Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GI PROTEIN PHOSPHORYLATION AS MARKER FOR SCOLIOSIS AND SCOLIOSIS PROGRESSION, METHODS OF INCREASING GIPCR SIGNALING IN SCOLIOTIC SUBJECTS
Document Type and Number:
WIPO Patent Application WO/2014/201557
Kind Code:
A1
Abstract:
Methods of stratifying a subject having or at risk for developing adolescent idiopathic scoliosis (AIS) into diagnostically or clinically useful subclasses are provided. The stratification is based on the subject's Giα protein serine phosphorylation profile and/or the degree of imbalance in G-protein coupled receptor responses to Giα and Gsα protein stimulation. In some embodiments, the methods involve detecting or determining the level of serine phosphorylated Giα1 and/or Giα3 proteins in the cell sample, and/or determining a ratio between the response to Giα protein stimulation and the response to Gsα protein stimulation from a biological sample from the subject. Methods for predicting the risk of an AIS subject for developing a severe scoliosis, for predicting the subject's responsiveness to bracing treatment, and for identifying therapeutically useful compounds are also provided, as well as kits therefor.

Inventors:
MOREAU ALAIN (CA)
AKOUME NDONG MARIE-YVONNE (CA)
Application Number:
PCT/CA2014/050562
Publication Date:
December 24, 2014
Filing Date:
June 16, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CHU STE JUSTINE (CA)
International Classes:
G01N33/48; A61K31/18; A61K31/404; A61K31/4439; A61K31/472; A61K31/473
Domestic Patent References:
WO2003073102A12003-09-04
WO2010040234A12010-04-15
WO2008119170A12008-10-09
Foreign References:
US201361879314P2013-09-18
US6204023B12001-03-20
US6025155A2000-02-15
US6077677A2000-06-20
US20020160970A12002-10-31
US20030083293A12003-05-01
US5434183A1995-07-18
Other References:
MOREAU ET AL.: "Melatonin signalling dysfunction in adolescent idiopathic scoliosis", SPINE, vol. 29, no. 16, 15 August 2004 (2004-08-15), pages 1772 - 1781, XP009129278
LETELLIER ET AL.: "Récents progrès dans l'étiopathogénie de la scoliose idiopathique de l'adolescent et nouveaux concepts moléculaires", MEDECINE/SCIENCES, vol. 23, 2007, pages 910 - 916, XP055020714
GOLDBERG MS; MAYO NE; POITRAS B ET AL.: "The Ste-Justine Adolescent Idiopathic Scoliosis Cohort Study. Part I: Description of the study", SPINE, vol. 19, 1994, pages 1551 - 61
POITRAS B; MAYO NE; GOLDBERG MS ET AL.: "The Ste-Justine Adolescent Idiopathic Scoliosis Cohort Study. Part IV: Surgical correction and back pain", SPINE, vol. 19, 1994, pages 1582 - 8
WEINSTEIN SL; DOLAN LA; CHENG JC ET AL.: "Adolescent idiopathic scoliosis", LANCET, vol. 371, 2008, pages 1527 - 37, XP022655331, DOI: doi:10.1016/S0140-6736(08)60658-3
SOCIETY SR, MORBIDITY & MORTALITY COMMITTEE ANNUAL REPORT, 1997
CAMPBELL: "Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology", 1984, ELSEVIER SCIENCE PUBLISHER
HARLOW ET AL.: "Antibody A Laboratory Manual", 1988, CSH LABORATORIES
KOHLER ET AL., NATURE, vol. 256, 1975, pages 495
A. OSLO: "Remington's Pharmaceutical Sciences, 16th Ed.,", 1980
AKOUME, M.-Y.; B. AZEDDINE ET AL.: "Cell-based screening test for idiopathic scoliosis using cellular dielectric spectroscopy", SPINE, vol. 35, no. 13, 2010, pages E601, XP009157040, DOI: doi:10.1097/BRS.0b013e3181cf39ff
ANAND-SRIVASTAVA, M. B.: "Amiloride interacts with guanine nucleotide regulatory proteins and attenuates the hormonal inhibition of adenylate cyclase", J BIOL CHEM, vol. 264, no. 16, 1989, pages 9491 - 9496
ANAND-SRIVASTAVA, M. B.; A. K. SRIVASTAVA ET AL.: "Pertussis toxin attenuates atrial natriuretic factor-mediated inhibition of adenylate cyclase. Involvement of inhibitory guanine nucleotide regulatory protein", J BIOL CHEM, vol. 262, no. 11, 1987, pages 4931 - 4934
AZEDDINE, B.; K. LETELLIER ET AL.: "Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis", CLIN ORTHOP RELAT RES, vol. 462, 2007, pages 45 - 52, XP009157056, DOI: doi:10.1097/BLO.0b013e31811f39fa
BLANK, R. D.; C. L. RAGGIO ET AL.: "A genomic approach to scoliosis pathogenesis", LUPUS, vol. 8, no. 5, 1999, pages 356 - 360
BUSHFIELD, M.; S. L. GRIFFITHS ET AL.: "Diabetes-induced alterations in the expression, functioning and phosphorylation state of the inhibitory guanine nucleotide regulatory protein Gi-2 in hepatocytes", BIOCHEM J, vol. 271, no. 2, 1990, pages 365 - 372
BUSHFIELD, M.; B. E. LAVAN ET AL.: "Okadaic acid identifies a phosphorylation/dephosphorylation cycle controlling the inhibitory guanine-nucleotide-binding regulatory protein Gi2", BIOCHEM J, vol. 274, 1991, pages 317 - 321
CASEY, J. H.; C. J. MCLEAN ET AL.: "Driving, glaucoma, and the law. Diabetic patients must also satisfy regulations", BMJ, vol. 310, no. 6971, 1995, pages 56
CHEN, C. A.; D. R. MANNING: "Regulation of G proteins by covalent modification", ONCOGENE, vol. 20, no. 13, 2001, pages 1643 - 1652
FAZAL, M. A.; M. EDGAR: "Detection of adolescent idiopathic scoliosis", ACTA ORTHOPAEDICA BELGICA, vol. 72, no. 2, 2006, pages 184
GAWLER, D.; G. MILLIGAN ET AL.: "Abolition of the expression of inhibitory guanine nucleotide regulatory protein Gi activity in diabetes", NATURE, vol. 327, no. 6119, 1987, pages 229 - 232
HARDELAND, R.: "Melatonin: signaling mechanisms of a pleiotropic agent", BIOFACTORS, vol. 35, no. 2, 2009, pages 183 - 192
HIGASHIJIMA, T.; J. BURNIER ET AL.: "Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity", J BIOL CHEM, vol. 265, no. 24, 1990, pages 14176 - 14186
HOUSLAY, M. D.; G. MILLIGAN: "Tailoring cAMP-signalling responses through isoform multiplicity", TRENDS BIOCHEM SCI, vol. 22, no. 6, 1997, pages 217 - 224, XP004074683, DOI: doi:10.1016/S0968-0004(97)01050-5
ITOH, H.; F. OKAJIMA ET AL.: "Conversion of adrenergic mechanism from an alpha- to a beta-type during primary culture of rat hepatocytes. Accompanying decreases in the function of the inhibitory guanine nucleotide regulatory component of adenylate cyclase identified as the substrate of islet-activating protein", J BIOL CHEM, vol. 259, no. 24, 1984, pages 15464 - 15473
KANE, W. J.: "Scoliosis prevalence: a call for a statement of terms", CLIN ORTHOP RELAT RES, vol. 126, 1977, pages 43 - 46
KATADA, T.; A. G. GILMAN ET AL.: "Protein kinase C phosphorylates the inhibitory guanine-nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase", EUR J BIOCHEM, vol. 151, no. 2, 1985, pages 431 - 437
KOZASA, T.; A. G. GILMAN: "Protein kinase C phosphorylates G12 alpha and inhibits its interaction with G beta gamma", J BIOL CHEM, vol. 271, no. 21, 1996, pages 12562 - 12567
LETELLIER, K.; B. AZEDDINE ET AL.: "Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients", JOURNAL OF PINEAL RESEARCH, vol. 45, no. 4, 2008, pages 383 - 393, XP008144091, DOI: doi:10.1111/j.1600-079X.2008.00603.x
LONSTEIN, J.: "Adolescent idiopathic scoliosis", THE LANCET, vol. 344, no. 8934, 1994, pages 1407 - 1412
LOUNSBURY, K. M.; P. J. CASEY ET AL.: "Phosphorylation of Gz in human platelets. Selectivity and site of modification", J BIOL CHEM, vol. 266, no. 32, 1991, pages 22051 - 22056
LOUNSBURY, K. M.; B. SCHLEGEL ET AL.: "Analysis of Gz alpha by site-directed mutagenesis. Sites and specificity of protein kinase C-dependent phosphorylation", J BIOL CHEM, vol. 268, no. 5, 1993, pages 3494 - 3498
MCCLUE, S.; E. SELZER ET AL.: "Gi3 does not contribute to the inhibition of adenylate cyclase when stimulation of an alpha 2-adrenergic receptor causes activation of both Gi2 and Gi3", BIOCHEMICAL JOURNAL, vol. 284, 1992, pages 565
MOREAU, A.; M. Y. AKOUME NDONG ET AL.: "Molecular and genetic aspects of idiopathic scoliosis. Blood test for idiopathic scoliosis", ORTHOPADE, vol. 38, no. 2, 2009, pages 114 - 116,118-121
MOREAU, A.; S. FORGET ET AL.: "Melatonin signaling dysfunction in adolescent idiopathic scoliosis", SPINE, vol. 29, no. 16, 2004, pages 1772 - 1781, XP009129278, DOI: doi:10.1097/01.BRS.0000134567.52303.1A
MORISHITA, R.; H. NAKAYAMA ET AL.: "Primary structure of a gamma subunit of G protein, gamma 12, and its phosphorylation by protein kinase C", J BIOL CHEM, vol. 270, no. 49, 1995, pages 29469 - 29475, XP002181788, DOI: doi:10.1074/jbc.270.49.29469
MORRIS, N. J.; P. YOUNG ET AL.: "Insulin inhibits the phosphorylation of alpha-Gi-2 in intact hepatocytes", BIOCHEM J, vol. 308, 1995, pages 693 - 696
MUKAI, H.; E. MUNEKATA ET AL.: "G protein antagonists. A novel hydrophobic peptide competes with receptor for G protein binding", J BIOL CHEM, vol. 267, no. 23, 1992, pages 16237 - 16243
MURTHY, K. S.; J. R. GRIDER ET AL.: "Heterologous desensitization of response mediated by selective PKC-dependent phosphorylation of G(i-1) and G(i-2", AM J PHYSIOL CELL PHYSIOL, vol. 279, no. 4, 2000, pages 925 - 934
NEGRINI, S.; S. MINOZZI ET AL.: "Cochrane Review: Braces for idiopathic scoliosis in adolescents", EVIDENCE-BASED CHILD HEALTH: A COCHRANE REVIEW JOURNAL, vol. 5, no. 4, 2010, pages 1681 - 1720
NONNO, R.; M. PANNACCI ET AL.: "Ligand efficacy and potency at recombinant human MT2 melatonin receptors: evidence for agonist activity of some mt1-antagonists", BR J PHARMACOL, vol. 127, no. 5, 1999, pages 1288 - 1294
RISEBOROUGH, E. J.; R. WYNNE-DAVIES: "A genetic survey of idiopathic scoliosis in Boston, Massachusetts", J BONE JOINT SURG AM, vol. 55, no. 5, 1973, pages 974 - 982
ROACH, J. W.: "Adolescent idiopathic scoliosis", ORTHOP CLIN NORTH AM, vol. 30, no. 3, 1999, pages 353 - 365
VERDONK, E.; K. JOHNSON ET AL.: "Cellular dielectric spectroscopy: a label-free comprehensive platform for functional evaluation of endogenous receptors", ASSAY AND DRUG DEVELOPMENT TECHNOLOGIES, vol. 4, no. 5, 2006, pages 609 - 619
WEINSTEIN, S. L.: "Adolescent idiopathic scoliosis: prevalence and natural history", INSTR COURSE LECT, vol. 38, 1989, pages 115 - 128
WESSLAU, C.; U. SMITH: "The inhibitory GTP-binding protein (Gi) regulates the agonistic property of beta-adreneraic ligands in isolated rat adipocytes. Evidence for a priming effect of cyclic AMP", BIOCHEM J, vol. 288, 1992, pages 41 - 46
YATOMI, Y.; Y. ARATA ET AL.: "Phosphorylation of the inhibitory guanine-nucleotide-binding protein as a possible mechanism of inhibition by protein kinase C of agonist-induced Ca2+ mobilization in human platelet", EUR J BIOCHEM, vol. 205, no. 3, 1992, pages 1003 - 1009
Attorney, Agent or Firm:
GOUDREAU GAGE DUBUC (McGill College#220, Montréal Québec H3A 3H3, CA)
Download PDF:
Claims:
CLAIMS:

1. A method of stratifying a subject having or at risk for developing adolescent idiopathic scoliosis (AIS), said method comprising:

(i) providing a cell sample isolated from the subject;

(ii) detecting or determining from said cell sample the subject's Gia protein serine phosphorylation profile and/or the degree of imbalance in response to Gia and Gsa protein stimulation; and

(iii) stratifying said subject into a clinically useful AIS subclass based on the subject's Gia protein serine phosphorylation profile and/or the degree of imbalance in response to Gia and Gsa protein stimulation.

2. The method of claim 1 , wherein (ii) comprises:

(a) detecting or determining the serine phosphorylation of Gia1 in the cell sample;

(b) detecting or determining the serine phosphorylation of Gia3 in the cell sample;

(c) detecting or determining a ratio (Gia/Gsa response ratio) or difference (Δ) between the response to Gia protein stimulation and the response to Gsa protein stimulation in the cell sample; or

(d) any combination of (a) to (c).

The method of claim 1 or 2, further comprising stratifying the subject as belonging to:

(1 ) a first AIS subclass characterized by:

(a) elevated levels of serine-phosphorylated Gia1 and Gia3 proteins as compared to levels corresponding to those of a control; and/or

(b) a Gia/Gsa response ratio below about 0.5;

(2) a second AIS subclass characterized by:

(a) elevated levels of serine-phosphorylated Gia1 but not of serine-phosphorylated Gia3 protein, as compared to levels corresponding to that of a control; and/or

(b) a Gia/Gsa response ratio between about 0.5 and 1.5; or

(3) a third AIS subclass characterized by:

(a) elevated levels of serine-phosphorylated Gia3 protein but not of serine-phosphorylated Gia1 protein as compared to levels corresponding to those of a control; and/or

(b) a Gia/Gsa response ratio above about 1.5.

4. The method of claims 2 or 3, further comprising detecting or determining the serine phosphorylation of Gia2 protein in the cell sample, wherein elevated levels of serine-phosphorylated Gia2 protein are detected, as compared to levels corresponding to that of a control.

5. The method of claim 3 or 4, wherein: (1 ) subjects belonging to said first AIS subclass have a low risk of severe AIS progression;

(2) subjects belonging to said second AIS subclass have a high risk for severe AIS progression; and

(3) subjects belonging to said third AIS subclass have a moderate risk for severe AIS progression.

6. A method for predicting the risk for developing a severe scoliosis in a subject having or at risk for developing scoliosis, said method comprising:

(i) providing a cell sample isolated from the subject;

(ii) detecting or determining:

(a) the serine phosphorylation of Gia3 protein in the cell sample;

(b) responses to Gia and Gsa proteins stimulation in the cell sample; and/or

(c) the GiPCR response to an agonist in the cell sample;

(iii) determining that the subject is at risk for developing a severe scoliosis when:

(a) serine-phosphorylated Gia3 protein in the cell sample is not detected, or is not elevated as compared to levels corresponding to those of a control;

(b) a ratio of the response to Gia protein stimulation to the response to Gsa protein stimulation (Gia/Gsa response ratio) in the cell sample is between about 0.5 and 1.5; and/or

(c) a GiPCR response in the cell sample lower than that in a control sample by about 40 to 60% is detected.

7. The method of claim 6, wherein (ii) further comprises detecting or determining the serine phosphorylation of Gia1 and/or Gia2 protein in the cell sample, wherein said subject is at risk for developing a severe scoliosis when the level of said subject's serine-phosphorylated Gia1 or Gia2 protein is elevated as compared to levels corresponding to those of a control.

8. A method for predicting the responsiveness of a subject having scoliosis to bracing treatment, said method comprising:

(i) providing a cell sample isolated from the subject; and

(ii) detecting or determining:

(a) the serine phosphorylation of Gia1 in the cell sample;

(b) the serine phosphorylation of Gia3 in the cell sample;

(c) responses to Gia and Gsa proteins stimulation in the cell sample; or

(d) any combination of (a) to (c);

(iii) determining that the subject is likely to be responsive to bracing treatment when:

(a) elevated levels of serine-phosphorylated Gia3 protein but not of serine-phosphorylated Gia1 protein is detected, as compared to levels corresponding to those of a control; and/or

(b) a ratio of the response to Gia protein stimulation to the response to Gsa protein stimulation (Gia/Gsa response ratio) in the cell sample is above about 1.5.

9. The method of any one of claims 2 to 8, wherein the subject is a subject diagnosed with a scoliosis.

10. The method of claim 9, wherein the scoliosis is adolescent idiopathic scoliosis (AIS).

1 1. The method of any one of claims 3 to 10, which is in vitro.

12. The method of any one of claims 1 to 11 , wherein said cell sample comprises osteoblasts, myoblasts and/or peripheral blood mononuclear cells (PBMC).

13. The method of claim 12, wherein said cell sample comprises PBMCs.

14. The method of claim 13, wherein said PBMCs comprise lymphocytes.

15. The method of any one of claims 1 to 14, wherein the detecting or determining the serine phosphorylation of Gia1 and/or Gia3 protein(s) in the cell sample comprises isolating Gia1 and/or Gia3 protein(s) from the cell sample and contacting the isolated Gia1 and/or Gia3 protein(s) with an anti-phosphoserine antibody.

16. A method of increasing GiPCR signaling in cells of a subject having or at risk for developing scoliosis, said method comprising administering to the subject an effective amount of:

(i) an inhibitor of PKA;

(ii) an inhibitor of (a) PKC; (b) CaMK1 or 4; (c) CK; or (d) any combination of at least two of (a) to (c), if the subject's cells have elevated levels of serine phosphorylated Gail , Gai2 and Gai3 proteins as compared to levels corresponding to those of a control;

(iii) an inhibitor of CaMK2, if the subject's cells have levels of serine phosphorylated Gai3 protein that are not elevated as compared to levels corresponding to those of a control; or

(iv) an inhibitor of CK, if the subject's cells have levels of serine phosphorylated Gail protein that are not elevated as compared to levels corresponding to those of a control,

whereby the GiPCR signaling is increased in the subject's cells.

17. The method of claim 16, wherein the inhibitor of PKA is an inhibitor of ΡΚΑ-γ2.

18. The method of claim 16, wherein the inhibitor of PKA is H89.

19. The method of claim 16, wherein the inhibitor of PKC is an inhibitor of PKC-η or PKC-ε.

20. The method of claim 16, wherein the inhibitor of PKC is G06983.

21. The method of claim 16, wherein the inhibitor of CaMK1 is CaMk15.

22. The method of claim 16, wherein the inhibitor of CaMK1 or CaMK4 is STO609.

23. The method of claim 16, wherein the inhibitor of CK is an inhibitor of CK2.

24. The method of claim 16, wherein the inhibitor of CK is D4476.

25. The method of claim 16, wherein the inhibitor of CaMK2 is STO609 or KN93.

26. The method of any one of claims 16 to 25, wherein the subject in need thereof is a subject diagnosed with a scoliosis.

27. The method of any one of claims 16 to 25, wherein the subject in need thereof is likely to develop a scoliosis.

28. The method of claim 26 or 27, wherein the scoliosis is adolescent idiopathic scoliosis (AIS).

29. The method of any one of claims 16 to 28, which is in vitro.

30. Use of an inhibitor as defined in any one of claims 16 to 25, for increasing GiPCR signaling, or in the preparation of a medicament for increasing GiPCR signaling, in cells of a subject having or at risk for developing scoliosis.

31. The use of claim 30, wherein the subject in need thereof is a subject diagnosed with a scoliosis.

32. The use of claim 30, wherein the subject in need thereof is likely to develop a scoliosis.

33. The use of claim 31 or 32, wherein the scoliosis is adolescent idiopathic scoliosis (AIS).

34. A kit for stratifying a subject having or at risk for developing adolescent idiopathic scoliosis (AIS), said kit comprising:

(a) a ligand for detecting the level of serine-phosphorylated Gia1 protein in a cell sample from the subject;

(b) a ligand for detecting the level of serine-phosphorylated Gia3 protein in a cell sample from the subject; (c) ligands for detecting responses to Gia and Gsa proteins stimulation in the cell sample; or

(d) any combination of (a) to (c).

35. The kit of claim 34, further comprising a ligand for detecting the level of serine-phosphorylated Gia2 protein.

36. A kit for predicting the risk for developing a severe scoliosis in a subject having or at risk for developing scoliosis, said kit comprising:

(a) a ligand for detecting the level of serine-phosphorylated Gia3 protein in a cell sample from the subject;

(b) ligands for detecting responses to Gia and Gsa proteins stimulation in a cell sample from the subject; or

(c) a combination of (a) and (b).

37. A kit for increasing GiPCR signaling in cells of a subject in need thereof, said kit comprising:

(a) an inhibitor of PKA;

(b) an inhibitor of PKC;

(c) an inhibitor of CaMK1 or 4;

(d) an inhibitor of CK ;

(e) an inhibitor of CaMK2; or

(f) any combination of at least two of (a) to (e).

38. The kit of claim 37, wherein the inhibitor of PKA is an inhibitor of ΡΚΑ-γ2. 39 The kit of claim 37, wherein the inhibitor of PKA is H89.

40. The kit of any one of claims 37 to 39, wherein the inhibitor of PKC is an inhibitor of PKC-η or PKC-ε.

41. The kit of any one of claims 37 to 39, wherein the inhibitor of PKC is G06983.

42. The kit of any one of claims 37 to 39, wherein the inhibitor of CaMK1 is CaMkl δ.

43. The kit of any one of claims 37 to 39, wherein the inhibitor of CaMK1 or CaMK4 is STO609.

44. The kit of any one of claims 37 to 43, wherein the inhibitor of CK is an inhibitor of CK2.

45. The kit of any one of claims 37 to 43, wherein the inhibitor of CK is D4476.

46. The kit of any one of claims 37 to 45, wherein the inhibitor of CaMK2 is STO609 or KN93.

47. A method of selecting an agent as a potential candidate for the treatment or prevention of scoliosis, said method comprising contacting a candidate agent with a cell expressing: (a) PKA; (b) PKC; (c) CaMK1 ; (d) CaMK4; (e) CK; or (f) CaMK2; and selecting said candidate agent when the expression or activity of any one of (a) to (f) is decreased.

48. The method of claim 47, wherein PKA is ΡΚΑ-γ2.

49. The method of claim 47, wherein PKC is PKC-η or PKC-ε.

50. The method of claim 47, wherein CaMK1 is CaMK15.

51. The method of claim 47, wherein the CK is a CK2.

Description:
Gi PROTEIN PHOSPHORYLATION AS MARKER FOR SCOLIOSIS AND SCOLIOSIS PROGRESSION, METHODS OF INCREASING GiPCR SIGNALING IN SCOLIOTIC SUBJECTS

CROSS REFERENCE TO RELATED APPLICATIONS

[0001] This application is a PCT application Serial No PCT/CA2014/* filed on June 16, 2014 and published in English under PCT Article 21 (2), which itself claims benefit of U.S. provisional application Serial No. 61/835,839, filed on June 17, 2013. All documents above are incorporated herein in their entirety by reference.

FIELD OF THE INVENTION

[0002] The present invention relates to markers of scoliosis and scoliosis progression. More particularly, it relates to Gi protein phosphorylation as marker for scoliosis and scoliosis progression, methods of increasing GiPCR signaling in scoliotic subjects and uses thereof to stratify scoliotic patients and predict the risk of developing scoliosis and methods of increasing GiPCR signaling in scoliotic subjects.

REFERENCE TO SEQUENCE LISTING

[0003] Pursuant to 37 C.F.R. 1.821 (c), a sequence listing is submitted herewith as an ASCII compliant text file named 14033_122_ST25.txt, that was created on June 16, 2014 and having a size of 57 kilobytes. The content of the aforementioned file is hereby incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

[0004] Idiopathic Scoliosis is a spine deformity of unknown cause generally defined as a lateral curvature greater than 10 degrees accompanied by a vertebral rotation Adolescent Idiopathic Scoliosis (AIS) is one of the most frequent childhood deformities worldwide, characterized by a 3D spinal deformity with unknown cause, and represents both an immediate medical challenge and a chronic condition affecting individuals throughout their lives. It is the most common orthopedic condition requiring surgery in adolescents and affects 4% of this population. This condition is most commonly diagnosed between the ages of 9 to 13 years 2A4 . The diagnosis is primarily of exclusion and is made only after ruling out other causes of spinal deformity such as vertebral malformation, neuromuscular or syndromic disorders. Traditionally, the trunkal asymmetry is revealed by Adams forward bending test and measured with scoliometer during physical examination 5 . The diagnosis can then be confirmed by radiographic observation of the curve and the angle measurement using the Cobb method 6 .

[0005] Once diagnosed, the primary concern for physicians in managing scoliotic children is whether the curve will progress. Indeed, the curve progression is often unpredictable and is more frequently observed among girls than in boys 7 . If untreated, the curve can progress dramatically, creating significant physical deformity and even cardiopulmonary problems. These manifestations become life threatening when the curve exceeds 70 degrees 8 < 9 . The current treatment options to prevent or stop curve progression include bracing and surgery. In general, bracing is recommended for curves between 25 and 40 degrees, while surgery is reserved for curves greater than 45 degrees or curves that are unresponsive to bracing. Today in the United States there are approximately one million children between ages 10 and 16 with some degree of IS. Approximately 10% of children diagnosed with idiopathic scoliosis have curve progression requiring corrective surgery 10 . About 29,000 scoliosis surgeries are done every year in North America, resulting in significant psychological and physical morbidity. (Goldberg MS, Mayo NE, Poitras B et al. The Ste-Justine Adolescent Idiopathic Scoliosis Cohort Study. Part I: Description of the study. Spine 1994;19:1551 -61 ; Poitras B, Mayo NE, Goldberg MS et al. The Ste-Justine Adolescent Idiopathic Scoliosis Cohort Study. Part IV: Surgical correction and back pain. Spine 1994;19:1582-8).

[0006] Currently, there is no proven method or test available to identify subjects at risk of developing IS to predict which affected individuals require treatment to prevent or stop progression of the disease so that appropriate treatment can be early provided and prevent surgical complications and cardiac and/or respiratory problems. (Weinstein SL, Dolan LA, Cheng JC et al. Adolescent idiopathic scoliosis. Lancet 2008;371 :1527-37).

[0007] Therefore, the application of current treatments, such as bracing or surgical correction, is delayed until a significant deformity is detected or until a significant progression is clearly demonstrated, resulting in a delayed, less than optimal treatment and often important psychological sequels (Society SR. Morbidity & Mortality Committee annual Report 1997).

[0008] Currently, in order to detect the deformity, diagnosed children are subjected to multiple radiographs over several years, usually until they reach skeletal maturity. It is estimated that the typical patients with scoliosis will have approximately 22 radiological examinations over a 3-year period 11 . There are potential risks in multiple radiographic examinations. For this reason also, alternative approaches that could allow performing the prognosis of idiopathic scoliosis are strongly desirable.

[0009] The major limitation in developing prognostic tests that could facilitate treatment choices for patients is the heterogeneous nature of AIS. At the clinical level, the heterogeneity of AIS is clearly illustrated by the variability of curve patterns, localisations and curve magnitude even in families with multiple affected members.

[0010] In absence of reliable AIS phenotypes, there is a need to understand better the molecular changes associated with disease onset and spinal deformity progression. Molecular definition of disease is rapidly replacing traditional pathology-based disease descriptions in part because of its utility in identifying the optimal treatment regimen for patients.

[0011] To this effect, the existence of a differential melatonin signaling dysfunction was reported among AIS patients leading to their stratification into three functional groups or biological endophenotypes (Moreau et al., 2004); (Azeddine et al., 2007); (Letellier et al., 2008) and WO2003/073102 to Moreau. More particularly, AIS patients were stratified into three functional groups (FG1 , FG2 and FG3) representing distinct biological endophenotypes. With this approach, the scoliotic patients and children more at risk of developing scoliosis are less responsive to Gi protein stimulation when compared with healthy control subjects, and the classification is based on the percentage of degree of reduction relative to control group. The classification ranges were fixed between 10 and 40% for FG3, 40 and 60% for FG2 and 60 and 90% for FG1.

[0012] More recently, using the cellular dielectric spectrometry (CDS) technique, which is a label-free method for the functional evaluation of G proteins and endogenous receptors coupled to those proteins (Verdonk et al., 2006), it was found that the cellular response following melatonin receptor stimulation by melatonin was mainly Gi-dependent in normal osteoblasts and was reduced to different extents in osteoblasts derived from AIS patients (Akoume et al., 2010). Approximately 33% of asymptomatic children diagnosed with a defective Gi protein function have developed scoliosis many years later (Akoume et al., 2010).

[0013] Early detection/prognosis of scoliosis is not only critical to successful and less invasive clinical outcomes but broadens the range of treatment options for clinicians. Indeed, improving patients' stratification and disease staging represent key steps to select AIS patients for minimally invasive surgeries before their spinal deformity is too advanced.

[0014] The present description refers to a number of documents, the content of which is herein incorporated by reference in their entirety.

SUMMARY OF THE INVENTION

[0015] The present invention provides the clinical evidence that a differential disruption of Gi alpha subunits occurs in AIS and demonstrate that such impairment is caused by a serine phosphorylation of distinct Gi isoforms leading to the classification of AIS patients into three biological endophenotypes representing inheritable traits. Heritability was clearly demonstrated with the detection of the same endophenotype in all family members affected by scoliosis. Evaluation of the clinical outcomes of AIS patients according to their biological endophenotypes reveals in two distinct cohorts (Canadians and Italians) that AIS patients classified in FG2 endophenotype are more susceptible to developing severe scoliosis, while those in FG1 endophenotype present a much lower risk of disease progression.

[0016] In mechanistic in vitro studies, it was further observed that hypofunctionality of Gi proteins occurring in AIS led to (a) a systemic and generalized signaling defect perturbing all Gi-coupled receptors differentially in different cell types, (b) an enhancement of Gs-coupled receptor signaling while Gq-coupled receptor signal transduction was not compromised, and (c) pharmacological inhibition of selected kinases rescued or improved Gi-signaling impairment at the cellular level and such response varied in function of each biological endophenotype. The signaling defect is due to selective phosphorylation of Gi alpha subunit isoforms in each group involving distinct kinases, namely: FG3 has a Gia1 without phosphorylated serines and serine- phosphorylated Gia2 and Gia3; FG2 has a Gia3 without phosphorylated serines and serine-phosphorylated Gia1 and Gia2; and FG1 has serine-phosphorylated Gia1 , Gia2 and Gia3.

[0017] These findings provide the evidence that a differential disruption of Gi-signaling underscores AIS pathogenesis and represents a rational basis for the development of innovative prognostic tools and pharmacological therapies.

[0018] More specifically, in accordance with the present invention, there is provided a method of stratifying a subject having adolescent idiopathic scoliosis (AIS) comprising: (i) providing a cell sample isolated from the subject; and (ii) (a) determining the serine phosphorylation of Gia1 in the cell sample; (b) determining the serine phosphorylation of Gia3 in the cell sample; (c) determining the difference (Δ) between responses to Gia and Gsa protein stimulation in the cell sample; or (d) any combination of (a) to (c);whereby the results of the detecting step enables the stratification of the subject having AIS as belonging to an AIS subclass. [0019] In accordance with another aspect of the present invention, there is provided a method for predicting the risk for developing a severe scoliosis in a subject comprising: (i) providing a cell sample isolated from the subject; (ii) (a) determining the serine phosphorylation of Gia3 protein in the cell sample; (b) determining the difference (Δ) between responses to Gia and Gsa protein stimulation in the cell sample; and/or (c) determining the GiPCR response to an agonist in the cell sample, wherein (a) an absence of serine phosphorylation in Gia3 protein; (b) a determination that the Gia/Gsa ratio is between about 0.5 and 1.5; and/or (c) a GiPCR response in the cell sample lower than that in a control sample by about 40 to 60%, is indicative that the subject is at risk for developing a severe scoliosis.

[0020] In a specific embodiment, the subject is a subject diagnosed with a scoliosis.

[0021] In a specific embodiment, the subject is likely to develop a scoliosis. In another specific embodiment, the scoliosis is adolescent idiopathic scoliosis. In another specific embodiment, method of is in vitro. In another specific embodiment, said cell sample comprises osteoblasts, myoblasts and/or peripheral blood mononuclear cells (PBMC). In another specific embodiment, said cell sample comprises PBMCs. In another specific embodiment, said cell comprises lymphocytes.

[0022] In accordance with another aspect of the present invention, there is provided a method of increasing GiPCR signaling in cells of a subject in need thereof (e.g., diagnosed with a scoliosis or a likely to develop scoliosis) comprising administering to the subject an effective amount of: (i) an inhibitor of PKA; or (ii) if the subject's cells have serine phosphorylated Gail , Gai2 and Gai3 proteins, an inhibitor of (a) PKC; (b) CaMK1 or 4; (c) CK ; or (d) any combination of at least two of (a) to (c); (iii) if the subjects cells have an absence of serine phosphorylation on Gai3, an inhibitor of CaMK2; or (iv)if the subjects cells have an absence of serine phosphorylation on Gail , an inhibitor of CK, whereby the GiPCR signaling is increased in the subject's cells.

[0023] In accordance with another aspect of the present invention, there is provided a use of (i) an inhibitor of PKA; or (ii) if the subject's cells have serine phosphorylated Gail , Gai2 and Gai3 proteins, an inhibitor of (a) PKC; (b) CaMK1 or 4; (c) CK ; or (d) any combination of at least two of (a) to (c); (iii) if the subjects cells have an absence of serine phosphorylation on Gai3, an inhibitor of CaMK2; or (iv) if the subjects cells have an absence of serine phosphorylation on Gail , an inhibitor of CK, for increasing GiPCR signaling in cells of a subject in need thereof (e.g., diagnosed with a scoliosis or a likely to develop scoliosis) or for manufacturing a medicament for increasing GiPCR signaling in cells of a subject in need thereof (e.g., diagnosed with a scoliosis or a likely to develop scoliosis).

[0024] In accordance with another aspect of the present invention, there is provided a composition for use in increasing GiPCR signaling in cells of a subject in need thereof (e.g., diagnosed with a scoliosis or a likely to develop scoliosis) comprising: (i) an inhibitor of PKA; or (ii) if the subject's cells have serine phosphorylated Gail , Gai2 and Gai3 proteins, an inhibitor of (a) PKC; (b) CaMK1 or 4; (c) CK ; or (d) any combination of at least two of (a) to (c); (iii) if the subjects cells have an absence of serine phosphorylation on Gai3, an inhibitor of CaMK2; or (iv) if the subjects cells have an absence of serine phosphorylation on Gail , an inhibitor of CK.

[0025] In accordance with another aspect of the present invention, there is provided a composition comprising: (i) an inhibitor of PKA; or (ii) if the subject's cells have serine phosphorylated Gail , Gai2 and Gai3 proteins, an inhibitor of (a) PKC; (b) CaMK1 or 4; (c) CK ; or (d) any combination of at least two of (a) to (c); (iii) if the subjects cells have an absence of serine phosphorylation on Gai3, an inhibitor of CaMK2; or (iv) if the subjects cells have an absence of serine phosphorylation on Gail , an inhibitor of CK. In specific embodiments of the present invention, the compositions further comprise a pharmaceutically acceptable carrier.

[0026] In accordance with another aspect of the present invention, there is provided a kit for stratifying a subject having adolescent idiopathic scoliosis (AIS) comprising: (a) a ligand for detecting an absence of serine phosphorylation on Gia1 in the cell sample; (b) a ligand for detecting an absence of serine phosphorylation on

Gia3 in the cell sample; (c) ligands for detecting Gia and Gsa; or (d) any combination of (a) to (c).

[0027] In accordance with another aspect of the present invention, there is provided a kit for predicting the risk for developing a severe scoliosis in a subject comprising: (a) a ligand for detecting an absence of serine phosphorylation on Gia3; (b) ligands for detecting Gia and Gsa; or (c) a combination of (a) and (b).

[0028] In accordance with another aspect of the present invention, there is provided a kit for increasing GiPCR signaling in cells of a subject in need thereof comprising: (a) an inhibitor of PKA; (b) an inhibitor of PKC; (c) an inhibitor of CaMK1 or 4; (d) an inhibitor of CK ; (e) an inhibitor of CaMK2; or (f) any combination of at least two of

(a) and (e).

[0029] In specific embodiments of the invention, the inhibitor of PKA is an inhibitor of ΡΚΑ-γ2. In another specific embodiment, the inhibitor of PKA is H89. In another specific embodiment, the inhibitor of PKC is an inhibitor of PKC-η or PKC-ε. In a specific embodiment, the inhibitor of PKC is G06983. In a specific embodiment, the inhibitor of CaMK1 is CaMk15. In a specific embodiment, the inhibitor of CaMK1 or CaMK4 is STO609. In a specific embodiment, the inhibitor of CK is an inhibitor of CK2. In a specific embodiment, the inhibitor of CK is D4476. In a specific embodiment, the inhibitor of CaMK2 is STO609 or KN93. In a specific embodiment, the subject in need thereof is a subject diagnosed with a scoliosis. In a specific embodiment, the subject in need thereof is likely to develop a scoliosis. In a specific embodiment, the scoliosis is adolescent idiopathic scoliosis. In a specific embodiment, the method is in vitro.

[0030] In accordance with another aspect of the present invention, there is provided a method of selecting an agent as a potential candidate for the reduction or prevention of scoliosis comprising contacting a candidate agent with a cell expressing (a) PKA; (b) PKC, (c) CaMK1 , (d) CaMK4; (e) CK; (f) CaMK2; wherein when the expression or activity of any one of (a) to (f) is decreased, the candidate agent is selected.

[0031] In specific embodiments of the invention, PKA is ΡΚΑ-γ2. In other specific embodiments of the invention PKC is PKC-η or PKC-ε. In other specific embodiments of the invention, CaMK1 is CaMK15. In other specific embodiments of the invention CK is a CK2.

[0032] In some aspects, the present invention relates to a method of stratifying a subject having or at risk for developing adolescent idiopathic scoliosis (AIS), the method comprising: (i) providing a cell sample isolated from the subject; (ii) detecting or determining from the cell sample the subject's Gia protein serine phosphorylation profile and/or the degree of imbalance in response to Gia and Gsa protein stimulation; and (iii) stratifying the subject into a clinically useful AIS subclass based on the subject's Gia protein serine phosphorylation profile and/or the degree of imbalance in response to Gia and Gsa protein stimulation.

[0033] In some embodiments, the present above mentioned method comprises: (a) detecting or determining the serine phosphorylation of Gia1 in the cell sample; (b) detecting or determining the serine phosphorylation of Gia3 in the cell sample; (c) detecting or determining a ratio (Gia/Gsa response ratio) or difference (Δ) between the response to Gia protein stimulation and the response to Gsa protein stimulation in the cell sample; or (d) any combination of (a) to (c).

[0034] In some embodiments, the above mentioned method further comprises stratifying the subject as belonging to: (1 ) a first AIS subclass characterized by: (a) elevated levels of serine-phosphorylated Gia1 and Gia3 proteins as compared to levels corresponding to those of a control; and/or (b) a Gia/Gsa response ratio below about 0.5; (2) a second AIS subclass characterized by: (a) elevated levels of serine-phosphorylated Gia1 but not of serine-phosphorylated Gia3 protein, as compared to levels corresponding to that of a control; and/or (b) a Gia/Gsa response ratio between about 0.5 and 1.5; or (3) a third AIS subclass characterized by: (a) elevated levels of serine-phosphorylated Gia3 protein but not of serine-phosphorylated Gia1 protein as compared to levels corresponding to those of a control; and/or (b) a Gia/Gsa response ratio above about 1.5.

[0035] In some embodiments, the above mentioned method further comprises detecting or determining the serine phosphorylation of Gia2 protein in the cell sample, wherein elevated levels of serine-phosphorylated Gia2 protein are detected, as compared to levels corresponding to that of a control.

[0036] In some embodiments of the above mentioned methods, (1 ) subjects belonging to the first AIS subclass have a low risk of severe AIS progression; (2) subjects belonging to the second AIS subclass have a high risk for severe AIS progression; and (3) subjects belonging to the third AIS subclass have a moderate risk for severe AIS progression.

[0037] In some aspects, the present invention relates to a method for predicting the risk for developing a severe scoliosis in a subject having or at risk for developing scoliosis, the method comprising: (i) providing a cell sample isolated from the subject; (ii) detecting or determining: (a) the serine phosphorylation of Gia3 protein in the cell sample; (b) responses to Gia and Gsa proteins stimulation in the cell sample; and/or (c) the GiPCR response to an agonist in the cell sample; (iii) determining that the subject is at risk for developing a severe scoliosis when: (a) serine-phosphorylated Gia3 protein in the cell sample is not detected, or is not elevated as compared to levels corresponding to those of a control; (b) a ratio of the response to Gia protein stimulation to the response to Gsa protein stimulation (Gia/Gsa response ratio) in the cell sample is between about 0.5 and 1.5; and/or (c) a GiPCR response in the cell sample lower than that in a control sample by about 40 to 60% is detected.

[0038] In some embodiments of the above mentioned methods, step (ii) further comprises detecting or determining the serine phosphorylation of Gia1 and/or Gia2 protein in the cell sample, wherein the subject is at risk for developing a severe scoliosis when the level of the subject's serine-phosphorylated Gia1 or Gia2 protein is elevated as compared to levels corresponding to those of a control.

[0039] In some aspects, the present invention relates to a method for predicting the responsiveness of a subject having scoliosis to bracing treatment, the method comprising: (i) providing a cell sample isolated from the subject; and (ii) detecting or determining: (a) the serine phosphorylation of Gia1 in the cell sample; (b) the serine phosphorylation of Gia3 in the cell sample; (c) responses to Gia and Gsa proteins stimulation in the cell sample; or (d) any combination of (a) to (c); (iii) determining that the subject is likely to be responsive to bracing treatment when: (a) elevated levels of serine-phosphorylated Gia3 protein but not of serine-phosphorylated Gia1 protein is detected, as compared to levels corresponding to those of a control; and/or (b) a ratio of the response to Gia protein stimulation to the response to Gsa protein stimulation (Gia/Gsa response ratio) in the cell sample is above about 1.5.

[0040] In some embodiments, the above mentioned subject is a subject diagnosed with a scoliosis. In some embodiments, the scoliosis is adolescent idiopathic scoliosis (AIS).

[0041] In some embodiments, the above mentioned method is in vitro.

[0042] In some embodiments, the above mentioned cell sample comprises osteoblasts, myoblasts and/or peripheral blood mononuclear cells (PBMC). In some embodiments, the above mentioned cell sample comprises PBMCs. In some embodiments, the above mentioned PBMCs comprise lymphocytes.

[0043] In some embodiments, the above mentioned the detecting or determining the serine phosphorylation of Gia1 and/or Gia3 protein(s) in the cell sample comprises isolating Gia1 and/or Gia3 protein(s) from the cell sample and contacting the isolated Gia1 and/or Gia3 protein(s) with an anti-phosphoserine antibody.

[0044] In some aspects, the present invention relates to a method of increasing GiPCR signaling in cells of a subject having or at risk for developing scoliosis, the method comprising administering to the subject an effective amount of: (i) an inhibitor of PKA; (ii) an inhibitor of (a) PKC; (b) CaMK1 or 4; (c) CK; or (d) any combination of at least two of (a) to (c), if the subject's cells have elevated levels of serine phosphorylated Gail , Gai2 and Gai3 proteins as compared to levels corresponding to those of a control; (iii) an inhibitor of CaMK2, if the subject's cells have levels of serine phosphorylated Gai3 protein that are not elevated as compared to levels corresponding to those of a control; or (iv) an inhibitor of CK, if the subject's cells have levels of serine phosphorylated Gail protein that are not elevated as compared to levels corresponding to those of a control, whereby the GiPCR signaling is increased in the subject's cells.

[0045] In some embodiments, the above mentioned inhibitor of PKA is an inhibitor of ΡΚΑ-γ2. In some embodiments, the above mentioned inhibitor of PKA is H89. In some embodiments, the above mentioned inhibitor of PKC is an inhibitor of PKC-η or PKC-ε. In some embodiments, the above mentioned inhibitor of PKC is G06983. In some embodiments, the above mentioned inhibitor of CaMK1 is CaMk15. In some embodiments, the above mentioned inhibitor of CaMK1 or CaMK4 is STO609. In some embodiments, the above mentioned inhibitor of CK is an inhibitor of CK2. In some embodiments, the above mentioned inhibitor of CK is D4476. In some embodiments, the above mentioned inhibitor of CaMK2 is STO609 or KN93.

[0046] In some embodiments, the above mentioned subject in need thereof is a subject diagnosed with a scoliosis. In some embodiments, the above mentioned subject in need thereof is likely to develop a scoliosis. In some embodiments, the above mentioned scoliosis is adolescent idiopathic scoliosis (AIS).

[0047] In some embodiments, the above mentioned method is in vitro.

[0048] In some aspects, the present invention relates to the use of an inhibitor as defined above for increasing GiPCR signaling, or in the preparation of a medicament for increasing GiPCR signaling, in cells of a subject having or at risk for developing scoliosis.

[0049] In some embodiments, the above mentioned subject in need thereof is a subject diagnosed with a scoliosis. In some embodiments, the above mentioned the subject in need thereof is likely to develop a scoliosis. In some embodiments, the above mentioned the scoliosis is adolescent idiopathic scoliosis (AIS).

[0050] In some aspects, the present invention relates to a kit for stratifying a subject having or at risk for developing adolescent idiopathic scoliosis (AIS), the kit comprising: (a) a ligand for detecting the level of serine- phosphorylated Gia1 protein in a cell sample from the subject; (b) a ligand for detecting the level of serine- phosphorylated Gia3 protein in a cell sample from the subject; (c) ligands for detecting responses to Gia and Gsa proteins stimulation in the cell sample; or (d) any combination of (a) to (c).

[0051] In some embodiments, the above mentioned kit further comprises a ligand for detecting the level of serine-phosphorylated Gia2 protein.

[0052] In some aspects, the present invention relates to a kit for predicting the risk for developing a severe scoliosis in a subject having or at risk for developing scoliosis, the kit comprising: (a) a ligand for detecting the level of serine-phosphorylated Gia3 protein in a cell sample from the subject; (b) ligands for detecting responses to Gia and Gsa proteins stimulation in a cell sample from the subject; or (c) a combination of (a) and (b).

[0053] In some aspects, the present invention relates to a kit for increasing GiPCR signaling in cells of a subject in need thereof, the kit comprising: (a) an inhibitor of PKA; (b) an inhibitor of PKC; (c) an inhibitor of CaMK1 or 4; (d) an inhibitor of CK; (e) an inhibitor of CaMK2; or (f) any combination of at least two of (a) to (e).

[0054] In some embodiments, the above mentioned inhibitor of PKA is an inhibitor of ΡΚΑ-γ2. In some embodiments, the above mentioned inhibitor of PKA is H89. In some embodiments, the above mentioned inhibitor of PKC is an inhibitor of PKC-η or PKC-ε. In some embodiments, the above mentioned inhibitor of PKC is G06983. In some embodiments, the above mentioned inhibitor of CaMK1 is CaMk15. In some embodiments, the above mentioned inhibitor of CaMK1 or CaMK4 is STO609. In some embodiments, the above mentioned inhibitor of CK is an inhibitor of CK2. In some embodiments, the above mentioned inhibitor of CK is D4476. In some embodiments, the above mentioned inhibitor of CaMK2 is STO609 or KN93.

[0055] In some aspects, the present invention relates to a method of selecting an agent as a potential candidate for the treatment or prevention of scoliosis, the method comprising contacting a candidate agent with a cell expressing: (a) PKA; (b) PKC; (c) CaMK1 ; (d) CaMK4; (e) CK; or (f) CaMK2; and selecting the candidate agent when the expression or activity of any one of (a) to (f) is decreased. In some embodiments, the above mentioned PKA is ΡΚΑ-γ2. In some embodiments, the above mentioned PKC is PKC-η or PKC-ε. In some embodiments, the above mentioned CaMK1 is CaMK15. In some embodiments, the above mentioned CK is a CK2. [0056] Other objects, advantages and features of the present invention will become more apparent upon reading of the following non-restrictive description of specific embodiments thereof, given by way of example only with reference to the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

[0057] In the appended drawings:

[0058] Figure 1 shows representative pedigrees of families with a positive history of AIS. The circles represent females and the squares represent males. Filled symbols indicate affected individuals and the indicated numbers correspond to the individuals (case numbers) listed in Figure 2.

[0059] Figure 2 presents AIS subjects functional groups and clinical data of affected members from studied families.

[0060] Figure 3 shows the functionality of melatonin receptor is not impaired in AIS. (A) Comparison of concentration-response curves for melatonin between control and AIS functional groups. Data were normalised to maximal response in cells from control subjects. (B) Comparison of response to melatonin and its analogues. Cells were stimulated with the same concentration (1 μΜ) of melatonin, iodomelatonin or phenylmelatonin. The impedance represented in y-axis as dZiec, indicates the resistance (ohms) of the cells toward the electric current applied by the Cellkey™ apparatus and represents the integrated cellular response. (C, D) Inhibition curves for response to melatonin following a treatment of (C) 4h with G-Protein antagonist peptide (GPAnt-2) and (D) 16 hours with pertussis toxin. (E) EC50 and IC50 values of melatonin and GPAnt-2 in each functional group. Data are expressed as mean (± SE) of n = 12 patients per group. * P < 0.05, **P < 0.01 , ***P < 0.001 , vs control group.

[0061] Figure 4 shows the AIS functional groups are distinguished by the degree of response to various specific agonists of Gi-coupled receptors in osteoblasts. (A, B, C, D, E, and F) Agonists and targeted receptors are indicated in left corner of each panel. Data were normalised to maximal response in cells from control subjects. (G) EC50 values of tested compounds in each functional group. Data are expressed as mean (± SE) of n = 12 patients per group. * P < 0.05, **P < 0.01 , ***P < 0.001 , vs control group.

[0062] Figure 5 shows inhibition curves of GPAnt-2 on response to various selective agonists of Gi- coupled receptors. (A, B, C, D, E, and F) Osteoblasts from control subjects or AIS patients of different groups were pre-incubated with varying concentrations of GPAnt-2 for 4h prior stimulation with 1 μΜ of specific synthetic agonist. The tested agonists and targeted receptors are indicated in left corner of each panel. Data were normalised to maximal response in cells from control subjects. (G) Table of IC50 values GPAnt-2 for each tested compound in each functional group. Data are expressed as mean (± SE) of n = 12 patients per group. * P < 0.05, **P < 0.01 , ***P < 0.001 , vs control group.

[0063] Figure 6 shows inhibition curves of PTX on response to various selective agonists of Gi-coupled receptors. (A, B, C, D, E, and F) Osteoblasts from control subjects or AIS patients of different groups were pre- incubated with varying concentrations of PTX for 16h prior to stimulation with 1 μΜ of specific synthetic agonist. The tested agonists and targeted receptors are indicated in left corner of each panel. Data were normalised to maximal response in cells from control subjects. Data are expressed as mean ± SE of n = 12 patients per group. * P < 0.05, **P < 0.01 , ***P < 0.001 , vs control group.

[0064] Figure 7 shows the AIS functional groups are distinguished by the degree of response to various specific agonists of Gi-coupled receptors in myoblasts. (A, B, C, D, E, and F) Agonists and targeted receptors are indicated in left corner of each panel. Data were normalised to maximal response in cells from control subjects. (G) EC 5 o values of tested compounds in each functional group. Data are expressed as mean (± SE) of n = 12 patients per group. * P < 0.05, **P < 0.01 , ***P < 0.001 , vs control group.

[0065] Figure 8 shows the AIS functional groups are distinguished by the degree of response to various specific agonists of Gi-coupled receptors in PBMCs. (A, B, C, D, E, and F) Agonists and targeted receptors are indicated in left corner of each panel. Data were normalised to maximal response in cells from control subjects. (G) EC50 values of tested compounds in each functional group. Data are expressed as mean (± SE) of n = 12 patients per group. * P < 0.05, **P < 0.01 , ***P < 0.001 , vs. control group.

[0066] Figure 9 shows the functional status of Gs and Gq proteins in osteoblasts from control and AIS functional groups. The functionality of Gs protein was evaluated by challenging cells with (A) Isoproterenol; or (B) Desmopressin. (C) The difference between response to Gi and Gs stimulation was calculated at various concentrations, and the functionality of Gq was assessed by challenging cells with Bradykinin (D) or Endothelin-1 (E). Receptor subtype targeted by the indicated agonist appears in parentheses. Data were normalised to maximal response in cells from control subjects. (F) EC50 values of tested compounds in each functional group. Data are expressed as mean (± SE) of n = 12 patients per group. * P < 0.05, **P < 0.01 , ***P < 0.001 , vs control group.

[0067] Figure 10 shows that expression of Gi and Gs proteins is similar between AIS functional groups.

(A) Total RNA were extracted from osteoblasts and qPCR was used to compare mRNA expression levels of Gh, G12, G13 and Gs genes in control relative to the AIS functional groups, β-actin was used as internal control. (B) Lysates were obtained from osteoblasts of each functional group. Equal amounts of proteins (40 g) of each lysate were resolved by 10% SDS-PAGE and immunoblotted for Gi1 , Gi2, Gi3 or Gs proteins, β-actin was used as internal control.

[0068] Figure 11 shows the differential phosphorylation patterns of Gi protein isoforms in AIS functional groups. Whole osteoblast cells from control or AIS patients were subjected to immunoprecipitation with antibody recognizing (A) Gh, (B) G12 or (C) G13, and these precipitates were resolved by 10% SDS-PAGE and immunoblotted for phospho-serine/threonine specific antibody. Representative immunoblots from a single experiment are shown in the inserts. The bands were quantified by densitometric scanning. Values are expressed as mean ± SE, of n = 6 patients per group. * P < 0.05, **P < 0.01 , ***P < 0.001 , vs control group. Insert despites a typical immunodetectable phosphorylation profile of corresponding Gi protein isoforms in functional groups.

[0069] Figure 12 shows the differential effects of Gi and Gs siRNA on response to Gi stimulation in AIS functional groups. Osteoblasts from (A) control subjects, (B) FG3, (C) FG2; and (D) FG1 were transfected with Gh, G12, G13 or Gs siRNA alone or in combination, or with scrambled siRNA, as indicated in Example 1 - Materials and Methods. Efficiency of siRNA was verified with qPCR in each functional group (E to H) 48 hours after transfection, and response to Gi stimulation was evaluated by challenging cells with Apelin-17, LPA or Somatostatin. Results from a single representative subject for each group are presented. Data were normalised to response in cells transfected with scrambled siRNA, and are expressed as mean ± SE, of n = 6 patients in each functional group. * P < 0.05, **P < 0.01 , ***P < 0.001 , vs. control group.

[0070] Figure 13 shows the effect of various serine/threonine kinase inhibitors on response to Gi stimulation in osteoblasts from control and AIS functional groups. Cells were treated with Protein kinase A (PKA) inhibitor H89 (5 μΜ), Protein kinase C (PKC) inhibitor G06983 (5 μΜ), Ca 2+ /calmodulin-dependent protein kinase (CaMK) (1 ,2,4) inhibitor STO-609 acetate (5 μΜ), Ca 2+ /calmodulin-dependent protein kinase II (CaMK-2) inhibitor KN93 (5 μΜ), Casein kinase 1 (CK1 ) inhibitor D4476 (5 μΜ) or vehicle for 1 hour prior to the stimulation with (A) LPA (10 6 M) or (B) Somatostatin (10 6 M). Data were normalised to response in osteoblasts treated with vehicle, and are expressed as mean ± SE, of n = 12 patients in each functional group. * P < 0.05, **P < 0.01 , ***P < 0.001 , vs control group.

[0071] Figure 14 shows expression of various serine/threonine kinases in AIS. (A) Total RNA were extracted from osteoblasts and qPCR was used to compare mRNA expression levels of PKC, PKA, CaMK and CK isoforms in control relative to the AIS functional groups, β-actin was used as internal control. (B) Lysates were obtained from osteoblasts of each functional group. Equal amounts of proteins (40 μg) of each lysate were resolved by 10% SDS-PAGE and immunoblotted for proteins of indicated kinase isoforms.

[0072] Figure 15 shows expression of various serine/threonine kinases in AIS. Total RNA were extracted from osteoblasts and qPCR was used to compare mRNA expression levels of (A) various PKC isoforms (i.e., PKC-a, PKC-β, PKC-δ, PKC-I, PKC-γ, PKC-Θ and PKC-ζ) and (B) various isoforms of CaMK (i.e., CaMK1 , CaMKIy, CaMK2a, CaMK2 , CaMK25, CaMK2Y, CaMK2N1 , CaMK2N2 and CaMK4) in control relative to the AIS functional groups, β-actin was used as internal control.

[0073] Figure 16 shows expression of various serine/threonine kinases in AIS. Total RNA were extracted from osteoblasts and qPCR was used to compare mRNA expression levels of various isoforms of PKA and CK (i.e., (A) PKA-a1 , PKA-a2, ΡΚΑ-β1 , ΡΚΑβ2, ΡΚΑ-οβ, PKA-cy, ΡΚΑ-γ1 and ΡΚΑ-γ3; and (B) CK1 a, ΟΚ1 β, CK15, CK1 e, CK1y1 , CK1Y2, CK1Y3, CK2a1 , CK2a2, ΰΚ2β) in control relative to the AIS functional groups, β-actin was used as internal control.

[0074] Figure 17 shows a multiple sequence alignment between the amino acid sequences of Gia1 isoforms 1 and 2.

[0075] Figure 18 shows a multiple sequence alignment between the amino acid sequences of Gia2 isoforms 1 - 6.

[0076] Figure 19 shows a multiple sequence alignment between the amino acid sequences of Gia1 isoforms 1 and 2, Gia1 isoforms 1 and 2, and Gia3.

DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

[0077] As used herein the terms "risk of developing scoliosis" refer to a genetic or metabolic predisposition of a subject to develop a scoliosis (i.e., spinal deformity) and/or to develop a more severe scoliosis at a future time (i.e., curve progression). For instance, an increase of the Cobb's angle of a subject (e.g., from 40° to 50°, or from 18° to 25°) is a "development" of scoliosis.

[0078] As used herein, the term "severe progression" is an increase of a subject's Cobb's angle to 45° or more, potentially at a younger age.

[0079] In accordance with the present invention, subjects having AIS can be stratified into at least three distinct AIS subclasses (FG1 , FG2, or FG3) based on their Gia protein phosphorylation profiles and/or the degree of imbalance in the responses to Gia and Gsa protein stimulation. Subjects belonging to a first AIS subclass (FG1) generally have a relatively "low risk" of severe progression -- i.e., their risk of developing severe scoliosis is lower than that of subjects belonging to the second (FG2) and third AIS subclasses (FG3). Subjects belonging to a second AIS subclass (FG2) generally have a relatively "high risk" of severe progression -- i.e., their risk of developing severe scoliosis is higher than that of subjects belonging to the first (FG1) and third AIS subclasses (FG3). Subjects belonging to a third AIS subclass (FG3) generally have a "moderate risk" of severe progression -- i.e., their risk of developing severe scoliosis is higher than that of subjects belonging to the first (FG1) AIS subclass, but less than that of subjects belonging to the second AIS subclass (FG2). It has also been found that subjects belonging to this third AIS subclass (FG3) are more likely to respond to bracing treatment (US provisional application No. 61/879,314).

[0080] In an embodiment, the above-mentioned subject is a likely candidate for developing a scoliosis, such as idiopathic scoliosis (e.g., Infantile Idiopathic Scoliosis, Juvenile Idiopathic Scoliosis or Adolescent Idiopathic Scoliosis (AIS)). As used herein, the expressions "likely candidate for developing scoliosis" or "likely to develop scoliosis" include subjects (e.g., children) of which at least one parent has a scoliosis (e.g., adolescent idiopathic scoliosis). Among other factors, age (adolescence), gender and other family antecedents are factors that are known to contribute to the risk of developing a scoliosis and are used to a certain degree to assess the risk of developing a scoliosis. In certain subjects, scoliosis develops rapidly over a short period of time to the point of requiring a corrective surgery (often when the deformity reaches a Cobb's angle≥ 50°). Current courses of action available from the moment a scoliosis such as AIS is diagnosed (when scoliosis is apparent) include observation (when Cobb's angle is around 10-25°), orthopedic devices (when Cobb's angle is around 25-30°), and surgery (over 45°). A more reliable determination of the risk of progression could enable to 1) select an appropriate diet to remove certain food products identified as contributors to scoliosis; 2) select the best therapeutic agent; and/or 3) select the least invasive available treatment such as postural exercises, orthopedic device, or less invasive surgeries or surgeries without fusions (a surgery that does not fuse vertebra and preserves column mobility). The present invention encompasses selecting the most efficient and least invasive known preventive actions or treatments in view of the determined risk of developing scoliosis.

[0081] As used herein the term "subject" is meant to refer to any mammal including human, mouse, rat, dog, chicken, cat, pig, monkey, horse, etc. In a particular embodiment, it refers to a human.

[0082] A "subject in need thereof" or a "patient" in the context of the present invention is intended to include any subject that will benefit or that is likely to benefit from an inhibitor of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-ε, PKC-η), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), and/or CaMK2. In an embodiment, a subject in need thereof is a subject diagnosed with a scoliosis (e.g., AIS). In another embodiment, the subject is likely to develop a scoliosis (e.g., AIS) or is at risk of developing scoliosis".

[0083] As used herein the terminology "biological sample" refers to any solid or liquid sample isolated from a living being. In a particular embodiment, it refers to any solid or liquid sample isolated from a human. Without being so limited, it includes a biopsy material, blood, tears, saliva, maternal milk, synovial fluid, urine, ear fluid, amniotic fluid and cerebrospinal fluid. In a specific embodiment it refers to a blood sample. As used herein, the terminology "blood sample" is meant to refer to blood, plasma or serum.

[0084] As used herein, the expression "cell sample" refers to a biological sample containing GiPCR-expressing cells obtained from a subject (e.g., a subject having, suspected of having, or at risk of developing AIS).

[0085] As used herein the terminology "control sample" is meant to refer to a corresponding sample that does not come from a subject known to have scoliosis or known to be a likely candidate for developing a scoliosis. In methods for determining the risk of developing scoliosis in a subject that is pre-diagnosed with scoliosis, the sample may however also come from the subject under scrutiny at an earlier stage of the disease or disorder.

[0086] As used herein the terminology "control" is meant to encompass "control sample". In certain embodiments, the term "control" also refers to the average or median value obtained following determination of Gia (e.g., 1 , 2 and/or 3) protein phosphorylation (e.g., serine phosphorylation) profiles and/or the degree of imbalance in the responses to Gia and Gsa proteins stimulation in a plurality of samples (e.g., samples obtained from several subjects not known to have scoliosis and not known to be a likely candidate for developing scoliosis).

[0087] As used herein the term "treating" or "treatment" in reference to scoliosis is meant to refer to at least one of a reduction of Cobb's angle in a preexisting spinal deformity, improvement of column mobility, preservation/maintenance of column mobility, improvement of equilibrium and balance in a specific plan; maintenance/preservation of equilibrium and balance in a specific plan; improvement of functionality in a specific plan, preservation/maintenance of functionality in a specific plan, cosmetic improvement, and combinations of any of the above.

[0088] As used herein the term "preventing" or "prevention" in reference to scoliosis is meant to refer to a at least one of a reduction in the progression of a Cobb's angle in a patient having a scoliosis or in an asymptomatic patient, a complete prevention of apparition of a spinal deformity, including changes affecting the rib cage and pelvis in 3D, and a combination of any of the above.

[0089] As used herein, the expression "detecting or determining the serine phosphorylation" of a Gia protein (e.g., Gia1 , Gia2, and/or Gia3) in the cell sample relates to independently assessing the serine phosphorylation status of the Gia1 and/or Gia3 proteins in a cell sample from a subject. In some embodiments, this assessing can include determining the presence or absence of serine-phosphorylated Gia1 , Gia2 and/or Gia3 proteins in the cell sample. In some embodiments, this assessing can include determining the level of expression of serine-phosphorylated Gia1 , Gia2 and/or Gia3 proteins in the sample, or the proportion of total Gia1 and/or Gia3 proteins (e.g., both phosphorylated and unphosphorylated) in the cell sample which are serine- phosphorylated. In some embodiments, this assessing involves detecting each of the serine-phosphorylated Gia proteins independently (e.g., using specific anti-Gial , anti-Gia2, and/or anti-Gia3 antibodies). [0090] Guanine nucleotide binding proteins are heterotrimeric signal-transducing molecules consisting of alpha, beta, and gamma subunits. The alpha subunit binds guanine nucleotide, can hydrolyze GTP, and can interact with other proteins. As used herein, the expression "Gia" or "Gia protein" refers to the alpha subunit of members of the Gi-family of heterotrimeric G proteins. There are several types of Gi alpha subunits, including "Gia1" or "Gia1 protein", "Gia2" or "Gia2 protein", and "Gia3" or "Gia3 protein". As used herein, the expression "Gs" or "Gs protein" refers to the Gs subunit of members of the Gs-family of heterotrimeric G proteins. Examples of Gia and Gs nucleotide and amino acid sequences are shown in the Table below. Unless otherwise indicated, reference to a particular Gia protein (e.g., Gia1 , Gia2, Gia3) includes all expressed isoforms of that particular Gia protein.

[0091] As used herein, the expression "detecting or determining responses to Gia and Gsa protein stimulation in the cell sample" relates to assessing the ability of a subject's Gia and Gsa proteins to mediate signal transduction upon stimulation (e.g., with an appropriate GPCR ligand or agonist), and thus relate to the activity and not to the level of expression of Gia and Gsa proteins. In some embodiments, this can be done using a CellKey™ apparatus, as previously described (Akoume et al., 2010 and WO 2010/040234, 2010 to Moreau et al.).

[0092] The terms "suppressor", "inhibitor" and "antagonist" are well known in the art and are used herein interchangeably. The expression inhibitors of PKA (e.g., ΡΚΑ-γ2), inhibitors of PKC (e.g., PKC-η or PKC- ε), inhibitors of CaMK1 (e.g., CaMK15), inhibitors of CaMK4, inhibitors of CK (e.g., CK2) and inhibitors of CaMK2 include any compound able to negatively affect the activity of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2) and CaMK2, respectively by reducing for example its expression (i.e., at the transcriptional and/or translational level), the level of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2) and CaMK2 mRNA, respectively and/or protein, or an activity associated with PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2) and CaMK2, respectively. It includes intracellular as well as extracellular suppressors. Without being so limited, such suppressors include RNA interference agents (siRNA, shRNA, miRNA), antisense molecules, ribozymes, proteins (e.g., dominant negative, inactive variants), peptides, small molecules, antibodies, antibody fragments, etc. Without being limited, inhibitors of PKA (e.g., ΡΚΑ-γ2) include H89 cGMP dependent kinase inhibitor peptide; KT 5720; PKA inhibitor fragment (6-22) amide; PKI 14-22 amide, myristoylated. Without being limited, inhibitors of PKC (e.g., PKC-ε and PKC-η) include G06983, G06976 ; GF109203X ; Dihydrosyphingosine; CID2858522; Chelerythrine chloride; CGP53353; Calphostin C; C-1 ; and Binsindolylmaleimide II. Without being limited, inhibitors of CaMK1 and CaMK4 (e.g., CaMK15) include STO609; NH 125; ML 9 hydrochloride; autocamtide-2-related inhibitory peptide; and arcyriaflavin A. Without being limited, inhibitors of CaMK2 include KN93, NH 125; ML 9 hydrochloride; autocamtide-2-related inhibitory peptide; and arcyriaflavin A. Without being limited, inhibitors of CK (e.g., CK1 , CK2) include (R)-DRF053 dihydrochloride inhibits CK1 ), Ellagic acid (Selective inhibitor of CK2), LH 846 (Selective casein kinase 1 δ inhibitor), PF 4800567 hydrochloride (Selective casein kinase 1 ε inhibitor), PF 670462 (Potent and selective CK z and CK15 inhibitor), TBB (Selective cell- permeable CK2 inhibitor), TMCB (inhibits CK2) and D4476 (Selective CK1 inhibitor).

[0093] In an embodiment, the PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2) or CaMK2 inhibitor is a neutralizing antibody directed against (or specifically binding to) a human PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2) and CaMK2 polypeptide, respectively. Antibodies are further described below.

[0094] The present invention also relates to methods for the determination of the level of expression (i.e., transcript (RNA) or translation product (protein)) of Gail (having phosphorylated and/or unphosphorylated serine residues), Gai2 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gai3 (e.g., having phosphorylated and/or unphosphorylated serine residues), and Gas. In specific embodiments, it also includes a method that comprises the determination of the level of expression of one or more other scoliosis markers. For example, it may include the determination of the level of expression (i.e., transcript or translation product) of OPN, sCD44, etc. as disclosed in co-pending WO 2008/1 19170 to Moreau. The present invention therefore encompasses any known method for such determination including Elisa (Enzyme Linked Immunosorbent Assay), RIA (Radioimmunoassay), real time PCR and competitive PCR, Northern blots, nuclease protection, plaque hybridization and slot blots.

Antibodies

[0095] As used herein, the terms anti-PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gia1 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gia2 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gia3 (e.g., having phosphorylated and/or unphosphorylated serine residues) or Gsa antibody or "immunologically specific anti-PKA- γ2, PKC-ε, PKC-η, CaMK15, Gia1 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gia2 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gia3 (e.g., having phosphorylated and/or unphosphorylated serine residues), or Gsa antibody, refers to an antibody that specifically binds to (interacts with) a PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gia1 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gia2 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gia3 (e.g., having phosphorylated and/or unphosphorylated serine residues), or Gsa protein, respectively and displays no substantial binding to other naturally occurring proteins other than the ones sharing the same antigenic determinants as the PKA (e.g., PKA- γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gia1 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gia2 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gia3 (e.g., having phosphorylated and/or unphosphorylated serine residues), or Gsa protein. The term "antibody" or "immunoglobulin" is used in the broadest sense, and covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies, and antibody fragments so long as they exhibit the desired biological activity. Antibody fragments comprise a portion of a full length antibody, generally an antigen binding or variable region thereof. Examples of antibody fragments include Fab, Fab', F(ab')2, and Fv fragments, diabodies, linear antibodies, single-chain antibody molecules, single domain antibodies (e.g., from camelids), shark NAR single domain antibodies, and multispecific antibodies formed from antibody fragments. Antibody fragments can also refer to binding moieties comprising CDRs or antigen binding domains including, but not limited to, VH regions (VH, VH-VH), anticalins, PepBodies™, antibody- T-cell epitope fusions (Troybodies) or Peptibodies. Additionally, any secondary antibodies, either monoclonal or polyclonal, directed to the first antibodies would also be included within the scope of this invention. In an embodiment, the antibody is a monoclonal antibody. In another embodiment, the antibody is a humanized or CDR-grafted antibody.

[0096] Antibodies directed to PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gia1 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gia2 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gia3 (e.g., having phosphorylated and/or unphosphorylated serine residues) and Gsa are included within the scope of this invention as they can be produced by well established procedures known to those of skill in the art. Additionally, any secondary antibodies, either monoclonal or polyclonal, directed to the first antibodies would also be included within the scope of this invention.

[0097] In general, techniques for preparing antibodies (including monoclonal antibodies and hybridomas) and for detecting antigens using antibodies are well known in the art (Campbell, 1984, In "Monoclonal Antibody Technology: Laboratory Techniques in Biochemistry and Molecular Biology", Elsevier Science Publisher, Amsterdam, The Netherlands) and in Harlow et al., 1988 (in: Antibody A Laboratory Manual, CSH Laboratories). The term antibody encompasses herein polyclonal, monoclonal antibodies and antibody variants such as single-chain antibodies, humanized antibodies, chimeric antibodies and immunologically active fragments of antibodies (e.g. Fab and Fab' fragments) which inhibit or neutralize their respective interaction domains in Hyphen and/or are specific thereto.

[0098] Polyclonal antibodies are preferably raised in animals by multiple subcutaneous (sc), intravenous (iv) or intraperitoneal (ip) injections of the relevant antigen with or without an adjuvant. It may be useful to conjugate the relevant antigen to a protein that is immunogenic in the species to be immunized, e.g., keyhole limpet hemocyanin, serum albumin, bovine thyroglobulin, or soybean trypsin inhibitor using a bifunctional or derivatizing agent, for example, maleimidobenzoyl sulfosuccinimide ester (conjugation through cysteine residues), N-hydroxysuccinimide (through lysine residues), glutaraldehyde, succinic anhydride, SOC , or R 1 N=C=NR, where R and R 1 are different alkyl groups.

[0099] Animals may be immunized against the antigen, immunogenic conjugates, or derivatives by combining the antigen or conjugate (e.g., 100 μg for rabbits or 5 μg for mice) with 3 volumes of Freund's complete adjuvant and injecting the solution intradermally at multiple sites. One month later the animals are boosted with the antigen or conjugate (e.g., with 1/5 to 1/10 of the original amount used to immunize) in Freund's complete adjuvant by subcutaneous injection at multiple sites. Seven to 14 days later the animals are bled and the serum is assayed for antibody titer. Animals are boosted until the titer plateaus. Preferably, for conjugate immunizations, the animal is boosted with the conjugate of the same antigen, but conjugated to a different protein and/or through a different cross-linking reagent. Conjugates also can be made in recombinant cell culture as protein fusions. Also, aggregating agents such as alum are suitably used to enhance the immune response.

[00100] Monoclonal antibodies may be made using the hybridoma method first described by Kohler et al., Nature, 256: 495 (1975), or may be made by recombinant DNA methods (e.g., U.S. Patent No. 6,204,023). Monoclonal antibodies may also be made using the techniques described in U.S. Patent Nos. 6,025,155 and 6,077,677 as well as U.S. Patent Application Publication Nos. 2002/0160970 and 2003/0083293.

[00101] In the hybridoma method, a mouse or other appropriate host animal, such as a rat, hamster or monkey, is immunized (e.g., as hereinabove described) to elicit lymphocytes that produce or are capable of producing antibodies that will specifically bind to the antigen used for immunization. Alternatively, lymphocytes may be immunized in vitro. Lymphocytes then are fused with myeloma cells using a suitable fusing agent, such as polyethylene glycol, to form a hybridoma cell.

[00102] The hybridoma cells thus prepared are seeded and grown in a suitable culture medium that preferably contains one or more substances that inhibit the growth or survival of the unfused, parental myeloma cells. For example, if the parental myeloma cells lack the enzyme hypoxanthine guanine phosphoribosyl transferase (HGPRT or HPRT), the culture medium for the hybridomas typically will include hypoxanthine, aminopterin, and thymidine (HAT medium), which substances prevent the growth of HGPRT-deficient cells.

[00103] As used herein, the term "purified" in the expression "purified antibody" is simply meant to distinguish man-made antibody from an antibody that may naturally be produced by an animal against its own antigens. Hence, raw serum and hybridoma culture medium containing anti-OPN antibody are "purified antibodies" within the meaning of the present invention.

[00104] The present invention also concerns isolated nucleic acid molecules including probes and primers to detect PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gia1 , Gia2, Gia3 or Gsa (and optionally other scoliosis markers (e.g., OPN, sCD44, etc.). In specific embodiments, the isolated nucleic acid molecules have no more than 300, or no more than 200, or no more than 100, or no more than 90, or no more than 80, or no more than 70, or no more than 60, or no more than 50, or no more than 40 or no more than 30 nucleotides. In specific embodiments, the isolated nucleic acid molecules have at least 17, or at least 18, or at least 19, or at least 20, or at least 30, or at least 40 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 20 and no more than 300 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 20 and no more than 200 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 20 and no more than 100 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 20 and no more than 90 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 20 and no more than 80 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 20 and no more than 70 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 20 and no more than 60 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 20 and no more than 50 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 20 and no more than 40 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 17 and no more than 40 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 20 and no more than 30 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 17 and no more than 30 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 30 and no more than 300 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 30 and no more than 200 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 30 and no more than 100 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 30 and no more than 90 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 30 and no more than 80 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 30 and no more than 70 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 30 and no more than 60 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 30 and no more than 50 nucleotides. In other specific embodiments, the isolated nucleic acid molecules have at least 30 and no more than 40 nucleotides. It should be understood that in real-time PCR, primers also constitute probe without the traditional meaning of this term. Primers or probes appropriate to detect PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gia1 , Gia2, Gia3 or Gsa in the methods of the present invention can be designed with known methods using sequences distributed across their respective nucleotide sequence.

[00105] Probes of the invention can be utilized with naturally occurring sugar-phosphate backbones as well as modified backbones including phosphorothioates, dithionates, alkyl phosphonates and a-nucleotides and the like. Modified sugar-phosphate backbones are generally known. Probes of the invention can be constructed of either ribonucleic acid (RNA) or deoxyribonucleic acid (DNA), and preferably of DNA.

[00106] The types of detection methods in which probes can be used include Southern blots (DNA detection), dot or slot blots (DNA, RNA), and Northern blots (RNA detection). Although less preferred, labeled proteins could also be used to detect a particular nucleic acid sequence to which it binds. Other detection methods include kits containing probes on a dipstick setup and the like.

[00107] As used herein the terms "detectably labeled" refer to a marking of a probe or an antibody in accordance with the presence invention that will allow the detection of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gia1 , Gia2, Gia3 or Gsa (and optionally other scoliosis markers (e.g., OPN, sCD44, etc.). in accordance with the present invention. Although the present invention is not specifically dependent on the use of a label for the detection of a particular nucleic acid sequence, such a label might be beneficial, by increasing the sensitivity of the detection. Furthermore, it enables automation. Probes can be labeled according to numerous well known methods. Non-limiting examples of labels include 3H, 14C, 32P, and 35S. Non-limiting examples of detectable markers include ligands, fluorophores, chemiluminescent agents, enzymes, and antibodies. Other detectable markers for use with probes, which can enable an increase in sensitivity of the method of the invention, include biotin and radionucleotides. It will become evident to the person of ordinary skill that the choice of a particular label dictates the manner in which it is bound to the probe.

[00108] As commonly known, radioactive nucleotides can be incorporated into probes of the invention by several methods. Non-limiting examples thereof include kinasing the 5' ends of the probes using gamma 32P ATP and polynucleotide kinase, using the Klenow fragment of Pol I of E. coli in the presence of radioactive dNTP (e.g. uniformly labeled DNA probe using random oligonucleotide primers in low-melt gels), using the SP6/T7 system to transcribe a DNA segment in the presence of one or more radioactive NTP, and the like.

[00109] The present invention also relates to methods of selecting compounds. As used herein the term "compound" is meant to encompass natural, synthetic or semi-synthetic compounds, including without being so limited chemicals, macromolecules, cell or tissue extracts (from plants or animals), nucleic acid molecules, peptides, antibodies and proteins.

[00110] The present invention also relates to arrays. As used herein, an "array" is an intentionally created collection of molecules which can be prepared either synthetically or biosynthetically. The molecules in the array can be identical or different from each other. The array can assume a variety of formats, e.g., libraries of soluble molecules; libraries of compounds tethered to resin beads, silica chips, or other solid supports.

[00111] As used herein "array of nucleic acid molecules" is an intentionally created collection of nucleic acids which can be prepared either synthetically or biosynthetically in a variety of different formats (e.g., libraries of soluble molecules; and libraries of oligonucleotides tethered to resin beads, silica chips, or other solid supports). Additionally, the term "array" is meant to include those libraries of nucleic acids which can be prepared by spotting nucleic acids of essentially any length (e.g., from 1 to about 1000 nucleotide monomers in length) onto a substrate. The term "nucleic acid" as used herein refers to a polymeric form of nucleotides of any length, either ribonucleotides, deoxyribonucleotides or peptide nucleic acids (PNAs), that comprise purine and pyrimidine bases, or other natural, chemically or biochemically modified, non-natural, or derivatized nucleotide bases. The backbone of the polynucleotide can comprise sugars and phosphate groups, as may typically be found in RNA or DNA, or modified or substituted sugar or phosphate groups. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and nucleotide analogs. The sequence of nucleotides may be interrupted by non- nucleotide components. Thus the terms nucleoside, nucleotide, deoxynucleoside and deoxynucleotide generally include analogs such as those described herein. These analogs are those molecules having some structural features in common with a naturally occurring nucleoside or nucleotide such that when incorporated into a nucleic acid or oligonucleotide sequence, they allow hybridization with a naturally occurring nucleic acid sequence in solution. Typically, these analogs are derived from naturally occurring nucleosides and nucleotides by replacing and/or modifying the base, the ribose or the phosphodiester moiety. The changes can be tailor made to stabilize or destabilize hybrid formation or enhance the specificity of hybridization with a complementary nucleic acid sequence as desired.

[00112] As used herein "solid support", "support", and "substrate" are used interchangeably and refer to a material or group of materials having a rigid or semi-rigid surface or surfaces. In many embodiments, at least one surface of the solid support will be substantially flat, although in some embodiments it may be desirable to physically separate synthesis regions for different compounds with, for example, wells, raised regions, pins, etched trenches, or the like. According to other embodiments, the solid support(s) will take the form of beads, resins, gels, microspheres, or other geometric configurations.

[00113] Any known nucleic acid arrays can be used in accordance with the present invention. For instance, such arrays include those based on short or longer oligonucleotide probes as well as cDNAs or polymerase chain reaction (PCR) products. Other methods include serial analysis of gene expression (SAGE), differential display, as well as subtractive hybridization methods, differential screening (DS), RNA arbitrarily primer (RAP)-PCR, restriction endonucleolytic analysis of differentially expressed sequences (READS), amplified restriction fragment- length polymorphisms (AFLP).

[00114] The present invention encompasses using antibodies for detecting or determining Gail (e.g., having phosphorylated and/or unphosphorylated serine residues), Gai2 (having e.g., having phosphorylated and/or unphosphorylated serine residues serine residues), Gai3 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gas levels for instance in the samples of a subject and for including in kits of the present invention. Antibodies that specifically bind to these biological markers can be produced routinely with methods further described above. The present invention also encompasses using antibodies commercially available. Without being so limited antibodies that specifically bind to Gail (e.g., having phosphorylated and/or unphosphorylated serine residues), Gai2 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gai3 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gas include those listed in Table I below.

Table I:

Commercially available antibodies for Gail (e.g., having phosphorylated and/or unphosphorylated serine residues), Gai2 (e.g., having phosphorylated and/or unphosphorylated serine residues), Gai3 (e.g., having phosphorylated and/or unphosphorylated serine residues), and Gas. Catalogue

Description Supplier Reactivity Application Host

Number

G protein alpha inhibitor 1

Abeam ab136510 Human, Rat WB Mouse antibody [7H7]

G protein alpha inhibitor 1 Human, Mouse, Rat,

Abeam ab140333 WB Mouse antibody [R4.5] Cow, Guinea pig

G protein alpha inhibitor 1

Abeam ab102014 Human WB Rabbit antibody

G protein alpha inhibitor 1

Abeam ab55103 Human IHC-P, WB Mouse antibody

G protein alpha inhibitor 1

Abeam ab81447 Human ELISA, WB Rabbit antibody

G protein alpha inhibitor 1

Abeam ab 19932 Human WB Mouse antibody [SPM397]

G protein alpha inhibitor 1

Abeam ab118434 Human ELISA, IHC-P, WB Mouse antibody [2B8-2A5]

G protein alpha inhibitor 1 Flow Cyt, ICC, IHC-P,

Abeam ab140125 Human, Mouse, Rat Rabbit antibody [EPR9441 (B)] WB

G protein alpha Inhibitor 2

Abeam ab118578 Human IHC-P, WB Rabbit antibody

G protein alpha Inhibitor 2

Abeam ab55117 Human WB Mouse antibody

G protein alpha Inhibitor 2

Abeam ab81452 Human ELISA, WB Rabbit antibody

G protein alpha Inhibitor 2

Abeam ab123427 Human WB Rabbit antibody

G Protein alpha Inhibitor 1 +2

Abeam ab3522 Human, Mouse, Rat IHC-P, WB Rabbit antibody

G protein alpha Inhibitor 2

Abeam ab154155 Human ICC/IF, WB Rabbit antibody

G protein alpha Inhibitor 2 Flow Cyt, ICC/IF, IHC-

Abeam ab157204 Human, Mouse, Rat Rabbit antibody [EPR9469] P, WB

G protein alpha Inhibitor 2

Abeam ab137050 Human, Mouse, Rat Flow Cyt, WB Rabbit antibody [EPR9468]

G protein alpha Inhibitor 2

Abeam ab20392 Human, Rat ICC/IF, IP, WB Rabbit antibody

G protein alpha Inhibitor 2 Human, Mouse, Rat,

Abeam ab78193 WB Mouse antibody [L5] Cow, Guinea pig

GNAI1 Antibody (monoclonal)

Abgent AT2225a Human WB.IHC.E Mouse (M01 )

GNAI1 polyclonal antibody Abnova H00002770-

Human ELISA, WB Mouse (A01) CorpoRation A01

WB-Tr,WB-Ti,S-

GNAI1 monoclonal antibody Abnova H00002770-

Human ELISA.ELISA.WB- Mouse (M01), clone 2B8-2A5 CorpoRation M01

Re, IHC-P

Acris

Cow, Guinea Pig, Human,

anti G protein alpha inhibitor 1 Antibodies AM05302PU-N WB Mouse

Mouse, Rat

GmbH

Acris

anti G protein alpha inhibitor 1

Antibodies SP5158P Human, Mouse, Rat WB Rabbit (+ alpha 2)

GmbH

Acris

Cow, Guinea pig, Human,

anti G protein alpha inhibitor 1 Antibodies AM12136PU-N P, WB Mouse

Mouse, Pig, Rat, Rat

GmbH

Acris

anti G protein alpha inhibitor 1 Antibodies AM20888PU-N Human E, P, WB Mouse

GmbH Acris

anti G protein alpha inhibitor 1

Antibodies AP05163PU-N Cow, Human, Mouse, Rat WB Rabbit (+ GNAI2)

GmbH

Acris

anti G protein alpha inhibitor 1

Antibodies AP09041 PU-N Cow, Human, Rat, Mouse P, WB Rabbit (+ GNAI2)

GmbH

Acris

Cow, Guinea pig, Human,

anti G protein alpha inhibitor 1 Antibodies AM32641SU-N WB Mouse

Mouse, Pig, Rat, Rat

GmbH

Acris

anti G protein alpha inhibitor 1

Antibodies AM32537PU-N VeRatebRates WB Mouse (110-123)

GmbH

anti-G Protein Alpha Inhibitor

antibodies- 1/2 (GNAI1/GNAI2) (AA 345- ABIN609015 Human WB, IHC Rabbit online

354) antibody

Cow

anti-Guanine Nucleotide (Cow), Human, Mouse

Binding Protein (G Protein), (Murine), Rat (Rattus), Fruit

antibodies- alpha Inhibiting Activity ABIN406409 Fly (Drosophila WB Rabbit online

Polypeptide 1 (GNAI1) melanogaster),Pig

antibody (Porcine).Xenopus

laevis, Chicken anti-Guanine Nucleotide

Binding Protein (G Protein),

antibodies- alpha Inhibiting Activity ABIN393287 Human ELISA, WB, IHC Mouse online

Polypeptide 1 (GNAI1)

antibody

anti-Guanine Nucleotide

Binding Protein (G Protein),

antibodies- alpha Inhibiting Activity ABIN203567 Human ELISA Rabbit online

Polypeptide 1 (GNAI1) (AA

345-354) antibody

anti-Guanine Nucleotide

Binding Protein (G Protein),

antibodies- alpha Inhibiting Activity ABIN574258 Human ELISA, WB, IHC Mouse online

Polypeptide 1 (GNAI1)

antibody

anti-Guanine Nucleotide

Binding Protein (G Protein),

antibodies- alpha Inhibiting Activity ABIN211172 Human WB Mouse online

Polypeptide 1 (GNAI1) (AA

110-123) antibody

anti-Guanine Nucleotide

Binding Protein (G Protein),

antibodies- alpha Inhibiting Activity ABIN470853 Human WB, IP Rabbit online

Polypeptide 3 (GNAI3) (C- Term) antibody

anti-Guanine Nucleotide

Binding Protein (G Protein),

antibodies- Human, Rat, Mouse, Cow.C

alpha Inhibiting Activity ABIN1010195 ELISA, WB, IHC Rabbit online at ,Dog .Chicken

Polypeptide 1 (GNAI1)

antibody

anti-Guanine Nucleotide

Binding Protein (G Protein),

antibodies- alpha Inhibiting Activity ABIN322115 Human WB, ELISA Rabbit online

Polypeptide 1 (GNAI1)

(Internal Region) antibody anti-G Protein Alpha Inhibitor

antibodies- 1/2 (GNAI1/GNAI2) (AA 346- ABIN472931 Human WB Rabbit online

355) antibody

Human, Mouse, Rat,

Aviva

GNAI1 antibody - middle ARP54630 P0 Drosophila, Pig, Cow,

SysteMouse WB Rabbit region (ARP54630_P050) 50 Fruit fly, African clawed

Biology

frog, Chicken

Rabbit Anti-G Protein alpha Human, Mouse, Rat, Cow, WB, ELISA, IHC-P,

Bioss Inc. bs-8556R Rabbit Inhibitor 1 Polyclonal Antibody Dog IHC-F

Rabbit Anti-G protein alpha Human, Mouse, Rat, Dog, WB,ELISA,IHC-P,IHC-

Bioss Inc. bs-9920R Rabbit Inhibitor 2 Polyclonal Antibody Pig, Chicken, Cow, Sheep F

Cell Signaling

Ga(i) Antibody 5290S Human, Mouse, Rat WB Rabbit

Technology

Anti-G Protein Gialpha-1 , clone Cow, Guinea pig, Human,

EMD Millipore MAB3075 WB

R4 Mouse, Pig, Rat, Rat

Anti-Gialpha-2-Subunit,

EMD Millipore 371727-50UL Human, Mouse, Rat ELISA, WB Rabbit Internal (85-100) Rabbit pAb

Anti-G Protein Gialpha-2, clone Cow, Guinea pig, Human,

EMD Millipore MAB3077 WB Mouse L5 Mouse, Pig, Rat, Rat

G-Protein Subunit Antibody

EMD Millipore 371770-1ST N/A WB Rabbit Set

Fitzgerald

Human, Mouse, Rat, Droso

GNAI1 antibody Industries 70R-2047 WB Rabbit phila

International

Chicken Anti-Gai3 (G protein GenWay

15-288-22489 Human, Mouse, Rat ICC, WB Chicken Gi alpha subunit 3) Biotech, Inc.

Human Mouse Rat

GNAI1 antibody - middle GenWay Drosophila Pig Cow Fruit

GWB-MT472D WB Rabbit region Biotech, Inc. fly African clawed frog

Chicken

Lifespan

Anti-Gi / GNAI1 LS-B4333-50 Human ELISA, IHC-P, WB Mouse

Biosciences

Lifespan LS-C26697-

Anti-Gi / GNAI1 Cow, Human, Rat WB Mouse

Biosciences 100

Lifespan LS-C87973- Cow, Guinea pig, Human,

Anti-Gi / GNAI1 WB Rat

Biosciences 200 Mouse, Pig, Rat, Rat

Lifespan Rat, Cow, Guinea pig,

Anti-Gi / GNAI1 LS-B2546-50 IHC-P, WB Mouse

Biosciences Human, Mouse, Rat

Lifespan

Anti-Gi / GNAI1 LS-C3237-100 Human ELISA Rabbit

Biosciences

Lifespan LS-C87972- Cow, Guinea pig, Human,

Anti-Gi / GNAI2 WB

Biosciences 100 Mouse, Pig, Rat, Rat Lifespan LS-C23979- Cow, Guinea pig, Mouse,

Anti-Gi / GNAI3 WB Mouse

Biosciences 100 Rat, Cow

Cow, Chicken,

Lifespan Drosophila, Xenopus,

Anti-Gi / GNAI1 LS-C81891-50 WB

Biosciences Human, Mouse, Pig, Rat,

Human

Lifespan LS-C23978-

Anti-Gi / GNAI1 Human ELISA, WB Mouse

Biosciences 200

Anti-G Protein Alpha Inhibitor Lifespan LS-C121228- Human, Cow, Human,

IHC-P, WB Rabbit 1/2 (GNAI1/GNAI2) Biosciences 100 Mouse, Rat

Lifespan Hamster, Human, Mouse,

Anti-GNAI3 LS-C23813-50 IP, WB Rabbit

Biosciences Rat

Anti-G Protein Gialpha-1 , clone Merck Cow, Guinea pig, Human,

MAB3075 WB

R4 Millipore Mouse, Pig, Rat, Rat

Merck

Anti-G Protein Gialpha 1/2 07-1500 Human, Mouse, Rat, Cow WB, IH(P)

Millipore

Anti-Gialpha-2-Subunit, Merck

371727-50UL Human, Mouse, Rat ELISA, WB Rabbit Internal (85-100) Rabbit pAb Millipore

Rabbit anti-Human guanine

nucleotide binding protein (G

MyBioSource.

protein), alpha inhibiting MBS716824 Human, Mouse, Rat. ELISA, WB, IHC Rabbit com

activity polypeptide 1

polyclonal Antibody

Human, Mouse, Rat,

G protein alpha inhibitor 1 Novus Cow, Chicken,

NBP1 -52926 WB Rabbit Antibody Biologicals Drosophila, Porcine,

Xenopus

G protein alpha inhibitor 1 Novus H00002770-

Human WB, ELISA Mouse Antibody Biologicals A01

G protein alpha inhibitor 1 Novus

NBP1-31601 Human WB Rabbit Antibody Biologicals

G protein alpha inhibitor 1 Novus H00002770-

Human WB, ELISA, IHC Mouse Antibody (2B8-2A5) Biologicals M01

G protein alpha inhibitor 1 Novus

NBP2-16558 Human WB, IHC Rabbit Antibody Biologicals

G protein alpha inhibitor 1 Novus Human, Mouse, Rat,

NBP1^0247 WB, IHC Mouse Antibody (R4.5) Biologicals Cow, Guinea Pig

G protein alpha inhibitor 1/2 Novus

NB120-3522 Human, Mouse, Rat WB, IP Rabbit Antibody Biologicals

Proteintech

GNAI1 12617-1-AP Human, Mouse, Rat ELISA, WB, IHC Rabbit

Group Inc

Santa Cruz

Galpha i-1 (SPM397) Biotechnology sc-56536 Mouse, Rat, Human, cow WB, IP Mouse

, Inc.

Santa Cruz

Galpha i-1 (R4) Biotechnology sc-13533 Mouse, Rat, Human, cow WB, IP, IF, IHC(P) Mouse

, Inc.

Santa Cruz

Galpha i-1/3 (1-18) Biotechnology sc-26762 Mouse, Rat, Human WB, IF, ELISA Goat

, Inc.

Santa Cruz

Galpha i-1 (I-20) Biotechnology sc-391 Mouse, Rat, Human WB, IF, ELISA Rabbit

, Inc. Santa Cruz

Galpha i-3 (C-10) Biotechnology sc-262 Mouse, Rat, Human WB, IP, IF, ELISA Rabbit

, Inc.

Santa Cruz

Galpha i-3 (H-7) Biotechnology sc-365422 Mouse, Rat, Human WB, IP, IF, ELISA Mouse

, Inc.

Santa Cruz

Galpha i-1/2/3 (N-20) Biotechnology sc-26761 Mouse, Rat, Human WB, IP, IF, ELISA Goat

, Inc.

Santa Cruz

Galpha i/o/t/z/gust (H-300) Biotechnology sc-28586 Mouse, Rat, Human WB, IP, IF, ELISA Rabbit

, Inc.

Santa Cruz

Galpha i/o/t z (D-15) Biotechnology sc-12798 Mouse, Rat, Human WB, IP, IF, ELISA Goat

, Inc.

Thermo

G protein alpha Inhibitor 1 Scientific

PA5-30043 Human IHC (P), WB Rabbit Antibody Pierce

Antibodies

Thermo

G protein alpha inhibitor 1 Scientific

PA5-28223 Human WB Rabbit Antibody Pierce

Antibodies

Thermo

Scientific Cow, Guinea pig, Human,

Gia-1 Antibody MA1 -12610 WB Mouse

Pierce Mouse, Pig, Rat, Rat

Antibodies

Thermo

Scientific Cow, Guinea pig, Human,

GalphaM G-Protein Antibody MA5-12800 WB Mouse

Pierce Mouse, Pig, Rat, Rat

Antibodies

Thermo

G protein alpha Inhibitor 2 Scientific

PA5-27496 Human, Mouse WB Rabbit Antibody Pierce

Antibodies

Thermo

G protein alpha Inhibitor 2 Scientific

PA5-27520 Human IF, WB Rabbit Antibody Pierce

Antibodies

G protein alpha S antibody Abeam ab97629 Human WB Rabbit

G protein alpha S antibody Abeam ab83735 Human, Mouse IHC-P, WB Rabbit

G protein alpha S antibody Abeam ab101736 Human, Mouse, Rat WB Goat

G protein alpha S antibody Abeam ab97663 Human, Mouse IHC-P, WB Rabbit

GNAS Antibody (Center) Abgent AP6865C Human WB, ELISA Rabbit

GNAS Antibody (C-term) Abgent AP13065b Human WB.IHC.E Rabbit

GNAS purified MaxPab rabbit Abnova H00002778-

Human PLA-Ce,Det Ab,WB-Tr Rabbit polyclonal antibody (D01P) Corporation D01P

Abnova

GNAS monoclonal antibody H00002778-M Human WB.ELISA Mouse

Corporation

Abnova

GNAS polyclonal antibody PAB 18557 Human ELISA,WB-Ce Goat

Corporation

Acris

anti GNAS / GSP Antibodies AP20123PU-N Human, Cow, Mouse, Rat WB, ELISA Goat

GmbH

anti-Galpha S (AA 11-21 ) antibodies-

ABIN968909 Human WB Mouse antibody online

anti-GNAS Complex Locus antibodies-

ABIN571171 Human ELISA, WB Goat (GNAS) antibody online

anti-GNAS Complex Locus antibodies-

ABIN1086769 Human WB, ELISA Rabbit (GNAS) antibody online

anti-GNAS Complex Locus antibodies-

ABIN604875 Human WB, IHC Rabbit (GNAS) antibody online anti-GNAS Complex Locus

antibodies- (GNAS) (Transcript Variant 1) ABIN1035879 Human, Rat, Mouse WB, IHC, ELISA Rabbit online

antibody

anti-GNAS Complex Locus antibodies-

ABIN213649 Human ELISA, IH Rabbit (GNAS) (AA 385-394) antibody online

anti-GNAS Complex Locus antibodies-

ABIN656989 Human WB, ELISA Rabbit (GNAS) (C-Term) antibody online

anti-GNAS Complex Locus antibodies-

ABIN203445 Human IH, WB Rabbit (GNAS) (N-Term) antibody online

Aviva

GNAS antibody - N-terminal ARP42693 P0 Human, Mouse, Rat, Dog,

Systems WB, IHC Rabbit region (ARP42693_P050) 50 Bovine, Pig

Biology

Aviva

GNAS antibody - N-terminal ARP41764 T1 Human, Dog, Mouse, Rat,

Systems WB Rabbit region (ARP41764_T100) 00 Pig, Rabbit, Cow

Biology

Anti-GNAS Biomatik CAE21174 Human Pep-ELISA, WB Goat

G protein alpha S antibody Biorbyt orb6103 Human, Mouse, Rat P-ELISA, WB, IHC-P Rabbit

GNAS antibody Biorbyt orb31105 Human WB, ELISA Rabbit

GNAS antibody Biorbyt orb37122 Human WB, ELISA Rabbit

GNAS antibody Biorbyt orb20551 Human, Mouse, Rat, Cow ELISA, WB Goat

Human, Mouse, Rat, Dog,

Rabbit Anti-G protein alpha S WB, ELISA, IP.IHC-

Bioss Inc. bs-3939R Pig, Horse, Chicken, Cow, Rabbit Polyclonal Antibody P,IHC-F,IF

Rabbit

Anti-Gsalpha EMD Millipore 06-237 Cow, Human, Mouse IC, IP, WB Rabbit

Fitzgerald

GNAS antibody Industries 70R-12940 Human, Mouse IHC-P, WB Rabbit

International

Fitzgerald

GNAS antibody Industries 70R-1651 Human, Mouse, Rat, Dog WB Rabbit

International

Fitzgerald

GNAS antibody Industries 70R-1652 Human WB, IHC Rabbit

International

Fitzgerald

GNAS antibody Industries 70R-5756 Human, Mouse, Rat, Dog WB Rabbit

International

Fitzgerald

GNAS antibody Industries 70R-1643 Human, Dog WB Rabbit

International

GNAS antibody [C1C3] GeneTex GTX113338 NA WB-Ag Rabbit

Rabbit Anti-Human GNAS

GenWay Imm u noh istochem istry- Polyclonal Antibody, 18-003^3749 Human Rabbit

Biotech, Inc P, Western Blot

Unconjugated

GNAS antibody - N-terminal GenWay Human, Mouse, Rat, Dog,

GWB-MP242H WB Rabbit region Biotech, Inc. Cow, Pig

GNAS antibody - N-terminal GenWay Human, Dog, Mouse,

GWB-MN943G WB Rabbit region Biotech, Inc. Rat, Pig, Rabbit, Cow

Rabbit Anti-GNAS Polyclonal GenWay

18-003^4268 Human, Mouse, Rat, Dog WB Rabbit Antibody, Unconjugated Biotech, Inc.

Lifespan

Anti-GNAS LS-B 102-50 Human, Primate, Human ELISA, IHC-P Rabbit

Biosciences

Lifespan

Anti-GNAS LS-B4790-50 Human, Primate, Human ELISA, IHC-P Rabbit

Biosciences

Antibodies

The present invention also encompasses arrays to detect and/or quantify the translation products of PKA [e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gia1 , Gia2, Gia3 or Gsa. Such arrays include protein micro- or macroarrays, gel technologies including high-resolution 2D-gel methodologies, possibly coupled with mass spectrometry imaging system at the cellular level such as microscopy combined with a fluorescent labeling system.

[00116] The present invention also encompasses methods to screen/select for potential useful therapeutic agents using whole cells assays, the therapeutic compound being able to decrease the transcription and/or synthesis and/or activity (e.g., phosphorylation of Gi proteins) of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gicrt , Gia2, Gia3 or Gsa. Cells for use in such methods includes cells of any source (including in house or commercially available cell lines) and type (any tissue). In house cell lines could be made for instance by immortalizing cells from AIS subjects. In specific embodiments, methods of screening of the invention seek to identify agents that inhibit the PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gicrt , Gia2, Gia3 or Gsa expression (transcription and/or translation). Useful cell lines for these embodiments include those producing high levels of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), CaMK2, Gia1 , Gia2, Gia3 or Gsa. They include osteoblasts, PMBcs and myoblasts.

[00117] In a particular embodiment, it includes cells of any cell type derived from a scoliotic patient (whole cell assay). In specific embodiments, it includes osteoblasts, chondrocytes, myoblasts or blood cells including PBMCs including lymphocytes. As used herein, the term "cell derived from a scoliotic patient" refers to cells isolated directly from scoliotic patients, or immortalized cell lines originating from cells isolated directly from scoliotic patients. In specific embodiments, the cells are paraspinal muscle cells. Such cells may be isolated by a subject through needle biopsies for instance.

[00118] Pharmaceutical compositions can also be administered by routes such as nasally, intravenously, intramuscularly, subcutaneously, sublingually, intrathecally, or intradermally. The route of administration can depend on a variety of factors, such as the environment and therapeutic goals.

Dosage

[00119] Any amount of a pharmaceutical and/or nutraceutical and/or dietary supplement compositions can be administered to a subject. The dosages will depend on many factors including the mode of administration. Typically, the amount of anti-scoliosis composition (e.g., agent that decrease the transcription and/or synthesis and/or activity (e.g., phosphorylation of Gi proteins) and/or stability of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), or CaMK2 contained within a single dose will be an amount that effectively prevents, delays or reduces scoliosis without inducing significant toxicity "therapeutically effective amount".

[00120] The effective amount of the agent that agent that decrease the transcription and/or synthesis and/or activity (e.g., phosphorylation of Gi proteins) and/or stability of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), or CaMK2 may also be measured directly. The effective amount may be given daily or weekly or fractions thereof. Typically, a pharmaceutical and/or nutraceutical and/or dietary supplement composition of the invention can be administered in an amount from about 0.001 mg up to about 500 mg per kg of body weight per day (e.g., 10 mg, 50 mg, 100 mg, or 250 mg). Dosages may be provided in either a single or multiple dosage regimen. For example, in some embodiments the effective amount is a dose that ranges from about 1 mg to about 25 grams of the anti-scoliosis preparation per day, about 50 mg to about 10 grams of the anti- scoliosis preparation per day, from about 100 mg to about 5 grams of the anti- scoliosis preparation per day, about 1 gram of the anti- scoliosis preparation per day, about 1 mg to about 25 grams of the anti- scoliosis preparation per week, about 50 mg to about 10 grams of the anti- scoliosis preparation per week, about 100 mg to about 5 grams of the anti- scoliosis preparation every other day, and about 1 gram of the anti- scoliosis preparation once a week.

[00121] By way of example, a pharmaceutical (e.g., containing an agent that decreases the transcription and/or synthesis and/or activity (e.g., phosphorylation of Gi proteins) and/or stability of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), or CaMK2 composition of the invention can be in the form of a liquid, solution, suspension, pill, capsule, tablet, gelcap, powder, gel, ointment, cream, nebulae, mist, atomized vapor, aerosol, or phytosome. For oral administration, tablets or capsules can be prepared by conventional means with at least one pharmaceutically acceptable excipient such as binding agents, fillers, lubricants, disintegrants, or wetting agents. The tablets can be coated by methods known in the art. Liquid preparations for oral administration can take the form of, for example, solutions, syrups, or suspension, or they can be presented as a dry product for constitution with saline or other suitable liquid vehicle before use. Preparations for oral administration also can be suitably formulated to give controlled release of the active ingredients.

[00122] In addition, a pharmaceutical (e.g., containing an agent that decreases the transcription and/or synthesis and/or activity (e.g., phosphorylation of Gi proteins) and/or stability of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), or CaMK2 composition of the invention can contain a pharmaceutically acceptable carrier for administration to a mammal, including, without limitation, sterile aqueous or non-aqueous solutions, suspensions, and emulsions. Examples of non-aqueous solvents include, without limitation, propylene glycol, polyethylene glycol, vegetable oils, and injectable organic esters. Aqueous carriers include, without limitation, water, alcohol, saline, and buffered solutions. Pharmaceutically acceptable carriers also can include physiologically acceptable aqueous vehicles (e.g., physiological saline) or other known carriers appropriate to specific routes of administration.

[00123] An agent that decreases the transcription and/or synthesis and/or stability and/or activity (e.g., phosphorylation of Gi proteins) and/or stability of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), or CaMK2 may be incorporated into dosage forms in conjunction with any of the vehicles which are commonly employed in pharmaceutical preparations, e.g. talc, gum arabic, lactose, starch, magnesium stearate, cocoa butter, aqueous or non-aqueous solvents, oils, paraffin derivatives or glycols. Emulsions such as those described in U.S. Pat. No. 5,434,183, may also be used in which vegetable oil (e.g., soybean oil or safflower oil), emulsifying agent (e.g., egg yolk phospholipid) and water are combined with glycerol. Methods for preparing appropriate formulations are well known in the art (see e.g., Remington's Pharmaceutical Sciences, 16th Ed., 1980, A. Oslo Ed., Easton, Pa.).

[00124] In cases where parenteral administration is elected as the route of administration, preparations containing an agent that decreases the transcription and/or synthesis and/or activity (e.g., phosphorylation of Gi proteins) and/or stability of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), or CaMK2 may be provided to patients in combination with pharmaceutically acceptable sterile aqueous or non-aqueous solvents, suspensions or emulsions. Examples of non-aqueous solvents are propylene glycol, polyethylene glycol, vegetable oil, fish oil, and injectable organic esters. Aqueous carriers include water, water-alcohol solutions, emulsions or suspensions, including saline and buffered medical parenteral vehicles including sodium chloride solution, Ringer's dextrose solution, dextrose plus sodium chloride solution, Ringer's solution containing lactose, or fixed oils. Intravenous vehicles may include fluid and nutrient replenishers, electrolyte replenishers, such as those based upon Ringer's dextrose, and the like.

[00125] These are simply guidelines since the actual dose must be carefully selected and titrated by the attending physician based upon clinical factors unique to each patient or by a nutritionist. The optimal daily dose will be determined by methods known in the art and will be influenced by factors such as the age of the patient and other clinically relevant factors. In addition, patients may be taking medications for other diseases or conditions. The other medications may be continued during the time that the agent that decreases the transcription and/or synthesis and/or activity (e.g., phosphorylation of Gi proteins) and/or stability of PKA (e.g., ΡΚΑ-γ2), PKC (e.g., PKC-η or PKC-ε), CaMK1 (e.g., CaMK15), CaMK4, CK (e.g., CK2), or CaMK2 is given to the patient, but it is particularly advisable in such cases to begin with low doses to determine if adverse side effects are experienced.

[00126] The present invention also relates to kits. Without being so limited, it relates to kits for stratifying scoliotic subjects and/or predicting whether a subject is at risk of developing a scoliosis comprising an isolated nucleic acid, a protein or a ligand such as an antibody in accordance with the present invention as described above. For example, a compartmentalized kit in accordance with the present invention includes any kit in which reagents are contained in separate containers. Such containers include small glass containers, plastic containers or strips of plastic or paper. Such containers allow the efficient transfer of reagents from one compartment to another compartment such that the samples and reagents are not cross-contaminated and the agents or solutions of each container can be added in a quantitative fashion from one compartment to another. Such containers will include a container which will accept the subject sample (DNA genomic nucleic acid, cell sample or blood samples), a container which contains in some kits of the present invention, the probes used in the methods of the present invention, containers which contain enzymes, containers which contain wash reagents, and containers which contain the reagents used to detect the extension products. Kits of the present invention may also contain instructions to use these probes and or antibodies to stratify scoliotic subjects or predict whether a subject is at risk of developing a scoliosis.

[00127] The articles "a," "an" and "the" are used herein to refer to one or to more than one (i.e., to at least one) of the grammatical object of the article.

[00128] The term "including" and "comprising" are used herein to mean, and are used interchangeably with, the phrases "including but not limited to" and "comprising but not limited to".

[00129] The terms "such as" are used herein to mean, and is used interchangeably with, the phrase "such as but not limited to".

[00130] The term "about" is used to indicate that a value includes the standard deviation of error for the device or method being employed to determine the value. In general, the terminology "about" is meant to designate a possible variation of up to 10%. Therefore, a variation of 1 , 2, 3, 4, 5, 6, 7, 8, 9 and 10% of a value is included in the term "about".

[00131] As used herein, the term "purified" or "isolated" refers to a molecule (e.g., polynucleotide or polypeptide) having been separated from a component of the composition in which it was originally present. Thus, for example, an "isolated polynucleotide" or "isolated polypeptide" has been purified to a level not found in nature. A "substantially pure" molecule is a molecule that is lacking in most other components (e.g., 30, 40, 50, 60, 70, 75, 80, 85, 90, 95, 96, 97, 98, 99, 100% free of contaminants). By opposition, the term "crude" means molecules that have not been separated from the components of the original composition in which it was present. For the sake of brevity, the units (e.g., 66, 67...81 , 82, 83, 84, 85,...91 , 92%....) have not been specifically recited but are considered nevertheless within the scope of the present invention.

[00132] The present invention is illustrated in further details by the following non-limiting examples.

EXAMPLE 1

Materials and Methods

French-Canadian patients (Montreal's cohort)

[00133] This study was approved by the institutional review boards of The Sainte-Justine University Hospital, The Montreal Children's Hospital, and The Shriners Hospital for Children. Three populations including children with AIS, families of children with AIS and control subjects were enrolled in the study. Healthy children recruited in Montreal's elementary schools and Trauma cases were used as controls. The recruitment was approved by the Montreal English school Board, The Affluent School Board and all institutional review Board mentioned above. Parents or legal guardians of all participants with or without AIS gave their informed written consent, and minors gave their assent. All participants were examined by one of the seven orthopedic surgeons (HI., B.P., C-H.R., G.G., J.O., M.B-B., S.P.) participating in this study.

Italian patients (Milano's cohort)

[00134] A total of 139 consecutive AIS patients and 103 controls subjects were enrolled at the IRCCS Istituto Ortopedico Galeazzi (Milano, Italy) and represent a replication cohort. This replication study was approved by the institutional review board of IRSCC and The Sainte-Justine University Hospital. All patients were examined by one orthopedic surgeon (M.B-B).

Cell preparation and culture

[00135] Osteoblasts were isolated from bone specimens obtained intraoperatively from vertebras (varying from T3 to L4 according to the surgical procedure performed) and from other anatomical sites (tibia or femur) in AIS patients and trauma control cases, respectively as previously described (Moreau et al., 2004).

[00136] Myoblasts were isolated from biopsy specimen of skeletal muscle obtained from AIS and trauma control patients. Each biopsy specimen was cleared of remains fatty and connective tissue prior to being cut into smaller pieces. The tissue pieces were then transferred into PBS solution containing 0.01 % collagenase, and digested for 45 min at 37 °C. After dilution with culture media (1 :1 ), the solution was filtered in sterile conditions through a nylon filter of 45 μιη prior to the centrifugation at 280 x g for 5 min at room temperature. The pallet containing myoblasts was suspended in culture media (alpha-MEM) supplemented with 20% foetal bovine serum (certified FBS; Invitrogen, Burlington, ON, Canada), and 1 % penicillin/streptomycin (Invitrogen). After two weeks, culture media was replaced by fresh culture media supplemented with 10% FBS and 1 % penicillin/ streptomycin and myoblasts were allowed to grow until confluence.

[00137] Peripheral blood mononuclear cells (PBMC) were extracted from blood obtained from patients and control groups, as previously described (Akoume et al., 2010).

Functional classification

[00138] Patients were classified by evaluating the functional status of melatonin signaling in PBMC with cellular dielectric spectroscopy (CDS), using CellKey™ apparatus, as previously described (Akoume et al., 2010 and WO 2010/040234, 2010 to Moreau et al.). The impedance that reflects the cellular changes resulting from ligand/receptor interaction was measured for 15 minutes to monitor the cellular response to 14 M iodomelatonin stimulation. The classification was achieved according to the following value ranges of impedance: between 0 and 40 ohms for FG1 , between 40 and 80 ohms for FG2 and between 80 and 120 ohms for FG3. All control cases exhibiting a response extent of less than 120 ohms were excluded from the study.

Functional evaluation of G proteins

[00139] The functionality of Gi, Gs and Gq proteins was evaluated by CDS assay in osteoblasts, and the functionality of Gi was also evaluated by CDS assay in myoblasts and PBMCs from the same individuals, using CellKey™ apparatus, as previously described (Akoume et al., 2010 and WO 2010/040234, 2010 to Moreau et al.).

RNA interference

[00140] All Gii, Gi 2 , Gi 3 , Gs and scrambled siRNA were obtained from Ambion (Ambion USA). The sequences used for gene silencing are shown in Table II below. Osteoblasts from control subjects and AIS patients were transiently transfected in serum-free medium, using Lipofectamine RNAiMAX™ reagent (Invitrogen) according to the manufacturer's instructions and functional experiments were performed 48h post transfection. The gene knockdown was evaluated by quantitative real-time PCR (qPCR).

Table II: SiRNA sequences for Gii, Gi2, G 13, Gs

Quantitative real-time PCR

[00141] RNA was isolated from osteoblasts using TRIzol™ reagent (Invitrogen) according to the manufacturer's protocol. Total RNA (1 μg) was reverse-transcribed into cDNA using Tetro™ cDNA synthesis Kit (Bioline). Following cDNA synthesis, qPCR was performed using a PCR master mix containing QuantiTect™ SYBR Green PCR Master Mix (QIAGEN, Ontario, Canada). Transcript expression was assessed with the Stratagene™ Mx3000P (Agilent Technologies, La Jolla, CA) and calculations were performed according to the MCT method using β-actin as internal control. The sequences of the forward and reverse primers used for identification of human mRNA of our interest genes are shown in Table III.

Table III: List of the forward and reverse sequences

Forwards Reverses

AGGGCTATGGGGAGGTTGAAGAT ACTCCAG CAAGTTCTG CAGTCA

Gi1

(SEQ ID NO : 1) (SEQ ID NO : 2)

AGGGAATACCAGCTCAACGACTCA TGTGTGGGGATGTAGTCACTCTGT

Gi2

(SEQ ID NO : 3) (SEQ ID NO : 4)

GAGAGTGAAGACCACAGGCATT CGTTCTGATCTTTGGCCACCTA

Gi3

(SEQ ID NO : 5) (SEQ ID NO : 6)

GAGACCAAGTTCCAGGTGGACA GATCCACTTGCGGCGTTCAT

Gs

(SEQ ID NO : 7) (SEQ ID NO : 8)

ATCAGAACATCTTCACGGCC AAAGCAGACACCTTCTCCAC

Gq

(SEQ ID NO : 9) (SEQ ID NO : 10)

CGGAATGGATCACACTGAGAAG ACATAAG GATCTG AAAG CCCG

PKC-a (PKCA)

(SEQ ID NO : 11 ) (SEQ ID NO : 12)

TTCCCGATCCCAAAAGTGAG GTCAAATCCCAATCCCAAATCTC

PKC-β (PKCB)

(SEQ ID NO : 13) (SEQ ID NO : 14)

GCTTCAAGGTTCACAACTACATG ACCTTCTCCCGGCATTTATG

PKC-δ (PKCD)

(SEQ ID NO : 15) (SEQ ID NO : 16)

CCTACCTTCTGCGATCACTG TACTTTGGCGATTCCTCTGG (SEQ

PKC-ε (PKCE)

(SEQ ID NO : 17) ID NO : 18)

GTAAATGCGGTGGAACTTGC ACCCCAATCCCATTTCCTTC

PKC-η (PKCHt)

(SEQ ID NO : 19) (SEQ ID NO : 20)

GAGAAGCATGTGTTTGAGCAG GGAAGTTTTCTTTGTCGCTGC

PKC-I (PKCI)

(SEQ ID NO : 21 ) (SEQ ID NO : 22)

PKC-Y ACGAAGTCAAGAGCCACAAG GTCG ATG AACCACAAAG CTG (Gamma) (SEQ ID NO : 23) (SEQ ID NO : 24)

CGGATTTTGGAATGTGCAAGG CATAAAGGAGAACCCCGAAGG

PKC-Θ (PKCQ)

(SEQ ID NO : 25) (SEQ ID NO : 26)

TGCTTACATTTCCTCATCCCG CGCCCGATGACTCTGATTAG (SEQ

PKC-ζ (PKCZ)

(SEQ ID NO : 27) ID NO : 28)

CaMM-δ AATGGAGGGCAAAGGAGATG AAGATGTAGGCAATCACTCCG (CaMM D) (SEQ ID NO : 29) (SEQ ID NO : 30)

CaMK1-Y CTTGAGAAGGATCCGAACGAG TTGCCTCCACTTGCTCTTAG (CaMM G) (SEQ ID NO : 31) (SEQ ID NO : 32)

CaMK2-a CAGTTCCAGCGTTCAGTTAATG (SEQ TTCGTGTAGGACTCAAAATCTCC (CaMK2A) ID NO : 33) (SEQ ID NO : 34)

CaMK2- CTCTGACATCCTGAACTCTGTG CCGTGGTCTTAATGATCTCCTG (CaMK2B) (SEQ ID NO : 35) (SEQ ID NO : 36)

CaMK2-5 GGCACACCTGGATATCTTTCTC AGTCTGTGTTGGTCTTCATCC (CaMK2D (SEQ ID NO : 37) (SEQ ID NO : 38)

CaMK2-Y AAACAGTCTCGTAAGCCCAG ATCCCATCTGTAGCGTTGTG (CaMK2G) (SEQ ID NO : 39) (SEQ ID NO : 40)

TCG CCTCTCACATCCAAAC CATCTCGCTCACTGTAATATCCC

CaMK4

(SEQ ID NO : 41 ) (SEQ ID NO : 42)

AG GACACCAACAACTTCTTCG GGTGCCTTGTCGGTCATATT

CaMK2n1

(SEQ ID NO : 43) (SEQ ID NO : 44)

CTCAGTTCCTGGAGAAAGATGG CCCAGTCAATTCATGTTTGCC

PKA-a1

(SEQ ID NO : 45) (SEQ ID NO : 46)

ATGGAATATGTGTCTGGAGGTG TGGTTTCAGGTCTCGATGAAC

PKA-a2

(SEQ ID NO : 47) (SEQ ID NO : 48)

GAGTAAACTTCCCCTCACCAG TCCACTGACCATCCACAAAG

ΡΚΑ-β1

(SEQ ID NO : 49) (SEQ ID NO : 50)

CACTGTTATCCGCTGGTCTG CTTGTATTGGTGCTCTCCCTC

ΡΚΑ-β2

(SEQ ID NO : 51 ) (SEQ ID NO : 52)

CAAGGACAACTCAAACTTATACATGG CAGATACTCAAAG GTCAG GACG

PKA-ca

(SEQ ID NO : 53) (SEQ ID NO : 54)

CCTTTCCTTGTTCGACTGGAG TGAGCTGCATAGAACCGTG

ΡΚΑ-οβ

(SEQ ID NO : 55) (SEQ ID NO : 56)

CCGGATCTCCATCAATGAGAAG TTCAATCCAACCCTCCCATC

PKA-CY

(SEQ ID NO : 57) (SEQ ID NO : 58)

GCGCATTCTGAAGTTCCTCA AAAATCCCCAGAGCCACATAG

ΡΚΑ-γ1

(SEQ ID NO : 59) (SEQ ID NO : 60)

TTGCCCGTTATTGACCCTATC CGTTCCTATTCCAAGCTCATCC

ΡΚΑ-γ2

(SEQ ID NO : 61 ) (SEQ ID NO : 62)

TG ACTG CACTG GACATCTTTG TGGTTGTAGGTTTGCTGGG

ΡΚΑ-γ13

(SEQ ID NO : 63) (SEQ ID NO : 64) TGTCGGAGGGAAATATAMCTGG G G CCTTCTGAG ATTCTAGCTTC

CK-1 a

(SEQ ID NO : 65) (SEQ ID NO : 66)

AGGTGGAGGTAGTGGAGG GTACAATTGAGTCAGAGTCCCC

CK-1y1

(SEQ ID NO : 67) (SEQ ID NO : 68)

GTGATGTTCTAGCCACAGAGG CCCTTTCCCTCCTTTCTTGTC

CK-1Y2

(SEQ ID NO : 69) (SEQ ID NO : 70)

GTTCAAATGCACCCATCACAG AGTAACTCCCCAGGATCTGTC

CK-1Y3

(SEQ ID NO : 71 ) (SEQ ID NO : 72)

GTATGAGATTCTGAAGGCCCTG CCAAACCCCAGTCTATTAGTCG

CK-2a1

(SEQ ID NO : 73) (SEQ ID NO : 74)

CGATACGACCATCAACAGAGAC TCGCTTTCCAGTCTTCATCG

CK-2a2

(SEQ ID NO : 75) (SEQ ID NO : 76)

G protein expression in osteoblasts

[00142] Expression levels of Gi proteins isoforms and Gs protein were determined using standard western blotting technique. In brief, osteoblasts from AIS patients and trauma control cases were lysed in RIPA buffer (25 mM Tris-HCI, pH 7.4, 150 mM NaCI, 1 % NP-40, 1 % sodium deoxycholate, 0.1 % SDS) added with 5 mM NaV0 4 and protease inhibitor cocktail (Roche molecular Biochemicals, Mannheim, Germany). Immunoblots were performed with primary antibodies directed specifically against Gh, Gi2, G13 or Gs (Santa Cruz Biotechnology, Santa Cruz, CA) and peroxidase-conjugated secondary antibody. Bands were then visualized using SuperSignal™ chemilunescent substrate (Pierce, Rockford, IL).

Assessment of phosphorylation of Gi protein isoforms in osteoblasts

[00143] Comparative studies were performed to examine the level of phosphorylation and to identify the phosphorylated Gi isoform with immunoprecipitated proteins using isoform specific antibodies and, subsequently, probing the level of phosphorylation with a phospho-serine/threonine specific antibody (Santa Cruz Biotechnology). Whole cell proteins (1 mg) were incubated with anti-Gh , anti-Gi2 or anti-Gi3 (Santa Cruz Biotechnology), plus protein G beads for immunoprecipitation (IP) at 4°C overnight. Purified proteins were loaded on 10% gel after IP, then processed by transferring to nitrocellulose membrane and 5% BSA blocking. Membranes were exposed to phospho-serine/threonine specific antibody at 4°C overnight and, subsequently, treated with secondary antibody at room temperature for 1 h. Bands were visualized using SuperSignal cheminescence™, and quantified by densitometric scanning.

Statistical analysis

[00144] Data are presented as mean ± SE, and were analyzed by ANOVA or Student's t test using GraphPad™ Prism 4.0 software. Multiple comparisons of means were performed with one-way ANOVA followed by a post-hoc test of Dunnett. Only P values < 0.05 were considered significant.

[00145] Demographic and clinical characteristics of French-Canadian and Italian cohorts. The French-Canadian cohorts consisted of 956 consecutive (i.e. without selection: the first 956 subjects having accepted to participate in the study) adolescents with AIS and 240 aged-matched controls without a family history of scoliosis. The absence of spine abnormalities was confirmed in all control subjects, while a total of 162 AIS patients exhibited curvatures greater than 45° and 794 AIS patients had curvature between 10° and 44°. In the Italian cohort, the moderate curves (Cobb angle 10° - 44°) were apparent in 61 AIS patients and the severe curves (Cobb angle > 45°) in 78 AIS patients. All AIS patients were age-matched with control subjects in both Canadian and Italian cohorts (see Table IV below).

Table IV: Demographic data of AIS and healthy control subjects

EXAMPLE 2

Clinical outcomes of AIS patients according to their functional classification

[00146] Patients were classified according to the response degree of their PBMCs to iodomelatonin stimulation as indicated in Example 1. Of 956 AIS patients from the Canadian cohort, 243 were classified in functional group 1 (FG1 ), 353 in functional group 2 (FG2) and 360 in functional group 3 (FG3). The prevalence of all three functional groups was comparable among low to moderate cases (Cobb angle 10° - 44°). However, the FG2 was predominant among severe cases (Cobb angle > 45°) with a proportion of 56% compared to 31 % and 13% for FG3 and FG1 , respectively. See Table V below.

[00147] Similar profile of distribution was observed in the Italian cohort in whom surgery was required for 61 % of FG2, 36% of FG3 and 3% of FG1 AIS patients. Collectively, these results strengthen the view that clinical outcomes vary among AIS patients and suggest that the risk of severe progression is higher for FG2, moderate for FG3 and low for FG1. See Table VI below.

Table V: Clinical data of AIS patients classified into functional groups

Table VI: Clinical data of AIS patients classified into functional groups

FG3 5 (5) 17.6 ±5.7 7(30) 60.6±12.9 5(8) 7(13) -

EXAMPLE 3

Each functional group represents a potential hereditary trait

[00148] Since the hereditary or genetic basis of AIS has consistently been claimed (Riseborough and Wynne- Davies, 1973); (Blank et al., 1999); (Roach, 1999), the possibility that the biological defect characterizing each functional group may be a hereditary condition was tested. For this purpose, 25 individuals from 6 unrelated families were examined. Pedigrees are shown in Figure 1. At least two individuals were affected in each family. The classification has revealed that all affected family members belonged to the same functional group and so displayed similar biological defect (Figure 2). However, neither pattern nor severity of curve was group specific (Figure 2). This suggests that each functional group represents a biological endophenotype that co-segregates within families independently of curve type and magnitude of spinal deformity.

EXAMPLE 4

Affinity of melatonin receptor for its agonist is similar between functional groups

[00149] It was tested whether the melatonin signaling dysfunction in AIS was due to changes affecting the melatonin receptor/Gi protein coupling. First was examined whether the affinity of melatonin for its receptors varies among AIS patients groups. For this purpose, concentration-response curves were generated for melatonin using osteoblasts from control subjects and compared with those of AIS patients of each biological endophenotype. As illustrated in Figure 3A, melatonin caused a concentration-dependent increase of response in all control and AIS groups reaching a plateau at 1 μΜ, with the higher magnitude in control group and lower but at varying degree within the three AIS groups. The order of magnitude of the maximum response from highest to lowest responses was control group, FG3, FG2 and FG1. Despite this apparent discrepancy in the maximum response between groups, the half-maximum response was observed at similar concentrations in control and AIS groups. These observations suggest that the affinity of melatonin receptor for its agonist is preserved in AIS.

EXAMPLE 5

Activity of melatonin receptor in response to different agonists is comparable between control subjects and AIS patients

[00150] Then was examined the possibility of changes in the activity of melatonin receptor by testing three agonists that have different efficacy to activate melatonin receptor. The response produced with their maximum concentration (10 μΜ) in osteoblasts from control subjects and AIS patients of each functional group was compared. Results illustrated in Figure 3B show that the three agonists, melatonin, idomelatonin and phenylmelatonin evoked various degrees of response in osteoblasts from control and AIS subjects. The response to each agonist was lower in all AIS groups compared to the control group. However, the magnitude and the reduction due to AIS in each group reflected the efficacy of agonists, the order of agonist potency being phenylmelatonin > iodomelatonin > melatonin, as previously reported by other investigators using different methods (Nonno et al., 1999). This suggests that the activity of melatonin receptor is comparable between control subjects and AIS patients and underscore that deficit is beyond the melatonin receptor.

EXAMPLE 6

Ability of agonist/receptor complex to activate Gi proteins is decreased in AIS patients vs. in controls

[00151] The possibility that the deficit in melatonin signaling could be related to a decreased ability of agonist/receptor complex to activate Gi proteins was tested. The G protein antagonist GPAnt-2, a hydrophobic peptide, has been shown to inhibit receptor/Gi protein coupling by competing with the activated receptor for interaction with G proteins (Mukai et al., 1992). Results illustrated in Figure 3C show that GPAnt-2 inhibited the response to melatonin stimulation in a concentration-dependent manner in control and AIS functional groups. At maximal concentration, the extent of reduction was similar in all groups, but at submaximal concentrations, the pattern is clearly different. Concentration-response curves of all three AIS functional groups exhibited a left-shift compared to that of the control group, and the IC50 values were significantly decreased among AIS groups when compared to controls. Taking into account that GPAnt-2 competes with receptors on various G proteins, the amount of Gi proteins was further selectively decreased by incubating osteoblasts with increasing concentration of pertussis toxin (PTX). It was found that PTX treatment reduced the cellular response to melatonin in FG2 and FG3 osteoblasts exhibiting a pattern similar to the one obtained with GPAnt-2. In contrast, PTX treatment enhanced the response to melatonin in FG1 osteoblasts at maximal concentration (Figure 3D). These data show that the reduced melatonin signaling in AIS is most likely due to a decrease in the sensibility of Gi proteins for melatonin receptors, and indicate that the melatonin receptors may also interact with Gs in AIS patients classified in FG1.

EXAMPLE 7

AIS subjects have a systemic and generalized impairment of Gi protein-mediated receptor signaling

[00152] To determine if the signaling dysfunction through Gi proteins as measured in AIS osteoblasts was restricted to melatonin receptors, a comparative study was performed with various synthetic compounds activating selectively other receptors coupled to Gi proteins. Five compounds were used including apelin-17, PB554 maleate, lysophosphatidic acid (LPA), UK14304 and somatostatin to activate endogenous APJ, serotonin 5-HTIA, LPAi, alpha2-adrenergic and somatostatin (sst) receptors, respectively. As illustrated in Figure 4, all tested agonists caused a concentration-dependent increase of the cellular response, reaching a plateau at the same concentration in all control and AIS functional groups. In each case, the magnitude of the signaling response was lower in all AIS groups when compared with the control group, but the EC50 values were almost identical in all groups indicating that the affinity of all tested agonists for their respective receptors is not affected in AIS (Figure 4G). Interestingly, inhibition curves of GPAnt-2 (Figure 5) or PTX (Figure 6) generated with any of the five synthetic agonists tested revealed curve patterns similar to those obtained with melatonin. In each case, GPAnt-2 reduced the IC50 values in AIS groups when compared to control group (Figure 5G). Similar responses were also observed when GPAnt-2 was competed with mastoparan-7 (Figure 5F), which directly activates Gi proteins by mimicking agonist-activated receptor (Higashijima et al., 1990). Moreover, response to mastoparan was almost abolished in all AIS and control groups following treatment with high concentrations of PTX (Figure 6F), further pointing to an abnormality at the level of Gi proteins. Collectively, these data strengthen the concept that agonist/receptor interaction is not affected in AIS, and reveal that AIS patients can be functionally stratified with any compounds that activate Gi protein-mediated signaling pathways.

[00153] The analysis was extended to other cell types, namely skeletal myoblasts and peripheral blood mononuclear cells (PBMCs) from the same set of controls and AIS patients. A pattern of response similar to that obtained in osteoblasts for each agonist tested was obtained in these cell types (Figures 7 and 8). Overall, these findings are strongly indicative of a systemic and generalized impairment of Gi protein-mediated receptor signaling.

EXAMPLE 8

Reduction in Gi protein function selectively influences Gs protein function in AIS [00154] Osteoblasts from control and AIS patients were screened for their response to isoproterenol and desmopressin, which activate beta-adrenergic and vasopressin (V2) receptors, respectively. Both receptors mediate signal transduction through Gs proteins. Results illustrated in Figure 9 show that cellular responses initiated by both agonists were significantly enhanced in osteoblasts from AIS patients when compared with control osteoblasts. For each functional group, increased response to Gs stimulation inversely mirrored the reduced response induced after Gi protein stimulation, suggesting a functional imbalance between Gi and Gs proteins. To further illustrate this divergence, values of the responses to melatonin and isoproterenol were reported as differences (Δ) between response to Gi and Gs protein stimulation. As illustrated in Figure 9C, response to Gi stimulation predominated in a concentration-dependent manner in control group (i.e., a Gi/Gs ratio of more than about 1.5). A similar pattern was observed in the FG3 group (i.e., a Gi/Gs ratio of more than about 1.5), while no apparent imbalance was observed in the FG2 group (i.e., a Gi/Gs ratio of between about 0.5 and 1.5). In contrast, the FG1 group exhibited predominance for response to Gs stimulation (i.e., a Gi/Gs ratio of less than about 0.5). These data indicate that Gs protein is functionally affected in AIS according to the aberration degree of Gi protein function, revealing a profile of imbalance between Gi and Gs protein function specific to each AIS group.

[00155] Results presented reveal a relationship between reduced Gi and increased Gs protein functions in AIS. The profile of the functional imbalance between Gi and Gs protein was specific to each AIS group, indicating that AIS patients can be clearly classified with respect to the profile of imbalance between response to Gi and Gs protein stimulation. Such an approach advantageously eliminates the necessity to use control subjects and allows the monitoring patient responses over time.

[00156] The functional status of Gq protein was then studied. Osteoblasts were stimulated with bradykinin and endothelin-1. Both agonists elicited similar responses at various concentrations in osteoblasts derived from control subjects and AIS patients, demonstrating that receptor signaling through Gq protein remains largely intact in AIS (Figures 9D-E). It appears that reduction in Gi protein function in AIS exclusively influences Gs protein function.

EXAMPLE 9

Differences in the degree of response characterizing the three AIS biological endophenotypes are not due to differential expression of Gi proteins

[00157] The three isoforms of Gi proteins, termed Gh, G12 and G13 share the same proprieties and most membranous receptors that interact with Gi proteins are able to initiate signals via each of these isoforms. However, the amplitude of the response depends on the capacity of Gi isoforms to mediate the signal transduction while some Gi isoforms seem more efficient than others.

[00158] It was tested whether the differences in the degree of response characterizing the three AIS biological endophenotypes is due to the differential alteration of Gi proteins isoforms. First was examined whether observed functional changes are due to changes in the expression of G proteins. The qPCR analysis revealed no significant change in expression of any isoform of Gi proteins (Gh, G12 and G13) and Gs protein between control and AIS osteoblasts (Figure 10A). Assuming that PCR-amplification of the different isoforms was equally efficient, it appears that Gh and G12 were the most abundant isoforms of Gi proteins in control and AIS osteoblasts, while the expression level of G13 isoform was less abundant and similar to that of Gs protein. At the protein level, these isoforms have also revealed no difference between control and any AIS group (Figure 10B). These results indicate that the functional changes observed in osteoblasts from AIS patients were unlikely due to aberration in the expression levels of Gi protein isoforms.

EXAMPLE 10

Differential phosphorylation patterns affect Gi protein isoforms in AIS functional groups

[00159] Activity of Gi proteins is acutely regulated by phosphorylation, a process that limits their ability to transduce signals (Casey et al., 1995); (Katada et al., 1985); (Kozasa and Gilman, 1996); (Lounsbury et al., 1991); (Lounsbury et al., 1993); (Morishita et al. 1 ,995); (Morris et al., 1995); (Yatomi et al., 1992). An increased phosphorylation of serine residues of the three Gh, G12 and G13 isoforms of Gi proteins in osteoblasts from AIS patients was previously reported (Moreau et al., 2004). To examine whether the functional disruption in Gi signaling occurring in AIS can be related to the differential patterns of Gi phosphorylated isoforms, Gi isoforms from control subjects and AIS patients from each biological endophenotype were immunoprecipitated and probed with anti-phospho-serine antibody (Figure 11). Compared with control group, only G12 and G13 isoforms were phosphorylated in the FG3 group, while Gh and G12 only were phosphorylated in the FG2 group. However, the three Gh, G12 and G13 isoforms were phosphorylated in FG1 group. These data provide evidence for a relationship between the phosphoprylation pattern of Gi isoforms and the heterogeneous defect of Gi proteins in AIS and are indicative of a difference in the functional status of Gi protein isoforms among AIS groups.

EXAMPLE 11

Differential phosphorylation patterns affect Gi protein isoforms in AIS functional groups [00160] The identity of Gi isoforms responsible for the residual response in each AIS group was tested using a small interference RNA (siRNA) approach to knockdown individually or in combination the expression of Gh , Gi2 G13 and Gs prior to stimulating osteoblasts with melatonin, LPA or somatostatin. Silencing of each gene reduced by 75-85 % the expression of the corresponding mRNA in osteoblasts from control and the three AIS groups (Figure 12E-H). In the control group, the response to any tested agonist was not significantly affected by Gh , G12 G13 siRNA when transfected alone, but was almost abolished when transfected together (Figure 12A). The response to each tested agonist was reduced by at least 75% by silencing G13 alone in FG2 osteoblasts (Figure 12C), and by 90% by silencing Gh alone in FG3 osteoblasts (Figure 12D) confirming that the residual response to Gi stimulation is mediated by G13 and Gh isoforms in FG2 and FG3 groups, respectively. In FG1 osteoblasts, response to each agonist was reduced by 50% following the depletion of all Gi isoforms by siRNA, and was not affected by the knockdown of individual Gi isoforms (Figure 12B). In contrast, the depletion of Gs alone reduced the cellular response to any tested agonist by 50% in the FG1 AIS group, and was devoid of effect in the control, FG2 and FG3 AIS groups. This indicates that the residual response to Gi stimulation in the FG1 functional group is an additive effect of Gi-receptors coupling simultaneously to Gs and Gi proteins.

[00161] The detection of unphosphorylated G13 and Gh isoforms respectively in FG2 and FG3 groups could explain their higher Gi signaling activity when compared to FG1 group. Nevertheless, FG2 osteoblasts exhibit a much weaker residual Gi signaling activity when compared to FG3 osteoblasts, which could be explained by the fact that G13 isoform is less abundant in human osteoblasts as demonstrated in Example 9 (Figure 10). The selective depletion of G13 and Gh isoforms in FG2 and FG3 osteoblasts, respectively almost abolished their cellular responses to three distinct Gi-coupled receptors in a similar manner as demonstrated in Figure 12, further confirming the functional status of G13 and Gh isoforms in these two AIS groups. It is tempting to speculate that the loss of function of other Gi isoforms may be compensated by G13 isoform in FG2 and by Gh in FG3 group, which is consistent with the concept that each Gi isoform can partially rescue Gi signaling (Hurst et al., 2008).

[00162] Without being bound by this hypothesis, these findings, together with results from the experiments with high PTX concentrations, suggest the presence of a compensatory mechanism involving other G proteins in FG1 osteoblasts. Conceptually, it is possible that phosphorylation of all Gi isoforms allows or facilitates the coupling of Gs proteins to Gi-coupled receptors in FG1 osteoblasts. Such possibility was clearly demonstrated by the simultaneous deletion of Gs and all Gi isoforms, which almost abrogated completely the signaling activity in FG1 osteoblasts. On the other hand, the three GPCRs tested did not activate Gs mediated signaling in FG2 and FG3 osteoblasts, which strongly suggests that Gs protein access to these receptors is limited by the presence of G13 and Gh isoforms, respectively, which are not phosphorylated in these groups. Of note, depletion of Gs proteins alone did not abolish the signaling activity in FG1 osteoblasts despite the fact that all three Gi isoforms were phosphorylated suggesting a possible heterogeneity in the number and position of serine residues phosphorylated among AIS functional groups. It is conceivable that phosphorylated Gi proteins in FG1 osteoblasts still exhibit some residual activity as opposed to phosphorylated Gi isoforms in FG2 and FG3 groups.

EXAMPLE 12 Identification of serine/threonine kinases contributing to Gi proteins hypofunctionality in AIS

[00163] In order to identify putative serine/threonine kinases phosphorylating Gi isoforms in AIS, control and AIS osteoblasts were treated with a panel of serine/threonine kinase inhibitors prior to their stimulation with two distinct agonists (LPA and somatostatin). Of note, Gi stimulation induced via LPA or somatostatin receptor activation by their agonists in control osteoblasts was not affected by any kinase inhibitor (Figure 13). In contrast, signaling responses was significantly increased in FG1 osteoblasts by G08963, which inhibits several isoforms of PKC and also by STO-609 acetate, which inhibits three isoforms of calmodulin kinase (CaMK1 , CaMK2, CaMK4), but was unaffected by KN93 that inhibits selectively CaMK2. However, both CaMK inhibitors STO-609 acetate and KN93 increased the signalling response in osteoblasts from FG2 group, while G08963 was devoid of significant effect in this AIS group. Cellular response in FG3 osteoblasts was not improved by inhibition of neither of PKC nor CaMK. In contrast, the inhibition of Casein Kinase 2 (CK2) with D4476 increased response in osteoblasts from FG1 and FG3 groups, but not in FG2 osteoblasts, while the inhibition of PKA with H89 increased the signalling response in all AIS groups.

[00164] Expression analysis has revealed a selective increase in the expression levels of PKCe, PKCn , and CaMKI-δ in FG1 osteoblasts when compared to control group (Figure 14). FG2 and FG3 osteoblasts have exhibited high expression levels of ΡΚΑγ2 only. In contrast, the expression level of CaMK2n1 , a natural CaMK2 inhibitor, was significantly decreased in FG2 osteoblasts, suggesting that the regulatory system of CaMK2 activity is affected in this AIS group (Figure 14). The expression levels of other analysed kinases did not show any significant selective increase or decrease (Figures 15-16) Collectively, these results show that selective functional alteration of Gi protein isoforms in AIS involves distinct kinases.

[00165] The scope of the claims should not be limited by the preferred embodiments set forth in the examples, but should be given the broadest interpretation consistent with the description as a whole.

REFERENCES

1. Akoume, M.-Y., B. Azeddine, et al. (2010). "Cell-based screening test for idiopathic scoliosis using cellular dielectric spectroscopy." Spine 35(13): E601.

2. Anand-Srivastava, M. B. (1989). "Amiloride interacts with guanine nucleotide regulatory proteins and attenuates the hormonal inhibition of adenylate cyclase." J Biol Chem 264(16): 9491 -9496.

3. Anand-Srivastava, M. B., A. K. Srivastava, et al. (1987). "Pertussis toxin attenuates atrial natriuretic factor-mediated inhibition of adenylate cyclase. Involvement of inhibitory guanine nucleotide regulatory protein." J Biol Chem 262(1 1): 4931 -4934.

4. Azeddine, B., K. Letellier, et al. (2007). "Molecular determinants of melatonin signaling dysfunction in adolescent idiopathic scoliosis." Clin Orthop Relat Res 462: 45-52.

5. Blank, R. D., C. L. Raggio, et al. (1999). "A genomic approach to scoliosis pathogenesis." Lupus 8(5):

356-360.

6. Bushfield, M., S. L. Griffiths, et al. (1990). "Diabetes-induced alterations in the expression, functioning and phosphorylation state of the inhibitory guanine nucleotide regulatory protein Gi-2 in hepatocytes." Biochem J 271 (2): 365-372.

7. Bushfield, M., B. E. Lavan, et al. (1991 ). "Okadaic acid identifies a phosphorylation/dephosphorylation cycle controlling the inhibitory guanine-nucleotide-binding regulatory protein Gi2." Biochem J 274 ( Pt 2): 317-321.

8. Casey, J. H., C. J. McLean, et al. (1995). "Driving, glaucoma, and the law. Diabetic patients must also satisfy regulations." BMJ 310(6971): 56.

9. Chen, C. A. and D. R. Manning (2001 ). "Regulation of G proteins by covalent modification." Oncogene

20(13): 1643-1652.

10. Fazal, M. A. and M. Edgar (2006). "Detection of adolescent idiopathic scoliosis." Acta orthopaedica belqica 72(2): 184.

1 1. Gawler, D., G. Milligan, et al. (1987). "Abolition of the expression of inhibitory guanine nucleotide regulatory protein Gi activity in diabetes." Nature 327(61 19): 229-232.

12. Hardeland, R. (2009). "Melatonin: signaling mechanisms of a pleiotropic agent." Biofactors 35(2): 183- 192.

13. Higashijima, T., J. Burnier, et al. (1990). "Regulation of Gi and Go by mastoparan, related amphiphilic peptides, and hydrophobic amines. Mechanism and structural determinants of activity." J Biol Chem 265(24): 14176-14186.

14. Houslay, M. D. and G. Milligan (1997). "Tailoring cAMP-signalling responses through isoform multiplicity." Trends Biochem Sci 22(6): 217-224.

15. Itoh, H., F. Okajima, et al. (1984). "Conversion of adrenergic mechanism from an alpha- to a beta-type during primary culture of rat hepatocytes. Accompanying decreases in the function of the inhibitory guanine nucleotide regulatory component of adenylate cyclase identified as the substrate of islet- activating protein." J Biol Chem 259(24): 15464-15473.

16. Kane, W. J. (1977). "Scoliosis prevalence: a call for a statement of terms." Clin Orthop Relat Res(126):

43-46.

17. Katada, T., A. G. Gilman, et al. (1985). "Protein kinase C phosphorylates the inhibitory guanine- nucleotide-binding regulatory component and apparently suppresses its function in hormonal inhibition of adenylate cyclase." Eur J Biochem 151 (2): 431 37.

18. Kozasa, T. and A. G. Gilman (1996). "Protein kinase C phosphorylates G12 alpha and inhibits its interaction with G beta gamma." J Biol Chem 271 (21 ): 12562-12567.

19. Letellier, K., B. Azeddine, et al. (2008). "Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients." Journal of pineal research 45(4): 383-393.

20. Lonstein, J. (1994). "Adolescent idiopathic scoliosis." The lancet 344(8934): 1407-1412.

21. Lounsbury, K. M., P. J. Casey, et al. (1991 ). "Phosphorylation of Gz in human platelets. Selectivity and site of modification." J Biol Chem 266(32): 22051 -22056. Lounsbury, K. M., B. Schlegel, et al. (1993). "Analysis of Gz alpha by site-directed mutagenesis. Sites and specificity of protein kinase C-dependent phosphorylation." J Biol Chem 268(5): 3494-3498.

McClue, S., E. Selzer, et al. (1992). "Gi3 does not contribute to the inhibition of adenylate cyclase when stimulation of an alpha 2-adrenergic receptor causes activation of both Gi2 and Gi3." Biochemical Journal 284(Pt 2): 565.

Moreau, A., M. Y. Akoume Ndong, et al. (2009). "Molecular and genetic aspects of idiopathic scoliosis. Blood test for idiopathic scoliosis." Orthopade 38(2): 114-116, 1 18-121.

Moreau, A., S. Forget, et al. (2004). "Melatonin signaling dysfunction in adolescent idiopathic scoliosis." Spjne 29(16): 1772-1781.

Morishita, R., H. Nakayama, et al. (1995). "Primary structure of a gamma subunit of G protein, gamma 12, and its phosphorylation by protein kinase C." J Biol Chem 270(49): 29469-29475.

Morris, N. J., P. Young, et al. (1995). "Insulin inhibits the phosphorylation of alpha-Gi-2 in intact hepatocytes." Biochem J 308 ( Pt 2): 693-696.

Mukai, H., E. Munekata, et al. (1992). "G protein antagonists. A novel hydrophobic peptide competes with receptor for G protein binding." J Biol Chem 267(23): 16237-16243.

Murthy, K. S., J. R. Grider, et al. (2000). "Heterologous desensitization of response mediated by selective PKC-dependent phosphorylation of G(i-1) and G(i-2)." Am J Physiol Cell Physiol 279(4): C925- 934.

Negrini, S., S. Minozzi, et al. (2010). "Cochrane Review: Braces for idiopathic scoliosis in adolescents." Evidence-Based Child Health: A Cochrane Review Journal 5(4): 1681 -1720.

Nonno, R., M. Pannacci, et al. (1999). "Ligand efficacy and potency at recombinant human MT2 melatonin receptors: evidence for agonist activity of some mt1 -antagonists." Br J Pharmacol 127(5): 1288-1294.

Riseborough, E. J. and R. Wynne-Davies (1973). "A genetic survey of idiopathic scoliosis in Boston, Massachusetts." J Bone Joint Surg Am 55(5): 974-982.

Roach, J. W. (1999). "Adolescent idiopathic scoliosis." Orthop Clin North Am 30(3): 353-365, vii-viii. Verdonk, E., K. Johnson, et al. (2006). "Cellular dielectric spectroscopy: a label-free comprehensive platform for functional evaluation of endogenous receptors." Assay and drug development technologies 4(5): 609-619.

Weinstein, S. L. (1989). "Adolescent idiopathic scoliosis: prevalence and natural history." Instr Course Lect 38: 115-128.

Wesslau, C. and U. Smith (1992). "The inhibitory GTP-binding protein (Gi) regulates the agonistic property of beta-adreneraic ligands in isolated rat adipocytes. Evidence for a priming effect of cyclic AMP." Biochem J 288 ( Pt 1): 41 -46.

Yatomi, Y., Y. Arata, et al. (1992). "Phosphorylation of the inhibitory guanine-nucleotide-binding protein as a possible mechanism of inhibition by protein kinase C of agonist-induced Ca2+ mobilization in human platelet." Eur J Biochem 205(3): 1003-1009.