Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
FUEL SYSTEM FOR GAS DRIVEN VESSEL
Document Type and Number:
WIPO Patent Application WO/2008/000898
Kind Code:
A1
Abstract:
The invention relates to fuel system (4) for gas driven piston engine (2) in a ma- rine vessel (1), which gas is stored in at least one fuel storage tank (6) in the vessel as liquefied gas. The fuel feeding system comprises a separate fuel feed tank (8) in which the gas is in liquid phase and at elevated pressure. The gas is also in liquid phase in the fuel storage tank (6), in which, however, prevails only the hydrostatic pressure caused by the liquid gas.

Inventors:
SIPILAE TUOMAS (FI)
LEVANDER OSKAR (FI)
Application Number:
PCT/FI2007/050319
Publication Date:
January 03, 2008
Filing Date:
June 01, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
WAERTSILAE FINLAND OY (FI)
SIPILAE TUOMAS (FI)
LEVANDER OSKAR (FI)
International Classes:
B63H21/38; B63B25/12
Foreign References:
EP0069717A11983-01-12
JPH0959657A1997-03-04
US4175395A1979-11-27
US2035396A1936-03-24
US6901973B12005-06-07
EP0069717A11983-01-12
Other References:
See also references of EP 2032428A4
Attorney, Agent or Firm:
AWEK INDUSTRIAL PATENTS LTD OY (Lautatarhankatu 6, Helsinki, FI)
Download PDF:
Claims:

Claims

1. Fuel system (4) for a gas driven piston engine (2) in a marine vessel (1 ), in which fuel system gas is stored in at least one fuel storage tank (6) in the marine vessel as liquefied gas, which fuel system further comprises a separate fuel feed tank (8) in connection with the fuel storage tank (6), characterised in that the fuel feed tank (8) is a heat insulated pressure vessel, that the gas is in liquid phase and at elevated pressure in the fuel feed tank (8), that the gas is also in liquid phase in the fuel storage tank (6), in which prevails only hydrostatic pressure caused by the liquid gas, and in that a first heat exchanger (22) is arranged in a fuel feed line (20) which connects the fuel feed tank (8) to the gas drive piston engine (2).

2. Fuel system according to claim 1 , characterized in that the fuel feed line (20) is connected to a bottom section of the fuel feed tank (8), and in that the first heat exchanger (22) is adapted for evaporating the liquefied gas prior to feeding it to the piston engine (2).

3. Fuel system according to claim 1 , characterized in that a first fuel supply line (12) connects the fuel storage tank (6) and the fuel feed tank (8), and that the first fuel supply line (22) is provided with a pump (10), which pumps liquefied gas from the fuel storage tank (6) to the fuel feed tank (8), the pump (10) being adapted to also raise the pressure of the liquefied gas from about atmospheric pressure in the fuel storage tank (6) to a pressure of about 10 bar.

4. Fuel system according to claim 1 , characterised in that the fuel storage tank (6) is arranged to have substantially rectangular walls (6.1 ).

5. Fuel system according to claim 4, characterised in that the fuel storage tank (6) is arranged to withhold mainly the pressure caused by hydrostatic pressure of the liquefied gas.

6. Fuel system according to claim 1 , characterised in that the fuel feed tank (8) is provided with a pressure build-up system (24) having a circulation duct ex-

tending from the bottom section of the fuel feed tank (8) to the upper section of the fuel feed tank (8) and being provided with a second heat exchanger (28).

7. Fuel system according to claim 1 , characterised in that the volume of the fuel feed tank fuel is less than 30% of the total volume of fuel storage tanks in the vessel.

8. Fuel system according to claim 1 , characterised in that a first fuel supply line (12), a second fuel supply line (14) and the fuel feed line (20) are arranged inside gas-tight outer tube (34).

9. Fuel system according to claim 8, characterised in that the at least one fuel storage tank (6) and fuel feed tank (8) are arranged in gas tight compartment

(36), and in that the gas tight outer tubes (34) open into the gas tight compartment (36) forming a gas tight space.

10. Fuel system according to claim 9, characterised in that the gas tight compartment (36) and/or outer tubes (34) comprises an inlet (38) for inert gas.

Description:

FUEL SYSTEM FOR GAS DRIVEN VESSEL

Technical field

The invention relates to fuel system for gas driven piston engine in a marine ves- sel, which gas is stored in at least one fuel storage tank in the vessel as liquefied gas according to preamble of claim 1.

Background art

Gas is becoming more and more attractive fuel for ships' prime movers and auxiliary engines. Particularly natural gas (NG) is feasible due to is availability. In am- bient circumstances it is a gaseous mixture consisting primarily of methane and small amounts of ethane, propane, butane and nitrogen. It has high hydrogen content relative to coal, so when combusted it provides inter alia low emissions, very clean burning process and it's basically free of contaminants. Particularly in cruise vessels, ferries and ropax vessels, where passengers are on board, the absence of soot emissions and visible smoke in the exhaust of ship's engines is very important feature facilitated by using NG as fuel for the engines. Usually natural gas is stored as liquefied natural gas (LNG) at temperature of -162 0 C, thus the storage cause problems particularly when the LNG is stored at high pressure, about at 5 bar, which is typically the level that a gas operated piston engine requires. Considering that the tanks must be in that case pressure vessels, which usually are built in cylindrical form, and that the volume of the tanks could be at the magnitude of say 500 - 1000 m 3 , arranging large cylindrical tanks in a ship having spaces with basically rectangular cross section creates a lot of wasted space.

An object of the invention is to provide a fuel system for gas driven vessel, which solves the above mentioned and other problems of the prior art.

Object of the invention are met substantially as is disclosed in claim 1. The other claims present more details of different embodiments of the invention.

Disclosure of the invention

The basic idea of the invention is to provide separate fuel feed tank in which the gas is in liquid phase and at elevated pressure, and separate fuel storage tank or tanks in which the gas is also in liquid phase but in which prevails the hydrostatic pressure caused by the liquid gas. This way the fuel storage tanks may be con- structed simple and economically. Since the liquefied gas is at low temperature the tanks are heat insulated.

The fuel feed tank is a pressure vessel, the fuel feed tank being in connection with the fuel storage tank. There is a first heat exchanger arranged in a fuel feed line which connects a piston engine and the bottom section of the fuel feed tank, the first heat exchanger being adapted for evaporating the liquefied gas prior to feeding to the piston engine. So, only the substantially small fuel feed tank is a pressure vessel, in most cases the volume of the fuel feed tank fuel is less than 30% of the total volume of fuel storage tanks in the vessel.

A first fuel supply line connects the fuel storage tank and the fuel feed tank, and the first fuel supply line is provided with a pump which pumps liquefied gas from the fuel storage tank to the fuel supply tank, the pump being adapted to also raise the pressure of the liquefied gas from about atmospheric pressure in the fuel storage tank to a pressure of about 10 bar, though the nominal operation pressure is typically 3-5 bar . This pressure is determined by the requirements of the piston engines and there is no separate gas compressors needed after the liquefied gas has been evaporate as the fuel feed tank is at suitable pressure.

Since the fuel in the fuel storage tank is not at elevated pressure the fuel storage tank has substantially rectangular walls, which makes it possible to use the available space in the vessel efficiently. The fuel storage tank is arranged to withhold mainly the pressure caused by hydro-static pressure of the liquefied gas.

The fuel feed tank is provided with a pressure build-up system having a circulation duct extending from the bottom section of the fuel feed tank to the upper section of the fuel feed tank and being provided with a second heat exchanger. The pressure build-up system regulates the pressure in the fuel feed tank to be at re- quired level.

In order to minimize the risk of gas leak the first fuel supply line, a second fuel supply line and the fuel feed line are arranged in-side gas-tight outer tube. Further, the at least one fuel storage tank and fuel feed tank are arranged in gas tight compartment(s) and the gas tight outer tube opens into the gas tight compart- ments forming a gas tight space. In case of a leak inert gas, or other protective medium, may be fed to the space via an inlet for inert gas, which is provided in the gas tight compartments and/or outer tube.

Brief description of drawings

In the following the invention will be described with the reference to the accom- panying schematic drawing, in which

figure 1 illustrates a cruise vessel being provided with an embodiment of the fuel feeding system according to the invention,

figure 2 illustrates longitudinal cross section of the vessel in the figure 1 , and

figure 3 illustrates an embodiment of the fuel feeding system according to the in- vention.

Detailed description

In figure 1 there is very schematically shown a vessel 1 , which is a cruise vessel as an example. The vessel is provided with a gas driven piston engine 2. For example natural gas results in very clean exhausts which is environmentally benefi- cial and also pleasant for the passengers of the vessel due to the fact the exhaust gas has practically no soot or visible smoke. The fuel system 4 for gas driven vessel comprises at least one fuel storage tank 6. The storage tank is heat insulated, because the gas is stored in liquefied form at temperature of about minus 162 0 C. In order to use the space of the vessel efficiently the storage tanks 6 are constructed of substantially rectangular walls 6.1. The efficient utilization of the space in the vessel can be seen in the figure 2. As comparison, the figure also shows a pressure vessel (=cylindrical cross section) of same cross sectional area as the storage tanks 6 and the actual space (shaded square) reserved by the circular shape of a pressure vessel. So, it is clear from the figure 2 that the fuel sys- tern according to the invention makes the space utilization in the vessel efficient.

In addition to just making use of available space efficiently the fuel storage tanks 6 according to the invention are considerably cheaper to build than pressure vessels.

In the fuel system 4 there is a separate feed tank 8 from which the fuel is fed to the gas driven engines 2. The feed tank is a heat insulated pressure vessel, but it is considerably smaller in volume than the storage tanks 6. Thus the disadvantage of using pressure vessel in fuel system is minimized. The size of the feed tank is dimensioned for about 4 hours consumption at full speed. The size is also determined so that the tanks can maintain pressure even during fast load changes. This is dependent on the engine power. The fuel feed tank 8 is less than 10% of the volume of the storage tanks 6. This way fuel may be delivered to the engines at required pressure but still avoid unnecessary wasting of space. There is a pump 10 provided in a first fuel supply line 12. The first fuel supply line connects the fuel storage tank 6 and the fuel feed tank 8 and it is provided to ex- tend into the bottom section of the fuel storage tank to reach the liquefied gas in the tank. The fuel is pumped from the storage tanks 6 to the feed tank in liquefied form simultaneously raising the pressure to a level higher than that required by piston engines 2 in the vessel, which is typically about 3 -5 bar. Contrary to that, the fuel storage tanks 6 are atmospheric, in practise there is mainly the hydro- static pressure caused by the liquefied gas.

There is also a second fuel supply line 14, which also connects the fuel storage tank 6 and the fuel feed tank 8, but the supply line 14 is provided to extend into the upper section of the fuel storage tank 6 where there is only gaseous gas present. The second fuel supply line 14 is provided for transporting boil off gas from the storage tank 6 to the fuel feed tank 8. Because the fuel storage tank is at lower pressure the second fuel supply line is provided with a compressor unit 16 to raise the pressure of the gas to that prevailing the fuel supply tank 8.

The fuel from the fuel feed tank 8 is led to the engine 2 via a fuel feed line 20. As mentioned, the gas in the fuel feed tank 8 is mainly in liquid phase, so the fuel feed line 20 is provided with an evaporator, a first heat exchanger 22 to evaporate the liquefied gas prior to feeding to the piston engines 2. The fuel feed line extends from the bottom section of the fuel feed tank 8 to the engine, so that it

sucks in liquid gas. The fuel feed tank 8 is provided with a pressure build-up system 24 having a circulation duct 26 extending from the bottom section of the fuel feed tank 8 to the upper section of the fuel feed tank and being provided with a second heat exchanger 28.

In the figure 3 there is a more detailed presentation of the fuel feeding system according to the invention using the same reference numbers as far as possible. In figure 3 there is shown that the pressure build-up system 24 in fuel feed tank is provided with a pressure sensor 30 which controls the operation of the second heat exchanger 28. When the pressure in the fuel feed tank 8 decreases below a predetermined level the power of the second heat exchanger is increased which increases the evaporation rate of the liquefied gas in the fuel feel tank 8 and increases the pressure to correct level. Figure 3 also shows that the fuel feed tank is provided with a surface level probe 32 which controls the operation of pumps 10 in the first fuel supply line 12 keeping the amount of liquefied gas in the fuel feed tank at appropriate level.

Another additional feature of the invention is that the first fuel supply line 12, the second fuel supply Iine14 and the fuel feed line 20 are provided with a gas tight outer tube 34 which isolates the supply lines from the surroundings. This is a safety measure taken in order to minimize the risk of a gas leak. Also the fuel storage tank 6 and fuel feed tank 8 are arranged in gas tight compartment 36 for the same reason The gas tight outer tubes 34 open into the gas tight compartments forming a gas tight space. The gas tight compartments 36 and the outer tubes 34 comprise an inlet for inert gas 38. In case of a gas leak it is possible to secure the gas tight space by injecting inert gas in to the space.

The fact that the fuel storage tank 6 is not actual pressure vessel and is arranged to have substantially rectangular walls 6.1 makes it also easier to be enclosed in the gas tight compartment because it requires less space than a pressure vessel having circular cross section.

The fuel feeding system is also provided with a bunkering station 44, which is connected with fuel filling lines 40 to each of the fuel storage tanks 6. The fuel filling lines are also provided with outer tube 42.

It is clear that the invention is not limited to the examples mentioned above, e.g. the number of piston engines, fuel storage tanks, fuel feed tanks, etc. may vary, but can be implemented in many other different embodiments within the scope of the inventive idea.