Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GAS TURBINE COMPRESSOR WITH ADAPTIVE BLADE TIP SEAL ASSEMBLY
Document Type and Number:
WIPO Patent Application WO/2017/058745
Kind Code:
A1
Abstract:
A high-efficiency compressor section (10) for a gas turbine engine is disciosed. The compressor section includes a vane carrier (12) adapted to hold ring segment assemblies (16) that provide optimized blade tip gaps (28,29) during a variety of operating conditions. The ring segment assemblies include backing elements (30) and tip- facing elements (32) urged into a preferred orientation by biasing elements (40) that maintain contact along engagement surfaces (44,46). The backing and tip-facing elements have thermal properties sufficiently different to allow relative growth that strategically forms an interface gap (42,43) therebetween, resulting in blade tip gaps that are dynamically adjusted during operation.

Inventors:
ZHANG JIPING (US)
PEPPERMAN BARTON M (US)
Application Number:
US2016/053877
Publication Date:
April 06, 2017
Filing Date:
September 27, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SIEMENS AG (DE)
SIEMENS ENERGY INC (US)
International Classes:
F01D11/18; F01D25/24
Domestic Patent References:
WO2015038341A12015-03-19
WO2015112354A12015-07-30
WO2015138027A22015-09-17
Foreign References:
EP1944474A22008-07-16
US20030202876A12003-10-30
US20060067815A12006-03-30
US20100239415A12010-09-23
US20140271147A12014-09-18
Attorney, Agent or Firm:
HOOD, Janet D. (Siemens Corporation- Intellectual Property Dept, 3501 Quadrangle Blvd. Ste. 230Orlando, Florida, 32817, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1) A gas turbine engine having a compressor serikxi optimized to provide enhanced efficiency during several operating conditions, said compressor section comprising: a vane carrier; a ring segment assembly disposed within said vane canter, said ring segment assembly characterized by a radially-outward backing element, a radially-inward ti placing element, and at last one biasing element adapted and arranged to dynamically position said ti placing element with respect to said backing element; wherein said backing element is characterized by a first coefficient of thermal expansion and said tip-facing element is characterized by a second coefficient of thermal expansion, said first coefficient of thermal expansion being higher than said second coefficient of thermal expansion; wherein said backing element includes a first mating surface and said tJp-fadng element includes a second mating surface, said mating surfaces adapted and arranged to provide positive engagement of said engage said first engagement notch; wherein said at least one biasing element is positioned and adapted to cooperatively urge said rJp4acing element against said becking element; and whereby said tip-facing element and said backing elemont, are alternately in contact along an interlace disposed therebetween during a first operating condition and spaced apart along an interface an interface gap disposed therebetween during a second operating condWon, and whereby said at least biasing element maintains contact between said first and second mating surfaces during both operating conditions.

2. The compressor section of Claim 1 , wherein said backing element Is made from high alpha stainless steel.

3. The compressor section of Claim 2, wherein said tip4acing element Is made from low alpha stainless steel.

4. The compressor section of Claim 1 wherein said first operating condition is steady state operation characterized by temperatures sufficient to couso said backing element to grow draj referential ly larger and radially smaller than said ti placing element thereby forming said interface gap.

Description:
GAS TURBINE COMPRESSOR WITH ADAPTIVE BLADE TIP SEAL ASSEMBLY

FIELD OF THE INVENTION

This invention relates to an apparatus for optimizing the performance of gas turbine compressors. In particular, the invention relates to improving compressor efficiency via an adaptive blade tip seal assembly to adjust a gap between a turbine ring segment and an associated blade tip during engine operation.

BACKGROUND OF THE INVENTION

In gas turbine engines, multi-stage axial compressors include sets of alternating fixed vanes and rotating blades that, during operation, cooperatively produce a flow of compressed air for downstream use as a component of combustion.

As a byproduct of the compression process, components in the compressor are subjected to temperatures which vary not only in location, but also temporally, as the gas turbine prograases through a variety of operating modes, including cold start, steady state, and any number of transition conditions. Over time, these temperature differences impart varying dograes of II ww 11 ml growth to the com pressor components, and gaps required to allow relative motion during operation are designed to avoid unnecessary component rubbing, while minimizing leakage.

Gas turbines used for power generation may encounter particularty-dlfficult operating conditions, since they are often stopped and restarted in response to varying demands for power production. Engine operation in these settings may require that an engine be restarted before compressor components have uniformly cooled - known as a "hot restart" Compressors that passively accommodate hot restarts are often designed to strike a balance between either (1) using component gaps that, particularly between rotating blade tips and associated ring segments, bigger than needed during most steady state conditions or (2) using retaUvery-emall gaps and abradable coatings that are sacrffldally worn down during component contact Neither of these approaches is optimal; accordingly, there exists and a need in this field for an improved compressor design capable of accommodate hot restarts without unnecessarily reducing operational efficiency.

SUMMARY OF THE INVENTION

A gas turbine engine having a compressor section optimized to provide enhanced efficiency during several operating conditions, said compressor section comprising: a vane carrier; a ring segment assembly disposed within said vane carrier, said ring segment assembly characterized by a radially-outward backing element, a radially-inward ti placing element, and at last one biasing element adapted and arranged to dynamically position said ti placing element with respect to said backing element; wherein said backing element is characterized by a first coefficient of thermal expansion and said tip-feeing element is characterized by a second coefficient of thermal expansion, said first coefficient of thermal expansion being higher than said second coefficient of thermal expansion; wherein said backing element includes a first mating surface and said tip-feeing element includes a second mating surface, said mating surfaces adapted and arranged to provide positive engagement of said engage said first engagement notch; wherein said at least one biasing element is positioned and adapted to cooperatively urge said tiptoeing element against said backing element whereby said Upfedng eiomont and said backing element, are alternately in contact along an interface disposed therebetween during a first operating condition and spaced apart along an interface an interface gap disposed therebetween during a second operating condition, and whereby said at least biasing element maintains contact between said first and second mating surfaces during both operating conditions.

Other objects and advantages of this invention will become apparent from the following description taken in conjunction with the accompanying drawings wherein are set forth, by way of illustration and example, certain embodiments of this invention. The drawings constitute part of this specification and include exemplary embodiments of the present invention and illustrate various objects and features thereof.

BRIEF DESCRIPTION OF THE DRAWING

The invention is explained in the following description in view of the drawings that show:

FIG. 1 1s a side elevation of a gas turbine engine compressor section employing the ring segment assembly of the present invention;

FIG.2 Is a side sectional view of a blade tip, ring segment assembly, and blade tip gap of the present invention during a steady stoto operating mode;

FIG.3 is a side socttonal view of a blade tip, ring segment assembly, and blade tip gap of the present invention during a hot restart operating mode;

FIG.4 is an assembly view of a ring segment assembly and vane earner of the present invention;

FIG.5 is a partial side sectional view of ring segment assembly of the present invention, taken along cutting line V - V during a steady state operating mode; and

FIG.6 is a partial side sectional view of ring segment assembly of the present invention, taken along cutting line VI - VT during a hot restart operating mode. DETAILED DESCRIPTION OF THE INVENTION

Reference is now made in general to the Figures, and to Figure 1, In particular, wherein the compressor section 10 of the present invention is shown. The compressor section 10 includes several stages of fixed vanes 18 and rotating blades 20 - the vanes 18 are fixed within vane mounting slots 22 in vane carriers 12, and blades 20 are fixed within a longltudinaHy-allgned rotor 24 that spins about a central axis during operation. In a longitudinal, flow wise direction, the vane carriers 12 typically span several stages. As shown in Figure 4, each is vane carrier has generally arcuate cross section when cut in a plane perpendicular to the center axis of the compressor rotor 24, and several are distributed drcumferentially around the rotor 24 to form a bounded flow path 25 for compressed air to follow during operation. Although only one blade 20 and vane 18 is shown per stage, each stage will contain multiple blades and vanes distributed drcumferentially within the bounded flow path 25.

Ring segment assemblies 16 are also mounted within the vane carriers 12. As shown more fully in Figures 2 and 3, the ring segment assemblies 16 are multi-layered and indude a radially-outward backing element or parte 30 and a radially-inward tip-fad ng element 32 positioned proximate the tips 26 of the rotating blades 20 during operation. An optional abradable coating layer 34 may be positioned radially inward of the tip-fed ng okimont 32 to accommodate occasional blade tip contact With continued reference to Figures 2 and 3, the radial space between the ring segment assemblies 16 and blade tips 26 defines a pertbrmance-impacting blade tip gap 28. As will be described more fully below, optimizing the size of these blade tip gaps 28 during the several engine operation modes improves engine overall efficiency and is an object of this invention.

In Figure 2, a btade tip 26 is shown proximate a ring segment assembly 16 in a steady-state operating condition. In this condition, compressor components are generally considered to be thermally saturated, with the compressor components having reached an optimized level of thermally-driven component growth. In this steady state condition, a desired tip gap 28 exists between the ring segment assembly 16 and the various blade tips 26 of the blades 20 mounted on the drcumferentlaHy spinning rotor 24.

In Figure 3, the blade tip 26 Is shown proximate a ring segment assembly 16 in a hot restart operating condition. In this condition, compressor components are no longer considered to be thermally saturated: due to variations in thermal growth tendencies, some components (like the ring segment assemblies 16) will have parti ally cooled and shrunk radially inward, while other components (like the rotating blades 20), will likely not have cooled. In this condition, a hot restart blade tip gap 29 exists, but it is typically smaller than the steady-etate blade tip gap 28.

In one embodiment of this invention, the backing element 30 and ti placing element 32 are adapted and arranged to passively optimize the tip gaps 28, 29 present during steady-state (shown in Figure 5) and hot restart conditions (shown in Figure 6). In a preferred embodiment, the backing element 30 is more thermally reactive than the tip-facing element 32. In one arrangement, the backing element is made from a high alpha material (such as 304 stainless steel or thermal equivalent), while the tip-facing element is made from a low alpha material (such as 410 stainless steal or thermal equivalent). Additionally, with collective reference to Figures 4, 5, and 6, each backing element 30 and tiptoeing element 32 respectively include positioning notches 44, 46 that, together with biasing elements 40, urge the backing and tip-facing olements into a tip-gap optimizing arrangement during the various operating conditions, as described more fully below.

During operation, the backing element 30 adopts several orientations due to differing thermal loads. For example the backing element shifts from a drcumferentlally-expanded and radially-compact orientation in the steady state condition shown in Figures 5, to a drcumferentjalty compact and radially expanded orientation in the hot restart condition shown in Figure 6.

During steady state operating conditions, the backing elements 30 and tiptoeing element 32 are spaced apart by an interlace gap 42, and the assodated positioning notches 44,48 cooperate with the biasing elements 40 shown in Figure 2 to urge the backing elements and tip-facing element into positive engagement. This positive engagement creates and maintains a desired steady stote tip gap 28 that is targe enough to avoid component damaging contact while small enough to provide efficient compressed air flow.

During hot restart conditions, the backing elements 30 and tiptoeing element 32 are spaced apart by an interface gap 43, and the assodated positioning notches 44,48 cooperatively urge the backing otomonta and tip-fed ng element into positive engagement This positive engagement creates and maintains a desired hot restart tip gap 29 that is large enough to avoid component damaging contact while small enough to provide efficient compressed air flow.

It Is to be understood that while certain forms of the Invention have been illustrated and described, it Is not to be limited to the specific forms or arrangement of parts herein described and shown. It will be apparent to those skilled in the art that various, induding modifications, rearrangements and substitutions, may be made without departing from the scope of this invention and the invention is not to be considered limited to what is shown in the drawings and described in the specification. The scope If the invention is defined by the claims appended hereto.