typ Discvery AR3 (Thermo Scientific) gemessen. Die Ausrüstung erlaubt eine genaue Kontrolle der Temeratur und der Scherrate. Die Messung der Viskosität wird bei einer Temperatur von 25,0°C (+/- 0,2°C) und einer Scherrate von 500 s durchgeführt. Jede Probe wird dreimal gemessen und die erhaltenen Messwerte werden gemittelt.

Die erfindungsgemäße Formulierung weist vorzugsweise eine

Oberflächenspannung im Bereich von 15 to 70 mN/m, besonders bevorzugt im Bereich von 20 bis 50 mN/m und ganz besonders bevorzugt im Bereich von 25 bis 40 mN/m auf.

Vorzugsweise weist das organische Lösungsmittel bzw. Lösungsmittel- gemisch eine Oberflächenspannung im Bereich von 15 to 70 mN/m, besonders bevorzugt im Bereich von 20 bis 50 mN/m und ganz besonders bevorzugt im Bereich von 25 bis 40 mN/m auf.

Die Oberflächenspannung kann unter Verwendung eines FTA (First Ten Angstrom) 1000 Kontaktwinkelgoniometers bei 20°C gemessen werden. Einzelheiten der Methode sind von First Ten Angstrom, wie von Roger P. Wood ward, Ph.D. Oberflächenspannung Messungen mit der Drop-Shape- Methode", verfügbar. Vorzugsweise kann das Pendant-Drop-Verfahren zur Bestimmung der Oberflächenspannung verwendet werden. Diese

Meßtechnik nutzt einen hängenden T ropfen von einer Nadel in eine flüssige oder gasförmigen Phase. Die Form des Tropfens ergibt sich aus der Beziehung zwischen der Oberflächenspannung, der Schwerkraft und den Dichteunterschieden. Mit Hilfe der Pendant-Drop-Methode wird die

Oberflächenspannung aus dem Schattenbild eines hängenden Tropfens unter http://www.kruss.de/services/education-theory/glossary/drop- shape- analysis berechnet. Ein allgemein verwendetes und im Handel erhältliches Präzisions-Tropfenkonturanalyse-Werkzeug, nämlich FTA1000 von First Ten Angström, wurde verwendet, um alle Oberflächenspannungs- messungen durchzuführen. Die Oberflächenspannung wird von der

Software FTA1000 bestimmt. Alle Messungen wurden bei Raumtemperatur im Bereich zwischen 20°C und 25°C durchgeführt. Das Standardarbeits- verfahren umfasst die Bestimmung der Oberflächenspannung jeder

Formulierung unter Verwendung eines frischen Einwegtropfenabgabe- systems (Spritze und Nadel). Jeder Tropfen wird über die Dauer von einer Minute mit 60 Messungen gemessen, die später gemittelt werden. Für jede Formulierung werden drei Tropfen gemessen. Der endgültige Wert wird über diese Messungen gemittelt. Das Werkzeug wird regelmäßig gegen verschiedene Flüssigkeiten mit bekannten Oberflächenspannungen geprüft.

Darüber hinaus weist das mindestens eine organische Lösungsmittel einen Siedepunkt bei Normaldruck von mindestens 200°C, bevorzugt einen Siedepunkt von mindestens 220°C und besonders bevorzugt einen

Siedepunkt von mindestens 240°C auf.

Geeignete organische Lösungsmittel sind vorzugsweise organische

Lösungsmittel, welche unter anderem Ketone, Ether, Ester, Amide (wie z.B. Di-Ci- 2 -Alkylfomnamide), Schwefelverbindungen, Nitroverbindungen, Kohlenwasserstoffe, halogenierte Kohlenwasserstoffe (z.B. chlorierte

Kohlenwasserstoffe), aromatische und heteroaromatische Kohlenwasser- stoffe (z.B. Naphthalinderivate) und halogenierte, aromatische und heteroaromatische Kohlenwasserstoffe einschließen.

Vorzugsweise kann das organische Lösungsmittel aus einer der folgenden Gruppen ausgewählt sein: substituierte und unsubstituierte aromatische oder lineare Ether wie 3-Phenoxytoluol oder Anisol; substituierte oder unsubstituierte Arenderivate, wie Cyclohexylbenzol; substituierte oder unsubstituierte Indane, wie Hexamethylindan; substituierte und

unsubstituierte aromatische oder lineare Ketone wie Dicyclohexyl- methanon; substituierte und unsubstituierte Heterocyclen wie Pyrrolidinone, Pyridine, Pyrazine; andere fluorierte oder chlorierte aromatische

Kohlenwasserstoffe, substituierte oder unsubstituierte Naphthaline, wie alkylsubstituierte Naphthaline, wie 1-Ethylnaphthalin.

Besonders bevorzugte organische Lösungsmittel sind beispielsweise 1 Ethylnaphthalin, 2-Ethylnaphthalin, 2-Propylnaphthalin, 2-(1-Methylethyl)- naphthalin, 1 -(1 -Methylethyl)naphthalin, 2-Butylnaphthalin, 1 ,6-Dimethyl- naphthalin, 2,2'-Dimethylbiphenyl, 3,3'-Dimethylbiphenyl, 1 -Acetyl- naphthalin, 1 ,2,3,4-Tetramethylbenzol, 1 ,2,3,5-Tetramethylbenzol, 1 ,2,4,5- Tetramethylbenzol, 1 ,2,4-Trichlorbenzol, 1 ,2-Dihydronaphthalin, 1 ,2- Dimethylnaphthalin, 1 ,3-Benzodioxol, 1 ,3-Diisopropylbenzol, 1 ,3- Dimethylnaphthalin, 1 ,4-Benzodioxan, 1 ,4-Diisopropylbenzol, 1 ,4- Dimethylnaphthalin, 1 ,5-Dimethyltetralin, -Benzothiophen, Thianaphthalin, 1 -Bromnaphthalin, 1 -Chlormethylnaphthalin, 1 -Methoxynaphthalin, 1 - Methylnaphthalin, 2 Brom-3-Brommethylnaphthalin, 2-Brommethyl- naphthalin, 2-Bromnaphthalin, 2-Ethoxynaphthalin, 2-lsopropylanisol, 3,5- Dimethylanisol, 5-Methoxyindan, 5-Methoxyindol, 5-tert-Butyl-m-Xylol, 6- Methylchinolin, 8-Methylchinolin, Acetophenon, Benzothiazol, Benzylacetat, Butylphenylether, Cyclohexylbenzol, Decahydronaphthol, Dimethoxytoluol,

3-Phenoxytoluol, Diphenylether, Propiophenon, Hexylbenzol,

Hexamethylindan, Isochroman, Phenylacetat, Propiophenon, Veratrol, Pyrrolidinon, N,N-Dibutylanilin, Cyclohexylhexanoat, Menthylisovalerat, Dicyclohexylmethanon, Ethyllaurat, Ethyldecanoat, (-)-Fenchon, 2- Methyl benzothiazol, 2-Phenoxyethanol, 2-Pyrrolidinon, 3-Methylanisol, 4- Methylanisol, 3,4-Dimethylanisol, 3,5-Dimethylanisol, a-Terpineol,

Butylbenzoat, Cumol, Cyclohexanol, Decalin, Dodecylbenzol, Ethylbenzoat, Indan, Methylbenzoat, NMP, p-Cymol, Phenetol, Dibenzylether,

Diethylenglycolbutyl-methylether, Triethylenglycolbutylmethylether,

Diethylenglycoldibutylether, Triethylenglycoldimethylether, Diethylen- glycolmonobutylether, Tripropylenglycoldimethylether,

Tetraethylenglycoldimethylether, 2-lsopropylnaphthalin, Pentylbenzol, Heptylbenzol, Octylbenzol, 1 ,1 -Bis(3,4-Dimethylphenyl)ethan.

Das hochverzweigte Polymer hat in dem mindestens einen organischen Lösungsmittel vorzugsweise eine Löslichkeit von > 5 g/l und besonders bevorzugt eine Löslichkeit von > 10 g/l.

Die Konzentration des hochverzweigten Polymeren in der Formulierung liegt vorzugsweise im Bereich von 5 bis 50 g/l, besonders bevorzugt im Bereich von 10 bis 50 g/l. Das hochverzweigte Polymer weist dabei vorzugsweise ein Molekular- gewicht M w im Bereich von 15.000 bis 1.000.000 g/mol, besonders bevorzugt im Bereich von 20.000 bis 750.000 g/mol und ganz besonders bevorzugt von 25.000 bis 500.000 g/mol auf. Die Bestimmung des

Molekulargewichts M w erfolgt mittels GPC (= Gelpermeationschromato- graphie) gegen einen internen Polystyrolstandard. Das hochverzweigte Polymer weist

von 30 bis 70 mol% mindestens einer lochtransportierenden

Wiederholungseinheit A,

von 5 bis 30 mol% mindestens einer verzweigenden Wiederholungseinheit

B,

von 5 bis 30 mol% mindestens einer weiteren Wiederholungseinheit C, und P

w von 5 bis 40 mol% mindestens einer Endgruppe E auf,

wobei die Wiederholungseinheiten A, B und C voneinander verschieden sind.

Darüber hinaus kann das hochverzweigte Polymer in einer bevorzugten Ausführungsform zusätzlich noch von 1 bis 35 mol% mindestens einer vernetzbaren Einheit D aufweisen.

Das hochverzweigte Polymer weist von 30 bis 70 mol%, vorzugsweise von 30 bis 60 mol% und besonders bevorzugt von 30 bis 50 mol%, mindestens einer lochtransportierenden Wiederholungseinheit A auf.

0

Als lochtransportierende Wiederholungseinheiten A können alle dem Fachmann bekannten Wiederholungseinheiten, die lochtransportierende Eigenschaften aufweisen, eingesetzt werden.

Bevorzugte Wiederholungseinheiten, die Lochtransporteigenschaften5

aufweisen, sind beispielsweise Triarylamin-, Benzidin-, Tetraaryl-para- phenylendiamin-, Triarylphosphin-, Phenothiazin-, Phenoxazin-,

Dihydrophenazin-, Thianthren-, Dibenzo-para-dioxin-, Phenoxathiin-, Carbazol-, Azulen-, Thiophen-, Pyrrol- und Furanderivate und weitere O-, S- oder N-haltige Heterocyclen.

0

Besonders bevorzugte Wiederholungseinheiten, die Lochtransport- eigenschaften aufweisen sind Einheiten aus Triarylaminderivaten. Besonders bevorzugt weisen die Triarylaminderivate dabei die Struktur der folgenden Formel (A) auf:

wobei

Ar 1 bis Ar 3 bei jedem Auftreten, jeweils gleich oder verschieden, ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das mit einem oder mehreren Resten R substituiert sein kann;

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R 1 )2, CN, N0 2 , Si(R 1 ) 3 , B(OR 1 ) 2 , C(=0)R 1 , P(=0)(R 1 ) 2J S(=0)R 1 , S(=0) 2 R 1 ,

OSO2R 1 , eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit

1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R 1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFh-Gruppen durch R 1 C=CR 1 , C^C, Si(R 1 ) 2 , C=0, C=S, C=NR 1 , P(=0)(R 1 ), SO, S0 2 , NR 1 , O, S oder

CONR 1 ersetzt sein können und wobei ein oder mehrere Fl-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aryloxy- oder

Fleteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aralkyl- oder Fleteroaralkylgruppe mit 5 bis 60 aromatischen Ring- atomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können; R 1 bei jedem Auftreten gleich oder verschieden H, D, F oder ein

aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere H-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R 1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden können; und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen.

Unter dem Begriff„Struktureinheit“ wird in der vorliegenden Anmeldung eine Einheit verstanden, die, ausgehend von einer Monomereinheit, die mindestens zwei, vorzugsweise zwei, reaktive Gruppen aufweist, durch

Reaktion unter Verbindungsknüpfung als ein Teil des Polymergrund- gerüstes in dieses eingebaut wird, und damit verknüpft im hergestellten Polymer als Wiederholungseinheit vorliegt.

Unter dem Begriff„mono- oder polycyclisches, aromatisches Ringsystem“ wird in der vorliegenden Anmeldung ein aromatisches Ringsystem mit 6 bis 60, vorzugsweise 6 bis 30 und besonders bevorzugt 6 bis 24 aromatischen

Ringatomen verstanden, das nicht notwendigerweise nur aromatische Gruppen enthält, sondern in dem auch mehrere aromatische Einheiten durch eine kurze nicht-aromatische Einheit (< 10 % der von Fl

verschiedenen Atome, vorzugsweise < 5 % der von Fl verschiedenen Atome), wie beispielsweise ein sp 3 -hybridisiertes C-Atom bzw. O- oder N- Atom, eine CO-Gruppe etc., unterbrochen sein können. So sollen beispielsweise auch Systeme wie z.B. 9,9 ' -Spirobifluoren, 9,9-Diarylfluoren und 9,9-Dialkylfluoren, als aromatische Ringsysteme verstanden werden. Die aromatischen Ringsysteme können mono- oder polycyclisch sein, d.h. sie können einen Ring (z.B. Phenyl) oder mehrere Ringe aufweisen, welche auch kondensiert (z.B. Naphthyl) oder kovalent verknüpft sein können (z.B. Biphenyl), oder eine Kombination von kondensierten und verknüpften Ringen enthalten. Bevorzugte aromatische Ringsysteme sind z.B. Phenyl, Biphenyl,

Terphenyl, [1 ,1 ':3',1"]Terphenyl-2'-yl, Quarterphenyl, Naphthyl, Anthracen, Binaphthyl, Phenanthren, Dihydrophenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Tetracen, Pentacen, Benzpyren, Fluoren, Inden,

Indenofluoren und Spirobifluoren.

Unter dem Begriff„mono- oder polycyclisches, heteroaromatisches Ring- system“ wird in der vorliegenden Anmeldung ein aromatisches Ringsystem mit 5 bis 60, vorzugsweise 5 bis 30 und besonders bevorzugt 5 bis 24 aromatischen Ringatomen verstanden, wobei ein oder mehrere dieser Atome ein Heteroatom ist/sind. Das„mono- oder polycyclische, hetero- aromatische Ringsystem“ enthält nicht notwendigerweise nur aromatische Gruppen, sondern kann auch durch eine kurze nicht-aromatische Einheit (< 10 % der von H verschiedenen Atome, vorzugsweise < 5 % der von H verschiedenen Atome), wie beispielsweise ein sp 3 -hybridisiertes C-Atom bzw. O- oder N-Atom, eine CO-Gruppe etc., unterbrochen sein.

Die heteroaromatischen Ringsysteme können mono- oder polycyclisch sein, d.h. sie können einen Ring oder mehrere Ringe aufweisen, welche auch kondensiert oder kovalent verknüpft sein können (z.B. Pyridylphenyl), oder eine Kombination von kondensierten und verknüpften Ringen enthalten. Bevorzugt sind vollständig konjugierte Heteroarylgruppen.

Bevorzugte heteroaromatische Ringsysteme sind z.B. 5-gliedrige Ringe wie Pyrrol, Pyrazol, Imidazol, 1 ,2,3-Triazol, 1 ,2,4-Triazol, Tetrazol, Furan, Thiophen, Selenophen, Oxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, 1 ,2,3- Oxadiazol, 1 ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, 1 ,3,4-Oxadiazol, 1 ,2,3- Thiadiazol, 1 ,2,4-Thiadiazol, 1 ,2,5-Thiadiazol, 1 ,3,4-Thiadiazol, 6-gliedrige Ringe wie Pyridin, Pyridazin, Pyrimidin, Pyrazin, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 ,2,3-Triazin, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3, 5-Tetrazin, oder Gruppen mit mehreren Ringen, wie Carbazol, Indenocarbazol, Indol, Isoindol, Indolizin, Indazol, Benzimidazol, Benzotriazol, Purin,

Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Benzoxazol, Naphthoxazol, Anthroxazol,

Phenanthroxazol, Isoxazol, Benzothiazol, Benzofuran, Isobenzofuran, Dibenzofuran, Chinolin, Isochinolin, Pteridin, Benzo-5,6-chinolin, Benzo- 6,7-chinolin, Benzo-7,8-chinolin, Benzoisochinolin, Acridin, Phenothiazin, Phenoxazin, Benzopyridazin, Benzopyrimidin, Chinoxalin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthridin, Phenanthrolin, Thieno[2,3b]thiophen, Thieno[3,2b]thiophen, Dithienothiophen,

Isobenzothiophen, Dibenzothiophen, Benzothiadiazothiophen oder

Kombinationen dieser Gruppen.

Das mono- oder polycyclische, aromatische oder heteroaromatische Ringsystem kann unsubstituiert oder substituiert sein. Substituiert heißt in der vorliegenden Anmeldung, dass das mono- oder polycyclische, aromatische oder heteroaromatische Ringsystem einen oder mehrere Substituenten R aufweist.

R ist bei jedem Auftreten vorzugsweise gleich oder verschieden H, D, F, CI, Br, I, N(R 1 ) 2 , CN, N0 2J Si(R 1 ) 3 , B(OR 1 ) 2 , C(=0)R 1 , P(=0)(R 1 ) 2 , S(=0)R 1 , S(=0) 2 R 1 , OS0 2 R 1 , eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxy- gruppe mit 1 bis 40 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R 1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH 2 -Gruppen durch R 1 C=CR 1 , C^C, Si(R 1 ) 2 , C=0, C=S, C=NR 1 , P(=0)(R 1 ), SO, S0 2 , NR 1 , O, S oder CONR 1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aryloxy- oder Fletero- aryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aralkyl- oder

Fleteroaralkylgruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Diaryl- aminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine vernetzbare Gruppe Q; dabei können zwei oder mehrere Reste R auch miteinander ein mono- oder poly- cyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ring- system bilden. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 12

R ist bei jedem Auftreten besonders bevorzugt gleich oder verschieden H, D, F, CI, Br, I, N(R 1 ) 2 , Si(R 1 ) 3 , B(OR 1 ) 2 , C(=0)R 1 , P(=0)(R 1 ) 2 , eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 20 C-Atomen oder eine

5 Alkenyl- oder Alkinylgruppe mit 2 bis 20 C-Atomen oder eine verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 3 bis 20 C-Atomen, die jeweils mit einem oder mehreren Resten R 1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CH 2 -Gruppen durch R 1 C=CR 1 , C^C, Si(R 1 ) 2 , C=0, C=NR 1 , P(=0)(R 1 ), NR 1 , O oder CONR 1 ersetzt sein können und wobei ein oder mehrere H-Atome durch F, CI, Br oder I ersetzt sein können,

10 oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 30 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aryloxy- oder Fleteroaryloxygruppe mit 5 bis 30 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aralkyl- oder Fleteroaralkylgruppe mit 5 bis 30 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1

15 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylamino- gruppe oder Arylheteroarylaminogruppe mit 10 bis 20 aromatischen

Ringatomen, welche durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine vernetzbare Gruppe Q; dabei können zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden.

20

R ist bei jedem Auftreten ganz besonders bevorzugt gleich oder

verschieden Fl, eine geradkettige Alkyl- oder Alkoxygruppe mit 1 bis 10 C-Atomen oder eine Alkenyl- oder Alkinylgruppe mit 2 bis 10 C-Atomen oder eine verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 3 bis 10

25 C-Atomen, die jeweils mit einem oder mehreren Resten R 1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFI 2 -Gruppen durch R 1 C=CR 1 , C^C, C=0, C=NR 1 , NR 1 , O oder CONR 1 ersetzt sein können, oder ein aromatisches oder heteroaromatisches Ringsystem mit 5 bis 20 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aryloxy- oder Fleteroaryloxygruppe mit 5

30 bis 20 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aralkyl- oder Fleteroaralkylgruppe mit 5 bis 20 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

13 -

substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylamino- gruppe oder Arylheteroarylaminogruppe mit 10 bis 20 aromatischen

Ringatomen, welche durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine vernetzbare Gruppe Q; dabei können zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden.

Die Triarylaminderivate weisen dabei in einer bevorzugten Ausführungsform die Struktur der folgenden Formel (A) auf:

10 wobei Ar 1 , Ar 2 und Ar 3 die oben angegebenen Bedeutungen annehmen können, jedoch dadurch gekennzeichnet, dass Ar 3 in mindestens einer, vorzugsweise in einer der beiden ortho-Positionen, mit Ar 4 substituiert ist, wobei Ar 4 ein mono- oder polycyclisches, aromatisches oder hetero- aromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen ist, das mit einem oder mehreren Resten R substituiert sein kann, wobei R die 20 oben angegebenen Bedeutungen annehmen kann.

Ar 4 kann dabei entweder direkt, das heißt über eine Einfachbindung, mit Ar 3 verknüpft sein oder aber über eine Verknüpfungsgruppe X.

Die Struktureinheit der Formel (A) weist somit in einer ersten 25 Ausführungsform vorzugsweise die Struktur der folgenden Formel (A1 ) auf:

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 14 -

wobei Ar 1 , Ar 2 , Ar 3 , Ar 4 und R die oben in Bezug auf Formel A angegebenen Bedeutungen annehmen können,

w = 0, 1 , 2, 3, 4, 5 oder 6, vorzugsweise 0, 1 , 2, 3 oder 4, ist,

X = CR2, NR, S1R2, O, S, C=0 oder P=0, vorzugsweise CR2, NR, O oder S, ist, und

r = 0 oder 1 , vorzugsweise 0, ist.

In einer zweiten Ausführungsform der vorliegenden Erfindung ist die mindestens eine Struktureinheit der Formel (A) des erfindungsgemäßen Polymeren dadurch gekennzeichnet, dass Ar 3 in einer der beiden ortho-

10 Positionen mit Ar 4 substituiert ist, und Ar 3 mit Ar 4 zusätzlich noch in der zur substituierten ortho-Position benachbarten meta-Position verknüpft ist.

Die Struktureinheit der Formel (A) weist somit in einer zweiten Ausführungsform vorzugsweise die Struktur der folgenden Formel (A2) auf:

15

20

wobei Ar 1 , Ar 2 , Ar 3 , Ar 4 und R die oben in Bezug auf Formel A angegebenen Bedeutungen annehmen können,

m = 0, 1 , 2, 3 oder 4 ist,

n = 0, 1 , 2 oder 3 ist,

X = CR2, NR, S1R2, O, S, C=0 oder P=0, vorzugsweise CR2, NR, O oder S,

25

ist, und

s und t jeweils 0 oder 1 sind, wobei die Summe (s + t) = 1 oder 2, vorzugsweise 1 ist.

In einer bevorzugten Ausführungsform ist die mindestens eine 30 Struktureinheit der Formel (A) ausgewählt aus den Struktureinheiten der folgenden Formeln (A3), (A4) und (A5): P18-134 DK

WO 2020/011701 PCT/EP2019/068227

15 -

5

wobei Ar 1 , Ar 2 , Ar 4 und R die oben in Bezug auf Formel A angegebenen Bedeutungen annehmen können,

m = 0, 1 , 2, 3 oder 4 ist,

n = 0, 1 , 2 oder 3 ist, und

X = CR2, NR, S1R2, O, S, C=0 oder P=0, vorzugsweise CR2, NR, O oder S, ist.

In einer besonders bevorzugten Ausführungsform ist die mindestens eine Struktureinheit der Formel (A3) ausgewählt aus der Struktureinheit der folgenden Formel (A6):

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 16 -

wobei Ar 1 , Ar 2 , R und m die oben in Bezug auf Formel A und A2 angegebenen Bedeutungen annehmen können, und

p = 0, 1 , 2, 3, 4 oder 5 ist.

Beispiele für bevorzugte Struktureinheiten der Formel (A6) sind in der folgenden Tabelle abgebildet:

15

20

25

30

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

17 -

wobei Ar 1 , Ar 2 , R, m, n und p die oben angegebenen Bedeutungen annehmen können, und

k = 0, 1 oder 2 ist.

In einer weiteren besonders bevorzugten Ausführungsform ist die mindestens eine Struktureinheit der Formel (A4) ausgewählt aus der Struktureinheit der folgenden Formel (A7):

wobei Ar 1 , Ar 2 , X, R, m und n die oben in Bezug auf die Formeln A, A1 und 15 A2 angegebenen Bedeutungen annehmen können.

Beispiele für bevorzugte Struktureinheiten der Formel (A7) sind in der folgenden Tabelle abgebildet:

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 18 -

wobei Ar 1 , Ar 2 , R, m, n und p die oben in Bezug auf die Formeln A, A2 und A6 angegebenen Bedeutungen annehmen können.

In noch einer weiteren besonders bevorzugten Ausführungsform ist die mindestens eine Struktureinheit der Formel (A5) ausgewählt aus der Struktureinheit der folgenden Formel (A8):

wobei Ar 1 , Ar 2 , X, R, m und n die oben in Bezug auf die Formeln A, A1 und A2 angegebenen Bedeutungen annehmen können.

15

Beispiele für bevorzugte Struktureinheiten der Formel (A8) sind in der folgenden Tabelle abgebildet:

20

25

wobei Ar 1 , Ar 2 , R, m, n und p die oben in Bezug auf die Formeln A, A2 und

30 A6 angegebenen Bedeutungen annehmen können. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

19 -

In einer ganz besonders bevorzugten Ausführungsform ist die mindestens eine Struktureinheit der Formel (A6) ausgewählt aus der Struktureinheit der folgenden Formel (A9):

5

10

wobei R, m und p die oben in Bezug auf die Formeln A, A2 und A6 angegebenen Bedeutungen annehmen können.

Beispiele für bevorzugte Struktureinheiten der Formel (A9) sind in der folgenden Tabelle abgebildet:

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

20

wobei R, k, m, n und p die oben in Bezug auf die Formeln A, A2 und A6 angegebenen Bedeutungen annehmen können.

In einer weiteren ganz besonders bevorzugten Ausführungsform ist die mindestens eine Struktureinheit der Formel (A7) ausgewählt aus der 20 Struktureinheit der folgenden Formel (A10):

wobei R, X, m und n die oben in Bezug auf die Formeln A, A1 und A2 angegebenen Bedeutungen annehmen können.

Beispiele für bevorzugte Struktureinheiten der Formel (A10) sind in der folgenden Tabelle abgebildet: P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 21

5

10

15

20

wobei R, m, n und p die oben in Bezug auf die Formeln A, A2 und A6 angegebenen Bedeutungen annehmen können, und

v = 1 bis 20, vorzugsweise 1 bis 10, ist.

In noch einer weiteren ganz besonders bevorzugten Ausführungsform ist die mindestens eine Struktureinheit der Formel (A8) ausgewählt aus der Struktureinheit der folgenden Formel (A11 ):

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

22

wobei R, X, m und n die oben in Bezug auf die Formeln A, A1 und A2 angegebenen Bedeutungen annehmen können.

Beispiele für bevorzugte Struktureinheiten der Formel (A11 ) sind in der folgenden Tabelle abgebildet:

wobei R, m und n die oben in Bezug auf die Formeln A und A2

20 angegebenen Bedeutungen annehmen können.

In den Formeln (A9), (A10) und (A11 ), sowie deren bevorzugten

Ausführungsformen der Formeln (A9a) bis (A9h), (A10a) bis (A10g) und (A11 a) bis (A11 c), stellen die gestrichelten Linien die Bindungen zu den benachbarten Struktureinheiten im Polymer dar. Sie können dabei

25 unabhängig voneinander, gleich oder verschieden, in ortho-, meta- oder para-Position angeordnet sein, vorzugsweise gleich in ortho-, meta- oder para-Position, besonders bevorzugt in meta- oder para-Position und ganz besonders bevorzugt in para-Position.

Das hochverzweigte Polymer weist von 5 bis 30 mol%, vorzugsweise von 5 30

bis 25 mol% und besonders bevorzugt von 10 bis 25 mol%, mindestens einer verzweigenden Wiederholungseinheit B auf. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 23 -

Als verzweigende Wiederholungseinheiten B können alle dem Fachmann bekannten Wiederholungseinheiten eingesetzt werden, die mindestens drei oder mehr, vorzugsweise drei oder vier Bindungen zu benachbarten Struktureinheiten im Polymer aufweisen.

5

Bevorzugte verzweigende Wiederholungseinheiten B sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (B1 ) bis (B5).

10

15

20

25

wobei

Ar 1 bis Ar 5 bei jedem Auftreten, jeweils gleich oder verschieden, ein

mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das mit einem 30 oder mehreren Resten R substituiert sein kann;

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R 1 )2, CN, N0 2 , Si(R 1 ) 3 , B(OR 1 ) 2 , C(=0)R 1 , P(=0)(R 1 ) 2J S(=0)R 1 , S(=0) 2 R 1 , P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 24 -

OSO2R 1 , eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R 1 substituiert sein kann, wobei eine oder

5 mehrere nicht benachbarte CFh-Gruppen durch R 1 C=CR 1 , C^C,

Si(R 1 ) 2 , C=0, C=S, C=NR 1 , P(=0)(R 1 ), SO, SO2, NR 1 , O, S oder CONR 1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder

10 mehrere Reste R 1 substituiert sein kann, oder eine Aryloxy- oder

Heteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aralkyl- oder Heteroaralkylgruppe mit 5 bis 60 aromatischen Ring- atomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder

15 Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

R 1 bei jedem Auftreten gleich oder verschieden H, D, F oder ein

20

aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere Fl-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R 1 auch miteinander ein mono- oder polycyclisches, aliphatisches

25 oder aromatisches Ringsystem bilden können;

Y C oder Si ist, und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen.

Besonders bevorzugte verzweigende Wiederholungseinheiten B sind die in

30 der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (B1 a) bis

(B5d). P18-134 DK

WO 2020/011701 PCT/EP2019/068227

25

5

10

15

20

25

30

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

-26-

5

10

15

20

25

wobei Ar 1 , Ar 2 , Ar 3 , R und Y die in Bezug auf die Formeln (B1) bis (B5) angegebenen Bedeutungen annehmen können,

m = 0, 1, 2, 3 oder 4,

30 n = 0, 1, 2 oder 3 und

k = 0, 1 oder 2 ist. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

-27-

Ganz besonders bevorzugte verzweigende Wiederholungseinheiten B sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (B1a1) bis (B5b1).

5

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 28 -

5

10

15

Eine ganz besonders bevorzugte verzweigende Wiederholungseinheit B ist die Struktureinheit der Formel (B1 a1 ).

Das hochverzweigte Polymer weist von 5 bis 30 mol%, vorzugsweise von 5 bis 25 mol%, mindestens einer weiteren Wiederholungseinheit C auf.

25

Als weitere Wiederholungseinheiten C können alle dem Fachmann bekannten Wiederholungseinheiten eingesetzt werden, die zwei Bindungen zu benachbarten Struktureinheiten im Polymer aufweisen.

Bevorzugt als weitere Struktureinheiten C sind Einheiten, die aromatische

30 Strukturen mit 6 bis 40 C-Atomen beinhalten, welche typischerweise als Polymergrundgerüst (Backbone) verwendet werden. Dies sind beispiels- weise 4,5-Dihydropyrenderivate, 4,5,9, 10-Tetrahydropyrenderivate, P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 29 -

Fluorenderivate, 9,9‘-Spirobifluorenderivate, Phenanthrenderivate, 9,10- Dihydrophenanthrenderivate, 5,7-Dihydrodibenzooxepinderivate und cis- und trans-lndenofluorenderivate aber auch 1 ,2-, 1 ,3- oder 1 ,4-Phenylen-, 1 ,2-, 1 ,3- oder 1 ,4-Naphthylen-, 2,2‘-, 3,3‘- oder 4,4'-Biphenylylen-, 2,2“-, 3,3“- oder 4,4"-Terphenylylen, 2,2‘-, 3,3‘- oder 4,4'-Bi-1 ,1 '-naphthylylen- oder 2,2“‘-, 3,3“‘- oder 4,4“‘-Quarterphenylylenderivate.

Bevorzugte weitere Wiederholungseinheiten C sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (C1 ) bis (C9).

10

15

20

25

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 30 -

5

wobei

10

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R 1 )2, CN, N0 2 , Si(R 1 ) 3 , B(OR 1 ) 2 , C(=0)R 1 , P(=0)(R 1 ) 2J S(=0)R 1 , S(=0) 2 R 1 , OSO2R 1 , eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem

15 oder mehreren Resten R 1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFh-Gruppen durch R 1 C=CR 1 , C^C, Si(R 1 ) 2 , C=0, C=S, C=NR 1 , P(=0)(R 1 ), SO, S0 2 , NR 1 , O, S oder CONR 1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem

20 mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aryloxy- oder Fleteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aralkyl- oder Fleteroaralkylgruppe mit 5 bis 60 aromatischen Ring- atomen, die durch einen oder mehrere Reste R 1 substituiert sein

25

kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

30

R 1 bei jedem Auftreten gleich oder verschieden Fl, D, F oder ein

aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 31 -

aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere H-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R 1 auch miteinander ein mono- oder polycyclisches, aliphatisches 5 oder aromatisches Ringsystem bilden können;

p 0, 1 , 2, 3, 4 oder 5,

m 0, 1 , 2, 3 oder 4,

n 0, 1 , 2 oder 3,

k 0, 1 oder 2 ist,

j 0, 1 , 2, 3, 4, 5, 6, 7 oder 8 ist, und

10 die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen.

Besonders bevorzugte weitere Wiederholungseinheiten C sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (C1 a) bis (C9a).

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 32 -

5

10

15

20

wobei R und p die in Bezug auf die Formeln (C1 ) bis (C9) angegebenen

Bedeutungen annehmen können.

25

Das hochverzweigte Polymer weist von 5 bis 40, vorzugsweise 5 bis 30 mol%, mindestens einer Endgruppe (E) auf.

Als Endgruppen (E) können alle dem Fachmann bekannten Endgruppen eingesetzt werden, die eine Bindung zu einer benachbarten Struktureinheit

30

im Polymer aufweisen. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 33 -

Bevorzugte Endgruppen (E) sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (E1 ) bis (E13).

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 34 -

wobei

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R 1 )2,

CN, N0 2 , Si(R 1 ) 3 , B(OR 1 ) 2 , C(=0)R 1 , P(=0)(R 1 ) 2J S(=0)R 1 , S(=0) 2 R 1 , OSO2R 1 , eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- 20 oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R 1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFh-Gruppen durch R 1 C=CR 1 , C^C, Si(R 1 ) 2 , C=0, C=S, C=NR 1 , P(=0)(R 1 ), SO, S0 2 , NR 1 , O, S oder CONR 1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder 25 polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aryloxy- oder Fleteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aralkyl- oder Fleteroaralkylgruppe mit 5 bis 60 aromatischen Ring- atomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 35 -

welche durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

5 R 1 bei jedem Auftreten gleich oder verschieden H, D, F oder ein

aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere H-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R 1 auch miteinander ein mono- oder polycyclisches, aliphatisches

10 oder aromatisches Ringsystem bilden können;

X CR 2 , NR, SiR 2 , O, S, C=0 oder P=0, vorzugsweise CR 2 , NR, O oder S, ist,

p 0, 1 , 2, 3, 4 oder 5,

m 0, 1 , 2, 3 oder 4,

n 0, 1 , 2 oder 3, und

15 die gestrichelte Linie die Bindung zu einer benachbarten

Struktureinheit im Polymer darstellt.

Besonders bevorzugte Endgruppen (E) sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (E1 a) bis (E13a).

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

36

5

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 37 -

wobei R die oben in Bezug auf die Formeln (E1 ) bis (E13) angegebenen Bedeutungen annehmen kann.

20 Ganz besonders bevorzugte Endgruppen (E) sind die in der obigen Tabelle abgebildeten Struktureinheiten der Formeln (E1 a) und (E2a).

In einer weiteren Ausführungsform können die Endgruppen (E) mindestens eine, vorzugsweise eine, vernetzbare Gruppe Q aufweisen.

25 Bevorzugte Endgruppen (E) die mindestens eine vernetzbare Gruppe Q aufweisen sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (G1 ) bis (G13).

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

38

5

10

15

20

25

30

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

-39-

5

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 40 -

5

wobei

10

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R 1 )2, CN, N0 2 , Si(R 1 ) 3 , B(OR 1 ) 2 , C(=0)R 1 , P(=0)(R 1 ) 2J S(=0)R 1 , S(=0) 2 R 1 , OSO2R 1 , eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem

15 oder mehreren Resten R 1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFh-Gruppen durch R 1 C=CR 1 , C^C, Si(R 1 ) 2 , C=0, C=S, C=NR 1 , P(=0)(R 1 ), SO, S0 2 , NR 1 , O, S oder CONR 1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem

20 mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aryloxy- oder Fleteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aralkyl- oder Fleteroaralkylgruppe mit 5 bis 60 aromatischen Ring- atomen, die durch einen oder mehrere Reste R 1 substituiert sein

25 kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder

Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen, welche durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

30

R 1 bei jedem Auftreten gleich oder verschieden Fl, D, F oder ein

aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 41 -

aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere H-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R 1 auch miteinander ein mono- oder polycyclisches, aliphatisches 5 oder aromatisches Ringsystem bilden können;

Q eine vernetz are Gruppe ist,

p 0, 1 , 2, 3, 4 oder 5,

m 0, 1 , 2, 3 oder 4,

n 0, 1 , 2 oder 3,

y 0, 1 oder 2 ist,

10 die gestrichelte Linie die Bindung zu einer benachbarten

Struktureinheit im Polymer darstellt,

jedoch mit der Maßgabe, dass in Bezug auf eine Phenylengruppe die

Summe (p + y) < 5 ist und die Summe (m + y) < 4 ist, und mit der Maßgabe dass in jeder Struktureinheit mindestens ein y > 1 ist.

Besonders bevorzugte Endgruppen (G) die mindestens eine vernetzbare Gruppe Q aufweisen sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (G1a) bis (G13b).

20

30

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 42 -

5

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 43 -

10

15

20

wobei R und Q die oben in Bezug auf die Formeln (G1 ) bis (G13) angegebenen Bedeutungen annehmen können.

Ganz besonders bevorzugte Endgruppen (G) die mindestens eine vernetzbare Gruppe Q aufweisen sind die in der obigen Tabelle

abgebildeten Struktureinheiten der Formeln (G1 a) bis (G4a2).

„Vernetzbare Gruppe Q“ im Sinne der vorliegenden Erfindung bedeutet eine funktionelle Gruppe, die in der Lage ist, eine Reaktion einzugehen und P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 44 -

so eine unlösliche Verbindung zu bilden. Die Reaktion kann dabei mit einer weiteren, gleichen Gruppe Q, einer weiteren, verschiedenen Gruppe Q oder einem beliebigen anderen Teil derselben oder einer anderen

Polymerkette erfolgen. Bei der vernetzbaren Gruppe handelt es sich somit

5 um eine reaktive Gruppe. Dabei erhält man als Ergebnis der Reaktion der vernetzbaren Gruppe eine entsprechend vernetzte Verbindung. Die chemische Reaktion kann auch in der Schicht durchgeführt werden, wobei eine unlösliche Schicht entsteht. Die Vernetzung kann gewöhnlich durch Wärme oder durch UV-, Mikrowellen-, Röntgen- oder Elektronenstrahlung unterstützt werden, gegebenenfalls in Gegenwart eines Initiators.„Unlös-

10 lich“ im Sinne der vorliegenden Erfindung bedeutet vorzugsweise, dass das erfindungsgemäße Polymer nach der Vernetzungsreaktion, also nach der Reaktion der vernetzbaren Gruppen, bei Raumtemperatur in einem organischen Lösungsmittel eine Löslichkeit aufweist, die mindestens einen Faktor 3, vorzugsweise mindestens einen Faktor 10, geringer ist als die des entsprechenden, nicht-vernetzten, erfindungsgemäßen Polymers in

15 demselben organischen Lösungsmittel.

Erfindungsgemäß bevorzugte vernetzbare Gruppen Q sind die im

Folgenden aufgeführten Gruppen: a) Endständiqe oder cyclische Alkenyl- bzw. endständiqe Dienyl- und

20

Alkinylqruppen:

Geeignet sind Einheiten, die eine endständige oder cyclische

Doppelbindung, eine endständige Dienylgruppe oder eine endständige Dreifachbindung enthalten, insbesondere endständige oder cyclische Alkenyl-, endständige Dienyl- bzw. endständige Alkinylgruppen mit 2 bis

25 40 C-Atomen, vorzugsweise mit 2 bis 10 C-Atomen, wobei auch einzelne

CFh-Gruppen und/oder einzelne H-Atome durch die oben genannten Gruppen R ersetzt sein können. Weiterhin eignen sich auch Gruppen, die als Vorstufen zu betrachten sind und die in situ zu einer Bildung einer Doppel- oder Dreifachbindung in der Lage sind.

30 b) Alkenyloxy- , Dienyloxy- bzw. Alkinyloxyqruppen:

Weiterhin geeignet sind Alkenyloxy-, Dienyloxy- bzw. Alkinyloxygruppen, vorzugsweise Alkenyloxygruppen. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

45

c) Acrylsäureqruppen:

Weiterhin geeignet sind Acrylsäureeinheiten im weitesten Sinne, vorzugsweise Acrylester, Acrylamide, Methacrylester und

5 Methacrylamide. Besonders bevorzugt sind Ci-io-Alkylacrylat und Ci-io- Alkylmethacrylat.

Die Vernetzungsreaktion der oben unter a) bis c) genannten Gruppen kann über einen radikalischen, einen kationischen oder einen anionischen Mechanismus aber auch über Cycloaddition erfolgen.

10

Es kann sinnvoll sein, einen entsprechenden Initiator für die

Vernetzungsreaktion zuzugeben. Geeignete Initiatoren für die radikalische Vernetzung sind beispielsweise Dibenzoylperoxid, AIBN oder TEMPO. Geeignete Initiatoren für die kationische Vernetzung sind beispielsweise AICI3, BF3, Triphenylmethylperchlorat oder

15 Tropyliumhexachlorantimonat. Geeignete Initiatoren für die anionische

Vernetzung sind Basen, insbesondere Butyllithium.

In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird die Vernetzung jedoch ohne den Zusatz eines Initiators durchgeführt und aus- schließlich thermisch initiiert. Diese Bevorzugung wird dadurch begründet,

20

dass die Abwesenheit des Initiators Verunreinigungen der Schicht verhindert, die zu einer Verschlechterung der Deviceeigenschaften führen könnten. d) Oxetane und Oxirane:

25 Eine weitere geeignete Klasse vernetzbarer Gruppen Q sind Oxetane und Oxirane, die durch Ringöffnung kationisch vernetzen.

Es kann sinnvoll sein, einen entsprechenden Initiator für die

Vernetzungsreaktion zuzugeben. Geeignete Initiatoren sind

beispielsweise AICI3, BF3, Triphenylmethylperchlorat oder

30 Tropyliumhexachlorantimonat. Ebenso können Photosäuren als

Initiatoren zugegeben werden. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 46 -

e) Silane:

Weiterhin geeignet als Klasse vernetzbarer Gruppen sind Silangruppen S1R3, wobei mindestens zwei Gruppen R, bevorzugt alle drei Gruppen R für CI oder eine Alkoxygruppe mit 1 bis 20 C-Atomen stehen.

Diese Gruppe reagiert in der Anwesenheit von Wasser zu einem Oligo- oder Polysiloxan. f) Cyclobutangruppen

Die oben unter a) bis f) genannten vernetzbaren Gruppen Q sind dem

10 Fachmann generell bekannt, ebenso wie die geeigneten

Reaktionsbedingungen, die zur Reaktion dieser Gruppen verwendet werden.

Bevorzugte vernetzbare Gruppen Q umfassen Alkenylgruppen der folgenden Formel (Q1 ), Dienylgruppen der folgenden Formel (Q2),

15 Alkinylgruppen der folgenden Formel (Q3), Alkenyloxygruppen der

folgenden Formel (Q4), Dienyloxygruppen der folgenden Formeln (Q5), Alkinyloxygruppen der folgenden Formel (Q6), Acrylsäuregruppen der folgenden Formeln (Q7) und (Q8), Oxetangruppen der folgenden Formeln (Q9) und (Q10), Oxirangruppen der folgenden Formel (Q11 ),

Cyclobutangruppen der folgenden Formeln (Q12), (Q13) und (Q14):

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 47 -

Die Reste R 11 , R 12 , R 13 und R 14 in den Formeln (Q1 ) bis (Q8), (Q1 1 ), (Q13) und (Q14) sind bei jedem Auftreten, gleich oder verschieden, Fl, eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 6 C-Atomen,

vorzugsweise 1 bis 4 C-Atomen. Besonders bevorzugt sind die R 11 , R 12 ,

R 13 und R 14 Fl, Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, sec-Butyl oder tert-Butyl und ganz besonders bevorzugt Fl oder Methyl. Die verwendeten Indices haben die folgende Bedeutung: s = 0 bis 8; und t = 1 bis 8.

Ar 10 in der Formel (Q14) kann die gleichen Bedeutungen annehmen kann wie Ar 1 in Formel (A).

Die gestrichelte Bindung in den Formeln (Q1 ) bis (Q1 1 ) und (Q14) sowie

30

die gestrichelten Bindungen in den Formeln (Q12) und (Q13) stellen die Anknüpfung der vernetzbaren Gruppe an die Struktureinheiten dar. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 48 -

Die vernetzbaren Gruppen der Formeln (Q1 ) bis (Q14) können dabei direkt mit der Struktureinheit verknüpft sein, oder aber indirekt, über ein weiteres, mono- oder polycyclisches, aromatisches oder heteroaromatisches

Ringsystem Ar 10 , wie in den folgenden Formeln (Q15) bis (Q28) dargestellt:

10

15

20

25

30

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 49 -

wobei Ar 10 in den Formeln (Q15) bis (Q28) die gleichen Bedeutungen annehmen kann wie Ar 1 in Formel (A).

10

Besonders bevorzugte vernetzbare Gruppen Q sind die folgenden:

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 50 -

5

10

15

20

25

Die Reste R 11 , R 12 ,R 13 und R 14 sind bei jedem Auftreten, gleich oder

30 verschieden, H oder eine geradkettige oder verzweigte Alkylgruppe mit 1 bis 6 C-Atomen, vorzugsweise 1 bis 4 C-Atomen. Besonders bevorzugt P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 51 -

sind die Reste R 11 , R 12 ,R 13 und R 14 Methyl, Ethyl, n-Propyl, iso-Propyl, n- Butyl, sec-Butyl oder tert-Butyl und ganz besonders bevorzugt Methyl.

Die verwendeten Indices haben die folgende Bedeutung: s = 0 bis 8 und t = 1 bis 8.

Ganz besonders bevorzugte vernetzbare Gruppen Q sind die folgenden:

10

15

20

25

30

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

-52-

5

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 53 -

5

10

15

Das hochverzweigte Polymer weist in einer bevorzugten Ausführungsform von 1 bis 35 mol%, vorzugsweise von 2 bis 30 mol% und besonders bevorzugt von 5 bis 25 mol%, mindestens einer vernetzbaren Struktureinheit D auf.

Als vernetzbare Struktureinheiten D können alle dem Fachmann bekannten Struktureinheiten eingesetzt werden, die mindestens eine, vorzugsweise eine, vernetzbare Gruppe aufweisen.

Bevorzugte vernetzbare Struktureinheiten D die mindestens eine vernetzbare Gruppe Q aufweisen sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (D1 ) bis (D7).

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 54 -

5

10

15

20

25

wobei

30

Ar 1 bis Ar 4 bei jedem Auftreten, jeweils gleich oder verschieden, ein mono- oder polycyclisches, aromatisches oder heteroaromatisches P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 55 -

Ringsystem mit 5 bis 60 aromatischen Ringatomen, das mit einem oder mehreren Resten R substituiert sein kann;

Q eine vernetzbare Gruppe ist;

R bei jedem Auftreten gleich oder verschieden H, D, F, CI, Br, I, N(R 1 )2,

5 CN, N0 2 , Si(R 1 ) 3 , B(OR 1 ) 2 , C(=0)R 1 , P(=0)(R 1 ) 2J S(=0)R 1 , S(=0) 2 R 1 ,

OSO2R 1 , eine geradkettige Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 1 bis 40 C-Atomen oder eine verzweigte oder cyclische Alkyl-, Alkoxy- oder Thioalkoxygruppe mit 3 bis 40 C-Atomen, die jeweils mit einem oder mehreren Resten R 1 substituiert sein kann, wobei eine oder mehrere nicht benachbarte CFh-Gruppen durch R 1 C=CR 1 , C^C,

10 Si(R 1 ) 2 , C=0, C=S, C=NR 1 , P(=0)(R 1 ), SO, S0 2 , NR 1 , O, S oder

CONR 1 ersetzt sein können und wobei ein oder mehrere H-Atome durch D, F, CI, Br, I oder CN ersetzt sein können, oder ein mono- oder polycyclisches, aromatisches oder heteroaromatisches Ringsystem mit 5 bis 60 aromatischen Ringatomen, das jeweils durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aryloxy- oder

15 Fleteroaryloxygruppe mit 5 bis 60 aromatischen Ringatomen, die

durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Aralkyl- oder Fleteroaralkylgruppe mit 5 bis 60 aromatischen Ring- atomen, die durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine Diarylaminogruppe, Diheteroarylaminogruppe oder Arylheteroarylaminogruppe mit 10 bis 40 aromatischen Ringatomen,

20

welche durch einen oder mehrere Reste R 1 substituiert sein kann, oder eine vernetzbare Gruppe Q, wobei zwei oder mehrere Reste R auch miteinander ein mono- oder polycyclisches, aliphatisches, aromatisches und/oder benzoannelliertes Ringsystem bilden können;

R 1 bei jedem Auftreten gleich oder verschieden H, D, F oder ein

25 aliphatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen, ein

aromatischer und/oder ein heteroaromatischer Kohlenwasserstoffrest mit 5 bis 20 C-Atomen ist, in dem auch ein oder mehrere Fl-Atome durch F ersetzt sein können; wobei zwei oder mehrere Substituenten R 1 auch miteinander ein mono- oder polycyclisches, aliphatisches oder aromatisches Ringsystem bilden können;

30 X CR2, NR, S1R2, O, S, C=0 oder P=0, vorzugsweise CR2, NR, O oder

S, ist,

w 0, 1 , 2, 3, 4, 5 oder 6, vorzugsweise 0, 1 ,2, 3 oder 4 ist, P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 56 -

r 0 oder 1 , vorzugsweise 0, ist,

s und t jeweils 0 oder 1 sind, wobei die Summe (s + t) = 1 oder 2, vorzugsweise 1 ist; und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen.

Weitere bevorzugte vernetzbare Struktureinheiten D die mindestens eine vernetzbare Gruppe Q aufweisen sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (D8) bis (D21 ).

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

-57-

5

10

15

20

25

wobei R und Q die oben in Bezug auf die Struktureinheiten der Formeln

30 (D1) bis (D7) angegebenen Bedeutungen annehmen können,

p 0, 1, 2, 3, 4 oder 5,

m 0, 1, 2, 3 oder 4, P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 58 -

n 0, 1 , 2 oder 3,

y 0, 1 oder 2 ist, und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen,

jedoch mit der Maßgabe, dass in Bezug auf eine Phenylengruppe die

Summe (p + y) < 5 ist, und mit der Maßgabe dass in jeder

Struktureinheit mindestens ein y > 1 ist.

Besonders bevorzugte vernetzbare Struktureinheiten D die mindestens eine vernetzbare Gruppe Q aufweisen sind die in der folgenden Tabelle 10 abgebildeten Struktureinheiten der Formeln (D1 a) bis (D7a).

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 59 -

wobei Ar 1 , Ar 2 , R und Q, die oben in Bezug auf die Formeln (D1 ) bis (D7) angegebenen Bedeutungen annehmen können,

15 p 0, 1 , 2, 3, 4 oder 5,

m 0, 1 , 2, 3 oder 4,

n 0, 1 , 2 oder 3,

k 0, 1 oder 2 ist, und

die gestrichelten Linien Bindungen zu benachbarten Struktureinheiten im Polymer darstellen.

20

In den Formeln (D1 a) bis (D7a) stellen die gestrichelten Linien mögliche Bindungen zu den benachbarten Struktureinheiten im Polymer dar. Sofern in den Formeln zwei gestrichelte Linien vorhanden sind, weist die

Struktureinheit ein oder zwei, vorzugsweise zwei, Bindungen zu

c benachbarten Struktureinheiten auf.

Weitere besonders bevorzugte vernetzbare Struktureinheiten D die mindestens eine vernetzbare Gruppe Q aufweisen sind die in der folgenden Tabelle abgebildeten Struktureinheiten der Formeln (D8a) bis (D16a).

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

60

5

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 61 -

5

10

15

20

25

wobei R und Q die oben in Bezug auf die Formeln (D1 ) bis (D7) angegebenen Bedeutungen annehmen können.

Eine ganz besonders bevorzugte vernetzbare Gruppen D ist die in der obigen Tabelle abgebildeten Struktureinheit der Formel (D8a).

Die erfindungsgemäßen Polymere enthaltend mindestens eine

lochtransportierende Struktureinheit A, mindestens eine verzweigende P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 62 -

Struktureinheit B, mindestens eine weitere Struktureinheit C und mindestens eine Endgruppe E sowie gegebenenfalls mindestens eine vernetzbare Struktureinheit D werden in der Regel durch Polymerisation von jeweils einer oder mehreren der entsprechenden Monomersorten

5 hergestellt, von denen mindestens ein Monomer im Polymer zu

Struktureinheiten der Formel A, B, C, E und gegebenenfalls D führt.

Geeignete Polymerisationsreaktionen sind dem Fachmann bekannt und in der Literatur beschrieben. Besonders geeignete und bevorzugte

Polymerisationsreaktionen, die zu C-C- bzw. C-N-Verknüpfungen führen, sind folgende:

10

(A) SUZUKI-Polymerisation;

(B) YAMAMOTO-Polymerisation;

(C) STILLE-Polymerisation;

(D) HECK-Polymerisation;

(E) NEGISHI-Polymerisation;

15 (F) SONOGASHIRA-Polymerisation;

(G) HIYAMA-Polymerisation; und

(H) HARTWIG-BUCHWALD-Polymerisation.

Wie die Polymerisation nach diesen Methoden durchgeführt werden kann und wie die Polymere dann vom Reaktionsmedium abgetrennt und

20

aufgereinigt werden können, ist dem Fachmann bekannt und in der Literatur, beispielsweise in der WO 03/048225 A2, der WO 2004/037887 A2 und der WO 2004/037887 A2 im Detail beschrieben.

Die C-C-Verknüpfungen sind vorzugsweise ausgewählt aus den Gruppen

25 der SUZUKI-Kupplung, der YAMAMOTO-Kupplung und der STILLE- Kupplung; die C-N-Verknüpfung ist vorzugsweise eine Kupplung gemäß HARTWIG-BUCHWALD.

Gegenstand der vorliegenden Erfindung ist somit auch ein Verfahren zur Herstellung der erfindungsgemäßen Polymere, das dadurch

30 gekennzeichnet ist, dass sie durch Polymerisation gemäß SUZUKI,

Polymerisation gemäß YAMAMOTO, Polymerisation gemäß STILLE oder Polymerisation gemäß HARTWIG-BUCHWALD hergestellt werden. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

63

Zur Synthese der erfindungsgemäßen Polymere werden die entsprechenden Monomere benötigt.

5 Die Monomere, die in den erfindungsgemäßen Polymeren zu

Struktureinheiten A, B, C, E und gegebenenfalls D führen, sind

Verbindungen, die entsprechend substituiert sind und an ein bzw. zwei Positionen geeignete Funktionalitäten Y aufweisen, die es erlauben, diese Monomereinheit in das Polymer einzubauen. Die Gruppe Y stellt, gleich oder verschieden, eine für eine Polymerisationsreaktion geeignete

10 Abgangsgruppe dar, so dass der Einbau der Monomerbausteine in

polymere Verbindungen ermöglicht wird. Vorzugsweise stellt Y eine chemische Funktionalität dar, welche gleich oder verschieden ausgewählt ist aus der Klasse der Flalogene, O-Tosylate, O-Triflate, O-Sulfonate, Borsäureester, teilfluorierten Silylgruppen, Diazoniumgruppen und zinnorganischen Verbindungen.

15

Das Grundgerüst der Monomerverbindungen lässt sich nach Standard- methoden funktionalisieren, beispielsweise durch Friedel-Crafts-Alkylierung oder -Acylierung. Weiterhin lässt sich das Grundgerüst nach Standard- methoden der organischen Chemie halogenieren. Die halogenierten Verbindungen lassen sich in zusätzlichen Funktionalisierungsschritten

20

wahlweise weiter umsetzen. Beispielsweise können die halogenierten Verbindungen entweder direkt oder nach Überführung in ein Boronsäure- derivat oder zinnorganisches Derivat als Ausgangsstoffe für die Umsetzung zu Polymeren, Oligomeren oder Dendrimeren eingesetzt werden.

25 Die genannten Methoden stellen lediglich eine Auswahl aus den dem

Fachmann bekannten Reaktionen dar, welche dieser, ohne erfinderisch tätig zu werden, zur Synthese der erfindungsgemäßen Verbindungen einsetzen kann.

Polymere enthaltend Struktureinheiten, die eine vernetzbare Gruppe Q

30 aufweisen, eignen sich besonders zur Fierstellung von Filmen oder

Beschichtungen, insbesondere zur Fierstellung von strukturierten

Beschichtungen, z.B. durch thermische oder lichtinduzierte in-situ- P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 64 -

Polymerisation und in-situ-Vernetzung, wie beispielsweise in-situ-UV- Photopolymerisation oder Photopattern ing. Dabei können sowohl entsprechende Polymere in Reinsubstanz verwendet werden, es können aber auch Formulierungen oder Mischungen dieser Polymere wie oben

5 beschrieben verwendet werden. Diese können mit oder ohne Zusatz von Lösungsmitteln und/oder Bindemitteln verwendet werden. Geeignete Materialien, Verfahren und Vorrichtungen für die oben beschriebenen Methoden sind z.B. in der WO 2005/083812 A2 beschrieben. Mögliche Bindemittel sind beispielsweise Polystyrol, Polycarbonat, Poly(meth)- acrylate, Polyacrylate, Polyvinylbutyral und ähnliche, optoelektronisch

10 neutrale Polymere.

Ein weiterer Gegenstand der vorliegenden Erfindung ist somit die

Verwendung eines Polymers, das Struktureinheiten enthält, die eine vernetzbare Gruppe Q aufweisen, zur Herstellung eines vernetzten

Polymers. Die vernetzbare Gruppe, die besonders bevorzugt eine

15 Vinylgruppe oder Alkenylgruppe ist, wird vorzugsweise durch die WITTIG- Reaktion oder eine WITTIG-analoge Reaktion in das Polymer eingebaut. Ist die vernetzbare Gruppe eine Vinylgruppe oder Alkenylgruppe, so kann die Vernetzung durch radikalische oder ionische Polymerisation stattfinden, wobei diese thermisch oder durch Strahlung induziert werden kann.

Bevorzugt ist die radikalische Polymerisation, die thermisch induziert wird,

20

vorzugsweise bei Temperaturen von weniger als 250°C, besonders bevorzugt bei Temperaturen von weniger als 230°C.

Gegenstand der vorliegenden Erfindung ist somit auch ein Verfahren zur Herstellung eines vernetzten Polymers, das folgende Schritte umfasst:

25

(a) Bereitstellen von Polymeren, die Struktureinheiten enthalten, die eine oder mehrere vernetzbare Gruppen Q aufweisen; und

(b) Radikalische oder ionische Vernetzung, vorzugsweise radikalische Vernetzung, die sowohl thermisch als auch durch Strahlung, vorzugsweise thermisch, induziert werden kann.

30

Die durch das erfindungsgemäße Verfahren hergestellten vernetzten Polymere sind in allen gängigen Lösungsmitteln unlöslich. Auf diese Weise P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 65 -

lassen sich definierte Schichtdicken hersteilen, die auch durch das

Aufbringen nachfolgender Schichten nicht wieder gelöst bzw. angelöst werden.

5 Die vorliegende Erfindung betrifft somit auch ein vernetztes Polymer, das durch das zuvor genannte Verfahren erhältlich ist. Das vernetzte Polymer wird - wie vorstehend beschrieben - vorzugsweise in Form einer vernetzen Polymerschicht hergestellt. Auf die Oberfläche einer solchen vernetzten Polymerschicht kann aufgrund der Unlöslichkeit des vernetzten Polymers in sämtlichen Lösungsmitteln eine weitere Schicht aus einem Lösungsmittel

10 mit den oben beschriebenen Techniken aufgebracht werden.

Die erfindungsgemäßen, hochverzweigten Polymere können in

elektronischen oder optoelektronischen Vorrichtungen bzw. zu deren Herstellung verwendet werden.

15 Ein weiterer Gegenstand der vorliegenden Erfindung ist somit die

Verwendung der erfindungsgemäßen, hochverzweigten Polymere in elektronischen oder optoelektronischen Vorrichtungen, vorzugsweise in organischen Elektrolumineszenzvorrichtungen (OLED), organischen Feld- Effekt-Transistoren (OFETs), organischen integrierten Schaltungen (O-ICs), organischen Dünnfilmtransistoren (TFTs), organischen Solarzellen (O-

20

SCs), organischen Laserdioden (O-Laser), organischen photovoltaischen (OPV) Elementen oder Vorrichtungen oder organischen Photorezeptoren (OPCs), besonders bevorzugt in organischen Elektrolumineszenz- vorrichtungen (OLED).

25 Wie OLEDs hergestellt werden können, ist dem Fachmann bekannt und wird beispielsweise als allgemeines Verfahren ausführlich in der WO

2004/070772 A2 beschrieben, das entsprechend für den Einzelfall anzupassen ist.

Wie oben beschrieben, eignen sich die erfindungsgemäßen Polymere ganz

30 besonders als Lochtransportmaterialien in derart hergestellten OLEDs oder Displays. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

66

Ein bevorzugter Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung der erfindungsgemäßen, hochverzweigten Polymere in

OLEDs, insbesondere als Lochtransportmaterial.

5 Gegenstand der vorliegenden Erfindung sind ferner elektronische oder optoelektronische Bauteile, vorzugsweise organische Elektrolumineszenz- vorrichtungen (OLED), organische Feld-Effekt-Transistoren (OFETs), organische integrierte Schaltungen (O-ICs), organische Dünnfilm- transistoren (TFTs), organische Solarzellen (O-SCs), organische

Laserdioden (O-Laser), organische photovoltaische (OPV) Elemente oder

10 Vorrichtungen und organische Photorezeptoren (OPCs), besonders

bevorzugt organische Elektrolumineszenzvorrichtungen, mit einer oder mehreren aktiven Schichten, wobei mindestens eine dieser aktiven

Schichten ein oder mehrere erfindungsgemäße, hochverzweigte Polymere enthält. Die aktive Schicht kann beispielsweise eine lichtemittierende Schicht, eine Lochtransportschicht und/oder eine Lochinjektionsschicht

15 sein. Vorzugsweise ist die aktive Schicht eine Lochtransportschicht.

Im vorliegenden Anmeldungstext und auch in den im Weiteren folgenden Beispielen wird hauptsächlich auf die Verwendung der erfindungsgemäßen, hochverzweigten Polymere in Bezug auf OLEDs und entsprechende Displays abgezielt. Trotz dieser Beschränkung der Beschreibung ist es für

20

den Fachmann ohne weiteres erfinderisches Zutun möglich, die

erfindungsgemäßen Polymere als Halbleiter auch für die weiteren, oben beschriebenen Verwendungen in anderen elektronischen Vorrichtungen zu benutzen.

25 Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie

einzuschränken. Insbesondere sind die darin beschriebenen Merkmale, Eigenschaften und Vorteile der dem betreffenden Beispiel zu Grunde liegenden definierten Verbindungen auch auf andere, nicht im Detail aufgeführte, aber unter den Schutzbereich der Ansprüche fallende

Verbindungen anwendbar, sofern an anderer Stelle nichts Gegenteiliges

30 gesagt wird. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 67 -

Ausführunqsbeispiele

Teil A Synthese der Monomere

Die Monomere zur Herstellung der erfindungsgemäßen Polymere sind bereits im Stand der Technik beschrieben, kommerziell erhältlich oder werden gemäß Literaturvorschrift hergestellt und sind in der nachfolgenden Tabelle 1 zusammengefaßt:

Tabelle 1

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

68

10

15

20

30

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

-69-

5

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

-70- P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 71 -

5

10

Teil B Synthese der Polymere

1 5 Herstellung der Vergleichspolymere V1 und V2 sowie der erfindungs- gemäßen Polymere P1 bis P22.

Die Vergleichspolymere V1 und V2 sowie die erfindungsgemäßen

Polymere P1 bis P22 werden durch SUZUKI-Kupplung gemäß dem in der WO 2010/097155 beschriebenen Verfahren aus den im Teil A offenbarten 20 Monomeren hergestellt.

Die auf diese Weise hergestellten Polymere V1 und V2 sowie P1 bis P22 enthalten die Struktureinheiten nach Abspaltung der Abgangsgruppen in den in der Tabelle 2 angegebenen prozentualen Anteilen (Prozentangaben = mol%). Bei den Polymeren, die aus Monomeren hergestellt werden, die 25 Aldehydgruppen aufweisen, werden diese nach der Polymerisation durch WITTIG Reaktion gemäß dem in der WO 2010/097155 beschriebenen Verfahren in vernetzbare Vinylgruppen überführt. Die entsprechend in Tabelle 2 aufgeführten sowie im Teil C eingesetzten Polymere weisen somit vernetzbare Vinylgruppen anstelle der ursprünglich vorhandenen Aldehydgruppen auf. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 72 -

Die Palladium- und Bromgehalte der Polymeren werden per ICP-MS bestimmt. Die ermittelten Werte liegen unter 10 ppm.

Die Molekulargewichte M w sowie die Polydispersitäten D werden mittels Gelpermeationschromatographie (GPC) (Model: Agilent HPLC System Series 1100) ermittelt (Säule: PL-RapidH von Polymer Laboratories;

Lösungsmittel: THF mit 0,12 Vol% o-Dichlorbenzol; Detektion: UV und Brechungsindex; Temperatur: 40°C). Kalibriert wird mit Polystyrolstandards.

Tabelle 2

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

73

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 74 -

Teil C: Charkterisierunq der Polymeren

Teil C1 : Testverfahren zum Auflöseverhalten der erfindungsgemäßen Polymere

5

Das zu analysierende Polymer wird in einem Gefäß eingewogen und ein Magnetrührstäbchen in das Gefäß gegeben. Das Lösungsmittel (oder eine vorher erzeugte Mischung mehrerer Lösungsmittel) wird zu dem Feststoff gegeben. Die Menge an Lösungsmittel wird so berechnet, das eine finale 10 Feststoffkonzentration von 5 bzw. 10 g/l in der Lösung erreicht wird. Die Suspension wird bei 600 Umdrehungen pro Minute bei Raumtemperatur (25°C) gerührt bis der Feststoff vollständig aufgelöst ist. Der Endpunkt des Auflösens wird durch Sichtprüfung bestimmt. Gegen Ende des Auflöse- vorgangs wird die Lösung in einen senkrecht zur Blickrichtung einfallenden 15 Lichtstrahl gehalten um noch nicht gelöste Partikle optimal erkennen zu können.

Die Auflösezeit, also die Zeit bis zum vollständigen Auflösen des Feststoff- materials, auch als t Diss beschrieben, wird erfasst und beschreibt den 20 Zeitraum zwischen Zugabe des Lösungsmittels (oder Lösungsmittel- gemisches) und dem Verschwinden der letzten ungelösten Feststoff- partikel. Die Auflöserate wird bestimmt durch Divison der Auflösezeit durch die Zielkonzentration, hier 5 bzw. 10 g/l. Die Polymere werden beschrieben durch ihre Auflösungsrate in Capronsäurecyclohexylester.

25

Tabelle 3: Ziel-Zusammensetzung der Lösungen für die Bestimmung des Auflöseverhaltens.

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 75 -

Die Materialien werden anschließend entsprechend Tabelle 4 in Gruppen entsprechend dem Auflösetypus einkategorisiert.

Tabelle 4: Kategorisierung des Auflöseverhaltens.

15

20

25

Die Ergebnisse der Auflösetests sind inTabelle 5 zusammengefasst.

Tabelle 5: Ergebnisse der Auflösetests. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 76 -

Wie aus den Ergebnissen klar zu erkennen ist, sind die erfindungsgemäßen Polymere sehr gut für die Präparation von Drucktinten geeignet. Über diese Eigenschaft hinaus sind diese Materialien in Kombination mit entsprechend gewählten Lösungsmitteln geeignet, auch ohne vernetzbare Gruppen zu 1 5 lösungsprozessierten Multilagenbauteilen verarbeitet zu werden.

Teil C2: Schichtstabilitätstest unter Tintenstrahldruckbedingungen

Die erfindungsgemäßen Polymere werden im Hinblick auf ihre

Schichtstabilität gegenüber Lösungsmittel untersucht. Dazu wird das nachfolgend beschriebene Experiment durchgeführt.

1. Schichtpräparation

Auf ein Glassubstrat der Größe 30000 x 30000 x 1100 Mikrometer wird ein dünner Film des zu untersuchenden Polymers per Schleuderbeschichtung aus Toluol aufgebracht. Die Lösung enthält dabei 5 bis 50 g/l Feststoff. Die Lösung wird präpariert durch Einwaage des Materials und Zugabe des Lösungsmittel. Anschließend wird die Suspension für eine bis sechs Stunden bei Raumtemperatur mittels eines Magnetrührstäbchens bis zum vollständigen Auflösen des Feststoffs gerührt. Anschließend wird die Lösung in eine Handschuhbox überführt und unter Schutzgas mit einem P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 77 -

PTFE Filter mit 0.2 Mikrometer Porendurchmesser filtriert. Die Formulierung wird per Schleuderbeschichtung zu einem ca. 50 nm dicken Film auf einem flachen Glassubstrat verarbeitet. Die Schichtdicke und - homogenität wird mit einem Alpha-step D-500 Profilometer kontrolliert. Die 5 resultierenden Schichten haben typischerweise eine mittlere Rauigkeit

(RMS) von unter einem Nanometer. Nach dem Aufbringen der Schicht werden die Substrate auf einer Heizplatte bei einer Temperatur von 220°C für 60 Minuten getempert.

10 2. Schichtstabilitätstestbedingungen

Zur Bestimmung der Schichtstabilität wird ein Testlösungsmittel in eine lösungsmittelresistente Einweg-Tintenkartusche, hier eine zehn Pikoliter Kartusche passend für einen Fujifilm Dimatix DMP-2831 , gefüllt. Die Kartusche wird dabei charakterisiert durch die resultierende Tropfengröße. 15 Der Drucker wird betrieben in einer vibrationsarmen Umgebung auf einer ebenen Unterlage.

Die Druckparameter werden für eine Tropfengeschwindigkeit von 4 m/s angepasst (für eine detaillierte Beschreibung des Vorgehens siehe

20 Dokumentation des Druckerherstellers Fujifilm Dimatix). Der Stabil istätstest wird mit Tropfen aus lediglich einer Druckkopfdüse durchgeführt.

Das vorbereitete Substrat aus Schritt 1 wird im Probenhalter des Druckers platziert. Das zu druckende Tropfenmuster erzeugt Tropfen definierter 25 Größe auf dem Substrat. Dazu werden 9 Drucktropfen in einer engen drei mal drei Matrix angeordnet (siehe Figur 1 ), so dass diese zu einem Tropfen höheren Volumens (ca. neunzig Pikoliter) koaleszieren. Das Tropfen- volumen kann durch Zahl und Größe der Tropfen variiert werden, muss aber innerhalb eines Experiments konstant gehalten werden. Nach dem 30 Drucken sieht der Tropfen auf der Substratoberfläche wie in Figur 2

skizziert aus. Solch ein Tropfenbild kann mit der im Drucker eingebauten Kamera aufgenommen werden, die auf dem Schlitten des Druckkopfes P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 78 - installiert ist mit Blickrichtung auf das Substrat, parallel zur Tropfenflugrichtung (Figur 3).

3. Schichtbeschädigungstestauswertung

5 Direkt nach dem Drucken wird ein Foto mit der druckerinternen Kamera aufgenommen (Figur 2) und die Zeitmessung gestartet. Mehrere Fotos werden über einen Zeitraum von fünf Minuten, die sogenannte Einwirkzeit, aufgenommen (siehe Tabelle 6). Aus der Aufnahme direkt nach dem

Drucken wird der Durchmesser des Tropfens über die Ansichtskamera

10 bestimmt. Aus den x-/y-Koordinaten lassen sich die Größe des Tropfens im Bild und der reale Durchmesser des Tropfens maßstabsgetreu ausrechnen. Der Wert beschreibt den Tropfenduchmesser auf der Oberfläche und damit die Wechselwirkung des Lösungsmittels mit dem Substrat (Materialschicht). Durch den Vergleich der Bilder während der Einwirkzeit kann bereits eine

15 erste Einschätzung der Schichtstabilität erfolgen (Figur 6). Die Ausbildung eines dunklen Rings an der Kontaktlinie des Tropfens weist auf eine

Beschädigung der Materialschicht durch das Lösungsmittel hin.

Nach fünf Minuten Einwirkzeit wird das Substrat in eine Vakuumtrocken- kammer gelegt und das Lösungsmittel im Vakuum entfernt, so dass wieder

20 ein trockener Film entsteht. Die Vakuumkammer ist so dimensioniert, dass ein Druck von 1 -10 3 mbar ca. 60 Sekunden nach Einschalten der

Vakuumpumpe erreicht wird. Das Substrat verbleibt für mindestens 10 Minuten in der Vakuumkammer. Nach dem Trocknungsschritt wird das Substrat aus der Vakuumkammer genommen und der Schaden an der

25 Materialoberfläche quantifiziert. Zunächst wird das Substrat wieder unter die Kamera des Tintenstrahldruckers gelegt und ein Foto im getrockeneten Zustand aufgenommen. Der Schaden beziehungsweise die Schichtstabilität wird quantifiziert durch Bestimmung des Filmprofils und der Schichtdicke an der Stelle des ursprünglichen Tropfens (Figur 4). Als Methode wird

30 Profilometrie mittels einer feinen Diamantspitze genutzt, andere Methoden zur Bestimmung von Oberflächenstruckturen wie beispielsweise, aber nicht exklusiv, Rasterkraftmikroskopie sind ebenfalls möglich. Zur Quantifizierung P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 79 - der Schichtstabilität wird eine Leistungskennzahl (LKZ) definiert, die die Differenz zwischen höchstem und tiefsten Punkt einer Profillinie durch den Mittelpunkt des Tropfenortes beschreibt (Figur 5). Die Kennzahl hat die Einheit Nanometer. Die Leistungskennzahl wird übersetzt in einen

5 Schichtschadensindikator LI gemäß der in Figur 7 angegebenen Kriterien.

Dieser Indikator kann dann zur Beschreibung der relativen Stabilität einer Kombination aus einem Material und einem Lösungsmittel herangezgen werden. Diese Prozedur wird pro Material mindestens 10 und maximal 50 Mal wiederholt, um eine Reproduzierbarkeit der Messwerte sicherzustellen.

10

Tabelle 6: Schichtbeschädigungsauswertung.

Um eine Schichtschädigungsgeschwindigkeit zu bestimmen, eine Größe zur Beschreibung der Geschwindigkeit der Schädigung, wird die

Leistungskennzahl der Schichtstabilität durch die Einwirkzeit geteilt, in diesem Fall 300 Sekunden. Die Einheit für diese Schädigungsrate ist Nanometer pro Sekunde. Die Einwirkzeit sollte so gewählt werden, dass das Experiment ein realistisches Testszenario für die Herstellung einer lösungsprozessierten Schicht in einem optoelektronischen Bauelement o darstellt. In Übereinstimmung mit dem LI ist für eine bestimmte

Kombination aus einem Material und einem Lösungsmittel (siehe Tabelle 7) eine Schädigungsrate von 0.066 Nanometer pro Sekunde ein akzeptabler Wert für eine Nutzung.

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 80 -

Tabelle 7

Tabelle 8

15

20

25

Aus den gezeigten Beispielen wird klar ersichtlich (siehe Tabelle 8), dass die erfindungsgemäßen Polymere als Schicht hervorragende Lösungsmittelresistenz zeigen und gut geeignet für die Herstellung von Mulitlagenbauelementen geeignet sind.

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 81 -

Teil C3: Lösungsrheologie

Die Viskosität der erfindungsgemäßen Formulierungen (siehe Tabelle 9) wurde bestimmt mit einem Haake Mars III Rotationsrheometer in einer 5 Kegel-Platte-Messgeometrie (1 ° Kegelwinkel). Die Messung der Viskosität erfolgt unter Temperaturkontrolle bei einer Temperatur von 25°C (+/- 0.2°C) und bei einer Scherrate von 500 s _1 (Experimentindex low) oder 1000 s _1 (Experimentindex high). Jede Probe wird mindestens dreimal gemessen und die gemessenen Messwerte gemittelt. Wie anhand der Ergebnisse eindeutig zu sehen (Tabelle 9), zeigen besonders lineare, konjugierte 10 Polymere eine gewisse Tendenz zu nicht-Newtonischem Verhalten.

Strukturviskosität ist für die Anwendung dieser Lösungen als Tinte im Tintenstrahldruck eine unerwünschte Komplikation bei der Planung eines homogenen Druckbildes.

Tabelle 9

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

-82- P18-134 DK

WO 2020/011701 PCT/EP2019/068227

-83- P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 84 -

Aus den in Tabelle 9 gezeigten Ergebnissen ist ersichtlich, dass über den

10 gesamten Bereich möglicher Molekulargewichte die erfindungsgemäßen

Polymere newtonisches Verhalten zeigen. Dies ist von großem Vorteil für die Kontrolle wichtiger Druckparameter, zum Beispiel im Tintenstrahldruck die Kontrolle der Tropfengröße und des Tropfengewichtes. Die absoluten

Werte der Scherviskosität steigen deutlich weniger stark an für steigende

Molekulargewichte und steigende Konzentrationen als bei den

15

vergleichbaren linearen Polymeren. Dies ermöglicht das Verarbeiten höher konzentrierter Tinten. Das ermöglicht sowohl das Drucken höher aufgelöster Strukturen als auch kürzere Prozesszeiten.

Teil C4: Verdruckbarkeitsuntersuchung

20

Zur Bestimmung der Verdruckbarkeit der Polymertinten wird jeweils eine

Testlösung in eine lösungsmittelresistente Einweg-Tintenkartusche, hier eine zehn Pikoliter Kartusche passend für einen Dimatix-Tintenstrahl- drucker DMP-2831 , gefüllt. Die Kartusche wird dabei charakterisiert durch 25

die resultierende Tropfengöße. Der Drucker wird betrieben in einer vibrationsarmen Umgebung auf einer ebenen Unterlage.

Mit Hilfe einer Kamera, die auf die Auslassöffnung des Druckkopfes der

Kartusche fokussiert, können Form und Geschwindigkeit der Tropfen beim 30

Verlassen des Druckkopfes bestimmt werden. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 85 -

Als Druckparameter zur Kontrolle der Tropfengeschwindigkeit wird hauptsächlich, aber nicht ausschließlich, die anzulegende Spannung angepasst (für eine detailierte Beschreibung des Vorgehens siehe

Dokumentation des Druckerherstellers). Die Verdruckbarkeitsuntersuchung 5 wird über den gesamten zu untersuchenden Parameterrraum mit Tropfen aus einer Druckkopfdüse durchgeführt.

Die folgende Tabelle 10 gibt einen Überblick über die durchgeführten Experimente mit den Details zu Material, Lösungsmittel und Konzentration.

10

Tabelle 10

Diese Tinten wurden entsprechend der beschriebenen Prozedur charakterisiert. Nachfolgende Tabelle 11 gibt an, welche Spannung notwendig ist um eine angestrebte Tropfengeschwindigkeit zu erzielen.

Tabelle 11

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

86

5

10

15

20

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 87 -

5

10

15

20

25

Abschließend erfolgt eine Auswertung der Ligamentlänge eines Tropfens bei einer vorher zu vergleichenden Tropfengeschwindigkeit beim Verlassen der Druckkopfdüse. Dieser Wert ist ein Maß für die viskoelastischen Eigenschaften des Druckfluids. Eine erläuternde Darstellung ist in Figur 8 dargestellt. Dieser Wert darf in Abhängigkeit der Anwendung, des

Druckkopf-Substrat-Abstandes und einer angestrebten Tropfen- P18-134 DK

WO 2020/011701 PCT/EP2019/068227

88 geschwindigkeit sowie einer konkreten zu druckenden Auflösung einen kritischen Wert nicht überschreiten. Niedrigere Ligamentlängen sind also erstrebenswert und wie in Tabelle 12 klar zu erkennen ist, sind die erfindungsgemäßen, hochverzweigten Polymere den linearen Polymeren

5 hier überraschenderweise deutlich im Vorteil.

Tabelle 12

10

15

Teil C5: Schichtdickenbestimmung

Die Vergleichspolymere sowie die erfindungsgemäßen Polymere werden aus Lösung verarbeitet.

20 Ob die vernetzbaren Varianten der Polymere nach Vernetzung eine

vollständig unlösliche Schicht ergeben, wird analog zu der WO 2010/097155 getestet.

In Tabelle 13 ist die verbliebene Schichtdicke der ursprünglich 100 nm nach dem in WO 2010/097155 beschriebenen Waschvorgang aufgeführt.

25 Verringert sich die Schichtdicke nicht, so ist das Polymer unlöslich und somit die Vernetzung ausreichend.

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 89 -

Tabelle 13: Kontrolle der Restschichtdicke von ursprünglich 100 nm nach Waschtest

Wie Tabelle 13 zu entnehmen ist, vernetzen das Vergleichspolymer V2 sowie die erfindungsgemäßen Polymere Po4 und Po22 bei 220°C vollständig.

Teil C6: Bestimmung der Energieniveaus

In Tabelle 14 sind die gemessenen Energieniveaus der Polymere aufgelistet. Die HOMOs werden mittels Riken AC3 Messung bestimmt, wohingegen die Energielücke mittels der Kante des Absorptionsspektrum bestimmt wird. Es ist zu erkennen, dass die erfindungsgemäßen Polymere keine abweichenden Werte der Energienivaus aufweisen. Ausgenommen Polymer P5, welches speziell designed wurde, eine größere Energielücke aufzuweisen.

Tabelle 14: Energieniveaus der Polymere

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 90 -

Teil D: Herstellung der OLEDs

5 Die Herstellung lösungsbasierter OLEDs ist in der Literatur bereits vielfach beschrieben, z.B. in der WO 2004/037887 und der WO 2010/097155. Das Verfahren wird auf die im Folgenden beschriebenen Gegebenheiten (Schichtdickenvariation, Materialien) angepasst.

Die erfindungsgemäßen Polymere werden in zwei verschiedenen

10

Schichtabfolgen verwendet:

A)

- Substrat,

- ITO (50 nm),

- PEDOT :PSS (20 nm),

- Lochtransportschicht (HTL) (20 nm),

- Emissionsschicht (EML) (60 nm),

- Lochblockierschicht (HBL) (10 nm)

- Elektronentransportschicht (ETL) (40 nm),

- Kathode. oder

B)

Substrat,

ITO (50 nm),

25 PEDOT :PSS (60 nm),

Lochtransportschicht (HTL) (20 nm),

Emissionsschicht (EML) (60 nm),

Lochblockierschicht (HBL) (10 nm)

Elektronentransportschicht (ETL) (40 nm),

Kathode.

30

Desweiteren werden die Bauteile mit zwei verschiedenen Verfahren hergestellt: a) mittels Spin-Coating oder b) mittels Inkjet-Printing. P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 91 -

Prozessierungsabfolge A)

Als Substrat dienen gereinigte Glasplättchen, die mit strukturiertem ITO (Indium-Zinn-Oxid) der Dicke 50 nm beschichtet sind. Diese werden mit PEDOTPSS beschichtet. Das Aufschleudern erfolgt an Luft aus Wasser.

5

Die Schicht wird für 10 Minuten bei 180°C ausgeheizt. PEDOT SS wird bezogen von Heraeus Precious Metals GmbH & Co. KG, Deutschland. Auf diese beschichteten Glasplättchen werden die Lochtransport- sowie die Emissionsschicht aufgebracht.

10 Als Lochtransportschicht werden die erfindungsgemäßen Polymere sowie Vergleichspolymere verwendet, jeweils in Toluol gelöst. Der typische Feststoffgehalt solcher Lösungen liegt bei ca. 5 g/l, wenn, wie hier, die für eine Device typische Schichtdicken von 20 nm mittels Spincoating erzielt werden soll. Die Schichten werden in einer Inertgasatmosphäre, im vorliegenden Fall Argon, aufgeschleudert und für 30 Minuten bei 220°C

15 ausgeheizt.

Die Emissionsschicht setzt sich immer aus mindestens einem Matrix- material (Hostmaterial, Wirtsmaterial) und einem emittierenden Dotierstoff (Dotand, Emitter) zusammen. Weiterhin auftreten können Mischungen aus

20 mehreren Matrixmaterialien sowie Co-Dotanden. Eine Angabe wie H1 30% :

H2 55% : C1 15% bedeutet hierbei, dass das erste Hostmaterial H1 in einem Gewichtsanteil von 30%, das zweite Hostmaterial in einem Gewichtsanteil von 55% und der dritte Co-Dotand in einem Gewichtsanteil von 15% in der Emissionsschicht vorliegt. Die Mischung für die Emissionsschicht wird für Aufbau A in Toluol gelöst. Der typische Feststoffgehalt solcher Lösungen

25 liegt bei ca. 17 g/l, wenn, wie hier, die für eine Device typische Schichtdicke von 60 nm mittels Spincoating erzielt werden soll. Die Schichten werden in Inertgasatmosphäre, im vorliegenden Fall Argon, aufgeschleudert und 10 Minuten bei 150°C ausgeheizt.

Die in den Beispielen verwendeten Materialien sind in Tabelle 15 gezeigt.

30

Die Materialien für die Lochblockierschicht und Elektronentransportschicht werden in einer Vakuumkammer thermisch aufgedampft und sind in Tabelle P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 92 -

16 gezeigt. Die Lochblockierschicht besteht aus ETM1. Die Elektronen- transportschicht besteht aus den zwei Materialien ETM1 und ETM2, die einander durch Co-Verdampfung in einem Volumenanteil von jeweils 50% beigemischt werden.

5

Die Kathode wird durch die thermische Verdampfung einer 100 nm dicken Aluminiumschicht gebildet.

Prozessierungsabfolge B)

10 Als Substrat dienen gereinigte Glasplättchen, die mit strukturiertem ITO (Indium Zinn Oxid) der Dicke 50 nm sowie pixelliertem Bank-Material beschichtet sind.

Als Lochinjektionsschicht dient auch hier PEDOTPSS, welches mittels

15 Inkjet-Printing auf die Substrate gedruckt wird. Im Anschluss wird es unter Vakuum getrocknet und bei 180°C für 30 Minuten an Luft ausgeheizt.

PEDOT SS wird von Heraeus Precious Metals GmbH & Co. KG,

Deutschland bezogen.

Es folgt das Aufbringen der Lochtransportschicht. Als Lochtransportschicht

20 werden die erfindungsgemäßen Polymere sowie Vergleichspolymere

verwendet. Die Polymere werden in 3-Phenoxytoluol und Diethylenglykol- butylmethylether im Volumenverhältnis 7:3 in Lösung gebracht. Auch diese Tinte wird mittels Inkjet-Printing gedruckt und im Anschluss ebenfalls mit Vakuum getrocknet und bei 230°C für 30 Minuten in Inertgasatmosphäre (Argon) ausgeheizt.

25

Die Licht emittierende Schicht wird ebenfalls mittels Inkjet-Printing abgeschieden. Die Emissionsschicht setzt sich immer aus mindestens einem Matrixmaterial (Hostmaterial, Wirtsmaterial) und einem emittierenden Dotierstoff (Dotand, Emitter) zusammen. Weiterhin auftreten können

30 Mischungen aus mehreren Matrixmaterialien sowie Co-Dotanden. Eine Angabe wie H1 30%; H2 55%; C1 15% bedeutet hierbei, dass das Material H1 in einem Gewichtsanteil von 30%, das zweite Matrixmaterial H2 mit P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 93 -

einem Gewichtsanteil von 55% und der Dotand in einem Gewichtsanteil von 15% in der Emissionsschicht vorliegt.

Die Emissionsschicht in Aufbau B wird aus reinem 3-Phenoxytoluol 5 gedruckt. Im Anschluss an das Drucken, werden die Schichten unter

Vakuum getrocknet und in Inertgasatmosphäre (Argon), bei 160°C für 10 Minuten ausgeheizt. Die Zusammensetzung der emittierenden Schicht ist in Tabelle 17 aufgeführt, wobei die Materialien in Tabelle 15 zu finden sind.

Alle Tinten verdruckenden Prozesse werden unter Gelblicht und Luft- 10 Atmosphäre durchgeführt.

Die Lochblockier- und Elektronentransportschichten werden in einer

Vakuumkammer thermisch aufgedampft und sind in Tabelle 16 gezeigt. Die

Lochblockierschicht besteht aus ETM1. Die Elektronentransportschicht besteht aus den zwei Materialien ETM1 und ETM2, die einander durch Co- 15

Verdampfung in einem Volumenanteil von jeweils 50% beigemischt werden.

Die Kathode wird durch die thermische Verdampfung einer 100 nm dicken Aluminiumschicht gebildet.

20

Tabelle 15: Strukturformeln der in der Emissionsschicht verwendeten Materialien

25

30 P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 94 -

5

10

Tabelle 16: Verwendete HBL- und ETL-Materialien

Die genaue Zusammensetzung der OLEDs ist Tabelle 17 zu entnehmen. Die Beispiele 1 bis 3 werden mittels Prozessierung A) und Aufbau A hergestellt, wohingegen die Beispiele 4 bis 5 mittels Prozessierung B) und Aufbau B hergestellt werden. abeile 17: Aufbau der OLEDs

25

30

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 95 -

Teil E: Charakterisierung der OLEDs

Die OLEDs werden standardmäßig charakterisiert. Hierfür werden die Elektrolumineszenzspektren, Strom-Spannungs-Leuchtdichte-Kennlinien

(IUL-Kennlinien) unter Annahme einer Lambert‘schen Abstrahlcharakteristik sowie die (Betriebs-)Lebensdauer bestimmt. Aus den IUL-Kennlinien werden Kennzahlen bestimmt wie die Betriebsspannung (in V) und die externe Quanteneffizienz (in %) bei einer bestimmten Helligkeit. Die

Q Elektrolumineszenzspektren werden bei einer Leuchtdichte von 1000 cd/m 2 gemessen und daraus die CIE 1931 x und y Farbkoordinaten berechnet. LD80 @ 1000 cd/m 2 ist die Lebensdauer, bis die OLED bei einer

Starthelligkeit von 1000 cd/m 2 auf 80% der Anfangsintensität, also auf 800 cd/m 2 , abgefallen ist. Die Darstellung die Lebensdauer bei einer konstanten Stromdichte zu zeigen, wird ebenfalls verwendet.

Die Eigenschaften der verschiedenen OLEDs sind in den Tabellen 18a und 18b zusammengefasst. Beispiele 1 und 4 zeigen Vergleichsbauteile und Beispiele 2, 3 und 5 zeigen Eigenschaften von erfindungsgemäßen OLEDs.

20

Trotz des anderen Strukturtypes mit stark verbesserten

Prozesseigenschaften (vgl .Teil C, Charakterisierung der Polymeren) bleiben die guten Eigenschaften in OLEDs erhalten.

Tabelle 18a: Eigenschaften der OLEDs nach Aufbau A

30

P18-134 DK

WO 2020/011701 PCT/EP2019/068227

- 96 - abelle 18b: Eigenschaften der OLEDs nach Aufbau B

10

15

20

25

30