Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GRINDING TOOL AND METHOD FOR PRODUCING SAME
Document Type and Number:
WIPO Patent Application WO/2013/078487
Kind Code:
A1
Abstract:
The invention relates to a grinding tool (1), in particular a cutting disc, comprising a matrix (2), in particular a sintered metal matrix, and diamonds (3) embedded in the matrix (2), wherein at least the majority of the diamonds (3) are each assigned at least one wear-promoting particle (4) and/or at least one wear-inhibiting particle (5), wherein the at least one wear-promoting particle (4) and the at least one wear-inhibiting particle (5) are likewise embedded in the matrix (2).

Inventors:
EGGER FRANZ (AT)
Application Number:
PCT/AT2012/000299
Publication Date:
June 06, 2013
Filing Date:
November 28, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SWAROVSKI TYROLIT SCHLEIF (AT)
International Classes:
B24D3/34; B23D61/18; B24D3/06; B24D5/12; B24D18/00
Domestic Patent References:
WO2010031089A12010-03-25
Foreign References:
EP1297928A12003-04-02
GB1374513A1974-11-20
FR2149833A51973-03-30
US6193770B12001-02-27
Attorney, Agent or Firm:
HOFINGER, Stephan et al. (AT)
Download PDF:
Claims:
Patentansprüche:

1. Schleifwerkzeug (1), insbesondere Trennscheibe, mit einer Matrix (2), insbesondere mit einer gesinterten Metallmatrix, und in die Matrix (2) eingebetteten Diamanten (3), dadurch gekennzeichnet, dass wenigstens der Mehrzahl der Diamanten (3) jeweils wenigstens ein verschleißfördendes Partikel (4) und/oder wenigstens ein verschleißhemmendes Partikel (5) zugeordnet ist, wobei das wenigstens eine verschleißfördende Partikel (4) bzw. das wenigstens eine verschleißhemmende Partikel (5) ebenfalls in die Matrix (2) eingebettet ist.

2. Schleifwerkzeug (1) nach Anspruch 1 , wobei das Schleifwerkzeug (1) eine bevorzugte Schleifrichtung (D) aufweist, dadurch gekennzeichnet, dass jeweils das wenigstens eine verschleißfördernde Partikel (4) in Schleifrichtung (D) vor dem Diamanten (3), welchem es zugeordnet ist, in die Matrix (2) eingebettet ist.

3. Schleifwerkzeug (1) nach Anspruch 1 oder 2, wobei das Schleifwerkzeug (1) eine bevorzugte Schleifrichtung (D) aufweist, dadurch gekennzeichnet, dass jeweils das wenigstens eine verschleißhemmende Partikel (5) in Schleifrichtung (D) hinter dem Diamanten (3), welchem es zugeordnet ist, in die Matrix (2) eingebettet ist.

4. Schleifwerkzeug (1) nach einem der Ansprüche 1 bis 3, wobei das Schleifwerkzeug (1) eine Schleifkontaktfläche (S) aufweist, welche dem im Gebrauchszustand zu schleifenden Gegenstand zugewandt ist, dadurch gekennzeichnet, dass jeweils das wenigstens eine verschleißfördernde Partikel (4) gegenüber dem Diamanten (3), welchem es zugeordnet ist, einen kleineren Abstand (Af) zur Schleifkontaktfläche (S) aufweist.

5. Schleifwerkzeug (1) nach einem der Ansprüche 1 bis 4, wobei das Schleifwerkzeug (1) eine Schleifkontaktfläche (S) aufweist, welche dem im Gebrauchszustand zu schleifenden Gegenstand zugewandt ist, dadurch gekennzeichnet, dass jeweils das wenigstens eine verschleißhemmende Partikel (5) gegenüber dem Diamanten (3), welchem es zugeordnet ist, einen größeren Abstand (Ah) zur Schleifkontaktfläche (S) aufweist.

6. Schleifwerkzeug (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das wenigstens eine verschleißfördernde Partikel (4) zumindest teilweise, vorzugsweise ganz, aus vorgesintertem Granulat, vorzugsweise aus einer Bindephase und eingelagertem Molybdändisulfid und/oder Graphitpulver, besteht.

7. Schleifwerkzeug (1) nach Anspruch 6, dadurch gekennzeichnet, dass die Bindephase zumindest teilweise, vorzugsweise ganz, aus Kupfer, Cobalt, Eisen, Bronze oder Nickel besteht.

8. Schleifwerkzeug (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das wenigstens eine verschleißhemmende Partikel (5) zumindest teilweise, vorzugsweise ganz, aus Hartmetall-Grit, Korund, Siliciumcarbid und/oder Bornitrid besteht.

9. Schleifwerkzeug (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das wenigstens eine verschleißfördernde Partikel (4) und/oder das wenigstens eine verschleißhemmende Partikel (5) eine Korngröße (Kf> Kh) zwischen 250 pm und 600 pm aufweist. 0. Schleifwerkzeug (1) nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das Schleifwerkzeug (1) wenigstens ein Schleifsegment (6) umfasst, wobei das wenigstens eine Schleifsegment (6) an wenigstens einem Trägerkörper (7), vorzugsweise aus Stahl, angeordnet ist.

11.Verfahren zur Herstellung eines Schleifwerkzeugs (1) nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass in einem ersten Verfahrensschritt (i) eine Matrixschicht (2') aus einem pulverförmigen, sinterbaren Material gebildet wird, in einem zweiten Verfahrensschritt (ii) Diamanten (3) in einem vorbestimmten Setzmuster auf die Matrixschicht (2') gesetzt werden, in einem dritten Verfahrensschritt (iii) jeweils wenigstens ein verschleißfördendes Partikel (4) und/oder wenigstens ein verschleißhemmendes Partikel (5) in einem vorbestimmten Abstand relativ zu wenigstens der Mehrzahl der Diamanten (3) auf die Matrixschicht (2') gesetzt wird, in einem vierten Verfahrensschritt (iv) die mit den Diamanten (3) und dem jeweils wenigstens einen verschleißfördenden Partikel (4) bzw. dem jeweils wenigstens einen verschleißhemmenden Partikel (5) versehene Matrixschicht (2') verpresst wird, und in einem abschließenden Verfahrensschritt (v) ein Sinterungsprozess durchgeführt wird.

12. Verfahren nach Anspruch 11 , dadurch gekennzeichnet, dass vor dem abschließenden Verfahrensschritt (v) solange nacheinander weitere Matrixschichten (2') aufgetragen und jeweils der zweite, dritte und vierte Verfahrensschritt (ii, iii, iv) wiederholt werden, bis eine vorbestimmte Breite (b) erreicht ist.

13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass vor dem zweiten Verfahrensschritt (ii) Ausnehmungen (8, 9) zur Aufnahme der Diamanten (3) und/oder des jeweils wenigstens einen verschleißfördenden Partikels (4) bzw. des jeweils wenigstens einen verschleißhemmenden Partikels (5) in der Matrixschicht (2') gebildet werden.

14. Verfahren nach einem der Ansprüche 11 bis 13, dadurch gekennzeichnet, dass zumindest der zweite und dritte Verfahrensschritt (ii, iii) gleichzeitig durchgeführt werden.

Description:
Schleifwerkzeug sowie Verfahren zur Herstellung desselben

Die Erfindung betrifft ein Schleifwerkzeug, insbesondere eine Trennscheibe, mit einer Matrix, insbesondere mit einer gesinterten Metallmatrix, und in die Matrix eingebetteten Diamanten. Weiters soll ein Verfahren zur Herstellung des erfindungsgemäßen Schleifwerkzeugs angegeben werden.

Derartige Schleifwerkzeuge zählen zum Stand der Technik und werden beispielsweise in der AT 506 578 B1 beschrieben. Die Schleifwirkung dieser Werkzeuge beruht darauf, dass die Diamanten ein Stück aus der Matrix herausragen und in Kontakt mit dem zu schleifenden Gegenstand stehen.

Die Schleifwirkung kann im Wesentlichen durch zwei Effekte nachteilig beeinträchtigt werden: Zum einen kann es zu einem vorzeitigen Herausbrechen der Diamanten aus der Matrix kommen. Zum anderen wurde der Effekt beobachtet, dass sich die Bereiche - in Schleifrichtung gesehen - vor den Diamanten während des Schleifprozesses„zusetzen" und dadurch die Eingriffsmöglichkeit der Diamanten verloren geht.

Aufgabe der vorliegenden Erfindung ist es, diese Nachteile zu vermeiden und ein gegenüber dem Stand der Technik verbessertes Schleifwerkzeug der eingangs erwähnten Art, sowie ein Verfahren zur Herstellung desselben anzugeben, wobei sich das erfindungsgemäße Schleifwerkzeug insbesondere durch eine verbesserte Schleifwirkung und eine erhöhte Lebensdauer auszeichnet.

Diese Aufgabe wird erfindungsgemäß durch die Merkmale der beiden unabhängigen Ansprüche 1 bzw. 11 gelöst.

Es ist also erfindungsgemäß vorgesehen, dass wenigstens der Mehrzahl der Diamanten jeweils wenigstens ein verschleißförderndes Partikel und/oder wenigstens ein verschleißhemmendes Partikel zugeordnet ist, wobei das wenigstens eine verschleißfördernde Partikel bzw. das wenigstens eine verschleißhemmende Partikel ebenfalls in die Matrix eingebettet ist. Weist das Schleifwerkzeug eine bevorzugte Schleifrichtung auf, so ist es vorteilhaft, wenn jeweils das wenigstens eine verschleißfördernde Partikel in Schleifrichtung vor dem Diamanten, welchem des zugeordnet ist, in die Matrix eingebettet ist, bzw. wenn jeweils das wenigstens eine verschleißhemmende Partikel in Schleifrichtung hinter dem Diamanten, welchem es zugeordnet ist, in die Matrix eingebettet ist. Das wenigstens eine verschleißfördernde Partikel sorgt dann nämlich jeweils dafür, dass der Bereich der Bindung des Diamanten in der Matrix - in Schleifrichtung des Schleifwerkzeugs gesehen - vor dem Diamanten ausreichend verschleißt und so die Eingriffsmöglichkeit des Diamanten erhalten bleibt. Umgekehrt bewirkt jeweils das wenigstens eine verschleißhemmende Partikel, dass der Verschleiß des - in Schleifrichtung des Schleifwerkzeugs gesehen - hinteren Bereichs der Bindung des Diamanten in der Matrix reduziert und dadurch ein vorzeitiges Herausbrechen des Diamanten aus der Matrix verhindern wird.

Die beschriebene Wirkung des jeweils wenigstens einen verschleißfördernden Partikels bzw. des jeweils wenigstens einen verschleißhemmenden Partikels kann darüber hinaus auch noch dadurch erhöht werden, dass jeweils das wenigstens eine verschleißfördernde Partikel gegenüber dem Diamanten, welchem es zugeordnet ist, einen kleineren Abstand zur Schleifkontaktfläche des Schleifwerkzeugs aufweist, bzw. jeweils das wenigstens eine verschleißhemmende Partikel gegenüber dem Diamanten, welchem es zugeordnet ist, einen größeren Abstand zur Schleifkontaktfläche aufweist. Auf diese Weise tritt bei der während des Schleifprozesses stattfindenden Abtragung des Schleifwerkzeugs zunächst jeweils das wenigstens eine verschleißfördernde Partikel in Kontakt mit dem zu schleifenden Gegenstand, bricht dadurch heraus und gibt den etwas unterhalb angeordneten Diamanten frei. Ist diesem Diamanten zusätzlich auch noch ein verschleißhemmendes Partikel zugeordnet, das etwas unterhalb von dem Diamanten angeordnet ist, so bewirkt dieses verschleißhemmende Partikel eine Stabilisierung der Bindung des Diamanten in der Matrix.

Gemäß einem bevorzugten Ausführungsbeispiel kann es vorgesehen sein, dass das wenigstens eine verschleißfördernde Partikel zumindest teilweise, vorzugsweise ganz, aus vorgesintertem Granulat, vorzugsweise aus einer Bindephase und eingelagertem Mölybdändisulfid und/oder Graphitpulver, besteht. Dabei kann die Bindephase zumindest teilweise, vorzugsweise ganz, aus Kupfer, Cobalt, Eisen, Bronze oder Nickel bestehen. In alternativen Ausführungsformen besteht das wenigstens eine verschleißfördernde Partikel zumindest teilweise, vorzugsweise ganz, aus Glaskugeln, mineralischen Granulaten (Keramiken bzw. Keramikbruch) oder mineralischem Bruch (z.B. Speckstein, Kalkstein, Schamotte, Silikate, Karbonate, Nitride, Sulfide).

Das wenigstens eine verschleißhemmende Partikel besteht bevorzugt zumindest teilweise, vorzugsweise ganz, aus Hartmetall-Grit, Korund, Siliciumcarbid und/oder Bornitrid.

Des Weiteren hat es sich als vorteilhaft herausgestellt, wenn das wenigstens eine verschleißfördernde Partikel und/oder das wenigstens eine verschleißhemmende Partikel eine Korngröße zwischen 250 pm und 600 pm aufweist. Sie ist damit etwas kleiner als die bei den Diamanten bevorzugt verwendete Korngröße von 350 pm bis 700 pm.

Ferner wird vorgeschlagen, dass das Schleifwerkzeug wenigstens ein Schleifsegment umfasst, wobei das wenigstens eine Schleifsegment an wenigstens einem Trägerkörper, vorzugsweise aus Stahl, angeordnet ist. Dabei kann das wenigstens eine Schleifsegment an den wenigstens einen Trägerkörper z.B. angeschweißt oder angelötet sein.

Schutz wird auch begehrt für ein Verfahren zur Herstellung des erfindungsgemäßen Schleifwerkzeugs, wobei das Verfahren dadurch gekennzeichnet ist, dass

- in einem ersten Verfahrensschritt eine Matrixschicht aus einem pulverförmigen, sinterbaren Material gebildet wird,

- in einem zweiten Verfahrensschritt Diamanten in einem vorbestimmten Setzmuster auf die Matrixschicht gesetzt werden,

- in einem dritten Verfahrensschritt jeweils wenigstens ein verschleißförderndes Partikel und/oder wenigstens ein verschleißhemmendes Partikel in einem vorbestimmten Abstand relativ zu wenigstens der Mehrzahl der Diamanten auf die Matrixschicht gesetzt wird,

- in einem vierten Verfahrensschritt die mit den Diamanten und dem jeweils wenigstens einen verschleißfördernden Partikel bzw. dem jeweils wenigstens einen verschleißhemmenden Partikel versehene Matrixschicht verpresst wird, und - in einem abschließenden Verfahrensschritt ein Sinterungsprozess durchgeführt wird.

In einer vorteilhaften Ausführungsform des Verfahrens werden vor dem abschließenden Verfahrensschritt solange nacheinander weitere Matrixschichten aufgetragen und jeweils der zweite, dritte und vierte Verfahrensschritt wiederholt, bis eine vorbestimmte Breite erreicht ist.

Weiterhin kann es vorgesehen sein, dass vor dem zweiten Verfahrensschritt Ausnehmungen zur Aufnahme der Diamanten und/oder des jeweils wenigstens einen verschleißfördernden Partikels bzw. des jeweils wenigstens einen verschleißhemmenden Partikels in der Matrixschicht gebildet werden.

Und schließlich hat es sich im Hinblick auf kurze Prozesszeiten als vorteilhaft herausgestellt, wenn zumindest der zweite und dritte Verfahrensschritt gleichzeitig durchgeführt werden.

Weitere Einzelheiten und Vorteile der vorliegenden Erfindung werden anhand der Figurenbeschreibung unter Bezugnahme auf die in den Zeichnungen dargestellten Ausführungsbeispiele im Folgenden näher erläutert. Darin zeigen:

Fig. 1 eine schematisch dargestellte Draufsicht eines bevorzugten

Ausführungsbeispiels des erfindungsgemäßes Schleifwerkzeugs in

Form einer Trennscheibe,

Fig. 2a eine schematisch dargestellte Draufsicht eines ersten bevorzugten

Ausführungsbeispiels eines Schleifsegments,

Fig. 2b eine schematisch dargestellte perspektivische Ansicht des ersten

bevorzugten Ausführungsbeispiels des Schleifsegments aus Fig. 2a, Fig. 3 eine schematisch dargestellte Draufsicht eines zweiten bevorzugten

Ausführungsbeispiels eines Schleifsegments,

Fig. 4 eine schematisch dargestellte Draufsicht eines dritten bevorzugten

Ausführungsbeispiels eines Schleifsegments, Fig. 5 eine schematisch dargestellte Draufsicht eines vierten bevorzugten

Ausführungsbeispiels eines Schleifsegments,

Fig. 6 ein schematisch dargestelltes Flussdiagramm zur Illustration einer

bevorzugten Ausführungsform des Verfahren zur Herstellung des erfindungsgemäßen Schleifwerkzeugs, und

Fig. 7a - 7d eine schematisch dargestellte Abfolge zweier Verfahrensschritte, bei

denen zuerst die Diamanten und anschließend verschleißfördernde

Partikel auf eine Matrixschicht gesetzt werden.

Fig. 1 zeigt ein bevorzugtes Ausführungsbeispiel eines erfindungsgemäßen Schleifwerkzeugs 1 in Form einer Trennscheibe. Hierbei handelt es sich im Allgemeinen um eine kreisförmige, flache Scheibe, die meist als Bestandteil eines Winkel- oder Trennschleifers zur Werkstückbearbeitung dient. Daneben werden Trennscheiben auch in Wand- und Fugenschneidmaschinen verwendet. Man unterscheidet zwischen verschiedenen Arten von Trennscheiben, wobei es sich im dargestellten Fall um eine sogenannte Diamanttrennscheibe handelt, die insbesondere für die Bearbeitung von Naturstein, Beton oder Asphalt verwendet wird. Im Einzelnen besteht die Trennscheibe 1 aus einem Trägerkörper 7 in Form einer Stahlscheibe (Trennscheibenblatt), an dessen äußeren Umfang eine Reihe von Schleifsegmenten 6 angeordnet sind. Die Schleifsegmente 6 sind an dem äußeren Rand 11 des Trägerkörpers 7 angeschweißt. Der Trägerkörper 7 weist des Weiteren Aufnahme- bzw. Befestigungsbohrungen 10 zum Einbau der Trennscheibe 1 in einen Winkel- oder Trennschleifer bzw. in eine Wand- oder Fugenschneidmaschine auf. Die einzelnen Schleifsegmente 6 sind durch Schlitze 12 voneinander getrennt. Im Gebrauchszustand wird die Trennscheibe 1 in Rotation versetzt, wobei die Trennscheibe 1 eine bevorzugte Schleifrichtung D aufweist. Trennscheiben werden in der Regel zum Abtrennen von Materialabschnitten verwendet und weisen daher eine sehr schmale Schleifkontaktfläche S auf, die sich über die Stirnseite der Trennscheibe 1 erstreckt.

In , der Fig. 2a ist eines der Schleifsegmente 6 in einer ersten bevorzugten Ausführungsform vergrößert dargestellt. Grundbestandteil des Schleifsegments 6 ist eine gesinterte Metallmatrix 2, in die eine Vielzahl von Diamanten 3 eingebettet sind. Die Diamanten 3 weisen eine Korngröße K d von 350 pm bis 700 pm auf. Der Abstand der Mittelpunkte der Diamanten 3 beträgt 1 bis 2 mm. Bei diesem ersten bevorzugten Ausführungsbeispiel des Schleifsegments 6 ist der Mehrzahl der Diamanten 3 jeweils ein verschleißförderndes Partikel 4 zugeordnet, wobei die verschleißfördernden Partikel 4 jeweils - in Schleifrichtung D gesehen - vor den Diamanten 3, welchen sie zugeordnet sind, in die Matrix 2 eingebettet sind. Außerdem weisen sie gegenüber den Diamanten 3, welchen sie zugeordnet sind, einen kleineren Abstand A f zur Schleifkontaktfläche S auf. Die Korngröße K f der verschleißfördemden Partikel 4 beträgt 250 pm bis 600 pm. Es sei noch darauf hingewiesen, dass einzelnen Diamanten 3, vor allem im Randbereich des Schleifsegments 6, jeweils kein verschleißförderndes Partikel 4 zugeordnet ist. Der Abstand des Mittelpunkts der Diamanten 3 zum Mittelpunkt der ihnen jeweils zugeordneten verschleißfördernden Partikel 4 entspricht in etwa der Korngröße K f der verschleißfördernden Partikel 4.

In der Fig. 2b ist schematisch eine perspektivische Ansicht des Schleifsegments 6 aus der Fig. 2a dargestellt. Es ist erkennbar, dass das Schleifsegment 6 in diesem Fall aus vier Schichten 2' besteht, die übereinander angeordnet und in etwa so wie die obere, dem Betrachter zugewandte Schicht aufgebaut sind. Der Schichtaufbau ist durch die drei gestrichelten Trennlinien angedeutet. Die Breite des Schleifsegments 6 ist mit dem Bezugszeichen b versehen.

In den Figuren 3, 4 und 5 sind drei weitere bevorzugte Ausführungsformen des Schleifsegments 6 dargestellt. Im Unterschied zu dem ersten, in den Fig. 2a und 2b zu sehenden Ausführungsbeispiel ist das in der Fig. 3 zu sehende Ausführungsbeispiel dadurch gekennzeichnet, dass der Mehrzahl der Diamanten 3 jeweils zwei verschleißfördernde Partikel 4 zugeordnet sind. Auf diese Weise wird die verschleißfördernde Wirkung dieser Partikel 4 (vgl. Beschreibungseinleitung) noch weiter erhöht. Es sei noch darauf hingewiesen, dass bei diesem Ausführungsbeispiel jeweils beide verschleißfördernden Partikel 4 - in Schleifrichtung D des Schleifwerkzeugs gesehen - vor dem Diamanten, welchem sie zugeordnet sind, in die Matrix 2 eingebettet sind und dass eines der beiden Partikel 4 gegenüber dem Diamanten 3 einen kleineren Abstand A f zur Schleifkontaktfläche S und das andere der beiden Partikel 4 einen größeren Abstand A f zur Schleifkontaktfläche S aufweist. Das in der Fig. 4 gezeigte Ausführungsbeispiel ist dadurch gekennzeichnet, dass den Diamanten 3 jeweils ein verschleißhemmendes Partikel 5 zugeordnet ist, wobei diese verschleißhemmenden Partikel 5 jeweils - in Schleifrichtung D gesehen - hinter den Diamanten 3, welchen sie zugeordnet sind, in die Matrix 2 eingebettet sind. Außerdem weisen sie gegenüber den Diamanten, welchen sie zugeordnet sind, einen größeren Abstand A h zur Schleifkontaktfläche S auf. Die Korngröße K h der verschleißhemmenden Partikel 5 liegt wiederum zwischen 250 μιτι und 600 pm.

Das vierte, in der Fig. 5 zu sehende Ausführungsbeispiel des Schleifsegments 6 ist schließlich dadurch gekennzeichnet, dass der Mehrzahl der Diamanten 3 jeweils wenigstens ein verschleißförderndes Partikel 4 und ein verschleißhemmendes Partikel 5 zugeordnet ist, wobei das verschleißfördernde Partikel 4 jeweils in Schleifrichtung D vor dem Diamanten 3, welchem es zugeordnet ist, in die Matrix 2 eingebettet ist und das verschleißhemmende Partikel 5 jeweils in Schleifrichtung D hinter dem Diamanten 3, welchem es zugeordnet ist, in die Matrix 2 eingebettet ist.

Fig. 6 zeigt in einem schematischen Flussdiagramm die fünf wesentlichen Verfahrensschritte zur Herstellung des erfindungsgemäßen Schleifwerkzeugs. In einem ersten Verfahrensschritt i wird eine Matrixschicht aus einem pulverförmigen, sintbaren Material gebildet. In einem zweiten Verfahrensschritt ii werden Diamanten in einem vorbestimmten Setzmuster auf die Matrixschicht gesetzt. In einem dritten Verfahrensschritt iii werden - je nach Ausführungsbeispiel - wenigstens ein verschleißförderndes Partikel und/oder wenigstens ein verschleißhemmendes Partikel in einem vorbestimmten Abstand relativ zu wenigstens der Mehrzahl der Diamanten auf die Matrixschicht gesetzt. In einem vierten Verfahrensschritt iv wird die mit den Diamanten und dem jeweils wenigstens einen verschleißfördernden Partikel bzw. dem jeweils wenigstens einen verschleißhemmenden Partikel versehene Matrixschicht verpresst und schließlich in einem abschließenden Verfahrensschritt v gesintert.

In der bevorzugten Ausführungsform dieses Verfahrens werden des Weiteren vor dem abschließenden Verfahrensschritt v solange nacheinander weitere Matrixschichten aufgetragen und jeweils der zweite, dritte und vierte Verfahrensschritt ii, iii und iv wiederholt, bis eine vorbestimmte Breite b erreicht ist (vgl. auch Fig. 2b). Außerdem werden bei der bevorzugten Ausführungsform des Verfahrens vor dem zweiten Verfahrensschritt ii Ausnehmungen zur Aufnahme der Diamanten und des jeweils wenigstens einen verschleißfördernden Partikels bzw. des jeweils wenigstens einen verschleißhemmenden Partikels in der Matrixschicht gebildet.

Hinsichtlich des ersten Verfahrensschrittes i sei angemerkt, dass die Matrixschicht dadurch gebildet wird, dass das pulverförmige sinterbare Material zunächst über einen Portionierer in eine Segmentform eingeschüttet wird. Nach dem Einschütten wird die Oberfläche abgestrichen, um eine ebene Fläche zu erhalten. Anschließend wird die Metallpulverschicht leicht angepresst. Im Zuge dieses Anpressens werden gleichzeitig auch schon die Ausnehmungen zur Aufnahme der Diamanten und des jeweils wenigstens einen verschleißfördernden Partikels bzw. des jeweils einen verschleißhemmenden Partikels in der Matrixschicht gebildet, wobei diese Ausnehmungen z.B. die Form von Kegel- oder Pyramidenstümpfen aufweisen.

Bezüglich des zweiten und des dritten Verfahrensschrittes ii und iii sei angemerkt, dass die Diamanten und die verschleißfördernden Partikel bzw. die verschleißhemmenden Partikel beim Setzen auf die Matrixschicht leicht in das Metallpulver eingepresst werden.

Bezüglich der zeitlichen Reihenfolge der beschriebenen Verfahrensschritte sei darauf hingewiesen, dass - je nach Art und Anzahl der zum Einsatz kommenden Setzvorrichtungen - der zweite und dritte Verfahrensschritt ii und iii auch gleichzeitig durchgeführt werden. Grundsätzlich kommen im Zusammenhang mit der Erfindung bevorzugt entweder zwei verschiedene Setzvorrichtungen zum Einsatz, eine für die Diamanten und die andere für die verschleißfördernden und/oder verschleißhemmenden Partikel, oder es wird nur eine einzige Setzvorrichtung, die sowohl die Diamanten, als auch die verschleißfördernden und/oder verschleißhemmenden Partikel auf die Matrixschicht setzt, verwendet, wobei im letzteren Fall das Setzen der Diamanten und der verschleißfördernden und/oder verschleißhemmenden Partikel nacheinander oder gleichzeitig durchgeführt wird. Im Falle der Figuren 7a bis 7b wird das Verfahren mithilfe einer gemeinsamen Setzvorrichtung 13 durchgeführt, wobei die Diamanten 3 und - im dargestellten Fall - die verschleißfördernden Partikel 4 nacheinander auf die Matrixschicht 2 gesetzt werden. In den Figuren 7a bis 7d ist schematisch eine beispielhafte Durchführung des zweiten und des dritten Verfahrensschrittes dargestellt. Nicht dargestellt ist der vorausgehende erste Verfahrensschritt, bei dem die Metallmatrixschicht 2 gebildet und anschließend Ausnehmungen 8 und 9 zur Aufnahme der Diamanten 3 bzw. der ihnen zugeordneten verschleißfördernden Partikel 4 ausgebildet werden.

Bei der dargestellten Setzvorrichtung 13 handelt es sich im Wesentlichen um eine Lochplatte 14, die mit Bohrungen 15 versehen ist, wobei die Bohrungen 15 von Stiften 17 durchsetzt sind, die mit einer Stempelplatte 16 verbunden sind. Im Innenraum 19 der Lochplatte 14 wird ein Unterdruck erzeugt, welcher sich zu den Mündungen der Bohrungen 15 fortpflanzt, sodass dort jeweils ein Diamant 3, ein verschleißförderndes Partikel 4 oder ein verschleißhemmendes Partikel 5 (nicht dargestellt) festgehalten werden kann. Um die angesaugten Diamanten 3, die verschleißfördernden Partikel 4 oder die verschleißhemmenden Partikel 5 auf die vorgeformte Metallpulverschicht 2 zu setzen, wird die Lochplatte 14 so nah an die Metallpulverschicht 2 herangefahren, dass es noch zu keiner Ansaugung von Pulver kommt. Würde man die Diamanten 3, die verschleißfördernden Partikel 4 bzw. die verschleißhemmenden Partikel 5 nun aus der so bedingten Höhe einfach fallen lassen, ergäbe sich keine gleichmäßige Anordnung der Diamanten 3, der verschleißfördernden Partikel 4 bzw. der verschleißhemmenden Partikel 5. Daher werden die Diamanten 3, die verschleißfördernden Partikel 4 bzw. die verschleißhemmenden Partikel 5 durch Verschieben der Stempelplatte 14 in einer geeigneten Führung 18 mittels der Stifte 17 ausgestoßen. Bei der dargestellten Setzvorrichtung 13 werden die Diamanten 3, die verschleißfördernden Partikel 4 bzw. die verschleißhemmenden Partikel 5 also nicht - wie dies auch vorgesehen sein kann (siehe oben) - in das Metallpulver eingepresst.

Im Anschluss an das Setzen der Diamanten 3 (Fig. 7a und 7b) und das Setzen der im dargestellten Fall verschleißfördernden Partikel 4 neben die Mehrzahl der Diamanten 3 (Fig. 7c und 7d) wird die mit den Diamanten 3 und den verschleißfördernden Partikeln 4 versehende Metallpulverschicht 2 verpresst, im Bedarfsfall eine weitere Metallpulverschicht 2 aufgebracht und der zweite, dritte und vierte Verfahrensschritt wiederholt und abschließend das Schleifsegment in einem Sinterungsprozess fertig gestellt.




 
Previous Patent: BUCKLE

Next Patent: COUPLING FOR CRYOGENIC LIQUEFIED GASES