Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GRANTING RESOURCES FOR UPLINK TRANSMISSIONS
Document Type and Number:
WIPO Patent Application WO/2018/060831
Kind Code:
A1
Abstract:
A technique comprising: controlling downlink transmission of an uplink grant for one or more uplink data transmissions by a communication device, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and using said one or more uplink reference signal transmissions of the identified combination to assist the recovery of data from the one or more uplink radio data transmissions by said communication device in the one or more transmission time intervals of the identified combination.

Inventors:
LUNTTILA TIMO (FI)
HUGL KLAUS (AT)
SCHOBER KAROL (FI)
KORHONEN JUHA (FI)
BHAMRI ANKIT (FI)
Application Number:
PCT/IB2017/055808
Publication Date:
April 05, 2018
Filing Date:
September 25, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NOKIA TECHNOLOGIES OY (FI)
NOKIA USA INC (US)
International Classes:
H04W72/14; H04W74/04
Domestic Patent References:
WO2017196250A12017-11-16
WO2017135880A12017-08-10
WO2017078595A12017-05-11
WO2017196250A12017-11-16
WO2017135880A12017-08-10
WO2017078595A12017-05-11
Other References:
NOKIA: "R1 -167018; On requirements of DM-RS design for UL shorter TTI", 3GPP TSG-RAN WG1 MEETING #86, 20160822 - 20160826, 21 August 2016 (2016-08-21), GOTHENBURG, SWEDEN, XP051125669
CATT: "R1-166457; sPUSCH design for LTE short TTI", ; 3GPP TSG-RAN WG1 MEETING #86, 20160822 - 20160826, 21 August 2016 (2016-08-21), GOTHENBURG, SWEDEN, XP051125386
SPREADTRUM COMMUNICATIONS: "Discussion on sPUSCH design for sTTI", 3GPP TSG-RAN WG1 MEETING #86, 20160822 - 20160826, 12 August 2016 (2016-08-12), GOTHENBURG, SWEDEN, XP051140481
ERICSSON: "R1-1706071 ;On UL DMRS position for 2os TT", 3GPP TSG-RAN WG1 MEETING #88BIS, 20170403 - 20170407, 24 March 2017 (2017-03-24), SPOKANE, US, XP051244179
NOKIA: "R1 -167018; On requirements of DM-RS design for UL shorter TTI", 3GPP TSG-RAN WG1 MEETING #86, 20160822 - 20160826, 21 August 2016 (2016-08-21), Gothenburg, Sweden, XP051125669
CATT: "R1-166457; sPUSCH design for LTE short TTI", ; 3GPP TSG-RAN WG1 MEETING #86, 20160822 - 20160826, 21 August 2016 (2016-08-21), Gothenburg, Sweden, XP051125386
"T echnical Specification Group RAN; Evolved Universal Terrestrial Radio Access (E-UTRA); Study on latency reduction techniques for LTE; (Release 14", 3GPP TR 36.881, 13 July 2016 (2016-07-13)
SPREADTRUM COMMUNICATIONS: "Discussion on sPUSCH design for sTTI", 3GPP TSG-RAN WG1 MEETING #86, 20160822 - 20160826, 12 August 2016 (2016-08-12), Gothenburg, Sweden, XP051140481
ERICSSON: "R1-1706071 ;On UL DMRS position for 2os TT", 3GPP TSG-RAN WG1 MEETING #88BIS, 20170403 - 20170407, 24 March 2017 (2017-03-24), Spokane, US, XP051244179
Download PDF:
Claims:
CLAIMS

1. A method comprising: controlling downlink transmission of an uplink grant for one or more uplink data transmissions by a communication device, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and using said one or more uplink reference signal transmissions of the identified combination to assist the recovery of data from the one or more uplink radio data transmissions by said communication device in the one or more transmission time intervals of the identified combination.

2. A method according to claim 1, further comprising: in advance of controlling downlink transmission of said uplink grant, controlling downlink transmission of control information for the communication device indicating use of said set of predetermined combinations for uplink transmissions from the communication device.

3. A method according to claim 2, comprising: controlling downlink transmission of said control information in a transmission time interval longer than a transmission time interval used for said transmission of said uplink grant.

4. A method according to any of claims 1 to 3, wherein the identified combination comprises a combination of two or more uplink transmission time intervals for two or more uplink data transmissions by the communication device, one or more uplink reference signal transmissions.

5. A method according to any of claims 1 to 3, wherein the indicated combination comprises a combination of one uplink transmission time interval for one uplink data transmissions by the communication device, and one or more uplink reference signal transmissions.

6. A method according to any of claims 1 to 5, wherein said set of predetermined combinations include one or more of the following: (a) one or more combinations in which an uplink reference signal occupies the first symbol after a first scheduled transmission time interval, and any additional transmission time intervals follow said uplink reference signal; (b) one or more combinations in which a single uplink reference signal occupies the first scheduled symbol, and one or more transmission time intervals occupy a contiguous set of symbols immediately after the uplink reference signal transmission; and (c) one or more combinations in which uplink reference signal transmissions occupy both the first scheduled symbol and a predetermined symbol.

7. A method according to any preceding claim, wherein the number of uplink reference signal transmissions is smaller than or equal to the number of transmission time intervals.

8. A method according to any preceding claim, wherein said set of predetermined combinations comprises at least one of: (i) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of a sub-frame; and (ii) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of the first half of a sub-frame.

9. A method according to claim 4 or claim 5, wherein said uplink grant indicates at least one of: (i) the number of said one or more uplink transmission time intervals for use by the communication device, (ii) the first symbol of a contiguous set of symbols occupied by the one or more uplink transmission time intervals and the one or more uplink reference signal transmissions, and (iii) the location of the one or more uplink reference signal transmissions within said contiguous set of symbols.

10. A method according to any preceding claim, wherein said one or more reference signals are uplink demodulation reference signals.

11. A method, comprising: recovering an uplink grant from a downlink transmission made by a network node, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and controlling the making of data transmissions in said one or more transmission time intervals of the identified combination.

12. A method according to claim 11, further comprising: in advance of recovering said uplink grant, recovering, from one or more downlink transmissions by the network node, control information for the communication device indicating use of said set of predetermined combinations for uplink transmissions from the communication device.

13. A method according to claim 12, wherein said control information is transmitted in a transmission time interval longer than a transmission time interval used for transmission of said uplink grant.

14. A method according to any of claims 11 to 13, wherein the identified combination comprises two or more transmission time intervals for two or more uplink data transmissions by a

communication device, and one or more uplink reference signal transmissions.

15. A method according to any of claims 11 to 13, wherein the identified combination comprises one transmission time interval for one uplink data transmission by a communication device, and one or more uplink reference signal transmissions.

16. A method according to any of claims 11 to 15, wherein said set of predetermined combinations include one or more of the following: (a) one or more combinations in which an uplink reference signal occupies the first symbol after a first scheduled transmission time interval, and any additional transmission time intervals follow said uplink reference signal; (b) one or more combinations in which a single uplink reference signal occupies the first scheduled symbol, and one or more transmission time intervals occupy a contiguous set of symbols immediately after the uplink reference signal transmission; and (c) one or more combinations in which uplink reference signal transmissions occupy both the first scheduled symbol and a predetermined symbol.

17. A method according to any of claims 11 to 16, wherein the number of uplink reference signal transmissions is smaller than, or equal to, the number of transmission time intervals.

18. A method according to any of claims 11 to 17, wherein said set of predetermined combinations comprises at least one of: (i) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of a sub-frame; and (ii) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of the first half of a sub-frame.

19. A method according to any of claims 11 to 18, wherein said uplink grant indicates at least one of : (i) the number of said uplink transmission time intervals for use by the communication device, (ii) the first symbol of a contiguous set of symbols occupied by the one or more uplink transmission time intervals and the one or more uplink reference signal transmissions, and (iii) the location of the one or more uplink reference signal transmissions within said contiguous set of symbols.

20. A method according to any of claims 11 to 19, wherein said one or more reference signals are uplink demodulation reference signals.

21. An apparatus comprising: a processor and memory including computer program code, wherein the memory and computer program code are configured to, with the processor, cause the apparatus to: control downlink transmission of an uplink grant for one or more uplink data transmissions by a communication device, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and use said one or more uplink reference signal transmissions of the identified combination to assist the recovery of data from the one or more uplink radio data transmissions by said communication device in the one or more transmission time intervals of the identified combination.

22. An apparatus according to claim 21, wherein the memory and computer program code are configured to, with the processor, cause the apparatus to: in advance of controlling downlink transmission of said uplink grant, control downlink transmission of control information for the communication device indicating use of said set of predetermined combinations for uplink transmissions from the communication device.

23. An apparatus according to claim 22, wherein the memory and computer program code are configured to, with the processor, cause the apparatus to: control downlink transmission of said control information in a transmission time interval longer than a transmission time interval used for said transmission of said uplink grant.

24. An apparatus according to any of claims 21 to 23, wherein the identified combination comprises a combination of two or more uplink transmission time intervals for two or more uplink data transmissions by the communication device, one or more uplink reference signal transmissions.

25. An apparatus according to any of claims 21 to 23, wherein the indicated combination comprises a combination of one uplink transmission time interval for one uplink data transmissions by the communication device, and one or more uplink reference signal transmissions.

26. An apparatus according to any of claims 21 to 25, wherein said set of predetermined combinations include one or more of the following: (a) one or more combinations in which an uplink reference signal occupies the first symbol after a first scheduled transmission time interval, and any additional transmission time intervals follow said uplink reference signal; (b) one or more combinations in which a single uplink reference signal occupies the first scheduled symbol, and one or more transmission time intervals occupy a contiguous set of symbols immediately after the uplink reference signal transmission; and (c) one or more combinations in which uplink reference signal transmissions occupy both the first scheduled symbol and a predetermined symbol.

27. An apparatus according to any of claims 21 to 26, wherein the number of uplink reference signal transmissions is smaller than or equal to the number of transmission time intervals.

28. An apparatus according to any of claims 21 to 27, wherein said set of predetermined combinations comprises at least one of: (i) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of a sub-frame; and (ii) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of the first half of a sub-frame.

29. An apparatus according to claim 24 or claim 25, wherein said uplink grant indicates at least one of: (i) the number of said one or more uplink transmission time intervals for use by the communication device, (ii) the first symbol of a contiguous set of symbols occupied by the one or more uplink transmission time intervals and the one or more uplink reference signal transmissions, and (iii) the location of the one or more uplink reference signal transmissions within said contiguous set of symbols.

30. An apparatus according to any one of claims 21 to 29, wherein said one or more reference signals are uplink demodulation reference signals.

31. An apparatus comprising: a processor and memory including computer program code, wherein the memory and computer program code are configured to, with the processor, cause the apparatus to: recover an uplink grant from a downlink transmission made by a network node, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and control the making of data transmissions in said one or more transmission time intervals of the identified combination.

32. An apparatus according to claim 31, wherein the memory and computer program code are configured to, with the processor, cause the apparatus to: in advance of recovering said uplink grant, recover, from one or more downlink transmissions by the network node, control information for the communication device indicating use of said set of predetermined combinations for uplink transmissions from the communication device.

33. An apparatus according to claim 32, wherein said control information is transmitted in a transmission time interval longer than a transmission time interval used for transmission of said uplink grant.

34. An apparatus according to any of claims 31 to 33, wherein the identified combination comprises two or more transmission time intervals for two or more uplink data transmissions by a communication device, and one or more uplink reference signal transmissions.

35. An apparatus according to any of claims 31 to 33, wherein the identified combination comprises one transmission time interval for one uplink data transmission by a communication device, and one or more uplink reference signal transmissions.

36. An apparatus according to any of claims 31 to 35, wherein said set of predetermined combinations include one or more of the following: (a) one or more combinations in which an uplink reference signal occupies the first symbol after a first scheduled transmission time interval, and any additional transmission time intervals follow said uplink reference signal; (b) one or more combinations in which a single uplink reference signal occupies the first scheduled symbol, and one or more transmission time intervals occupy a contiguous set of symbols immediately after the uplink reference signal transmission; and (c) one or more combinations in which uplink reference signal transmissions occupy both the first scheduled symbol and a predetermined symbol.

37. An apparatus according to any of claims 31 to 36, wherein the number of uplink reference signal transmissions is smaller than, or equal to, the number of transmission time intervals.

38. An apparatus according to any of claims 31 to 37, wherein said set of predetermined combinations comprises at least one of: (i) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of a sub-frame; and (ii) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of the first half of a sub-frame.

39. An apparatus according to any of claims 31 to 38, wherein said uplink grant indicates at least one of : (i) the number of said uplink transmission time intervals for use by the communication device, (ii) the first symbol of a contiguous set of symbols occupied by the one or more uplink transmission time intervals and the one or more uplink reference signal transmissions, and (iii) the location of the one or more uplink reference signal transmissions within said contiguous set of symbols.

40. A method according to any of claims 31 to 39, wherein said one or more reference signals are uplink demodulation reference signals.

41. An apparatus comprising: means for controlling downlink transmission of an uplink grant for one or more uplink data transmissions by a communication device, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and means for using said one or more uplink reference signal transmissions of the identified combination to assist the recovery of data from the one or more uplink radio data transmissions by said communication device in the one or more transmission time intervals of the identified combination.

42. An apparatus comprising: means for recovering an uplink grant from a downlink transmission made by a network node, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and means for controlling the making of data transmissions in said one or more transmission time intervals of the identified combination.

43. A computer program product comprising program code means which when loaded into a computer controls the computer to: control downlink transmission of an uplink grant for one or more uplink data transmissions by a communication device, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and use said one or more uplink reference signal transmissions of the identified combination to assist the recovery of data from the one or more uplink radio data transmissions by said communication device in the one or more transmission time intervals of the identified combination.

44. A computer program product comprising program code means which when loaded into a computer controls the computer to: recover an uplink grant from a downlink transmission made by a network node, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and control the making of data transmissions in said one or more transmission time intervals of the identified combination.

Description:
GRANTING RESOURCES FOR UPLINK TRANSMISSIONS

The transfer of data over a wireless interface in a mobile communication system typically involves the transfer of data from a medium access control (MAC) layer to the physical (PHY) layer at the transmitting entity, and vice versa at a receiving entity. The transmission time interval (TTI) indicates how often data can be transferred between the MAC and PHY layers. In conventional wireless communication systems, the TTI is typically always one sub-frame, but there is a proposal to use transmission time intervals shorter than a sub- frame with the aim of reducing latency. In the example of frequency-division multiple access systems using sub-frames comprising 14 OFDM or SC-FDMA symbol time units, one proposal is to use transmission time intervals as short as two or three OFDM symbol time units.

The inventors for the present application have identified the challenges of (i) improving the efficiency of use of radio resources, and/or (ii) facilitating flexible use of uplink time resources, in a communication system involving the use of short transmission time intervals.

There is hereby provided a method comprising: controlling downlink transmission of an uplink grant for one or more uplink data transmissions by a communication device, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and using said one or more uplink reference signal transmissions of the identified combination to assist the recovery of data from the one or more uplink radio data transmissions by said communication device in the one or more transmission time intervals of the identified combination. According to one embodiment, the method further comprises: in advance of controlling downlink transmission of said uplink grant, controlling downlink transmission of control information for the communication device indicating use of said set of predetermined combinations for uplink transmissions from the communication device.

According to one embodiment, the method further comprises: controlling downlink transmission of said control information in a transmission time interval longer than a transmission time interval used for said transmission of said uplink grant. According to one embodiment, the identified combination comprises a combination of two or more uplink transmission time intervals for two or more uplink data transmissions by the communication device, one or more uplink reference signal transmissions.

According to one embodiment, the indicated combination comprises a combination of one uplink transmission time interval for one uplink data transmissions by the communication device, and one or more uplink reference signal transmissions.

According to one embodiment, said set of predetermined combinations include one or more of the following: (a) one or more combinations in which an uplink reference signal occupies the first symbol after a first scheduled transmission time interval, and any additional transmission time intervals follow said uplink reference signal; (b) one or more combinations in which a single uplink reference signal occupies the first scheduled symbol, and one or more transmission time intervals occupy a contiguous set of symbols immediately after the uplink reference signal transmission; and (c) one or more combinations in which uplink reference signal transmissions occupy both the first scheduled symbol and a predetermined symbol. According to one embodiment, the number of uplink reference signal transmissions is smaller than or equal to the number of transmission time intervals.

According to one embodiment, said set of predetermined combinations comprises at least one of: (i) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of a sub- frame; and (ii) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of the first half of a sub-frame.

According to one embodiment, said uplink grant indicates at least one of: (i) the number of said one or more uplink transmission time intervals for use by the communication device, (ii) the first symbol of a contiguous set of symbols occupied by the one or more uplink transmission time intervals and the one or more uplink reference signal transmissions, and (iii) the location of the one or more uplink reference signal transmissions within said contiguous set of symbols.

According to one embodiment, said one or more reference signals are uplink demodulation reference signals. There is also provided a method, comprising: recovering an uplink grant from a downlink transmission made by a network node, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and controlling the making of data transmissions in said one or more transmission time intervals of the identified combination. According to one embodiment, the method further comprises: in advance of recovering said uplink grant: recovering, from one or more downlink transmissions by the network node, control information for the communication device indicating use of said set of predetermined combinations for uplink transmissions from the communication device.

According to one embodiment, said control information is transmitted in a transmission time interval longer than a transmission time interval used for transmission of said uplink grant.

According to one embodiment, the identified combination comprises two or more transmission time intervals for two or more uplink data transmissions by a communication device, and one or more uplink reference signal transmissions.

According to one embodiment, the identified combination comprises one transmission time interval for one uplink data transmission by a communication device, and one or more uplink reference signal transmissions.

According to one embodiment, said set of predetermined combinations include one or more of the following: (a) one or more combinations in which an uplink reference signal occupies the first symbol after a first scheduled transmission time interval, and any additional transmission time intervals follow said uplink reference signal; (b) one or more combinations in which a single uplink reference signal occupies the first scheduled symbol, and one or more transmission time intervals occupy a contiguous set of symbols immediately after the uplink reference signal transmission; and (c) one or more combinations in which uplink reference signal transmissions occupy both the first scheduled symbol and a predetermined symbol.

According to one embodiment, the number of uplink reference signal transmissions is smaller than, or equal to, the number of transmission time intervals. According to one embodiment, said set of predetermined combinations comprises at least one of: (i) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of a sub- frame; and (ii) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of the first half of a sub-frame.

According to one embodiment, said uplink grant indicates at least one of: (i) the number of said uplink transmission time intervals for use by the communication device, (ii) the first symbol of a contiguous set of symbols occupied by the one or more uplink transmission time intervals and the one or more uplink reference signal transmissions, and (iii) the location of the one or more uplink reference signal transmissions within said contiguous set of symbols. According to one embodiment, said one or more reference signals are uplink demodulation reference signals.

There is also hereby provided an apparatus comprising: a processor and memory including computer program code, wherein the memory and computer program code are configured to, with the processor, cause the apparatus to: control downlink transmission of an uplink grant for one or more uplink data transmissions by a communication device, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and use said one or more uplink reference signal transmissions of the identified combination to assist the recovery of data from the one or more uplink radio data transmissions by said communication device in the one or more transmission time intervals of the identified combination. According to one embodiment, the memory and computer program code are further configured to, with the processor, cause the apparatus to: in advance of controlling downlink transmission of said uplink grant, control downlink transmission of control information for the communication device indicating use of said set of predetermined combinations for uplink transmissions from the communication device.

According to one embodiment, the memory and computer program code are further configured to, with the processor, cause the apparatus to: control downlink transmission of said control information in a transmission time interval longer than a transmission time interval used for said transmission of said uplink grant.

According to one embodiment, the identified combination comprises a combination of two or more uplink transmission time intervals for two or more uplink data transmissions by the communication device, one or more uplink reference signal transmissions.

According to one embodiment, the indicated combination comprises a combination of one uplink transmission time interval for one uplink data transmissions by the communication device, and one or more uplink reference signal transmissions.

According to one embodiment, said set of predetermined combinations include one or more of the following: (a) one or more combinations in which an uplink reference signal occupies the first symbol after a first scheduled transmission time interval, and any additional transmission time intervals follow said uplink reference signal; (b) one or more combinations in which a single uplink reference signal occupies the first scheduled symbol, and one or more transmission time intervals occupy a contiguous set of symbols immediately after the uplink reference signal transmission; and (c) one or more combinations in which uplink reference signal transmissions occupy both the first scheduled symbol and a predetermined symbol.

According to one embodiment, the number of uplink reference signal transmissions is smaller than or equal to the number of transmission time intervals.

According to one embodiment, said set of predetermined combinations comprises at least one of: (i) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of a sub- frame; and (ii) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of the first half of a sub-frame.

According to one embodiment, said uplink grant indicates at least one of: (i) the number of said one or more uplink transmission time intervals for use by the communication device, (ii) the first symbol of a contiguous set of symbols occupied by the one or more uplink transmission time intervals and the one or more uplink reference signal transmissions, and (iii) the location of the one or more uplink reference signal transmissions within said contiguous set of symbols. According to one embodiment, said one or more reference signals are uplink demodulation reference signals.

There is also provided an apparatus comprising: a processor and memory including computer program code, wherein the memory and computer program code are configured to, with the processor, cause the apparatus to: A method, comprising: recovering an uplink grant from a downlink transmission made by a network node, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and controlling the making of data transmissions in said one or more transmission time intervals of the identified combination. According to one embodiment, the memory and computer program code are further configured to, with the processor, cause the apparatus to: in advance of recovering said uplink grant: recover, from one or more downlink transmissions by the network node, control information for the communication device indicating use of said set of predetermined combinations for uplink transmissions from the communication device.

According to one embodiment, said control information is transmitted in a transmission time interval longer than a transmission time interval used for transmission of said uplink grant.

According to one embodiment, the identified combination comprises two or more transmission time intervals for two or more uplink data transmissions by a communication device, and one or more uplink reference signal transmissions.

According to one embodiment, the identified combination comprises one transmission time interval for one uplink data transmission by a communication device, and one or more uplink reference signal transmissions.

According to one embodiment, said set of predetermined combinations include one or more of the following: (a) one or more combinations in which an uplink reference signal occupies the first symbol after a first scheduled transmission time interval, and any additional transmission time intervals follow said uplink reference signal; (b) one or more combinations in which a single uplink reference signal occupies the first scheduled symbol, and one or more transmission time intervals occupy a contiguous set of symbols immediately after the uplink reference signal transmission; and (c) one or more combinations in which uplink reference signal transmissions occupy both the first scheduled symbol and a predetermined symbol.

According to one embodiment, the number of uplink reference signal transmissions is smaller than, or equal to, the number of transmission time intervals.

According to one embodiment, said set of predetermined combinations comprises at least one of: (i) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of a sub- frame; and (ii) a subset of combinations in which one or more transmission time intervals and one or more reference signal transmissions occupy a contiguous series of symbols ending with the last symbol of the first half of a sub-frame.

According to one embodiment, said uplink grant indicates at least one of: (i) the number of said uplink transmission time intervals for use by the communication device, (ii) the first symbol of a contiguous set of symbols occupied by the one or more uplink transmission time intervals and the one or more uplink reference signal transmissions, and (iii) the location of the one or more uplink reference signal transmissions within said contiguous set of symbols. According to one embodiment, said one or more reference signals are uplink demodulation reference signals.

There is also provided an apparatus comprising: means for controlling downlink transmission of an uplink grant for one or more uplink data transmissions by a communication device, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and means for using said one or more uplink reference signal transmissions of the identified combination to assist the recovery of data from the one or more uplink radio data transmissions by said communication device in the one or more transmission time intervals of the identified combination.

There is also provided an apparatus comprising: means for recovering an uplink grant from a downlink transmission made by a network node, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and means for controlling the making of data transmissions in said one or more transmission time intervals of the identified combination.

There is also provided a computer program product comprising program code means which when loaded into a computer controls the computer to: control downlink transmission of an uplink grant for one or more uplink data transmissions by a communication device, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and use said one or more uplink reference signal transmissions of the identified combination to assist the recovery of data from the one or more uplink radio data transmissions by said communication device in the one or more transmission time intervals of the identified combination. There is also provided a computer program product comprising program code means which when loaded into a computer controls the computer to: recover an uplink grant from a downlink transmission made by a network node, wherein said uplink grant identifies one combination from a set of predetermined combinations of one or more transmission time intervals and one or more uplink reference signal transmissions, including at least one combination of two or more transmission time intervals and one or more uplink reference signal transmissions; and control the making of data transmissions in said one or more transmission time intervals of the identified combination.

Examples of techniques according to embodiments of the invention are described hereunder in detail, by way of example only, with reference to the accompanying drawings, in which:

Figure 1 illustrates one example of an environment in which embodiments of the present invention may be implemented;

Figure 2 illustrates one example of apparatus for use at the UEs of Figure 1;

Figure 3 illustrates one example of apparatus for use at the eNB of Figure 1;

Figures 4a and 4b illustrate some examples of combinations of short TTIs and reference signals according to an embodiment of the present invention;

Figure 5 illustrates an example of a set of operations at a processor of a network node according to an embodiment of the present invention; and

Figure 6 illustrates an example of a set of operations at a processor of a communication device according to an embodiment of the present invention.

A technique according to an embodiment of the present invention is described in detail below for one example of a communication system based on the division of radio resources into sub-frames each comprising 14 OFDM or SC-FDMA symbol time units, but the same technique is applicable to other communication systems. .

Figure 1 schematically shows an example of four user equipments (UEs) (for example, high complexity devices such as smartphones etc. low complexity devices such as MTC devices or any other type of wireless communication device) 8 located within the coverage area of a cell operated by a wireless network infrastructure node (wireless access point, eNB and the like) 2 belonging to a radio access network. Figure 1 illustrates the example of eNBs as cell nodes; however, it should be understood that instead of eNB there can be any other type of wireless infrastructure nodes.

Furthermore, Figure 1 only shows a small number of eNBs, but a radio access network typically comprises a large number of eNBs each operating one or more cells.

Each eNB 2 of a radio access network is typically connected to one or more core network entities and/or a mobile management entity etc., but these other entities are omitted from Figure 1 for conciseness. Figure 2 shows a schematic view of an example of apparatus for each UE 8. The UE 8 may be used for various tasks such as making and receiving phone calls, receiving and sending data from and to a data network, and experiencing, for example, multimedia or other content. The UE 8 may be any device at least capable of both recovering data/information from radio transmissions made by the eNB 2, and making radio transmissions from which data/information is recoverable by the eNB 2. Non-limiting examples of user equipment (UE) 8 include smartphones, tablets, personal computers, and devices without any user interface, such as devices that are designed for machine type communications (MTC).

With reference to Figure 2, a baseband processor 34, operating in accordance with program code stored at memory 32, controls the generation and transmission of radio signals via radio-frequency (RF) front end 36 and antenna 38. The RF front end 36 may include an analogue transceiver, filters, a duplexer, and antenna switch. Also, the combination of antenna 38, RF front end 36 and baseband processor 34 recovers data/information from radio signals reaching UE 8 from e.g. eNB 2. The UE 8 may also comprise an application processor (not shown) that generates user data for transmission via radio signals, and processes user data recovered from radio signals by baseband processor 34 and stored at memory 32. The application processor and the baseband processor 34 may be implemented as separate chips or combined into a single chip. The memory 32 may be implemented as one or more chips. The memory 32 may include both read-only memory and random-access memory. The above elements may be provided on one or more circuit boards.

The UE may include additional other elements not shown in Figure 2. For example, the UE 8 may include a user interface such as a key pad, voice command recognition device, touch sensitive screen or pad, combinations thereof or the like, via which a user may control operation of the UE 8. The UE 8 may also include a display, a speaker and a microphone. Furthermore, the UE 8 may comprise appropriate connectors (either wired or wireless) to other devices and/or for connecting external accessories (e.g. hands-free equipment) thereto.

Figure 3 shows an example of apparatus for use at the eNB 2 of Figure 1. A broadband processor 20, operating in accordance with program code stored at memory 22, (a) controls the generation and transmission of radio signals via the combination of RF front end 24 and antenna 26; and (b) recovers data from radio signals reaching the eNB from e.g. UEs 8. The RF front end may include an analogue transceiver, filters, a duplexer, and antenna switch. Both the processor 20 and the memory 22 may be implemented as one or more chips. The memory 22 may include both read-only memory and random- access memory. The above elements may be provided on one or more circuit boards. The apparatus also comprises an interface 28 for transferring data to and from one or more other entities such as e.g. core network entities, mobile management entities, and other eNBs in the same access network.

It should be appreciated that the apparatus shown in each of figures 2 and 3 described above may comprise further elements which are not directly involved with the embodiments of the invention described hereafter. Figures 5 and 6 illustrate example of operations at the processors at UE 8 and eNB 2 according to one embodiment. All operations carried out by the UE processor 34 follow program code stored at UE memory 32; and all operations carried out by the eNB processor 20 follow program code stored at eNB memory 22.

The term sTTI is used below to refer to a TTI shorter than a sub-frame, and may, for example, include a TTI having a length of two OFDM or SC-FDMA symbols.

The eNB baseband processor 20 controls the transmission (via the eNB RF front end 24 and eNB antenna 26 and) of control information instructing the UE 8 to operate in reduced latency mode using sTTIs, and to monitor a search space for a downlink sTTI including a multi-sTTI UL grant for the UE (STEP 500 of Figure 5). This control information may, for example, be included in a radio resource configuration (RRC) message sent on a physical downlink shared channel (PDSCH) using a short TTI, or be transmitted on a physical downlink control channel using a 14-OFDM symbol TTI. The UE baseband processor 34 recovers control information for the UE 8 from radio transmissions made by the eNB 2 and received at the UE baseband processor 34 via UE antenna 38 and UE RF front end 36 (STEP 600 of Figure 6). The UE baseband processor 34 detects in the recovered control information the instruction for UE 8 to operate in reduced latency mode (STEP 602), and the UE baseband processor 34 configures itself accordingly. The control information from the eNB 2 may include e.g. information about a search space to monitor for a DL sTTI including a multi-sTTI UL grant, and information about use of new data indicators (NDI) and redundancy version (RV) indicators (discussed below) in multi- sTTI UL grants.

When there is data to send from the UE 8 to the network, the eNB baseband processor 20 controls the transmission (via the eNB RF front end 24 and eNB antenna 26) of a UL grant message indicating one combination of a predetermined set of combinations of (i) one or more UL sTTIs for UE 8 to make data transmissions and (ii) a timing for one or more uplink demodulation reference signals (DMRS) to assist the eNB 2 in recovering data from data transmissions made by the UE 8 in the UL sTTIs (STEP 502 of Figure 5); wherein the predetermined set of combinations includes at least one combination comprising two or more UL sTTIs and one or more DMRS. In one example, the eNB baseband processor 20 controls the making (via the eNB RF front end 24 and eNB antenna 26), in the designated search space, of a single downlink control channel transmission (e.g. a single UL grant message) indicating one of the combinations of UL sTTIs and DMRS shown in Figures 4(a) and 4(b). In Figures 4a and 4b, SC-FDMA symbols labelled "D" designate data symbols and SC-FDMA symbols labelled "R" designate reference signals. These combinations include: (1) a single UL sTTI with single DMRS; (2) a predetermined number of two or more consecutive UL sTTIs, such as e.g. two or three UL sTTIs, and a single DMRS; (3) a combination of two or more UL sTTIs and one or more DMRS filling all the SC-FDMA symbols between a first scheduled symbol and the end of the sub- frame containing the first scheduled SC-FDMA symbol, or the end of the first slot of the sub-frame immediately after the sub-frame containing the first SC-FDMA OFDM symbol.

In some combinations (designated in Figure 4a as "Alt A" combinations), the DMRS occupies the first SC-FDMA symbol after the first scheduled UL sTTI for the UE 8, and any additional UL sTTIs for the UE follow the DMRS. This is the optimal option for providing a good channel estimate for recovering data from any UL sTTIs after the DMRS re -using the same single DMRS. In other combinations (designated in Figure 4a as "Alt B" combinations), a single DMRS occupies the first scheduled SC- FDMA symbol for the UE 8, and all the UL sTTIs for the UE 8 occupy a contiguous set of SC-FDMA symbols immediately after the DRMS. This is the optimal option for guaranteeing decoding latency to be the same for all scheduled UL sTTIs for the UE 8. In one example, the multi-sTTI grant message transmitted by the eNB 2 includes an additional 5-bits. As shown in the table below, a first 2 bits of the additional 5 bits indicate whether the uplink resources scheduled for uplink data transmissions by the UE 8 comprise (a) a set of one, two or three 2-symbol UL sTTIs that occupy, together with an associated DMRS, a contiguous set of SC-FDMA symbols beginning at zero, one, two or three SC-FDMA symbols after the earliest possible UL transmission start (e.g. eight SC-FDMA symbols after the DL OFDM symbol including the multi-sTTI UL grant message in the example of Figure 4a) -, or (b) one of 8 predetermined combinations of one or more 2-symbol UL sTTIs and DMRS, wherein each predetermined combination occupies a contiguous set of SC- FDMA symbols ending with an SC-FDMA symbol at the end of a sub-frame or the end of the first half (first slot) of a sub-frame.

If these first two additional bits indicate option (a) above, the 3 and 4 bits of the 5 additional bits indicate the index of the SC-FDMA symbol at which the set of UL sTTIs and DMRS begin relative to the first possible UL transmission opportunity based on the timing of the Multi-sTTI UL grant transmission (e.g. eight symbols after the DL OFDM symbol including the multi-sTTI UL grant message in the example of Figure 4a); and the 5 th bit of the additional 2 bits indicates one of two alternative timing positions for a single DMRS for use by the eNB 2 in recovering data from radio transmissions made in the one or more 2-symbol UL sTTIs identified in the UL grant. In other words, the 1 st , 2 nd and 5 th bits of the additional five bits indicate one combination of a set of predetermined combinations of sTTI and DMRS, and the 3 rd and 4 th bits of the additional 5 bits indicate a starting timing for the combination of sTTI and DMRS indicated by the 1 st , 2 nd and 5 th bits.

On the other hand, if the first two additional bits indicate option (b) above, the next 3 bits of the additional five bits indicate one of the eight different combinations of 2-symbol UL sTTIs and DMRS. In the example illustrated in Figure 4(b), each of the eight different combinations comprises DMRS occupying the SC-FFDMA symbol before the first of the 2-symbol UL sTTI scheduled for the UE 8 and/or a predetermined position (i.e. SC-FDMA symbol #3, or SC-FDMA symbol #10, depending on whether the combination of UL sTTIs and DRMS ends at the end of a sub-frame or at the end of the first half (first slot) of a sub-frame). In this way, the additional five bits in the multi-sTTI UL grant message provide a joint indication of the starting point of the UL transmission, the number of scheduling UL sTTIs and the reference signal structure.

One alternative example is as follows. If the 2-bit Scheduled SF field is set to "11", i.e. option (b) above, information about which of the 8 predetermined alternative combinations of UL sTTI and DMRS to use by the UE 8 is provided by the scheduling instance (i.e. the OFDM symbol index of the DL sTTI including the multi-sTTI UL grant message). The OFDM symbol index of the DL sTTI including the multi-sTTI UL grant message indicates the selection of four predetermined combinations from the total of eight predetermined combinations, e.g. whether the configuration is one ending on the slot boundary or one ending on the subframe boundary, and a further two bits are sufficient to indicate the selected combination from these 4 predetermined combinations. This alternative example releases one bit (from the additional five bits) in the multi-sTTI UL grant message for other control information, such as e.g. RV indicator when more than three UL sTTIs are scheduled by one multi-sTTI UL grant message. Regarding the inclusion of NDI and RV information in the multi-sTTI UL grant message: a first option is to further increase the size of the multi-sTTI UL grant message to include sTTI-specific NDI and RV for each scheduled sTTI indicated in the multi-sTTI UL grant message. A second option is to explicitly indicate NDI and RV in the multi-sTTI UL grant message for only the first n TTIs (e.g. three sTTIs) of all the sTTIs scheduled by the multi-sTTI UL grant message, and to configure the UE baseband processor 34 to assume new data transmission and RVO for any additional one or more sTTIs scheduled by the multi-sTTI UL grant message. The UE baseband processor 34 could be pre-configured for either of these options, or the eNB baseband processor 20 could control the transmission of control information to dynamically configure the UE baseband processor 34 for either of these two options.

When encoding the multi-sTTI UL grant message (including the 5 additional bits), the eNB baseband processor 20 attaches a CRC that is scrambled with an identifier for the UE 8 for which the message is intended. The UE baseband processor 34 searches in radio transmissions received via UE antenna 38 and UE RF front end 36 in predetermined search spaces, or search spaces indicated in control information transmitted by the eNB 2, for a DL sTTI including a multi-sTTI UL grant message that it is able to decode using its UE identifier (e.g. UE radio network temporary identifier (UE-RNTI)) (STEP 604 of Figure 6). The UE baseband processor 34 then controls the making of UL data and DMRS transmissions via the UE RF front end 36 and UE antenna 38, based on the information included in the multi-sTTI UL grant message including the above-mentioned 5 additional bits (STEP 606 of Figure 6).

The eNB baseband processor 20 recovers data from radio transmissions detected via the eNB antenna 26 and eNB RF front end 24 in the UL sTTIs indicated in the multi-sTTI UL grant message transmitted by the eNB 2, with assistance from the DMRS transmission(s) detected via the eNB antenna 26 and eNB RF front end 24 in the positions (OFDM symbols) indicated in the multi-sTTI UL grant message transmitted by the eNB 2 (STEP 504 of Figure 5). The example described in detail above can provide the following advantages when multiple UL sTTIs are assigned to a UE: (i) a reduction in DL control signalling overhead; (ii) a reduction in UL DMRS overhead; and (iii) robust operation (transmission of necessary DMRS) even in the event of a DL control signalling (short PDCCH) error. In addition, the scheduling of more than one UL sTTI in a single multi- sTTI UL grant message in a DL sTTI can also facilitate the scheduling of sTTI in uplink time resources that might otherwise be unavailable when scheduling a single sTTI by a multi-sTTI UL grant message based on the OFDM symbol index of the DL sTTI including the multi-sTTI UL grant message, because of variations in the number of OFDM symbols assigned to legacy PDCCH at the start of a sub-frame.

The example described above involves the use of 2-symbol TTIs, but the same kind of technique is also equally applicable to the use of short TTIs of different lengths, and/or mixtures of short TTIs of different lengths. In one example, the multi-sTTI UL grant message may be based on a DCI Format 0 message.

Appropriately adapted computer program code product may be used for implementing the embodiments, when loaded to a computer. The program code product for providing the operation may be stored on and provided by means of a carrier medium such as a carrier disc, card or tape. A possibility is to download the program code product via a data network. Implementation may be provided with appropriate software in a server.

Embodiments of the invention may be practiced in various components such as integrated circuit modules. The design of integrated circuits is by and large a highly automated process. Complex and powerful software tools are available for converting a logic level design into a semiconductor circuit design ready to be etched and formed on a semiconductor substrate.

Programs, such as those provided by Synopsys, Inc. of Mountain View, California and Cadence Design, of San Jose, California automatically route conductors and locate components on a semiconductor chip using well established rules of design as well as libraries of pre stored design modules. Once the design for a semiconductor circuit has been completed, the resultant design, in a standardized electronic format (e.g., Opus, GDSII, or the like) may be transmitted to a semiconductor fabrication facility or "fab" for fabrication. In addition to the modifications explicitly mentioned above, it will be evident to a person skilled in the art that various other modifications of the described embodiment may be made within the scope of the invention.