Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GATHERING AUGER WITH INDEPENDENT SPEED
Document Type and Number:
WIPO Patent Application WO/2012/024554
Kind Code:
A1
Abstract:
A gathering auger of a harvesting header driven independently from the speed of the harvester. In one embodiment, a row unit of the header includes at last one powered snap roll in combination with a stripper plate for removing useable parts from crop stalks. The gathering auger is powered by a first drive means and the powered snap roll is powered by a second drive means such that the gathering auger and the powered snap roll are operated at different speeds.

Inventors:
LOHRENTZ RANDY (US)
MATOUSEK ROBERT (US)
Application Number:
PCT/US2011/048354
Publication Date:
February 23, 2012
Filing Date:
August 19, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AGCO CORP (US)
LOHRENTZ RANDY (US)
MATOUSEK ROBERT (US)
International Classes:
A01D45/02
Foreign References:
US7752829B12010-07-13
US5913803A1999-06-22
FR1509508A1968-01-12
US4429516A1984-02-07
Other References:
None
Attorney, Agent or Firm:
LAFFERTY, Wm. Brook et al. (4205 River Green ParkwayDuluth, Georgia, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. In an attachment for a harvester having a cross auger, a forward-extending first row unit comprising at least one fore-and-aft extending first gathering auger and a first stripper plate, said first stripper plate at least partially defining a first crop passage and said first gathering auger cooperating with said first stripper plate to remove useable parts from crop stalks gathered in said first crop passage and to convey the useable parts rearward into the cross auger, wherein said first gathering auger is independently driven.

2. The first row unit of Claim 1 further comprising at last one powered snap roll, said first gathering auger rotating at a speed independent of the speed of said snap roll.

3. The first row unit of Claim 1 wherein said first gathering auger is powered by a first drive means and a powered snap roll of said first row unit is powered by a second drive means such that said first gathering auger and said powered snap roll are operated at different speeds.

4. The first row unit of Claim 1 wherein said first gathering auger rotates at a speed independent of the speed of the harvester.

5. The first row unit of Claim 1 wherein the speed of said first gathering auger is varied while the harvester is maintained at a constant speed.

6. The first row unit of Claim 1 wherein the speed of said first gathering auger is varied while a powered snap roll of said first row unit is maintained at a constant speed.

7. The first row unit of Claim 1 wherein said first gathering auger rotates at a speed independent of the speed of choppers coupled to the harvester.

8. A method for harvesting crop with an attachment for an agricultural vehicle, said method comprising the steps of:

operating a gathering auger to gather crop stalks in a crop passage at a first speed; and

operating a snap roll for removing useable parts from crop stalks at a second speed independently of said gathering auger.

9. The method of Claim 8 further comprising the step of varying the speed of the gathering auger while the speed of the snap roll remains constant.

10. The method of Claim 8 further comprising the step of increasing the speed of the gathering auger while the speed of the snap roll remains constant.

11. The method of Claim 8 further comprising the step of decreasing the speed of the gathering auger while the speed of the snap roll remains constant.

12. The method of Claim 8 further comprising the step of varying the speed of the snap roll while the speed of the gathering auger remains constant.

13. The method of Claim 8 further comprising the step of increasing the speed of the snap roll while the speed of the gathering auger remains constant.

14. The method of Claim 8 further comprising the step of decreasing the speed of the snap roll while the speed of the gathering auger remains constant.

15. The method of Claim 8 further comprising the step of changing the speed of the gathering auger relative the ground speed of the harvester.

Description:
GATHERING AUGER WITH INDEPENDENT SPEED

TECHNICAL FIELD

[001] This invention relates to cutting and gathering stalk crops such as corn with a header coupled to an agricultural vehicle.

BACKGROUND

[002] Agricultural harvesters such as combines are typically equipped with a harvesting header. Corn headers are specifically designed to pick corn and vary in size from two-row units to twelve-row units or more. As the harvester moves through the field, each row-unit passes between rows of corn. Corn header row units typically use gathering chains to covey crop material and ears rearward toward a cross auger. A set of driven snap rolls, which rotate based on the speed of the harvester, grabs the corn stalks and forces them downward between stripper plates. The ears of corn are snapped free of the stalk and the cross auger passes the ears to the feeder housing of the harvester. If the snap rolls are operated too fast or too slow, ears of corn may be lost or entire corn stalks may be passed to the cross auger and feeder housing.

[003] Known row units require two gathering chains and two tensioners which are heavy, expensive and wear out easily. Furthermore, the gathering chains create a complicated drive mechanism because the axes of the drive sprockets driving the chains are at right angles to the axes of the snap rolls. Also, the gathering chains do not effectively convey a large mass of crop in conditions when material other than ears of corn, such as stalks and leaves, are severed from the ground. What is needed is a simpler and more cost effective row unit that is capable of conveying a large mass of crop.

BRIEF DESCRIPTION OF THE DRAWINGS

[004] The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate various embodiments of the present invention. In the drawings:

[005] FIG. 1 shows a perspective view of a corn header having a plurality of row units for an agricultural vehicle; [006] FIG. 2 shows a top view of the header of FIG.1 ;

[007] FIG. 3 shows a close-up view of a portion of the header of FIG. 1 ;

[008] FIG. 4 shows a portion of the bottom of the header of FIG. 1 ;

[009] FIG. 5 shows a close-up view of a portion of the bottom of the header of FIG. 1 ;

[010] FIG. 6 shows a perspective view of a frame which forms part of a live row unit and part of an adjacent dead row unit;

[011] FIG. 7 shows a close-up view of the header from the front with the gather auger in a horizontal position, offset and opposing stripper plates, and an idler roll offset from an opposing powered snap roll;

[012] FIG. 8 shows a perspective view of a pair of gathering augers and means for driving the augers and allowing them to pivot;

[013] FIG. 9 shows a close-up view of the position of fasteners in slots in a frame of a row unit which allows the gathering auger to pivot;

[014] FIG. 10 shows a gathering auger pivoted upward;

[015] FIG. 1 1 shows the fasteners moved all the way to the opposite end of the slots when the gathering auger is pivoted upward; and

[016] FIG. 12 is a close-up showing a chain and sprockets driving a shaft coupled to the gathering augers.

DESCRIPTION OF EXAMPLE EMBODIMENTS

[017] The present invention is susceptible of embodiment in many different forms. While the drawings illustrate and the specification describes certain preferred

embodiments of the invention, it is to be understood that such disclosure is by way of example only. There is no intent to limit the principles of the present invention to the particular disclosed embodiments. References hereinafter made to certain directions, such as, for example, "left" and "right", are made as viewed from the front looking rearward. [018] The exemplary header 100 selected for illustration in FIGS. 1-5 has a cross auger 1 10 with spiral flighting 1 12 for sweeping the ears of corn toward the center of the header 100. Large cross augers 1 10 may also have paddles 130, fingers 132 or some other means to facilitate the delivery of the crop rearward to the feeder housing of a harvester. The header 1 10 has a plurality of forward-extending live row-units 120 and a plurality of forward- extending dead row units 124. The row units 120, 124 and the cross auger 1 10 define a feeder plane therebetween where useable parts of stalk crops are conveyed rearward from the row units 120, 124 to the cross auger 1 10.

[019] Live row units 120 and dead row units 124 cooperate with one another. Live row units 120 have powered components, as described in greater detail below, whereas the dead row units 124 generally do not have powered components. In one embodiment, as best shown in FIGS. 1 and 2, the header 1 10 has four live row units 120, three dead row units 124, plus one half of a dead row unit 130 on each end of the header 1 10. The row units 120, 124 are arranged relative to one another so that the row units 120, 124 alternate relative to each other along the length of the header 1 10. In other words, every other row unit is a live row unit 120 with a dead row unit 124 adjacent to each live row unit 120. The row units 120, 124 are spaced relative to one another to correspond with the spacing of the crop to be harvested and to provide a path to receive the crop therebetween. For example, a live row unit 120 may be placed between two dead row units 124 to cooperate therewith.

[020] FIG. 6 illustrates a row assembly 138 having a frame 140, a back end 142 and a forward end 144. Half of the frame 140 forms part of a live row unit 120 and the other half forms part of a dead row unit 124. Therefore, one live row unit 120 includes two halves of two separate and adjacent frames 140. One dead row unit 124 includes two halves of two separate and adjacent frames. Each frame 140 includes a first portion 146 and a second portion 148 which are spaced from one another and protrude outwardly and forward from the back end 142. At the front and between adjacent row units 120, 124 is a crop entry 150 for receiving the stalks of the crop. The first and second portions 146,148 receive stripper plates 152 which cooperate with one another to define the crop passage 156 between adjacent row units 120, 124. The stripper plates 152 strip useable parts such as ears of corn from crop stalks that are received in the crop passage 156.

[021] Each live row unit 120 of the present invention includes at least one fore-to- aft gathering auger 160, in place of the two gathering chains and tensioners, for conveying the useable parts rearward to the cross auger 1 10. Each gathering auger 160 has a proximal end and a distal end and is preferably aligned substantially with a corresponding crop passage 156. However, the axis of rotation of the gathering auger 160 may instead be misaligned with the crop passage 156 such that the crop stalks in the back of the crop passage may be urged more so toward the gathering auger 160 than the crop stalks are at the beginning of the crop passage 156.

[022] Preferably, each live row unit 120 includes a pair of counter-rotating augers 160. The dead row units 124, on the other hand, do not include gathering augers 160 or any gathering chains. Therefore, the complexity of the header 1 10 is reduced by utilizing gathering augers 160 on live row units 120 instead of gathering chains and tensioners. Also, by utilizing dead row units 124 in combination with the live row units 120 the overall complexity of the header 1 10 is substantially reduced because the dead row units 124 do not have gathering augers 160 or gathering chains and tensions and also because the drive means for driving the gathering augers 160 is simpler than known drives used in combination with gathering chains.

[023] The gathering augers 160 are preferably driven independently of the snap rolls. The gathering auger 160 may be driven by electrical, mechanical or hydraulic means. Preferably, each gathering auger 160 is cantilevered from the frames 140 and rotationally driven from the forward most end of its respective row unit 120 away from the cross auger 1 10 rather than the rear of the row unit 120 in close proximity to the cross auger 1 10 so that the delivery or the distal end of the gathering auger 160 is not obstructed. This allows ears and stalks to be delivered to the cross auger 1 10 unimpeded by bearing supports, drive mechanisms or some other crop impeding structure.

[024] In one or more embodiments of the present invention, the proximal end 162 of one or more gathering augers 160 is coupled to the frame 140 of the row unit 120 in a manner that permits the distal end 164 of the gathering auger 160 to move into and out of the feeder plane. In one embodiment, a mechanism coupled to the proximal end 162 of the gathering auger 160 allows the gathering auger 160 to rotate or pivot in a vertical plane between a first position for processing crops when harvesting and a second position for maintenance purposes. Preferably, the distal end 164 of the gathering auger when in the first position is higher in the vertical plane than when the distal end 164 is in the second position.

[025] Also, the gathering auger 160 preferably pivots partially about a substantially horizontal rotational axis that extends substantially transversely between the row units 120. The gathering auger 160 may be pivoted such that its distal end 164 is raised upward above the row unit 120 to allow the gathering auger 160 to be repaired, replaced or perform maintenance without interference from the cross auger 1 10. Also, when the gathering auger 160 is pivoted upward out of the feeder plane other components can be more easily accessed.

[026] An arrangement of gears or wheels such as bevel gears 182, 184 may be used for transmission of the driving motion to the gathering auger 160 from a driven shaft 166 within each live row unit 120 while also allowing the distal end of the gathering auger 160 to pivot upward about the same axis of the shaft 166. Each shaft 166 preferably drives a pair of gathering augers 160 of a single live row unit 120 so that the pair of gathering augers are driven about the same axis about which they may pivot into and out of the feeder plane. When the gathering auger 160 is pivoted upward, fasteners may be removed from the auger 160 so that the outer flighting portion of the gathering auger 160 may slide rearward so that it may be removed from an inner shaft and from cylindrical bearings allowing the flighting portion to rotate about the inner shaft.

[027] A mounting bracket 210 rotationally couples the gathering auger 160 to an outer side of the frame 140 of the row assembly 138, such as vertical mounting support 220, to secure the gathering auger 160 to the frame 140 in an operational manner. The vertical mounting support 220 includes radial extending openings or arched slots 224 for receiving fasteners 226 for securing the mounting bracket 210 to the frame 140. When the distal end 164 of the gathering auger 160 is pivoted upward, the distal end 164 of the gathering auger 160 coupled to the mounting bracket 210 causes the mounting bracket 210 to rotate in the slots 224 of the vertical mounting support 220. The length of the arched slots 224 dictate the range the gathering auger 160 can be pivoted between the first and second positions. FIGS. 1 -3 and 7 illustrate the gathering auger 160 pivoted into the first position for processing crops. The fasteners 226 are moved all the way to one end of the slots 224 as shown in FIG. 9. On the other hand, FIGS. 10 and 1 1 illustrate the gathering auger 160 pivoted into the second position for maintenance where the fasteners 226 have moved to the opposite end of the slots 224. The range of motion of the distal end 162 of the gathering auger 160 may be limited by the length or shape of the slots 224.

[028] The pair of straight bevel gears 182, 184, in mesh are used to drive the gathering auger 160 while harvesting. The shaft 166 of the live row unit 120 corresponds with the axis upon which one or more augers 160 pivot. The distal end of the gathering auger 160 is coupled to the bevel gear 182 which is driven by the bevel gear 184 on shaft 166. The shaft 166 may be chain driven by a hydraulic drive motor 178 with sprocket 180. Preferably, the drive motor 178 is sufficiently sized to drive all of the gathering augers 160. The drive motor 178 and sprocket 180 with chain 198 drives sprocket 188 and shaft 186 which extends in a transverse manner along the length of the header 100. There are preferably numerous other sprockets 188 along the length of the shaft 186. The number of sprockets 188 depends on the number of live row units 120. Chains 190 extend from the sprockets 188 of the shaft 186 to sprockets 192 on shaft 166 as best shown in FIG. 12.

[029] Because the augers 160 are driven by the drive motor 178, the speed of the augers 160 is independent of the speed of the cross auger 1 10. The chain 190 driving the sprocket 192 which in turn drives the shaft 166 with bevel gears 182. The speed of the augers 160 can be changed automatically or manually in relation to the ground speed much like current grain headers on harvesters that control reel speed. Moreover, the augers 160 can be driven independent of the snap rolls. The speed of the gathering augers 160 may be varied while either or both the harvester and the snap rolls are maintained at a constant speed. [030] In addition to the apparatuses described herein, the inventions include a method for harvesting crop with an attachment for an agricultural vehicle that includes the gathering augers 160. The method includes operating the gathering augers 160 at a first speed to gather crop stalks in the crop passages 156 and operating a snap roll for removing useable parts from crop stalks at a second speed independently of the gathering augers 160. The method may also include one or more of the following steps: varying the speed of the gathering augers 160 while the speed of the snap rolls remain constant, increasing the speed of the gathering augers 160 while the speed of the snap rolls remain constant, decreasing the speed of the gathering augers 160 while the speed of the snap rolls remain constant, varying the speed of the snap rolls while the speed of the gathering augers 160 remain constant, increasing the speed of the snap rolls while the speed of the gathering augers 160 remain constant, decreasing the speed of the snap rolls while the speed of the gathering augers 160 remain constant, and/or changing the speed of the gathering augers 160 relative the ground speed of the harvester.

[031] To keep stalks captured and engaged by the gathering auger 160 an elongated member 196 such as a rod is positioned in close proximity to the flighting of the gathering auger 160. Preferably, the elongated member 196 is substantially parallel aligned with the gathering auger 160. However, in other embodiments, at least a portion of the elongated member 196 may be shaped or curved along its length or the distal end of the elongated member 196 may be closer in proximity to the distal end of the gathering auger 160. The elongated member 196 may be rigid, flexible, or semi-flexible to urge the stalks in the crop passage toward the gathering auger 160. In one or more embodiments, the elongated member 196 is cantilevered off the forward end 144 of the frame 136 of the dead row unit 124 to urge the stalks in the crop passage 156 toward the gathering auger 160 of the opposing live row unit 120. The dead row unit may also include a second elongated member 196 extending toward another gathering auger 160 of another live row unit. In an alternative embodiment, the elongated member 196 may be a strap or be detachably coupled or mounted to a row unit.

[032] The foregoing has broadly outlined some of the more pertinent aspects and features of the present invention. These should be construed to be merely illustrative of some of the more prominent features and applications of the invention. Other beneficial results can be obtained by applying the disclosed information in a different manner or by modifying the disclosed embodiments. Accordingly, other aspects and a more comprehensive understanding of the invention may be obtained by referring to the detailed description of the exemplary embodiments taken in conjunction with the accompanying drawings, in addition to the scope of the invention defined by the claims.