Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GAMING CLOTH AND METHOD OF PRINTING GAMING CLOTH
Document Type and Number:
WIPO Patent Application WO/2004/011716
Kind Code:
A1
Abstract:
A gaming cloth comprises a cloth with a playing surface (10) having a design (12) printed thereon. At least 30 % of the area of the playing surface is printed with a camouflage design (14) as defined by the function &Dgr E2 < k &Dgr E1, where &Dgr E1, is a measure of the complexity of the design, &Dgr E2 is a measure of the similarity of the colour contrast of the design with respect to the base colour and k is a constant with a value in the range 0 to 5.

Inventors:
LOBLEY STEPHEN JOHN (GB)
BRASIER ALAN JOHN (GB)
Application Number:
PCT/GB2003/003121
Publication Date:
February 05, 2004
Filing Date:
July 18, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MILLIKEN IND LTD (GB)
LOBLEY STEPHEN JOHN (GB)
BRASIER ALAN JOHN (GB)
International Classes:
A63F3/00; D06P1/00; D06P1/38; D06P3/00; D06P3/14; A63D15/00; D06P3/16; D06P5/00; D06P5/30; (IPC1-7): D06P1/00; D06P5/00; D06P3/14; D06P3/16; A63D15/00
Domestic Patent References:
WO2003046275A22003-06-05
WO1997027357A11997-07-31
Foreign References:
US5936027A1999-08-10
EP0633347A21995-01-11
Attorney, Agent or Firm:
Raynor, Simon Mark (Midsummer House 413 Midsummer Boulevar, Central Milton Keynes Buckingshamshire MK9 3BN, GB)
Download PDF:
Claims:
CLAIMS
1. A gaming cloth comprising a cloth with a playing surface having a design printed thereon ; characterised in that at least 30% of the area of the playing surface is printed with a camouflage design as defined by the function l\E2 < k SEI, where AE, is a measure of the complexity of the design as defined herein, AE2is a measure of the colour contrast of the design with respect to the base colour of the cloth as defined herein, and k is a constant with a value in the range 0 to 5.
2. A gaming cloth according to claim 1, wherein the constant k has a value in the range 0 to 3 and preferably 0 to 2.
3. A gaming cloth according to claim 1 or claim 2, wherein the camouflage design is further defined by a colour complexity value AE, of 15 or more, preferably 20 or more.
4. A gaming cloth according to any preceding claim, wherein a camouflage design is printed on at least 60%, and preferably at least 90%, of the area of the playing surface.
5. A gaming cloth according to any preceding claim, wherein a camouflage design is printed on all high wear areas of the playing surface.
6. A gaming cloth according to any preceding claim, wherein the cloth is a wool or wool blend fabric, containing at least 60%, preferably at least 70%, and more preferably at least 90% wool.
7. A gaming cloth according to any preceding claim, wherein the cloth is a woven felted fabric.
8. A gaming cloth according to any one of claims 1 to 6, wherein the cloth is a non woven felted fabric.
9. A gaming cloth according to any one of claims 1 to 6, wherein the cloth is a worsted fabric.
10. A gaming cloth according to any preceding claim, wherein the cloth is printed with dyes or inks applied to the surface of the base cloth.
11. A gaming cloth according to any preceding claim, wherein the cloth is printed with a colouring agent selected from a group containing reactive dyes, acid dyes, pigments and mixtures thereof.
12. A gaming cloth according to claim 11, wherein the cloth is printed with acid dyes.
13. A gaming cloth according to any preceding claim, wherein the cloth is printed by inkjet printing.
14. A gaming table having a gaming cloth as defined by any one of the preceding claims.
15. A method of printing a gaming cloth comprising a base cloth with a playing surface; characterised in that at least 30% of the area of the playing surface is printed with a camouflage design as defined by the function AE2< k SE1, where DE, is a measure of the complexity of the design as defined herein, hE2 is a measure of the colour contrast of the design with respect to the base colour of the cloth as defined herein, and k is a constant with a value in the range 0 to 5.
16. A method according to claim 15, wherein the constant k has a value in the range 0 to 3 and preferably 0 to 2.
17. A method according to claim 15 or claim 16, wherein the camouflage design is further defined by a colour complexity value hEl of 15 or more, preferably 20 or more.
18. A method according to any one of claims 15 to 17, wherein a camouflage design is printed on at least 60%, and preferably at least 90%, of the area of the playing surface.
19. A method according to any one of claims 15 to 18, wherein a camouflage design is printed on all high wear areas of the playing surface.
20. A method according to any one of claims 15 to 19, wherein the cloth is a wool or wool blend fabric, containing at least 60%, preferably at least 70%, and more preferably at least 90% wool.
21. A method according to any one of claims 15 to 20, wherein the cloth is a woven felted fabric.
22. A method according to any one of claims 15 to 20, wherein the cloth is a nonwoven felted fabric.
23. A method according to any one of claims 15 to 20, wherein the cloth is a worsted fabric.
24. A method according to any one of claims 15 to 23, wherein the cloth is printed with dyes or inks applied to the surface of the base cloth.
25. A method according to any one of claims 15 to 24, wherein the cloth is printed with a colouring agent selected from a group containing reactive dyes, acid dyes, pigments and mixtures thereof.
26. A method according to claim 25, wherein the cloth is printed with acid dyes.
27. A method according to any one of claims 15 to 26, wherein the cloth is printed by inkjet printing.
28. A gaming cloth printing method comprising designing the pattern to be applied such that there are substantially no areas of plain colour more than 150mm diameter in substantially all locations on the table which sustain high levels of damage as hereinbefore defined.
29. A method according to claim 28, in which at least two further colours are found within a 1 Omm radius of substantially any spot of a colour in substantially all areas of the cloth in locations that suffer from high levels of damage as hereinbefore defined.
30. A method according to claim 28 or claim 29 wherein at least one further shade of a colour is found within a 10mm radius of substantially any spot of colour in substantially all areas of the cloth in locations that suffer from damage to a low extent as hereinbefore defined.
Description:
GAMING CLOTH AND METHOD OF PRINTING GAMING CLOTH This invention relates to a gaming cloth and a method of printing a gaming cloth. The invention also relates to a gaming table fitted with the cloth.

In the present specification, the tenn"gaming cloth"means a cloth that is intended for covering the playing surface of a gaming table in a casino: i. e. a table designed for playing games such as blackjack, roulette or craps.

Gaming cloths may be woven, felted or unfelted, or non-woven and may be fabricated from a range of fibres including wool, nylon and mixtures thereof. A preferred fabric is a woven, felted woollen cloth made from a wool/nylon blend, usually with up to 40% nylon. Other fabrics, including fabrics with a raised nap and worsted fabrics, may also be used.

Printed woollen cloths have for some time been used as gaming table cloths. For those purposes it is common practice to print a games layout on the surface of the cloth: for example, images of playing cards may be printed onto the cloth. This is done by discharge silk screen printing onto the already dyed cloth, as described in GB 2311079. This is a costly and time-consuming process as each colour must be printed separately, using a different screen for each colour. The process is also only suitable for relatively simple designs, having only a few colours.

In order to produce designs with more colours and/or subtle shades of colour, other printing methods are required. One possibility is to use a sublimatic printing process in which sublimatic dyes are transferred from a printed transfer paper onto the undyed cloth under heat and pressure. However, the sublimatic dyes presently available are not compatible with wool fibres and therefore, for the process to work, the cloth must contain a substantial proportion of dye-compatible fibres, for example polyester fibres. Even then, if the cloth is a wool/polyester blend, the dye will adhere only to the polyester fibres, leaving the wool fibres undyed. The resulting pattern will therefore be very pale and"washed out"in appearance.

Various digitally-controlled printing techniques have been adapted for printing on fabric. For example, ink-jet printers have been used for low-speed fabric printing for some years. In

US5,801, 739 a high-speed digital printing equipment is disclosed. The advantages of such direct printing equipment are said to be: 1) The time and cost savings of eliminating a plate-making stage; 2) The ability to print small runs of a particular pattern cost effectively; 3) Near-perfect colour registration, as all of the required colours can be printed in a single pass; 4) The ability to print non-repeating images of any length; 5) The potential compact size of digital fabric printers; and 6) High image resolution This type of printer and other types are suitable for use in the present invention.

Recently equipment has become available which may be used for the digital printing of silk fabrics. The dyes used in these printers are also suitable for printing onto wool. It is therefore possible using these dyes and printing processes to produce a gaming cloth having a printed surface pattern that includes many colours and/or subtle shades of colour, including deep/intense colours, and which does not have a washed out appearance.

We have found that a problem with surface printed woollen cloth is that it can become unsightly rather quickly due to damage marks caused by hard or sharp objects such as coins or rings contacting the cloth, or by general wear. This damage occurs on all gaming tables but it becomes particularly apparent when the fabric has been surface printed, because removal of the printed surface layer exposes the undyed cloth lying beneath.

Damage marks may vary in size from lmm and less to up to about 6mm but tend to be of a fairly consistent depth. Most damage marks are endured until they reach a certain number and/or the cloth no longer has an acceptable appearance. The wear of the table is characterised by the game played and the positions of players seated at the table. Apart from damage marks caused by hard or sharp objects or general wear, gaming cloths can also be damaged or marked in various other ways, for example by cigarette burns, stains or finger prints.

It is an object of the present invention to provide a gaming cloth and a method of making a gaming cloth that mitigates at least some of the aforesaid problems.

S-P550722. wpd-18 July 2003

According to the present invention there is provided a gaming cloth comprising a cloth with a playing surface having a design printed thereon ; characterised in that at least 30% of the area of the playing surface is printed with a camouflage design as defined by the function hE2 < k AEI, where AE) is a measure of the complexity of the design as defined herein, AE2 is a measure of the colour contrast of the design with respect to the base colour of the cloth as defined herein, and k is a constant with a value in the range 0 to 5.

The values AE, and hE2 are defined by the equations set out below, and are measured according to the procedures set out in the examples. These procedures include in particular dividing the playing surface of the cloth into a grid of squares that measure 2"x 2" (approx.

5. 08cm x 5. 08cm) and measuring the colours within each square, using the specified measuring method.

The colour complexity value DE, is defined by the equation: #E1 = #((L*1 - l*2)2 + (a*1 - a*2)2 + (b*1 - b*2)2) where L l a*l b l are the colour coordinates of a first point and L a*2 b*2 are the colour coordinates of a second point within each grid square, the first and second points being selected to provide a maximum colour complexity value AEI.

The colour contrast value Z\E2 is defined by the equation: AE2=A1 ((L*3 - L*4)2 + (a*3 - a*4)2 + (b*3 - b*4)2) where L*3 a*3 b*3 are the colour coordinates of the base colour of the cloth, and L*4 a*4 b*4 are the colour coordinates of a point within each grid square that most closely matches the base colour.

We have found that designs meeting the definition specified above provide useful camouflaging properties and effectively mask any damage marks on the surface of the cloth, so improving the visual appearance of the cloth, even when it is quite worn. Such designs also help to camouflage other marks and damage to the surface of the cloth, including burns, stains and finger prints. The useful lifetime of the cloth can thus be considerably extended.

Advantageously, the constant k has a value in the range 0 to 3 and preferably 0 to 2.

Advantageously, the camouflage design is further defined by a colour complexity value AE, of 15 or more, preferably 20 or more. This is particularly helpful in camouflaging other types of surface mark, such as burns, stains and finger prints.

Advantageously, a camouflage design is printed on at least 60%, and preferably at least 90%, of the area of the playing surface. Preferably, the camouflage design is printed on all high wear areas of the playing surface. These include in particular the areas around the seating positions of the players.

The cloth may be a wool or wool blend fabric, containing at least 60%, preferably at least 70%, and more preferably at least 90% wool. Preferably, the cloth is a woven felted fabric: alternatively a non-woven felted fabric or a worsted fabric may be used. Such fabrics are preferred as they generally have improved playing and/or wear characteristics as compared to other available fabrics.

Advantageously, the cloth is printed with dyes or inks applied to the surface of the base cloth.

The cloth is preferably printed with a colouring agent selected from a group containing reactive dyes, acid dyes, pigments and mixtures thereof, acid dyes being particularly preferred.

These dyes are compatible with woollen fabrics and it is thus possible to produce a wool or wool-blend cloth with a printed design that includes intense or deep colours, which does not have a washed out appearance.

Preferably, the cloth is printed using a computer-controlled printer, for example an inkjet printer. This makes it possible to produce complex designs with many hues and shades of colour. It is also possible to make short batch runs and one-off designs, or designs with variable information, in an economical manner.

According to a second aspect of the invention there is provided a gaming table having a gaming cloth as defined by any one of the preceding statements of invention.

According to a further aspect of the invention there is provided a method of printing a gaming cloth comprising a base cloth with a playing surface; characterised in that at least 30% of the area of the playing surface is printed with a camouflage design as defined by the function AE2 < k SEI, where AE, is a measure of the complexity of the design as defined herein, hE2 is a measure of the colour contrast of the design with respect to the base colour of the cloth as defined herein, and k is a constant with a value in the range 0 to 5.

Advantageously there are no solid contrasting colours in areas of the cloth that will be fitted to parts of the table that suffer from high levels of damage. Such areas include areas around the positions where players are seated at the table. To achieve a useful degree of damage mark concealment in these highly vulnerable areas it is preferred not to allow any areas of plain and untextured cloth (i. e. without any perceptible pattern or with a value of SEI no more than 2) in colours that contrast with the base colour to be present that are larger than a size which has approximately a 50% chance of a damage mark appearing in it over the lifetime of the cloth.

The size of this area will vary between types of game and even from table to table depending on the extent and type of use expected. Preferably any plain area should be less than 50mm diameter and more preferably 10mm diameter. Most preferably substantially no plain areas more than 5mm diameter are positioned in areas of high risk of damage.

Advantageously the focal points of the design should lie in areas of very light damage. By focal points is meant those areas that the eye is naturally drawn towards, for example the face of a person or the whole object in the case of small motif arrangements.

Desirably, when printing a design onto a gaming cloth, areas that are most vulnerable to damage are determined by mapping and the image to be printed is selected, positioned or manipulated in a design process which is predicted to reduce to a minimum the visibility of damage marks during use of the design on the playing surface. The manipulation can take two forms. Firstly the design can be positioned so that areas of intense pattern are sited in areas of high damage probability and areas of maximum message content or focal points are sited in areas of low damage probability. Secondly the image to be printed can be created or modified by not using block colours and by filling backgrounds and other areas with broken patterns that maintain the integrity of the colour but are broken to a degree that will camouflage any areas of light colour caused by damage marks that reach below the level of any print penetration. Hence mosaic, swirls, clouds, bubbles or droplets that may appear in the actual design can be incorporated to effectively hide or mask the white/pale areas that would be revealed by the damage mark. The use of background breakups together with highlights in the patterning is a distinct advantage in solving the problem of damage mark visibility.

A particular design rule that we have found to give benefit is that when using the same colour hue in any given area, at least two shades should preferably be used, one lighter than the other.

Damage marks can be perceived as a lighter shade and the use of light and dark shades in close

proximity effectively masks the visibility of the damage marks. This design rule can be expressed as being that the second shade should occur within a 1 Oinin radius of the first shade and preferably within a 5mm radius.

We have also found that there should advantageously be at least two further contrasting colours within a 10mm radius of any one spot of colour: again, it is preferred for these two colours to occur within a 5mm radius of the spot of colour. The smaller the pattern and the more areas of highlighting or high contrast or shade variation, at least in areas of high damage susceptibility, the better. Ideally the pattern and the shading combination should produce a design and shade contrast that creates sufficient visual"noise"that if a damage mark causes a lighter element to be created it is not easily discernable as damage because it blends in with the pattern and shading already present. Colour can be used to assist in this effect but it is less important than pattern and shading.

Use of a design that has a broken background, pattern or shading that creates visual noise and in particular using such a design as a background for particular brands/pictures or images is not obvious. It is far easier and simpler to use solid colour backgrounds. There are fewer issues with resolution, intricacy of the design etc. by use of solid colour backgrounds as well as the inherent advantages of less design/image/pattern manipulation.

The invention will now be further described, by way of example only, with reference to the accompanying drawings, which are briefly described as: Figure 1 is a schematic representation of a roulette table cloth showing potential areas of high wear or damage; Figure 2 is a schematic representation of a blackjack cloth showing potential areas of high wear or damage; Figure 3 is an enlarged view of a first camouflaging design that may be applied to the playing surface of a gaming cloth; Figure 4 is a representation of a second camouflaging design that may be applied to the playing surface of a gaming cloth; Figure 5 is a second representation of the printed design shown in figure 4, superimposed for testing purposes with a grid of squares;

Figure 6 is a third representation of the printed design shown in figure 4, which has been marked for testing purposes with a number of damage marks (circled), and Figure 7 is a spreadsheet and Figure 8 is a graph of AE, against hE2, showing the camouflaging effectiveness of the pattern in different squares of the grid.

The playing surface of a standard gaming table is typically covered with a gaming cloth. This cloth may be made from a woven felted fabric or any other suitable fabric, for example a non- woven felted fabric or a worsted fabric. The fabric is usually made of wool or a blend of wool and synthetic fibres such as nylon. Blended fibres used for high quality gaming cloths typically include 70-80% wool fibres and 20-30% nylon fibres.

A design may be printed onto the surface of the cloth using any suitable digital printer, such as an inkjet printer, and dyes or inks that are compatible with the fibres of the cloth, for example reactive dyes or acid dyes. The cloth may be an undyed fabric, or it may be bulk dyed before the design is printed onto its surface.

Figure 1 is a schematic representation of a roulette table cloth 2 having a playing area 4 marked with a grid 6 of betting squares and a surrounding border 8. The position 10 of the roulette wheel is also shown. The border 8 is partially shaded to show the area of potentially high wear, where a large number of damage marks might be expected to occur after a period of six months or more. This area represents about 30% of the total area of the cloth.

Figure 2 shows a blackjack table covered with a gaming cloth 10, which is printed with a design 12 based on playing cards and ancient Egyptian symbols. The cloth includes a border area 14 where there is a high risk of wear or damage, which is marked with a superimposed grid of squares. This border area represents about 30% of the total area of the cloth.

Figure 3 shows an example of a first camouflaging design that may be printed onto a gaming cloth in potential areas of high wear or damage. The design 20 includes a background mosaic pattern 22 and a motif or advertising logo 23, which in this case is a beer bottle. Whilst in this instance the background pattern is a mosaic, it could equally be a bubble pattern or any other pattern that fulfills the requirements of masking damage, at least in the areas of high levels of predicted damage.

A masking effect has been found to be created in a visually interesting way by use of a background that complements the base colour of the gaming cloth. For example, this effect can be provided by use of a grass-type texture for a green cloth, clouds for a blue cloth etc.

A mosaic pattern is useful in achieving the objects of the invention because it provides pattern, shade and colour variation to create a visually busy background design. This background design is suitable to be applied to areas of the cloth which are liable to suffer from high levels of damage as seen in Figures 1 and 2 or similarly mapped for a different game.

We have devised a set of design rules that can be used to select designs that provide a useful camouflaging effect. These rules will be explained with reference to the design shown in figure 4, which consists of a photographic image of a sun setting over water, superimposed with the registered trade mark HARD ROCK CAFE, and is composed primarily of red, orange and yellow colours. These colours harmonise well with the base colour of the underlying cloth, which is an undyed woven felted fabric made of 100% wool, having a natural creamy yellow colour.

The design shown in figure 4 includes a number of areas that provide a good camouflaging effect, so reducing the visual impact of any damage marks in those areas. These include areas of complex design, for example in the ripples of water and around the sun, where contrasting shades or hues of colour are located in close proximity with one another, and areas where the design includes colours that are similar to the base colour of the underlying cloth (pale yellow), for example around the sun.

We have found that the effectiveness of a design in camouflaging damage marks varies from one point to another but depends at any point on the nature of the design in the immediately surrounding area. The effectiveness of the design as a whole can therefore be determined by dividing the design into a number of small areas and assessing the camouflaging effect of each of those areas.

To assess the effectiveness of the design shown in figure 4, the playing surface of the cloth was divided into a grid of 2"x 2" (approx. 5. 08cm x 5. 08cm) squares. As the cloth was for a rectangular 6ft x 3ft (approx 182. 8cm x 91. 4cm) gaming table, this resulted in a 36 x 18 grid of squares, as shown in figure 5.

To assess the complexity of the design in each square, a number of colour measurements were made at different points in the square, using a D65 light source and a Mercury spectrophotometer with a 2. 5mm aperture and a 10° angle of observation. These measurements were recorded using the CIE 1976 (L* a* b*) colour scheme, in which L* represents the lightness (or luminance) of the colour, a* represents the red/green colour component and b* represents the yellow/blue component. The colour measurements were then compared to find the maximum colour difference within each square: i. e. the colour difference between the two points most widely separated from one another in colour. This gave a colour complexity value AEI defined by the equation: AEI = #((L*1 - L*2)2 + (a*1 - a*2)2 + (b*1 - b*2)2) where L l a 1 b l are the colour coordinates of the first point and L 2 a 2 b*2 are the colour coordinates of the second point.

This process was repeated for every square in the grid and the results were recorded in a spreadsheet. For illustrative purposes, an extract from the spreadsheet containing the colour values for one line of the grid is reproduced below: Grid Colour Values 1 Colour Values 2 Colour Complexity Ref. L*1 a*1 b*1 L*2 a*2 b*2 #E1 15A 69 30 69 72 25 71 6.16 15B 68 31 68 87-3 92 45.75 15C 74 21 74 89-5 94 36.07 15D 75 20 75 88-4 93 32.70 15E 75 19 76 88-4 93 31.42 15F 75 20 75 90-6 90 33.56 15G 71 25 71 89-6 94 42.59 15H 66 36 66 90-7 94 56.65 151 63 41 62 90-7 94 63.69 15J 66 36 65 70 27 70 11.05 15K 63 41 62 70 29 69 15.56 15L 63 41 62 68 33 67 10.68 15M 62 44 60 68 33 68 14.87 15N 62 44 60 65 38 64 7.81 150 61 45 60 61 44 60 1.00 15P 60 49 60 60 47 60 2.00 15Q 59 50 60 59 49 60 1.00 15R 59 51 60 59 50 61 1.41 The spreadsheet extract reproduced above shows the two sets of L* a* b* values and the resulting colour complexity value SEI for each square in row 15 of the grid, which passes S-P550722. wpd-18 July 2003

through the centre of the sun image. As can be seen, the colour complexity value aï varies from a minimum value of 1.0 in squares 150 and 15Q, which have very little colour complexity, to a maximum value of 63.69 in square 15I, which has a very large colour complexity, as it includes the boundary of the sun image. We have found through experimentation and testing that where the overall colour of the square is quite close to the base colour of the underlying cloth, a relatively low colour complexity value SEI is sufficient to camouflage most damage marks. However, where the overall colour of the square contrasts strongly with the base colour, a much higher colour complexity value AE, is required.

The second aspect of the design that affects its ability to camouflage damage marks is the colour contrast between the base colour of the underlying cloth and the colours present within each square. This is because any damage marks tend to remove the dye from the playing surface of the cloth, exposing the colour of the underlying cloth. If the base colour of the cloth closely matches colours in the design, any damage marks are unlikely to be seen. However, if the base colour of the cloth contrasts strongly with the colour of the printed design, any damage marks are likely to be readily apparent (unless the design is highly complex).

To assess the colour contrast between the base colour of the cloth and the colours present in the design, the base colour of the cloth was measured by taking five spot measurements in unprinted regions of the cloth (e. g. around the edges or on the back of the cloth) and then calculating the average base colour from these readings. This colour was compared with the colour measurements already taken at various points within each square. A colour contrast value AE2representing the colour difference between the base colour and the point within the square that most closely matches the base colour was then calculated using the equation: #E2 = #((L*3 - L*4)2 + (a*3 - a*4)2 + (b*3 - b*4)2) where L*3 a*3 b*3 are the colour coordinates of the base colour, and L*4 a*4 b*4 are the colour coordinates of the point within the grid square that most closely matches the base colour.

This process was repeated for every square in the grid and the results were recorded in a spreadsheet, an illustrative extract. from which is reproduced below: Grid Colour Values 1 Colour Values 2 Colour Contrast I Ref. L*s a*3 b*a L*a a*a b*a DEZ

15A 82 1 15 72 25 71 61.74 15B 82 1 15 68 31 68 62.49 15C 82 1 15 74 21 74 62.81 15D 82 1 15 75 20 75 63.32 15E 82 1 15 75 19 76 63.98 15F 82 1 15 75 20 75 63.32 15G 82 1 15 71 25 71 61.91 15H 82 1 15 66 36 66 63.89 151 82 1 15 63 41 62 64.58 15J 82 1 15 70 27 70 62.01 15K 82 1 15 70 29 69 62.00 15L 82 1 15 68 33 67 62.64 15M 82 1 15 68 33 68 63.47 15N 82 1 15 65 38 64 63.71 150 82 1 15 61 44 60 65.69 15P 82 1 15 60 47 60 68.01 15Q 82 1 15 59 49 60 69.70 15R 82 1 15 59 50 61 71. 04 The spreadsheet extract reproduced above shows the L* a* b* values for the base colour, together with the L* a* b* values for each square in row 15 of the grid and the resulting colour contrast values #E2. The colour contrast value hE2 varies from a minimum value of 61.74 in square 15A, representing a low colour contrast, to a maximum value of 71.04 in square 15R, representing a stronger colour contrast. We have found through experimentation and testing that where the colour complexity of the square is quite low, a low colour contrast is required to camouflage damage marks. Where the complexity is higher, a higher colour contrast can be permitted.

The overall camouflaging effect of the design therefore depends on both the colour complexity of the design and also the colour contrast between the base colour to the colours present within the design. To assess the relative importance of these factors, we conducted a further test by placing ten damage marks in random positions on the design as shown in Figure 6 and then asking a number of individuals to try and find the damage marks within a limited period of time. Each damage mark that was found was marked, and the squares containing those damage marks were noted. The squares containing damage marks that were not found were also noted. The results were plotted on a graph of hE, against #E2, which is reproduced in figure 7.

As can be seen from the graph in figure 7, the damage marks that were found were located in squares having a low value of AE,, representing a low level of complexity, and a high value of hE2, representing a high colour contrast. On the other hand, in squares having a high value of AEI representing a high level of complexity and a low value of AE2 representing a low colour contrast, the damage marks were well hidden.

The area of the graph representing designs that provide a good camouflaging effect can be separated from the area representing designs with poor camouflaging properties by drawing on the graph a line with a positive gradient that passes through the origin, as shown in figure 7. This line represents the function AE2 = k AEI, where the constant k is the gradient of the line. The area below the line represents designs with good camouflaging properties: this area is defined by the equation AE2< k AEI.

In figure 7 we have shown three lines with different gradients. The line with the steepest gradient (k = 4.9) represents designs that were found to provide a useful camouflaging effect.

The next line (k = 3. 0) represents designs that provide an improved camouflaging effect and the third line (k = 2. 3) represents designs that provide a further improvement in the effect.

From this we conclude that the constant k should have a value of about 5 or less while, for an improved camouflaging effect, the constant k should have a value of about 3 or less, and preferably 2 or less.

The above definition encompasses designs having a low colour contrast, or a high colour complexity, or both. Although all such designs provide effective protection against the appearance of damage marks, our preference is for complex designs, since these also help to camouflage other marks on the surface of the cloth, such as finger prints, burns and stains. We have found that such marks can be camouflaged if the design has a colour complexity represented by a value of l\EI of 15 or more, preferably 20 or more.

In order to provide adequate protection against damage marks, at least the most vulnerable parts of the playing surface of the cloth should be provided with a pattern having good camouflaging properties. As illustrated in figures 1 and 2, certain parts of the cloth are more vulnerable to damage than others. We have found that these highly vulnerable areas generally comprise about 30% of the total playing surface. Therefore, a pattern having good camouflaging properties should be provided on at least 3 0% of the playing surface of the cloth.

Preferably, at least 60% of the playing surface is protected, the pattern being located

particularly in the areas of greatest vulnerability. More preferably, almost the whole playing surface (i. e. at least 90% of its area) should be provided with a pattern having good camouflaging properties. The design shown in figure 3 is a good example of such a design.

It is possible for the gaming cloth to consist of a number of different sections, which together cover the surface of the gaming table. In particular, the cloth may include one or more sections that form the main playing surface for the game and one or more other sections that form border regions around the main playing section. These border sections may be provided with a camouflage design to hide damage or wear, while the main playing surface has no such camouflaging design. For example, in the roulette cloth shown in figure 1, one section of cloth may be used for the main playing surface 4 and separate sections may be used for the border regions 8, while in the blackjack cloth shown in figure 2, one section of cloth may be used for the main playing surface 10 and another section may be used for the border region 14.

Various modifications of the invention are of course possible. For example, many different designs may be used, providing that they meet the desired design criteria as defined above.

Suitable designs may include photographic or graphic art images, abstract designs, regular or irregular patterns, mosaics and so on. Various printing techniques may also be employed, although it is preferred to use a computer controlled digital printer such as an inkjet printer.

The cloth on which the design is printed is preferably made of wool or a wool/synthetic fibre blend with a high wool content (e. g. greater than 60% wool). However, other fibres and blends may also be used. The fabric is preferably a woven felted fabric. Other fabrics including worsted fabrics and knitted, felted, woven and non-woven fabrics, with or without a napped surface, may also be used.