Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GOLF BALL AND METHOD OF MAKING SAME
Document Type and Number:
WIPO Patent Application WO/2000/003767
Kind Code:
A1
Abstract:
Two and three piece golf balls having improved rebound characteristics include cores and centers, respectively, that are comprised of polybutadiene rubber and inorganic fillers with specific gravities of about 5.4 or greater. The inorganic fillers may be selected from tungsten, bismuth, copper, bismuth oxide, nickel, cobalt, iron, steel, tin, chromium, zinc, bismuth subcarbonate, cupric oxide, barium tungstate, cuprous oxide or ferrous oxide.

Inventors:
KUTTAPPA SANJAY M
Application Number:
PCT/US1999/016075
Publication Date:
January 27, 2000
Filing Date:
July 16, 1999
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DUNLOP MAXFLI SPORTS CORP (US)
International Classes:
A63B37/00; A63B37/06; (IPC1-7): A63B37/06
Foreign References:
US4863167A1989-09-05
US5935022A1999-08-10
US5340112A1994-08-23
Other References:
See also references of EP 1098682A4
Attorney, Agent or Firm:
Lorusso, Anthony M. (MA, US)
Download PDF:
Claims:
1. A golf ball comprising: a core comprising polybutadiene rubber and an inorganic filler having a specific gravity equal to or greater than about 5.6 ; and, a cover.
2. The golf ball of claim 1 wherein the inorganic filler is selected from the group consisting of tungsten, bismuth, copper, bismuth oxide, nickel, cobalt, iron, steel, tin, chromium, zinc, bismuth subcarbonate, cupric oxide, barium tungstate, cuprous oxide, ferrous oxide and mixtures thereof.
3. The golf ball of claim 1 wherein the core further comprises zinc diacrylate and peroxide.
4. The golf ball of claim 3 wherein the golf ball has a PGA compression of about between 93.2 and 103.6 and a coefficient of restitution of about between 0.703 and 0.706.
5. The golf ball of claim 3 wherein the inorganic filler is tungsten.
6. A golf ball comprising: a center comprising polybutadiene rubber and an inorganic filler having a specific gravity equal to or greater than about 5.6 ; a thread winding layer wherein the thread winding comprises polybutadiene rubber; and, a cover.
7. A golf ball according to claim 6 wherein the inorganic filler is selected from the group consisting of tungsten, bismuth, copper, bismuth oxide, nickel, cobalt, iron, steel, tin, chromium, zinc, bismuth subcarbonate, cupric oxide, barium tungstate, cuprous oxide, ferrous oxide and mixtures thereof.
8. The golf ball of claim 6 wherein the center further comprises zinc diacrylate and peroxide.
9. The golf ball of claim 8 wherein the golf ball has a PGA compression of about between 93.2 and 103.6 and a coefficient of restitution of about between 0.703 and 0.706.
10. The golf ball of claim 8 wherein the inorganic filler is tungsten.
11. A method of increasing the weight of a golf ball core comprising the steps of: providing polybutadiene rubber; mixing an inorganic filler having a specific gravity equal to or greater than about 5.6 with the polybutadiene rubber to form a mixture; and, molding the mixture of polybutadiene rubber and inorganic filler into a golf ball core.
12. The method of claim 11 wherein the inorganic filler mixed with the polybutadiene rubber is selected from the group consisting of tungsten, bismuth, copper, bismuth oxide, nickel, cobalt, iron, steel, tin, chromium, zinc, bismuth subcarbonate, cupric oxide, barium tungstate, cuprous oxide, ferrous oxide and mixtures thereof.
13. The method of claim 11 further comprising the steps of: sheeting the mixture of polybutadiene and inorganic filler into at least one sheet; cooling the at least one sheet; warming the at least one sheet in a warm up mill; stripping the at least one sheet off the warm up mill; extruding the at least one sheet into at least one plug; and, compressing the at least one plug into at least one core in a compression mold.
14. The method of claim 13 including the further step of curing the at least one core in the compression mold.
15. A method of increasing the weight of a golf ball center comprising the steps of: providing polybutadiene rubber; mixing an inorganic filler having a specific gravity equal to or greater than about 5.6 with the polybutadiene rubber to form a mixture; and, molding the mixture of polybutadiene rubber and inorganic filler into a golf ball center.
16. The method of claim 15 wherein the inorganic filler mixed with the polybutadiene rubber is selected from the group consisting of tungsten, bismuth, copper, bismuth oxide, nickel, cobalt, iron, steel, tin, chromium, zinc, bismuth subcarbonate, cupric oxide, barium tungstate, cuprous oxide, ferrous oxide and mixtures thereof.
17. The method of claim 15 further comprising the steps of: sheeting the mixture of polybutadiene and inorganic filler into at least one sheet; cooling the at least one sheet; warming the at least one sheet in a warm up mill; stripping the at least one sheet off the warm up mill; extruding the at least one sheet into at least one plug; and, compressing the at least one plug into at least one center in a compression mold.
18. The method of claim 17 including the further step of curing the at least one center in the compression mold.
19. A method of increasing the weight of a golf ball comprising the steps of: providing polybutadiene rubber; mixing an inorganic filler having a specific gravity equal to or greater than about 5.6 with the polybutadiene rubber to form a mixture; forming the mixture of polybutadiene rubber and inorganic filler into a golf ball core; and, providing a cover around the core.
20. A method of increasing the weight of a golf ball comprising the steps of: providing polybutadiene rubber; mixing an inorganic filler having a specific gravity equal to or greater than about 5.6 with the polybutadiene rubber to form a mixture; forming the mixture of polybutadiene rubber and inorganic filler into a golf ball center; placing a thread winding layer around the center wherein the thread winding comprises polybutadiene rubber; and, providing a cover around the center and thread winding layer. AMENDED CLAIMS [received by the International Bureau on 14 December 1999 (14. 12. 99); original claims 4 and 9 cancelled; original claims 1,2, 3,5, 6 and 20 amended; remaining claims unchanged (3 pages)] 1. A solid twopiece golf ball comprising: a solid core comprising polybutadiene rubber and an inorganic filler having a specific gravity equal to or greater than about 5.6 ; and, a cover.
21. 2 The solid twopiece golf ball of claim 1 wherein the inorganic filler is selected from the group consisting of tungsten, bismuth, copper, bismuth oxide, nickel, cobalt, iron, steel, tin, chromium, zinc, bismuth subcarbonate, cupric oxide, barium tungstate, cuprous oxide, ferrous oxide and mixtures thereof.
22. 3 The solid twopiece golf ball of claim 1 wherein the core further comprises zinc diacrylate and peroxide.
23. 5 The solid twopiece golf ball of claim 3 wherein the inorganic filler is tungsten.
24. 6 A golf ball comprising: a solid center comprising polybutadiene rubber and an inorganic filler having a specific gravity equal to or greater than about 5.6 ; a core layer wherein said core comprises polybutadiene rubber such that said solid center has a higher specific gravity than said core layer ; and, a cover.
25. A golf ball according to claim 6 wherein the inorganic filler is selected from the group consisting of tungsten, bismuth, copper, bismuth oxide, nickel, cobalt, iron, steel, tin, chromium, zinc, bismuth subcarbonate, cupric oxide, barium tungstate, cuprous oxide, ferrous oxide and mixtures thereof.
26. The golf ball of claim 6 wherein the center further comprises zinc diacrylate and peroxide.
27. The golf ball of claim 8 wherein the inorganic filler is tungsten.
28. A method of increasing the weight of a golf ball core comprising the steps of: providing polybutadiene rubber ; mixing an inorganic filler having a specific gravity equal to or greater than about 5.6 with the polybutadiene rubber to form a mixture ; and, molding the mixture of polybutadiene rubber and inorganic filler into a golf ball core.
29. The method of claim 11 wherein the inorganic filler mixed with the polybutadiene rubber is selected from the group consisting of tungsten, bismuth, copper, bismuth oxide, nickel, cobalt, iron, steel, tin, chromium, zinc, bismuth subcarbonate, cupric oxide, barium tungstate, cuprous oxide, ferrous oxide and mixtures thereof.
30. The method of claim 11 further comprising the steps of: sheeting the mixture of polybutadiene and inorganic filler into at least one sheet; cooling the at least one sheet; warming the at least one sheet in a warm up mill ; stripping the at least one sheet off the warm up mill; extruding the at least one sheet into at least one plug; and, compressing the at least one plug into at least one core in a compression 19. A method of increasing the weight of a golf ball comprising the steps of: providing polybutadiene rubber; mixing an inorganic filler having a specific gravity equal to or greater than about 5.6 with the polybutadiene rubber to form a mixture; forming the mixture of polybutadiene rubber and inorganic filler into a golf ball core; and, providing a cover around the core.
31. 20 A method of increasing the weight of a golf ball comprising the steps of: providing polybutadiene rubber; mixing an inorganic filler having a specific gravity equal to or greater than about 5.6 with the polybutadiene rubber to form a mixture ; forming the mixture of polybutadiene rubber and inorganic filler into a golf ball center; placing a core layer around the center wherein the core layer comprises polybutadiene rubber; having the golf ball center possess a higher specific gravity than the core layer, and, providing a cover around the center and the core layer.
Description:
GOLF BALL AND METHOD OF MAKING SAME Cross-Reference to Related Application A claim of benefit is made to U. S. Provisional Application Ser. No.

60/093,229 filed July 17,1999, the contents of which are incorporated herein by reference.

Background of the Invention 1. Field of the Invention The invention relates generally to compositions for golf balls. More specifically, the invention relates to fillers for golf ball centers and cores.

2. Description of the Related Art One of the parameters of golf ball performance that receives great attention is flight distance. Although there are a variety of factors that influence a golf ball's flight distance, perhaps the most important factor relates to the rebound characteristics of the ball which is dictated in large part by the materials used to construct the golf ball.

As is well known in the industry, there are a number of different types of golf balls. The predominant varieties are a two-piece and a three-piece golf ball.

A two piece golf ball is typically constructed with a solid core and a cover. A three-piece ball is typically a thread wound solid center with a cover. Within these two broad categories are numerous variations such a liquid filled centers for three-piece balls. Regardless of the particular golf ball type, all golf balls have rebound characteristics that are dictated by the materials and construction type utilized.

To conform to United States Golf Association ("U. S. G. A.") guidelines and regulations, golf balls have to be constructed to meet specific weight requirements. When a golf ball core or center composition is below specified weight requirements, one of the techniques used to increase weight is to add fillers to the centers and cores of three-piece golf balls and two-piece golf balls, respectively. Conventional fillers used include calcium carbonate (specific gravity of 2. 73), barium sulfate (sp. gr. of 4.3) and zinc oxide (sp. gr. 5. 6).

Although these materials can be effectively used to increase the weight of a golf

ball, the inevitable volume occupied by these materials when incorporated into a center or core results in a reduction in the polymer/rubber content of the center or core. By extending the rubber with fillers or reducing the polymer/rubber content, the coefficient of restitution of the resulting golf ball is reduced which translates into reduced flight distance.

The compression of a golf ball is a measure of the deflection of the golf ball under a load of 200 Ibs. The Professional Golf Association (PGA) measures compression as (0. 180"- deflection) x 100. Typically, the lower the PGA compression the softer the golf ball. The softer golf ball (with a softer core and/or cover) exhibits better feel, click and spin characteristics when compared with a high compression golf ball.

An additional detrimental side effect of high stiffness content is that a high loading of fillers stiffens the rubber compound and increases the compression of the core or center while reducing the resilience properties.

It has now been discovered that the incorporation of high density materials such as tungsten into cores and centers can be used to meet golf ball weight requirements without significantly reducing the coefficient of restitution or increasing the compression of the golf ball produced. In some instances, the opposite effect has been observed.

It is thus an object of the invention to provide a golf ball center or core composition that uses high specific gravity fillers in order to maintain the weight of a conventional golf ball core or center having a lower compression without significantly compromising the resilience characteristics of the golf ball in which such a center or core is incorporated. A further object is to meet the USGA golf ball weight requirements without increasing the golf ball compression.

Summarv of the Invention The invention described herein relates to the addition of high density inorganic powders of metals and oxides that can be used to increase the weight of a center for a two-piece golf ball and the core of a three-piece wound golf bal without significantly compromising the rebound characteristics of the golf ball

produced. The fillers used have a high specific gravity of about 5.4 and higher.

These objects and features of the present invention will be apparent from a review of the drawings and a reading of the following detailed description of the invention.

Brief Description of the Drawings FIG. 1 is a cross section of a three-piece golf ball according to one embodiment of the invention.

FIG. 2 is a cross section of a two-piece golf ball according to one embodiment of the invention.

Detailed Description of the Invention As is well known in the art, fillers can be incorporated into golf ball cores and centers to increase the weight of the resulting golf ball. It has now been discovered that the utilization of high density fillers having specific gravities of about 5.4 or greater can be used to increase the weight of a golf ball center 1 (as shown in FIG. 1), or core 1a (as shown in FIG. 2) without significantly reducing the rebound characteristics of the resulting golf ball which further comprises cover 2.

The following table contains a list of high density inorganic elements that meet the aforementioned criteria. The list is provided by way of illustration and not limitation. The key criteria is that the filler material must have a specific gravity of at least about 5.6.

Table 1 Inorganic Element Specific Gravity Tungsten19. 3 Bismuth 9. 8 Copper 8. 9 Bismuth oxide 8. 9

Nickel8. 9 Cobalt8. 9 Iron/Steel7. 7 Tin 7.3 Chromium7. 2 Zinc7. 1 Bismuth subcarbonate6. 9 Cupric oxide6. 4 Barium tungstate6. 4 Cuprous oxide6. 0 Ferrous oxide 5. 7 In one embodiment, centers or cores incorporating such fillers are prepared by dry mixing polybutadiene rubber with the filler of choice and other rubber vulcanizing ingredients to create the desired blend. Mixing can be accomplished in an internal mixer such as a Banbury mixer or an open mill as is well known in the art. The mixture is then sheeted and allowed to cool for preferably 8 hours minimum.

The sheeted material is then placed in a warm up mill and heated to about between 110°F to 1 60°F. The sheets are then stripped off the mill of desired thickness and width and fed into an extruder. A die of desired geometric shape converts the sheets into extrudate which is cut into plugs of desired weight.

The plugs are then optionally fed into a duster to dust the plugs to prevent the plugs from adhering to each other.

Next, the plugs are placed into compression molds for final forming. For purposes of forming golf ball cores or centers, the plugs are heated under pressure in the molds to preferably at least 290°F as is well known in the art to ensure peroxide activation. The molded cores or centers are maintained in the molds until cured. As is well known in the art, the amount of time needed to

cure the cores and centers is a product of the peroxide activity. The end result is a core or center having the desired diameter.

The following examples are illustrative of the advantages obtains by using high density fillers. The amounts of compound components are specified as being parts per hundred parts by weight of rubber unless specified otherwise.

As used herein, "high cis"shall mean a cis content of 92% or greater. The same specific gravity was maintained for all three compounds to give the same weight after molding of the cores. Only part levels of the weight enhancing filler was varied in the compound.

Example 1 COMPOUND A B C High cis polybutadiene 100 100 100 Zinc diacrylate 29.5 29.5 29.5 Zinc oxide 5 5 5 Zinc stearate 3 3 3 Core regrind 7.5 7.5 7.5 Peroxide 2.125 2.125 2.125 <BR> <BR> <BR> <BR> <BR> Calcium carbonate (2.73) 20. 805 - - <BR> <BR> <BR> <BR> <BR> <BR> Zirconium dioxide (5. 50) - 15. 285 - Tungsten (19.3) - - 12.875 Total 167.930 162.410 160.000 Compound specific gravity 1.139 1.139 1.139 Volume occupied by filler (%) 5.17 1.95 0.48 CORE DATA: Size (inches) 1.54 1.54 1.54 Weight (g) 36.7 36.8 36.7 Compression (PGA) 95.7 89.3 83.0 Coefficient of restitution 0.695 0.697 0.702

BALL DATA: Size (inches) 1.68 1.68 1.68 Weight (g) 45.3 45.2 45.1 Compression (PGA) 103.6 97.3 93.2 Coefficient of restitution 0.703 0.706 0.706 FLIGHT DATA: Driver; carry (yards) 245.5 245.7 246.3 As clearly demonstrated by the test results, the use of heavy weight fillers results in a desirable lower PGA compression and a higher coefficient of restitution relative to a core or center made with a filler having a lower specific gravity. When a filler having a relatively low specific gravity is used, inevitably more filler has to be used to meet the desired weight range for the core or center. The increased amounts of filler results in the reduction of other compound components. It is this reduction that leads to the increase in PGA compression and decrease in coefficient of restitution.

It will be appreciated that the instant specification and claims are set forth by way of illustration and made without departing from the spirit and scope of the present invention. Having thus described my invention, what I claim as new and desire to secure by United States Letters Patent is: