Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FUEL COMPOSITIONS AND METHODS BASED ON BIOMASS PYROLYSIS
Document Type and Number:
WIPO Patent Application WO/2012/082398
Kind Code:
A2
Abstract:
Fuel compositions exhibiting reduced greenhouse gas (GHG) emissions, based on a lifecycle assessment from the time of cultivation of feedstocks (in the case of plant materials) or extraction of feedstocks (in the case of fossil fuels) required for the compositions (up to and including the ultimate combustion of the fuel composition by the end user) are disclosed. The reduced level of emissions ("carbon footprint") is achieved by incorporating a pyrolysis derived component having a higher heating value than ethanol and meeting other applicable standards for fossil fuel (e.g., petroleum) derived components conventionally used for the same purpose, such as transportation fuels. Advantageously, fuel compositions comprising pyrolysis derived gasoline can exhibit lower GHG emissions than gasoline derived solely from petroleum, or even conventional blends of petroleum derived gasoline and ethanol.

Inventors:
KALNES TOM N (US)
Application Number:
PCT/US2011/063014
Publication Date:
June 21, 2012
Filing Date:
December 02, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UOP LLC (US)
KALNES TOM N (US)
International Classes:
C10L1/04; B09B3/00; C10G3/00; C10L1/02
Foreign References:
US20090107031A12009-04-30
US20070261296A12007-11-15
US20050120621A12005-06-09
Other References:
A.V. BRIDGWATE R JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS vol. 51, 1999, pages 3 - 22
Attorney, Agent or Firm:
PIASECKI, David J. (25 East Algonquin RoadP. O. Box 501, Des Plaines Illinois, US)
Download PDF:
Claims:
CLAIMS:

A fuel composition comprising:

(a) from 50% to 98% petroleum derived gasoline by weight;

(b) from 1% to 20% ethanol by volume; and

(c) from 1%) to 30%> pyrolysis derived gasoline by weight.

2. The fuel composition of claim 1, wherein the pyrolysis derived gasoline is derived from Rapid Thermal Processing (RTP).

3. The fuel composition of claim 1 or 2, wherein the pyrolysis derived gasoline is obtained from the pyrolysis of biomass selected from the group consisting of hardwood, softwood, hardwood bark, softwood bark, corn fiber, corn stover, sugar cane bagasse, switchgrass, miscanthus, algae, waste paper, construction waste, demolition waste, municipal waste, and mixtures thereof.

4. The fuel composition of any of claims 1 to 3, wherein the pyrolysis derived gasoline comprises from 0.02% to 4% organic oxygenates by weight.

5. The fuel composition of any of claims 1 to 4, wherein the pyrolysis derived gasoline comprises from 55% to 85% cyclic hydrocarbons by weight.

6. The fuel composition of any of claims 1 to 5, wherein the pyrolysis derived gasoline comprises less than 3% combined benzene and toluene by weight.

7. The fuel composition of any of claims 1 to 6, wherein the pyrolysis derived gasoline has a lifecycle greenhouse gas emission value from 15 g C02-eq./MJ (34.9 lb C02 eq./mmBTU) to 50 g C02-eq./MJ (116.3 lb C02 eq./mmBTU).

8. A method for making a fuel composition, the method comprising:

(a) pyrolyzing a feedstock comprising biomass to provide a pyrolysis oil;

(b) contacting the pyrolysis oil with hydrogen under catalytic hydroprocessing conditions to provide a hydroprocessed pyrolysis oil;

(c) separating a pyrolysis derived gasoline from the hydroprocessed pyrolysis oil; and

(d) blending the pyrolysis derived gasoline with from 30% to 98%> by weight of a petroleum derived gasoline.

9. The method of claim 8, wherein step (c) comprises fractionating the hydroprocessed pyrolysis oil to separate the pyrolysis derived gasoline from C4~ hydrocarbons and higher boiling hydrocarbons, the method further comprising:

(e) generating, from at least a portion of the C4~ hydrocarbons, at least a portion of the hydrogen for contacting with the raw pyrolysis oil in step (b).

10. A fuel composition comprising from 1% to 30% of pyrolysis derived gasoline having a lifecycle greenhouse gas emission value from 5 gC02-eq./MJ (11.6 lb C02 eq./mmBTU) to 50gCO2-eq./MJ (116.3 lb C02 eq./mmBTU).

Description:
FUEL COMPOSITIONS AND METHODS

BASED ON BIOMASS PYROLYSIS

STATEMENT OF PRIORITY

[0001] This application claims priority to U.S. Application No. 12/969,263 which was filed on December 15, 2010, the contents of which are hereby incorporated by reference in its entirety.

FIELD OF THE FNVENTION

[0002] The present invention relates to fuel compositions comprising at least one component derived from the pyro lysis of a renewable feedstock comprising biomass (e.g., wood or agricultural waste). The present invention also relates to methods for making these fuel compositions comprising pyrolysis and hydroprocessing, optionally with hydrogen generated from byproducts of either or both of these processes, in order to further reduce the carbon footprint of the fuel composition. DESCRIPTION OF RELATED ART

[0003] Environmental concerns over fossil fuel greenhouse gas emissions have led to an increasing emphasis on renewable energy sources. Wood and other forms of biomass including agricultural and forestry residues are examples of some of the main types of renewable feedstocks being considered for the production of liquid fuels. Energy from biomass based on energy crops such as short rotation forestry, for example, can contribute significantly towards the objectives of the Kyoto Agreement in reducing greenhouse gas (GHG) emissions.

[0004] Pyrolysis is considered a promising route for obtaining liquid fuels, including transportation fuel and heating oil, from biomass feedstocks. Pyrolysis refers to thermal decomposition in the substantial absence of oxygen (or in the presence of significantly less oxygen than required for complete combustion). Initial attempts to obtain useful oils from biomass pyrolysis yielded predominantly an equilibrium product slate (i.e., the products of "slow pyrolysis"). In addition to the desired liquid product, roughly equal proportions of non-reactive solids (char and ash) and non-condensible gases were obtained as unwanted byproducts. More recently, however, significantly improved yields of primary, non- equilibrium liquids and gases (including valuable chemicals, chemical intermediates, petrochemicals, and fuels) have been obtained from carbonaceous feedstocks through fast (rapid or flash) pyrolysis at the expense of undesirable, slow pyrolysis products.

[0005] Fast pyrolysis refers generally to technologies involving rapid heat transfer to the biomass feedstock, which is maintained at a relatively high temperature for a very short time. The temperature of the primary pyrolysis products is then rapidly reduced before chemical equilibrium is achieved. The fast cooling therefore prevents the valuable reaction intermediates, formed by depolymerization and fragmentation of the biomass building blocks, namely cellulose, hemicellulose, and lignin, from degrading to non-reactive, low-value final products. A number of fast pyrolysis processes are described in US 5,961,786; Canadian Patent Application 536,549; and by Bridgwater, A.V., "Biomass Fast Pyrolysis," Review paper BIBLID: 0354-9836, 8 (2004), 2, 21-49. Fast pyrolysis processes include Rapid Thermal Processing (RTP), in which an inert or catalytic solid particulate is used to carry and transfer heat to the feedstock. RTP has been commercialized and operated with very favorable yields (55-80% by weight, depending on the biomass feedstock) of raw pyrolysis oil.

[0006] The raw pyrolysis oil typically contains a relatively high oxygen content and relatively low energy content, compared to petroleum derived liquid fuel components. Other properties of this oil render it generally unusable, in any appreciable proportion, as a component of a transportation fuel composition. Significant upgrading, however, may be achieved by hydroprocessing of the raw pyrolysis oil. Despite recent progress in the area of biofuel development, there remains a need in the art for fuel compositions, and particularly those useful as motor fuels, which are derived at least partly from renewable feedstocks such as biomass. Of significant interest are compositions having a minimal carbon footprint, based on a lifecycle assessment of their greenhouse gas emissions.

SUMMARY OF THE INVENTION

[0007] The present invention is associated with the discovery of fuel compositions exhibiting reduced greenhouse gas (GHG) emissions, based on a lifecycle assessment from the time of cultivation of feedstocks (in the case of plant materials) or extraction of feedstocks (in the case of fossil fuels) required for the compositions, up to and including the ultimate combustion of the fuel composition by the end user. This reduced level of emissions ("carbon footprint") is achieved by incorporating a pyrolysis derived component having a higher heating value than ethanol and meeting other standards applicable to fossil fuel (e.g. , petroleum) derived components conventionally used for the same purpose, such as transportation fuels. Advantageously, fuel compositions comprising pyrolysis derived gasoline as the pyrolysis derived component can exhibit lower GHG emissions than gasoline derived solely from petroleum, or even conventional blends of petroleum derived gasoline and ethanol.

[0008] Embodiments of the invention therefore relate to fuel compositions, and especially motor fuel compositions, comprising a blend of components including a pyrolysis derived component, which may be present in the composition in an amount of typically up to 50% by weight. While such compositions may comprise entirely one or more pyrolysis derived components (i.e., in a neat form with respect to the pyrolysis derived component(s)), the compositions generally comprise blends of at least one pyrolysis derived component and at least one petroleum derived component. Relatively high proportions of the pyrolysis derived component(s) (i.e., greater than 50% by weight) will be primarily a function of the commercial scale production volumes that may ultimately be achieved using pyrolysis, compared to petroleum refining. By blending pyrolysis derived gasoline (pygas) with conventional petroleum derived gasoline according to fuel compositions described herein, the carbon footprint of the blend can be reduced.

[0009] Other embodiments of the invention relate to novel production methods for these pyrolysis derived components of fuel compositions, in which the components have not only a higher heating value than ethanol, but also a lifecycle GHG emission value that is reduced by generally at least 30%>, typically at least 50%>, and often at least 65%, relative to comparable petroleum derived fuel composition components. Pyrolysis derived gasoline, for example, may exhibit GHG emissions, based on a lifecycle assessment, that are over 70% lower than petroleum derived gasoline obtained from crude oil fractionation and/or refining operations (e.g., isomerization, alkylation, reforming, etc.) and over 50% lower than corn derived ethanol. [0010] Representative production methods include the pyrolysis of second generation

(e.g., lignocellulosic) biomass feedstocks to raw pyrolysis oil, followed by catalytic hydroprocessing of this oil, which may be optionally pretreated prior to hydroprocessing. Hydroprocessing of the raw or pretreated pyrolysis oil significantly reduces its total oxygen content and increases its heating value. The methods can further comprise separating the resulting hydroprocessed pyrolysis oil, for example, by fractionation (distillation), to provide one or more hydroprocessed pyrolysis oil fractions (e.g., pyrolysis derived gasoline) comprising hydrocarbons having normal boiling points characteristic of petroleum derived hydrocarbons with which they are blended in a subsequent blending step to provide the fuel compositions described herein. According to an alternate embodiment, the raw pyrolysis oil may be fractionated prior to hydroprocessing of only a desired pyrolysis oil (raw or pretreated) fraction, to yield the desired pyrolysis derived gasoline.

[0011] Regardless of the order of the separating and hydroprocessing (contacting with hydrogen) steps, at least a portion of the raw or pretreated pyrolysis oil and/or at least a portion of the hydroprocessed pyrolysis oil (or hydroprocessed pyrolysis oil fraction) is converted to hydrogen (e.g., by catalytic steam reforming), thereby generating at least a portion of the hydrogen required for hydroprocessing. The generation of hydrogen from byproducts (e.g., light hydrocarbons) of the pyrolyzing and/or hydroprocessing steps, can involve, in an overall pyrolysis derived component production process, integration with a hydrogen generation unit. In an exemplary embodiment, a catalytic steam reformer is integrated with a pyrolysis unit, for example a Rapid Thermal Processing (RTP) unit, and/or a catalytic hydroprocessing unit. Importantly, the generation of hydrogen in this manner (i.e., from byproducts obtained from the processing of feedstocks comprising renewable carbon) beneficially reduces the amount of hydrogen that must be obtained from external fossil sources (imported), thereby further lowering the lifecycle GHG emission value of the pyrolysis derived component.

[0012] Further embodiments of the invention relate to methods of preparing fuel compositions described herein, the methods comprising blending a pyrolysis derived component, and particularly a component produced according to methods described herein, with a petroleum derived component. Representative amounts of the pyrolysis and petroleum derived components are also described herein. [0013] These and other embodiments and aspects relating to the present invention are apparent from the following Detailed Description.

DETAILED DESCRIPTION

[0014] Representative fuel compositions according to embodiments of the invention comprise from 1% to 50% of a pyrolysis derived component, such as pyrolysis derived gasoline, by weight. A particular fuel composition, for example, may comprise from 1% to 30%) pyrolysis derived gasoline by weight, in addition to from 50%> to 98%> or more (e.g., from 50% to 99%) petroleum derived gasoline by weight and optionally ethanol. When ethanol is incorporated into the composition, it is typically derived from corn or sugar and present in an amount from 1 % to 20%> by volume. As discussed above, the reduced lifecycle greenhouse gas (GHG) emission value of the pyrolysis derived component has a beneficial effect on the overall carbon footprint of the fuel composition. Moreover, as a result of being obtained from a combination of hydroprocessing in addition to pyrolysis, this component has a higher heating value than ethanol, among other properties (e.g. , density and boiling range) meeting the standards established for petroleum derived components conventionally used for the same purpose (e.g., as a transportation fuel such as gasoline or diesel fuel). Of particular interest with respect to the compositions described herein are automotive spark-ignition engine fuels.

[0015] According to representative embodiments of the invention, the biomass subjected to pyrolysis in an oxygen depleted environment, for example using Rapid Thermal Processing (RTP), can be any plant material, or mixture of plant materials, including a hardwood (e.g., whitewood), a softwood, or a hardwood or softwood bark. Energy crops, or otherwise agricultural residues (e.g. , logging residues) or other types of plant wastes or plant- derived wastes, may also be used as plant materials. Specific exemplary plant materials include corn fiber, corn stover, and sugar cane bagasse, in addition to "on-purpose" energy crops such as switchgrass, miscanthus, and algae. Short rotation forestry products, as energy crops, include alder, ash, southern beech, birch, eucalyptus, poplar, willow, paper mulberry, Australian blackwood, sycamore, and varieties of paulownia elongate. Other examples of suitable biomass include organic waste materials, such as waste paper and construction, demolition, and municipal wastes. In general, the pyrolysis derived component (e.g., pyrolysis derived gasoline) may be obtained from any feedstock comprising lignocellulosic biomass. Because the biomass feedstocks are composed of the same building blocks, namely cellulose, hemi-cellulose, and lignin, pyrolysis conditions are relatively similar in the production of raw pyrolysis oils from these various feedstocks.

[0016] The raw pyrolysis oil obtained from a feedstock comprising biomass, as described above, generally contains 30-35% by weight of oxygen in the form of organic oxygenates such as hydroxyaldehydes, hydroxyketones, sugars, carboxylic acids, and phenolic oligomers as well as dissolved water. For this reason, although a pourable and transportable liquid fuel, the raw pyrolysis oil has only 55-60% of the energy content of crude oil-based fuel oils. Representative values of the energy content are in the range from 19.0 MJ/liter (69,800 BTU/gal) to 25.0 MJ/liter (91 ,800 BTU/gal). Moreover, this raw product is often corrosive and exhibits chemical instability due to the presence of highly unsaturated compounds such as olefins (including diolefms) and alkenylaromatics. Hydroprocessing of this pyrolysis oil is therefore beneficial in terms of reducing its oxygen content and increasing its stability, thereby rendering the hydroprocessed product more suitable for blending in fuels, such as gasoline, meeting all applicable specifications. Hydroprocessing involves contacting the pyrolysis oil with hydrogen and in the presence of a suitable catalyst, generally under conditions sufficient to convert a large proportion of the organic oxygen in the raw pyrolysis oil to CO, C0 2 and water that are easily removed. The term "pyrolysis oil," as it applies to a feedstock to the hydroprocessing step, refers to the raw pyrolysis oil obtained directly from pyrolysis (e.g., RTP) or otherwise refers to this raw pyrolysis oil after having undergone pretreatment such as filtration to remove solids and/or ion exchange to remove soluble metals, prior to the hydroprocessing step.

[0017] The catalyst may be present in the form of a fixed bed of particles comprising a catalytically active metal disposed on a support, with suitable metals and supports being described below. Otherwise the catalyst, either supported or otherwise unsupported (e.g., in the form of fine particles of a compound containing the catalytically active metal), may be used in a moving bed, such as in the case of a slurry reactor. Homogeneous systems operating with catalysts that are soluble in the reactants and products may also be used. Catalytic hydroprocessing conditions will vary depending on the quality of the hydroprocessed pyrolysis oil desired, with higher severity operations directionally resulting in greater conversion of organic oxygenates and other undesirable compounds (e.g. , reactive olefins and diolefins) by hydrogenation.

[0018] Typical pyrolysis oil hydroprocessing conditions include an average catalyst bed temperature from 40°C (104°F) to 538°C (1000°F), often from 150°C (302°F) to 426°C (800°F), and a hydrogen partial pressure from 3.5 MPa (500 psig) to 21 MPa (3000 psig), often from 6.2 MPa (800 psig) to 10.5 MPa (1500 psig). In addition to pressure and temperature, the residence time of the pyrolysis oil in the hydroprocessing catalyst bed or zone can also be adjusted to increase or decrease the reaction severity and consequently the quality of the resulting hydroprocessed pyrolysis oil. With all other variables unchanged, lower residence times are associated with lower reaction severity. The inverse of the residence time is closely related to a variable known as the Liquid Hourly Space Velocity (LHSV, expressed in units of hr "1 ), which is the volumetric liquid flow rate over the catalyst bed divided by the bed volume and represents the equivalent number of catalyst bed volumes of liquid processed per hour. Therefore, increasing the LHSV or pyrolysis oil flow rate, processed over a given quantity of catalyst, directionally decreases residence time and the conversion of undesirable compounds present in this oil, such as organic oxygenate compounds. A typical range of LHSV for hydroprocessing according to the present invention is from 0.1 hr "1 to 10 hr "1 , often from 0.5 hr "1 to 3 hr "1 . The quantity of hydrogen used may be based on the stoichiometric amount needed to convert organic oxygenates to hydrocarbons and H 2 0. In representative embodiments, hydroprocessing is carried out in the presence of hydrogen in amount ranging from 90% to 600% of this stoichiometric amount.

[0019] Suitable hydroprocessing catalysts include those comprising of at least one

Group VIII metal, such as iron, cobalt, and nickel (e.g., cobalt and/or nickel) and at least one Group VI metal, such as molybdenum and tungsten, on a high surface area support material such as a refractory inorganic oxide (e.g., silica, alumina, titania, and/or zirconia). A carbon support may also be used. A representative hydroprocessing catalyst therefore comprises a metal selected from the group consisting of nickel, cobalt, tungsten, molybdenum, and mixtures thereof (e.g., a mixture of cobalt and molybdenum), deposited on any of these support materials, or combinations of support materials. The choice of support material may be influenced, in some cases, by the need for corrosion resistance in view of the presence of aqueous acids in the pyrolysis oil feedstock to hydroprocessing. [0020] The Group VIII metal is typically present in the hydroprocessing catalyst in an amount ranging from 2 to 20 weight percent, and normally from 4 to 12 weight percent, based on the volatile-free catalyst weight. The Group VI metal is typically present in an amount ranging from 1 to 25 weight percent, and normally from 2 to 25 weight percent, also based on the volatile-free catalyst weight. A volatile-free catalyst sample may be obtained by subjecting the catalyst to drying at 200-350°C (392-662°F) under an inert gas purge or vacuum for a period of time (e.g., 2 hours), so that water and other volatile components are driven from the catalyst.

[0021] Other suitable hydroprocessing catalysts include zeolitic catalysts, as well as noble metal catalysts where the noble metal is selected from palladium and platinum. It is within the scope of the invention to use more than one type of hydroprocessing catalyst in the same or a different reaction vessel. Two or more hydroprocessing catalyst beds of the same or different catalyst and one or more quench points may also be utilized in a reaction vessel or vessels to provide the hydroprocessed pyrolysis oil. [0022] After hydroprocessing, the resulting hydroprocessed pyrolysis oil has an oxygen content that is generally reduced from 90% to 99.9%, relative to the oxygen content of the raw pyrolysis oil. Importantly, the heating value, on a mass basis, of the hydroprocessed pyrolysis oil is simultaneously increased, typically by a factor ranging from 1.5 to 3, compared to that of the raw pyrolysis oil. Fractionation or other separation methods may then be used to separate various pyrolysis derived components, such as a pyrolysis derived gasoline, from the hydroprocessed pyrolysis oil. Separation may alternatively be performed on the pyrolysis oil (e.g. , raw or pretreated pyrolysis oil as discussed above) and the pyrolysis derived gasoline or other pyrolysis derived component taken as the entire product of the subsequent hydroprocessing operation. In any event, the separated, pyrolysis derived component may then be blended with comparable petroleum derived components and possibly other suitable additives.

[0023] In addition to pyrolysis derived gasoline, pyrolysis derived kerosene and/or pyrolysis derived diesel components may also be recovered, normally by fractionation, to provide these components as fractions having successively higher boiling point ranges. Both of the kerosene and diesel components generally have higher boiling point ranges, compared to the gasoline component. Likewise, lower boiling point range components may also be recovered by fractionation. These include, for example, a pyrolysis derived renewable analogue of liquefied petroleum gas (LPG). After hydroprocessing and fractionation, the pyrolysis derived components described above, including pyrolysis derived gasoline, comprise predominantly hydrocarbons, typically at least 90% hydrocarbons (e.g. , from 90%> to 99.9%) hydrocarbons) by weight, and often at least 97% hydrocarbons (e.g., from 97% to 99.5%) hydrocarbons) by weight.

[0024] Pyrolysis derived gasoline is therefore normally separated from the hydrocarbon-containing products of hydroprocessing, based on boiling point or relative volatility, in a distillation column capable of carrying out a suitable number of theoretical stages of equilibrium contacting between rising vapor and falling liquid. According to representative embodiments, the pyrolysis derived gasoline will have an initial boiling point temperature characteristic of C 5 hydrocarbons, for example from 30°C (86°F) to 40°C (104°F) and a distillation end point temperature generally from 138°C (280°F) to 216°C (420°F), and typically from 138°C (280°F) to 160°C (320°F). These boiling point temperatures, which are also characteristic of petroleum derived gasoline, are measured according to ASTM D86.

[0025] The pyrolysis derived gasoline component, therefore, may be separated by fractionation from lower boiling hydrocarbons contained in a more volatile component (e.g. , pyrolysis derived LPG) and/or higher boiling hydrocarbons contained in a less volatile component (e.g., pyrolysis derived kerosene and/or pyrolysis derived diesel). According to preferred embodiments, the separated, lower boiling hydrocarbons comprise C 4 hydrocarbons (e.g., butanes and butenes) as well as lower boiling compounds, such that these lower boiling hydrocarbons may be referred to a C 4 ~ hydrocarbons. To further reduce the lifecycle greenhouse gas emission value of the pyrolysis derived gasoline or other pyrolysis derived component(s), at least a portion of these biomass-derived C 4 ~ hydrocarbons are advantageously used to generate at least a portion of the hydrogen requirement for contacting with the raw pyrolysis oil in the hydroprocessing step.

[0026] The conversion of the lower boiling hydrocarbons, contained in a less valuable, hydroprocessing product fraction, to hydrogen, can reduce or even eliminate the need for an external source of hydrogen. This external hydrogen would otherwise add to the carbon footprint associated with the production of the pyrolysis derived components described herein, thereby increasing the GHG emissions based on an overall lifecycle assessment. Integrated hydrogen production is therefore beneficial in minimizing the GHG emissions exhibited by the fuel compositions associated with the present invention. According to particular embodiments, the C 4 ~ hydrocarbons are catalytically reformed in the presence of steam. Representative steam reforming catalysts include alumina supported nickel oxide.

[0027] Whether or not integrated hydrogen production is used, the oxygen content remaining in the hydroprocessed pyrolysis oil is a function of the severity of the hydroprocessing operation, with higher severity resulting in a higher conversion of organic oxygenates to water, which may be easily removed. While a reduction in organic oxygenates directionally increases heating value, this improvement in the quality of a pyrolysis derived component is achieved at the expense of increased energy required for the hydroprocessing operation. Optimization of the organic oxygen content is therefore possible, depending on the particular biomass used as feedstock, the particular fuel blend composition, and its intended end use. In the case of pyrolysis derived gasoline, this component will generally contain from 0.001% to 5%, typically from 0.02% to 4%, and often from 0.05% to 3%, by weight of organic oxygenates that are relatively refractory under hydroprocessing conditions. These ranges also apply to cyclic organic oxygenates (e.g., phenol and alkylated phenols), which normally account for most or substantially all of the organic oxygenates of the pyrolysis derived component. The term "cyclic organic oxygenates" is meant to include compounds in which oxygen is incorporated into a ring structure (e.g. , a pyran ring), as well as compounds (e.g., phenol) having a ring structure with oxygen being incorporated outside the ring structure. In either case, the ring structure may have from 3 to 8 ring members, be fused to other ring structures, and may be completely saturated (e.g., napthenic), completely unsaturated (e.g., aromatic), or partially unsaturated. In view of these amounts of cyclic oxygenates in the pyrolysis derived gasoline and amounts of this component in the fuel composition, representative fuel compositions will generally contain from 0.0005% to 2.5%, typically from 0.01% to 2%, and often from 0.025%) to 1.5%, by weight of cyclic organic oxygenates. According to other embodiments, these ranges may be representative of the total phenol content, including alkylated phenols, in the fuel composition. [0028] In addition to its organic oxygenate content, and particularly its cyclic organic oxygenate content, other properties of the pyrolysis derived gasoline can distinguish this component compositionally from petroleum derived gasoline. For example, pyrolysis derived gasoline is normally characterized by a relatively high content of cyclic hydrocarbons, which is generally from 50% to 90%, and typically from 55% to 85%. The content of naphthenes, representing the saturated portion of the cyclic hydrocarbons, is generally at least 30% (e.g., from 30% to 80%) by weight and typically at least 50% (e.g., from 50% to 70%) by weight. With respect to the aromatic hydrocarbons in the pyrolysis derived gasoline, benzene and toluene are each typically present in amounts of less than 2%, and often less than 1%, by weight. Therefore, according to representative embodiments of the invention, the pyrolysis derived gasoline comprises generally less than 3%, and typically less than 2%, by weight of benzene and toluene combined.

[0029] The pyrolysis derived gasoline, as well as other pyrolysis derived components

(after hydroprocessing) as described above, also advantageously share a number of important characteristics with their petroleum derived counterpart components. In terms of energy content, the pyrolysis derived gasoline has a lower heating value generally from 30 MJ/kg (12,900 BTU/lb) to 46 MJ/kg (19,800 BTU/lb) and typically from 37 MJ/kg (15,900 BTU/lb) to 44 MJ/kg (18,900 BTU/lb). Additionally, the Research Octane Number (RON) of this component is generally from 83 to 93 and typically from 85 to 90. [0030] While the pyrolysis derived gasoline can meet the gasoline standards required of petroleum derived gasoline, its carbon footprint is greatly reduced according to U.S. government GHG emission accounting practices, in which emissions associated with the combustion of biomass derived fuels are not reported in the lifecycle GHG emission value, as biomass is renewed over a very short time frame compared to petroleum derived components. According to particular embodiments of the invention, the pyrolysis derived gasoline has a lifecycle greenhouse gas emission value, based on C0 2 equivalents, generally from 5 g C0 2 - eq./MJ (1 1.6 lb C0 2 eq./mmBTU) to 50 g C0 2 -eq./MJ (1 16.3 lb C0 2 -eq./mmBTU), typically from 15 g C0 2 -eq./MJ (34.9 lb C0 2 eq./mmBTU) to 35 g C0 2 -eq./MJ (81.3 lb C0 2 - eq./mmBTU), and often from 20 g C0 2 -eq./MJ (46.5 lb C0 2 -eq./mmBTU) to 30 g C0 2 - eq./MJ (69.8 lb C0 2 -eq./mmBTU), as measured according to guidelines set forth by the Intergovernmental Panel on Climate Change (IPCC) and the U.S. federal government. Lifecycle assessment values of emissions in terms of C0 2 equivalents, from raw material cultivation (in the case of plant materials) or raw material extraction (in the case of fossil fuels) through fuel combustion, can be calculated using SimaPro 7.1 software and IPCC GWP 100a methodologies. [0031] In representative fuel compositions associated with the present invention, the pyrolysis derived gasoline may be blended with petroleum derived gasoline that is present in the resulting fuel composition in an amount from 30% to 98% by weight. According to particular fuel compositions, (i) generally from 1 to 50%, and typically from 1 to 30%, of the pyrolysis derived gasoline by weight is blended with (ii) generally from 30%> to 99%, and typically from 50%> to 98%> of petroleum derived gasoline by weight, optionally in addition to (iii) generally from 1% to 30%, and typically from 1% to 20%, ethanol by volume.

[0032] Overall, aspects of the invention are directed to fuel compositions comprising from 1%) to 30%) of pyrolysis derived gasoline having a lifecycle greenhouse gas emission value in the ranges given above, methods for making these fuel compositions, and methods for blending these fuel compositions comprising blending the pyrolysis derived gasoline with petroleum derived gasoline, and optionally ethanol, to achieve amounts in the fuel composition as described herein. Those having skill in the art, with the knowledge gained from the present disclosure, will recognize that various changes could be made in these compositions and methods without departing from the scope of the present invention. Mechanisms used to explain theoretical or observed phenomena or results, shall be interpreted as illustrative only and not limiting in any way the scope of the appended claims.