Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GAS TURBINE ENGINE FUEL CONTROL SYSTEM
Document Type and Number:
WIPO Patent Application WO/2008/092252
Kind Code:
A1
Abstract:
A fuel control system (22) having a combustive energy value evaluator (38) determining a combustive energy value of the fuel, and a controller (26) calculating a desired flow rate based at least on the combustive energy value and controlling a fuel metering device (24) such that the fuel flow rate corresponds to the desired fuel flow rate.

Inventors:
DOOLEY KEVIN A (CA)
BRAND JOSEPH (CA)
Application Number:
PCT/CA2008/000186
Publication Date:
August 07, 2008
Filing Date:
January 29, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
PRATT & WHITNEY CANADA (CA)
DOOLEY KEVIN A (CA)
BRAND JOSEPH (CA)
International Classes:
F02C9/28; F02C7/22; F02C9/40
Domestic Patent References:
WO1988008075A11988-10-20
Foreign References:
US20040011050A12004-01-22
US6490867B22002-12-10
US6405522B12002-06-18
EP0501313A11992-09-02
US7334391B22008-02-26
US5807749A1998-09-15
JP2004036457A2004-02-05
JP2002030944A2002-01-31
Attorney, Agent or Firm:
OGILVY RENAULT LLP / S.E.N.C.R.L., S.R.L. (1981 McGill College AvenueMontreal, Québec H3A 2Y3, CA)
Download PDF:
Claims:

WHAT IS CLAIMED IS

1 A method of controlling a flow of a fuel in a gas turbine engine comprising sensing at least one characteristic of the flow, determining a combustive energy value of the fuel based on the at least one characteristic, determining a desired fuel flow rate at least based on the combustive energy value, and controlling a fuel metering device of the engine to obtain the desired fuel flow rate

2 The method as defined in claim 1, wherein the desired fuel flow rate is determined at least based on the combustive energy value and on fuel schedules for a reference fuel

3 The method as defined in claim 1, further comprising determining at least one equivalent characteristic of a reference fuel corresponding to the combustive energy value, and displaying the at least one equivalent characteristic

4 The method as defined in claim 3, wherein the at least one equivalent characteristic of the reference fuel includes an equivalent mass flow of the reference fuel

5 The method as defined in claim 1, wherein the fuel is a mixture of two different fuels, and sensing the at least one characteristic includes sensing a proportion between the two different fuels

6 The method as defined m claim 1 wherein the combustive energy value is the lower heating value

7 The method as defined in claim 1, wherein sensing the plurality of characteristics of the fuel flow includes sensing fuel and air mass flow, and pressure and temperature at at least one point of a flow path of the engine

8 A method of monitoring a flow of a fuel in a gas turbine engine comprising sensing at least one characteristic of the flow, determining a combustive energy value of the fuel based on the at least one characteristic, determining at least one equivalent characteristic of a reference fuel corresponding to the combustive energy value, and displaying the at least one equivalent characteristic

9 The method as defined in claim 8 wherein the combustive energy value is the lower heating value

10 The method as defined in claim 8, wherein sensing the at least one characteristic of the fuel flow includes sensing fuel and air mass flow, and pressure and temperature at at least one point of a flow path of the engine

11 The method as defined in claim 8, wherein the at least one equivalent characteristic of the reference fuel includes an equivalent mass flow of the reference fuel

12 The method as defined in claim 8, wherein the at least one equivalent characteristic of the reference fuel is determined from a reference fuel table

13 The method as defined in claim 8, wherein the fuel is a mixture of two different fuels, and a proportion of the two different fuels in the mixture is determined based on at least one of the combustive energy value and the at least one characteristic of the flow

14 A fuel control system for a gas turbine engine comprising at least one sensor determining at least one characteristic of a fuel flow in the engine, a combustive energy value evaluator determining a combustive energy value of the fuel from the at least one characteristic,

a fuel metering device metering a fuel flow rate in the engine, and a controller calculating a desired flow rate based at least on the combustive energy value and controlling the fuel metering device such that the fuel flow rate corresponds to the desired flow rate

15 The fuel control system as defined in claim 14, wherein the controller also determines at least one equivalent characteristic of a reference fuel corresponding to the combustive energy value of the fuel, the system further comprising a display unit receiving and displaying the at least one characteristic of the reference fuel

16 The fuel control system as defined in claim 15, further comprising a reference fuel table listing the at least one equivalent characteristic of the reference fuel as a function of the combustive energy value, the controller determining the at least one equivalent characteristic of the reference fuel from the reference fuel table

17 The fuel control system as defined in claim 15, wherein the at least one equivalent characteristic of the reference fuel includes the mass flow of the reference fuel

18 The fuel control system as defined in claim 14, wherein the fuel is a mixture of two different fuels, the at least one sensor including a fuel mixture sensing unit determining a proportion of the two different fuels in the mixture, the combustive energy value evaluator determining the combustive energy value from at least the proportion of the two different fuels in the mixture

19 The fuel control system as defined in claim 14, wherein the controller determines the desired flow rate based at least on the combustive energy value and on fuel schedules established from a reference fuel

Description:

GAS TURBINE ENGINE FUEL CONTROL SYSTEM

TECHNICAL FIELD The invention relates generally to gas turbine engines and, more particularly, to an improved fuel control system thereof

BACKGROUND OF THE ART

Gas turbine engines are generally adapted to be used with a single type of jet fuel, for example JP4 jet fuel As such, use of a different fuel, for example ethanol, in these engines can be detrimental to the engines' performances, as the fuel flow in the engine is usually controlled through a series of fuel schedules established for a specific type of fuel and as such not adapted for other types of fuel of mixtures thereof

With the rise of fuel costs, some areas of the world may choose to use Ethanol or mixtures of Ethanol in Jet fuel, accepting a reduced flight range for the cost savings However, refuelling with a fuel that may be different from the fuel already contained in the tank can cause the precise equivalent content of the fuel tanks to be unknown A pilot who is confused as to the exact type of fuel contained in the fuel tanks can be mistaken upon calculation of the range of the aircraft This can be hazardous, especially in cases where the range is overestimated Accordingly, there is a need to provide an improved fuel control system for a gas turbine engine

SUMMARY OF THE INVENTION

It is therefore an object of this invention to provide an improved fuel control system for a gas turbine engine In one aspect, the present invention provides a method of controlling a flow of a fuel in a gas turbine engine comprising sensing at least one characteristic of the flow, determining a combustive energy value of the fuel based on the at least one characteristic, determining a desired fuel flow rate at least based on the combustive energy value, and controlling a fuel metering device of the engine to obtain the desired fuel flow rate

In another aspect, the present invention provides a method of monitoring a flow of a fuel in a gas turbine engine comprising sensing at least one characteristic of the flow, determining a combustive energy value of the fuel based on the at least one characteristic, determining at least one equivalent characteristic of a reference fuel corresponding to the combustive energy value, and displaying the at least one equivalent characteristic

In a further aspect, the present invention provides a fuel control system for a gas turbine engine comprising at least one sensor determining at least one characteristic of a fuel flow in the engine, a combustive energy value evaluator determining a combustive energy value of the fuel from the at least one characteristic, a fuel metering device metering a fuel flow rate in the engine, and a controller calculating a desired flow rate based at least on the combustive energy value and controlling the fuel metering device such that the fuel flow rate corresponds to the desired flow rate

Further details of these and other aspects of the present invention will be apparent from the detailed description and figures included below

DESCRIPTION OF THE DRAWINGS

Reference is now made to the accompanying figures depicting aspects of the present invention, in which

Fig 1 is a schematic, cross-sectional view of a gas turbine engine, and

Fig 2 is a schematic representation of a fuel control system according to a particular embodiment of the present invention

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Fig 1 illustrates a gas turbine engine 10 of a type preferably provided for use in subsonic flight, generally comprising in serial flow communication a fan 12 through which ambient air is propelled, a compressor section 14 for pressurizing the air, a combustion section 16 in which the compressed air is mixed with fuel atomized into a combustion chamber 17 by a fuel injection system 20, the mixture being subsequently ignited for generating hot combustion gases before passing through a turbine section 18 for extracting energy from the combustion gases

Referring to Fig 2, the flow of fuel to the fuel injection system 20 is controlled by a fuel control system 22 The fuel control system 22 includes a fuel metering device 24 metering the fuel reaching the fuel injection system 20 The fuel metering device 24 is electrically controlled in a precise and predictable manner by a controller 26 In a particular embodiment, the controller 26 is part of the electrical and electronic engine control (EEC) (not shown) of the engine 10

The controller 26 generally receives data from vaπous engine sensors 28 This data includes pressure and temperatures at various points of a flow path of the engine 10, as well as fuel mass flow Based on this data, the controller 26 refers to fuel schedules 30 both upon start-up of the engine 10 and once the engine 10 is lit, to determine a desired fuel flow and control the fuel metering device 24 accordingly The fuel schedules 30 generally determine ranges for the desired fuel flow for one type of reference fuel, for example JP4 jet fuel The controller 26 also sends data to other systems for calculations and display on a display unit 32 which displays the received data, for example in the cabin of the aircraft (not shown) Such data may include, for example, the fuel mass flow, quantity of fuel burned and remaining quantity of fuel The controller 26 further controls an ignition system 34 of the engine 10 upon start-up

In order for the engine 10 to be able to function with fuel such as ethanol or an unknown mixture of ethanol and jet fuel, the fuel control system 22 includes a fuel mixture sensor 36 which is in line with the fuel injection system 20 (shown in Fig 1) and which determines the general mixture between ethanol and jet fuel contained m the fuel supplied to the engine 10 The fuel mixture sensor 36 thus sends data on the composition of the mixture to the controller 26 The fuel control system 22 also includes an energy value evaluator 38 which determines an energy value of the fuel mixture, either directly by measurement or by reference to tables based on mixture ratios In a particular embodiment, the energy value evaluator 38 determines the lower heating value (LHV) of the fuel mixture The fuel control system 22 further includes a reference fuel table 40, which contains characteristics of the reference fuel in relation to the corresponding energy value Such characteristics may include for example fuel mass flow required for various mixtures such that a specific LHV flow rate can be provided to the combustion system

In use, at start-up of the engine 10, the controller 26 actuates the fuel mixture sensor 36 through a signal 50 and the fuel mixture sensor 36 determines the composition of the fuel supplied to the engine 10, i.e. the proportion of ethanol and jet fuel in the fuel. Alternately, the LHV of the fuel may be measured directly with an in line LHV sensor, providing directly the information desired. The fuel mixture sensor 36 then sends corresponding proportion data 52 to the controller 26. The controller 26 also actuates engine sensors 28 through a signal 54 and receives sensor data 56 therefrom, which includes for example the air mass flow and the pressure and temperature in the flow path at the end of the compressor section 14. In the case where a direct LHV sensor is implemented, the fuel mass flow required for a given engine inlet air mass flow can be directly calculated by the engine control system

The controller 26 then sends data 58 to the energy value evaluator 38, the data 58 including the proportion of ethanol and jet fuel in the fuel and relevant sensor data. The energy value evaluator 38 determines the instantaneous LHV of the fuel mixture, for example from a database correlating the relevant sensor data and fuel proportion to the LHV. A given fuel mass flow of a particular fuel corresponds to a given amount of fuel energy (LHV * mass flow) that this fuel provides to the combustor. For example, the LHV of JP4 jet fuel is roughly about 18,000 BTU (British Thermal Units) per pound mass of the fuel, and thus at an exemplary fuel consumption rate of about 200 pounds of fuel flow per hour, the LHV input value to the combustor would be about 3.6 million BTU per hour. For the same engine condition using ethanol, for example, 3.6 million BTU per hour would still be required, however since ethanol has only about 60% of the energy content compared to JP4, the fuel mass flow rate of ethanol would need to be about 1.666 times as high as that for JP4, which in this example corresponds to about 366 pound of ethanol per hour. Once the instantaneous LHV of the fuel mixture has been determined by the energy value evaluator 38, the energy value evaluator 38 then sends the LHV 60 to the controller 26.

Alternately, the fuel mixture sensor 36 can directly determine the LHV as a means to determine the proportion of ethanol and jet fuel in the fuel, and in this case the data 52 sent by the fuel mixture sensor 36 to the controller 26 includes the LHV, and the energy

value evaluator 38 is used during start-up However, the proportion of ethanol to jet fuel need not be known if the LHV is measured direction as described above In one embodiment, the LHV is determined specifically for the start up flow settings, as once the engine is running the LHV of the fuel can be determined using the measured temperatures and air mass flow rates of the engine Thus, the specifically measured LHV values may not necessarily be needed once the engine has been started By using the engine air mass flow, the air inlet and outlet temperatures, and the fuel mass flow rate, the instantaneous LVH values in the fuel can be determined The plurality of instantaneous calculated LVH values are then held in a temporary memory register, and used by the control system to allow smooth control of the engine fuel flow for both steady state running and transient running The value of LHV may be calculated once the engine is running every second or two, or alternately more or less often Regardless, the general approach of establishing the LHV of the fuel before start is nonetheless desirable such that correct start-up flow rates can be set without fear of overheating during start or failing to start properly The LHV values can then be periodically determined, from the engine parameters as described The LHV before start is determined by establishing the mixture and then using a table or calculation method to determine LHV and then set the start flow based on this Alternately, however, the LHV may be sensed directly, and the start fuel flow can then be set based on a direct knowledge of the LHV Regardless of how the LHV is determined, the controller 26 accesses the fuel schedules 30, as shown at 62, based on the sensor data, and retrieves corresponding fuel schedule data 64 related to start-up The controller 26 then uses the LHV or the equivalent LHV and fuel proportions as described above, to adapt the fuel schedule data to the actual fuel used in the engine in order to determine a desired fuel flow and ignition settings The BTU input requirement to the engine is always predetermined by engine designers The fuel flow rate is measured and controlled, and given that the LHV specifications of aircraft fuel must by regulations be within a specific narrow range, the need for LHV measurement or determination by the engine system never existed in the past

The controller 26 then actuates the fuel metering device 24 through a signal 66 corresponding to the desired fuel flow, optionally receiving feedback 68 from the device

24 The controller 26 also actuates the ignition system 34 through a signal 70 corresponding to the ignition settings, optionally receiving a feedback 72 from the ignition system 34

Once the engine 10 is lit, the controller 26 still receives the sensor data 56 from the engine sensors 28, which includes for example, fuel mass flow, air mass flow, temperature in the flow path at the end of the combustion section 16, etc The controller 26 sends this data to the energy value e\aluator 38, as shown at 58, which determines the corresponding instantaneous LHV of the fuel mixture The LHV of the fuel input can be calculated by knowing the air mass flow and the temperature rise of that air mass when combustion occurs This then provides the total BTU / hour of energy released by the fuel, and thus dividing by the fuel flow rate (in pounds per hour, for example) will provide the energy in the fuel m BTU per pound

The energy value evaluator 38 sends the LHV 60 to the controller 26, which again accesses the fuel schedules 30, as shown at 62, based on the sensor data, and retrieves corresponding fuel schedule data 64 related to lit operation The controller 26 uses the LHV to adapt the fuel schedule data to the actual fuel used in the engine in order to determine a desired fuel flow As during start-up, the controller 26 then actuates the fuel metering device 24 through the signal 66 corresponding to the desired fuel flow

The controller 26 thus regulates the operation of the fuel metering device 24 based on the LHV determined by the energy value evaluator 38 As the energy value evaluator 38 constantly calculates the LHV during the operation of the engine 10, the controller 26 reacts to variations in composition of the fuel and adjusts the fuel metering device 24 accordingly to optimize performance of the engine 10

While the engine 10 is running, the controller 26 also accesses the reference fuel table 40, as shown at 74, and retrieves at least one reference characteristic 76 of the reference fuel corresponding to the LHV of the actual fuel used For example, the controller 26 determines the corresponding mass flow of the reference fuel which would have been required to obtain the LHV obtained with the actual fuel and determined by the energy value evaluator 38 Based on the history of the operation of the engine 10, the controller 26 can also calculate an equivalent quantity of reference fuel burned The controller 26

then sends normalized data 78, i e the equivalent characteristics of the reference fuel corresponding to the actual LHV of the fuel used, to the display unit 32, which displays it for the pilot As such, the pilot can see the fuel data normalized to a reference fuel, i e as if the reference fuel was being used in the engine 10 The display unit 32 also provides the pilot with an indication of the real fuel quantity being used versus how much real fuel quantity is present in the fuel tanks Accordingly, the actual fuel mass flow is measured and used for any information provided to the pilot For example the mass flow and quantity of reference fuel corresponding to the actual operation of the engine can be displayed Using this normalized data, standard calculations for range of the aircraft can be done by the pilot regardless if he/she is aware of the real composition of the fuel being used in the engine 10, thus eliminating errors due to confusion of fuel type used This includes corrections of SG (specific gravity) which is also one of the parameters sensed, as the fuel level in the fuel tank may not be representative in terms of available range from one fuel to another, even if the BTU per Lb is known (i e the volume of fuel is what is piovided by a level measurement device not the mass of fuel in the tank)

As such, the fuel control system 22 provides for control of the fuel metering device 24 adapted to a fuel which is a mixture of two different fuels with variable proportions, as well as normalisation of the operation of the engine to a known, reference fuel to facilitate operation of the engine As such, the pilot can use the normalized data displayed to perform standard calculations such as range calculation without the need to verify the exact composition of the fuel

Although in the preferred embodiment, the energy value used is the lower heating value or LHV, it is understood that other energy values can similarly be used The above description is meant to be exemplary only, and one skilled in the art will recognize that changes may be made to the embodiments described without department from the scope ol the invention disclosed For example, the fuel control system 22 can be used with other configurations of gas turbine engines and with other types of engine The reference fuel used can be any appropriate type of fuel Still other modifications which fall within the scope of the present invention will be apparent to those skilled in the art, in light of a

review of this disclosure, and such modifications are intended to fall within the appended claims.