Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
GTL PROCESS AND REACTOR EMPLOYING A MOBILE PHASE AND PLASMA
Document Type and Number:
WIPO Patent Application WO/2013/160467
Kind Code:
A1
Abstract:
An alternative process and device for carrying out Fischer Tropsch (FT) syntheses is proposed, allowing the reactant entities that take part in the FT reaction to be activated and their contributions, whether by quantity or by proportion, to be adjusted. The process consists in making a particulate phase, optionally consisting of catalytic particles, flow through a reactor. While flowing through the reactor, the particulate phase is subjected at regular intervals to the action of a plasma obtained from a gas, such as hydrogen, thus enabling hydrogen activation for hydrogenation of carbon monoxide, or carbon monoxide activation in order to lengthen the carbon chains.

Inventors:
UGOLIN NICOLAS GILBERT (FR)
Application Number:
PCT/EP2013/058799
Publication Date:
October 31, 2013
Filing Date:
April 26, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UGOLIN NICOLAS GILBERT (FR)
International Classes:
B01J19/08; C10G2/00
Domestic Patent References:
WO1998030524A11998-07-16
Foreign References:
FR2945033A12010-11-05
FR2923731A12009-05-22
Other References:
None
Download PDF:
Claims:
REVENDICATIONS

1) Procédé Fischer-Tropsch pour la synthèse d'oléfmes, de paraffines, d'alcools et/ou d'eau, caractérisé en ce qu'il consiste à activer des gaz de synthèse, tels que du dihydrogène, du monoxyde de carbone, et/ou leur mélange, en un plasma, puis à soumettre aux gaz activés, à intervalles réguliers, une phase particulaire, éventuellement catalytique, comportant des particules de taille comprise entre 5nm et 5 cm. 2) Procédé selon la revendication 1, caractérisé en ce que chaque gaz de synthèse, dihydrogène, monoxyde de carbone, dihydrogène, éventuellement activé, est appliqué alternativement sur la phase particulaire.

3) Procédé selon la revendication 1, caractérisé en ce que des mélanges de gaz de synthèse, tels que du monoxyde de carbone et du dihydrogène, avec des proportions variables de chaque gaz, éventuellement complété par des gaz additifs plasmogènes, tels que argon, hélium, azote, C02, sont appliqués alternativement sur la phase particulaire. 4) Procédé selon l'une des revendications 1 à 3, caractérisé en ce que l'application alternative du ou des gaz activés sur les particules et donc l'action successive des gaz sur les particules permettant de contrôler la croissance des synthèses, est obtenue par la circulation des particules dans un réacteur tabulaire (1), tel que des entrées de gaz activé soient régulièrement disposées le long du réacteur.

5) Procédé selon l'une des revendications 1 à 4, caractérisé en ce que les particules sont choisies parmi : des particules de fer, des particules de carbure de silicium recouvertes ou intégrant du cobalt, des particules de fer recouvertes ou intégrant du cobalt, des particules de diamant, des particules de diamant creuses, des particules de diamant recouvertes ou intégrant du cobalt, des particules de diamant recouvertes ou intégrant du fer, des particules de carbure de silicium comprenant des particules de diamant, des particules de cuivre comprenant un mélange quelconque des éléments précités, des particules dont les cœurs sont en céramique tel que le carbure de silicium, des céramiques d'aluminium ou d'oxydes tels que les oxydes de silicium, d'aluminium, de titane, de zirconium, de magnésium, de silicium magnésium, de gallium, de césium ou encore de particules de carbone ou de tamis zéolithes, préférentiellement des particules avec des cœurs comprenant chacun une éponge en carbure de silicium et des nanoparticules de diamant préférentiellement creuses. 6) Procédé selon la revendication 5, caractérisé en ce que les cœurs ou les particules sont recouverts par des catalyseurs ioniques, des catalyseurs d'oxydes métalliques, tels qu'un mélange d'ions et/ou d'oxydes tels que des oxydes, correspondant au fer, au fer ferrique, au fer ferreux, au cuivre, au cuivre cuivrique, au cuivre cuivreux, au cérium, au potassium, au lanthane, au cobalt, au calcium, au zinc, à l'aluminium, au fluor, au magnésium , au manganèse, au nickel, au ruthénium, au rubidium, et/ou aux métaux de groupe I (alcalin, Li, Na, Rb, Cs, Fr) et/ou du groupe II (alcalins terreux Be, Mg, Ca, Sr, Ba, Ra).

7) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce l'activation des gaz en un plasma est d'origine micro-ondes (5), inductifs (13), arcs électriques (8, 9, 10, 11), arcs électriques hors équilibre, ou d'une combinaison quelconque d'origine micro -ondes, inductifs, arcs électriques et arcs électriques hors équilibre.

8) Dispositif de mise en œuvre du procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend un tube réacteur (1) en métal ou en céramique, par exemple sans être exhaustif alumine, carbure de silicium, nitrure, AITi, acier, titane, nickel, cuivre, cobalt, acier réfractaire, et zirconium, tantale, niobium, des moyens (2) pour faire avancer les particules dans le tube réacteur, et des moyens (5, 8, 13) pour injecter, dans le tube réacteur, un plasma représentant un gaz ou un mélange de gaz activés.

9) Dispositif selon la revendication 8, caractérisé en ce que les moyens pour faire avancer les particules dans le tube réacteur comportent une vis-sans-fin (3) ou une hélice.

10) Dispositif selon la revendication 8 ou 9, caractérisé en ce qu'il comprend au moins un magnétron (5) de génération de micro -ondes, ce magnétron étant relié à un guide d'ondes (7) qui est traversé par le tube réacteur (1) qui est réalisé en matériau transparent aux micro-ondes et qui a un diamètre égal à λ/4 ou λ/2, où λ représente la longueur d'onde des micro-ondes, les micro-ondes se propageant dans le guide d'ondes étant destinées à traverser le tube réacteur et à interagir avec le gaz circulant dans le tube pour former le plasma.

11) Dispositif selon l'une des revendications 8 à 10, caractérisé en ce qu'il comprend un solénoïde (13) entourant le tube réacteur (14) qui est réalisé dans un matériau perméable aux champs électromagnétiques et dans lequel circule le gaz, le solénoïde étant destiné à être parcouru par un courant alternatif haute fréquence pour entraîner par induction la formation du plasma dans le gaz traversant le tube réacteur.

12) Dispositif selon l'une quelconque des revendications 8 à 11, caractérisé en ce que des électrodes (8) sous tension capables d'initier un plasma sont disposées à une entrée du tube réacteur et sont destinées à former des arcs électriques hors équilibre sous l'action de la forme des électrodes et de la circulation du gaz dans le tube.

13) Dispositif selon l'une quelconque des revendications 8 à 12, caractérisé en ce que l'isolement des atmosphères intérieure et extérieure du tube réacteur lors du chargement et du déchargement des substrats du réacteur est réalisé par des systèmes (20, 23) de chargement et de déchargement des substrats, comprenant au moins deux cylindres coaxiaux emboîtés tournant en sens inverse dans une chambre cylindrique (24), le cylindre interne comprend une cavité munie d'une ouverture de pores au fond de la cavité, le cylindre externe comprend une ouverture unique similaire à celle du cylindre interne, (21, 23) tel que en tournant en sens inverse, les deux cylindres décrivent un cycle à quatre temps : a) chargement, les ouvertures des deux cylindres sont alignées permettant l'entrée de substrats, b) vidage de l'atmosphère de chargement, après ¼ de tour des deux cylindres en sens inverse les pores du cylindre interne sont alignées avec l'ouverture du cylindre externe, permettant de vider au travers de filtres l'atmosphère de la cavité du cylindre interne provenant de l'étape de chargement, c) déchargement, après ½ tour des deux cylindres en sens inverse les ouvertures des deux cylindres sont alignées, permettant de vider les substrats, d) après ¾ de tour des deux cylindres en sens inverse la petite ouverture du cylindre interne est alignée à la grand ouverture du cylindre externe, permettant de vider au travers de filtres l'atmosphère de la cavité du cylindre interne provenant de l'étape de déchargement.

14) Dispositif selon l'une quelconque des revendications 8 à 13, caractérisé en ce qu'il comprend après les sections d'application des gaz activés, un four solaire permettant de chauffer les particules, ce four solaire comprenant :

- au moins un tuyau métallique fermé à ses extrémités par des moyens pour faire pénétrer et sortir les particules catalytiques et des substrats sans contamination atmosphérique extérieure et sans échappement du gaz intérieur,

- au moins un moyen pour concentrer la lumière solaire à la surface du four,

- au moins un moyen optiquement transparent pour isoler thermiquement le four solaire du milieu extérieur, notamment par des systèmes de tuyaux transparents sous vide et/ou de confinement par flux gazeux,

- au moins un moyen pour injecter des micro-ondes combinées éventuellement avec des infrarouges et des plasmas, à l'intérieur du four afin de les faire réagir avec les substrats, par exemple pour les craquer ou pour régénérer les particules catalytiques, - au moins un moyen pour injecter au moins un gaz notamment du C02, CO ou 02 ou des plasmas gazeux de ces gaz à l'intérieur du four solaire, et

- au moins un moyen, tel qu'une vis-sans-fm, pour faire progresser les substrats et les particules à l'intérieur du four solaire.

Description:
PROCEDE ET REACTEUR GTL A PHASE MOBILE ET PLASMA

Introduction

L'épuisement des ressources pétrolières et la pollution en dioxyde de carbone (C02) que génère la combustion de produits pétroliers fossiles (une des principales causes du réchauffement climatique), impliquent le développement de procédés de production de pétrole non fossile plus respectueux de l'environnement, appelé bio carburant deuxième génération.

En effet, les besoins énergétiques liés aux transports qui nécessitent le stockage et le transport de l'énergie par le véhicule lui-même, et les alternatives proposées pour cette problématique restent peu satisfaisants surtout pour le transport aérien, impliquant le développement de carburants non polluants. En effet, ce type de carburant représente une des solutions plus adaptées et les mieux maîtrisées.

Or, la synthèse de Fischer Tropsch «FT» permet de produire à partir de gaz de synthèse CO/H2 différents hydrocarbures paraffines et oléfïnes (en plus de l'eau et de l'alcool) qui peuvent être directement utilisés dans les véhicules à combustion existant. Ces produits sont respectueux de l'environnement pour peu que le gaz de synthèse soit produit à partir d'ordures ménagères ou de bio masse en utilisant des énergies renouvelables. En effet, à condition qu'il soit produit à partir de carbone recyclable, le produit issu de FT qui ne contient pas de composés aromatiques, ni de soufre, présente un bilan carbone très faible à l'utilisation.

Malheureusement la réaction FT, qui s'inscrit dans les technologies « GTL » Gas-to- Liquid, est complexe et une proportion variant de 50 à 20 % du carbone provenant du monoxyde de carbone est perdue sous forme de C02 ou de méthane dans les réactions catalytiques telles qu'elles sont développées actuellement. Même si ce carbone n'est pas fossile, il diminue les performances écologiques des carburants produits et diminue également le rendement économique. D'autre part, l'apport d'un mélange de syngaz CO/H2 de proportion constante tel qu'il est réalisé en les procédés actuels, génèrent des pertes de rendement dans l'élongation des chaînes carbonées en raison des différences de diffusion du CO et du H2 au niveau des sites catalytiques et de la modification de ces diffusions avec l'avancée de la réaction. Nous proposons un procédé et un dispositif qui permet d'activer les entités réactionnelles et de moduler les apports que ce soit en quantité ou en proportion des différents éléments intervenant dans la réaction FT. De plus, la nouvelle géométrie de notre dispositif facilite le chargement et le déchargement des catalyseurs dans le réacteur et la séparation des produits et des catalyseurs par rapport aux structures généralement utilisées pour les réacteurs FT.

Principe de fonctionnement

Le procédé consiste à activer les gaz de synthèse tels que du dihydrogène, du monoxyde de carbone et/ou leur mélange en un plasma, puis à soumettre aux gaz activés

successivement à intervalles réguliers une phase particulaire, éventuellement catalytique.

Chaque gaz de synthèse éventuellement activé par exemple le monoxyde de carbone , dihydrogène... est appliqué alternativement sur la phase particulaire. Dans certaines variantes, le mélange de gaz de synthèse, tels que monoxyde de carbone , dihydrogène, avec des proportions variables de chaque gaz, éventuellement complété par un ou plusieurs gaz additifs plasmogènes tels que argon, hélium , azote, C02, est appliqué alternativement sur la phase particulaire.

L'application alternative des gaz activés sur les particules et donc l'action alternative des gaz sur les particules permettant de contrôler la croissance de la synthèse, est préférentiellement obtenue en faisant circuler dans un tube réacteur Fig 1-1 de diamètre quelconque, mais de préférence compris entre 1 centimètre et 20 centimètres une phase de particules constituée de particules catalytiques ou non. La phase particulaire, avec des tailles de particules comprises entre 5 nanomètres et cinq centimètres, est soumise à intervalles réguliers, à un plasma provenant d'un gaz. Le gaz utilisé pour générer le plasma peut être : -de l'hydrogène, permettant ainsi l'activation de ce dernier afin de l'hydrogéner, le monoxyde de carbone et/ou de la surface particulaire.

-du monoxyde, le carbone permettant l'activation du monoxyde de carbone pour l'élongation des chaînes carbonées, ou encore un mélange de ces deux gaz.

Les éléments activés réagissent entre eux et/ou avec les particules catalytiques pour produire les composés d'une réaction FT, c'est-à-dire majoritairement des oléfïnes, des paraffines, des alcools et de l'eau. Dans certains modes de réalisation, des gaz supplémentaires peuvent être ajoutés au gaz utilisé pour réaliser le plasma, tel que sans être exhaustif hélium, argons ou azote afin d'améliorer la formation du plasma.

A) Dans un mode de réalisation particulier, le moyen utilisé pour faire avancer la phase particulaire dans le tube du réacteur est un système d'hélice ou de vis-sans-fïn Fig 1-2,3 incluse dans le tube réacteur. La vis-sans-fïn comprendra un racloir souple ou un système de balais métalliques Fig 1-4 permettant d'éviter l'adhérence des particules et des matières sur les parois du tube réacteur. La vis-sans-fïn pourra être en tout type de matériau résistant à de hautes températures typiquement 600 à 1000°C tel que sans être exhaustif, céramique, métal, polymère thermorésistant etc. Dans certains modes de réalisation, l'hélice ou la vis- sans-fin sera constituée de fer ou d'alliage de fer notamment les aciers et particulièrement des alliages à base de cobalt ou nickel. En effet, le cobalt et le fer sont deux catalyseurs pour les réactions Fischer-Tropsch « FT ».

B) Dans certains modes de réalisation, les particules utilisées peuvent être sans être exhaustif des particules de fer, des particules de carbure de silicium recouvertes ou intégrant du cobalt, des particules de fer recouvertes ou intégrant du cobalt, des particules de diamant creuses ou non, des nanoparticules de diamant creuses ou non, des particules ou nanoparticules de diamant recouvertes ou intégrant du cobalt, des particules de diamant recouvertes ou intégrant du fer, des particules de carbure de silicium comprenant des particules de diamant, des particules de cuivre comprenant un mélange quelconque des éléments précités.

B-l) Dans un mode de réalisation particulier, les particules sont constituées d'un cœur en céramique tel que le carbure de silicium, des céramiques, d'aluminium ou d'oxydes tels que les oxydes de silicium, d'aluminium, de titane, de zirconium, de magnésium, de silicium magnésium, de gallium, de césium ou encore de particules de carbone ou de tamis zéolithes etc. Dans un mode de réalisation préférentiel, le cœur est constitué d'une éponge en carbure de silicium comprenant des nanoparticules de diamant. B-2) Dans certains modes de réalisation, les cœurs ou les particules sont recouverts par un catalyseur ionique et/ou d'oxyde métallique constitué par un mélange quelconque d'ions ou d'oxydes comprenant sans être exhaustif des ions ou des oxydes de fer (ferrique , ferreux), de cuivre (cuivrique ou cuivreux), de cérium, de potassium, lanthane, cobalt, calcium, zinc, aluminium, fluor, magnésium , manganèse, nickel, ruthénium, rubidium, des métaux de groupe I (alcalins, Li, Na, Rb, Cs, Fr) ou du groupe II (alcalins terreux Be, Mg, Ca, Sr, Ba, Ra), etc.

B-3) Dans certains modes de réalisation, les particules sont remplacées ou additionnées par des plastiques ou autres polymères de matières plastiques broyées. De préférence ces plastiques sont broyés avec une granulométrie inférieure à 5 millimètres. Ces polymères ou plastiques peuvent être recouverts de catalyseur ionique et/ou d'oxyde métallique.

C) Dans un mode de réalisation particulier, les plasmas de gaz activés sont induit par des micro-ondes (plasmas d'origine micro-ondes) et plus particulièrement des micro-ondes générées par des magnétrons 5. Dans un mode de réalisation encore plus particulier, le plasma sera généré par un système comprenant un tube transparent pour les micro-ondes tel que le quartz 6. Le tube aura un diamètre D de préférence égal à λ/4 ou λ/2, où L représente la longueur d'onde des micro-ondes utilisées soit L/4 égal à de préférence 6 centimètres environ pour 2,45 GHZ. Le tube transparent sera disposé au travers du guide d'ondes d'un magnétron de préférence tel que l'axe principal du tube soit au centre du guide d'ondes Fig2 7 et que les parois du guide d'ondes soient de préférence à une distance λ/4 ou λ/2 du centre du cylindre. Les micro-ondes en se propageant dans le guide d'ondes, avec une direction globale perpendiculaire à l'axe du tube de quartz, traversent la paroi transparente du tube et interagissent avec le gaz circulant dans le tube de quartz selon son axe, globalement perpendiculairement à la propagation des micro-ondes. En traversant les micro-ondes, le gaz est ionisé et forme un plasma.

D) Dans un certain mode de réalisation, deux électrodes sous tension Fig3-8 sont disposées à l'entrée du cylindre transparent, permettant de réaliser un arc électrique capable d'initier un gaz activé sous forme de plasma (d'origine électrique). Dans un mode de réalisation encore plus particulier, les électrodes sont divergentes Fig3-9, étirant l'arc électrique qui glisse le long des électrodes sous l'action du gaz qui circule dans le tube et forme un plasma d'origine arcs électriques hors équilibre. En effet, en circulant dans le tube, le gaz souffle les arcs électriques qui se forment entre les deux électrodes.

Dans un mode de réalisation encore plus particulier, les électrodes à l'entrée du tube transparent sont remplacées par un tripode de trois électrodes disposées à 120° les unes des autres Fig3-10, les trois électrodes étant portées à un même potentiel. En vis-à-vis du tripode est disposée une hélice à trois pales 11, telles que chaque pale constitue une électrode reliée à une des bornes 12 d'un connecteur tournant constituant l'axe de rotation de l'hélice. Trois tampons conducteurs relient le connecteur tournant (charbon ou tout autre matière conductrice) permettant de porter les pales de l'hélice à un même potentiel tel que soit instauré une différence de potentiel de plusieurs centaines ou plusieurs milliers de volts entre les pales de l'hélice et les électrodes du tripode. La différence de potentiel entre les électrodes du tripode et les électrodes de l'hélice permet la formation d'un arc électrique instable entre les électrodes du tripode et celles de l'hélice. En effet, sous l'action du gaz l'hélice tourne, lorsqu'une hélice est en vis-à-vis d'une électrode du tripode, un arc électrique se forme entre l'hélice et l'électrode du tripode. L'arc sera étiré avec le mouvement de l'hélice formant un arc hors équilibre initiant un plasma dans le gaz qui sera amplifié sous l'action des micro-ondes.

E) Dans une autre configuration, le plasma sera d'origine inductif, généré par un solénoïde 13 entourant le tube en quartz ou en carbure de silicium ou tout autre céramique ou matériau perméable aux champs électro-magnétiques 14 dans lequel circule le gaz qui doit générer le plasma. Dans un mode de réalisation particulier, le solénoïde comprendra 7 tours. Le solénoïde est parcouru par un courant alternatif haute fréquence par exemple 800 mégaHertz, entraînant par induction la formation du plasma dans le gaz traversant le tube de quartz. Le tube de quartz et le solénoïde sont inclus dans un autre tube extérieur 15 obligeant une partie du gaz à circuler au travers du solénoïde permettant ainsi son refroidissement. Les systèmes d'amorçage du plasma sont les mêmes que ceux décrits pour les plasmas à micro-ondes décrits au chapitre D.

F) Dans une configuration particulière, le tube extérieur 15 décrit au chapitre E est le même que le tube transparent de 1 à 50 centimètres de diamètre mais de préférence 6 centimètres de diamètre décrit au chapitre C Fig4-16 Fig3-6 tel que le solénoïde et le tube de quartz sont inclus dans le tube transparent aux micro-ondes en amont du guide d'onde dans le sens de circulation du gaz. Les systèmes d'initiation des plasmas seront les mêmes que ceux décrits en D et seront préférentiellement des systèmes à arc électrique hors équilibre de manière à former un plasma possédant la triple nature hors équilibre, induction et micro-ondes. Plus généralement le procédé permet la formation d'un plasma dont l'origine provient d'une combinaison quelconque micro-ondes, inductifs, arcs électriques, arcs électriques hors équilibre. Plus particulièrement dans certains modes de réalisation, le dispositif permet la génération de plasmas inductifs et micro-ondes combinés.

G) Dans une configuration particulière, le réacteur comprendra un tube Figl-1 en métal ou céramique tel que sans être exhaustif aciers, titane, alumine, carbure de silicium, nitrure, nickel, cuivre, tantale, niobium , alliages de ces métaux, acier cobalt ou tout autre matériau approprié etc., d'une longueur quelconque, mais de préférence comprise entre 50 centimètres et 20 mètres et d'un diamètre quelconque, mais préférentiellement compris entre 3 et 20 centimètres. Préférentiellement il s'agira d'un alliage de fer pouvant inclure du nickel, du cobalt et éventuellement tout autre élément favorable à la catalyse (FT), à l'exception des poisons de la catalyse FT tel que soufre et ces dérivés etc. D'une manière générale, le tube peut être en un alliage quelconque de matériaux résistants à de hautes températures de préférence supérieures à 600°C.

Dans la partie catalytique du réacteur le tube de réacteur sera inclus dans un autre tube de diamètre plus grand Fig 1-16 constituant un échangeur, dans lequel circule un fluide caloriporteur par exemple de l'eau ou du C02 Figl-17, 18. Ce fluide en circulant permet de refroidir le réacteur et de maintenir la réaction FT exothermique se produisant dans le réacteur à des températures souhaitées préférentiellement comprises entre 100°C et 700°C. Le tube échangeur est éventuellement remplacé ou complété par des ailettes de radiateur soudées au tube et refroidies par air ou par eau ou par spray d'eau. H) Le long du réacteur, sont disposé de manière régulière des entrées 19, pour les torches à plasma 15, 16, 6 continuées par le tube en quartz transparent. Par exemple tous les trois pas de l'hélice de convoyage une torche à plasma sera disposée. Les torches soufflent dans le réacteur le plasma de gaz comprenant les éléments constitutifs du gaz activé, sous forme d'ions, de radicaux libres et autres intermédiaire actifs. Les éléments du plasma réagissent avec les catalyseurs et/ou les particules, tel que les nano-diamants et ou les plastiques broyés, ou la phase du cœur des particules, réalisé sans être exhaustif, des réactions de type ou leur combinaison Fig6- Eq.1 , Eq.2, Eq.3, Eq.4, Eq.5. Les torches à plasmas sont caractérisées en ce qu'elle n'injecte pas de micro onde à l'intérieur du réacteur.

Pour favoriser la croissance des hydrocarbures, les plasmas seront alternés entre des plasmas à base de monoxyde de carbone et des plasmas à base de dihydrogène.

Dans certains modes de réalisation, des plasmas mixtes de dihydrogène/monoxyde de carbone seront réalisés. Dans d'autres modes de réaction, seuls des plasmas dihydrogène ou seuls des plasmas monoxyde de carbone seront réalisés, le CO ou le H2 étant injecté dans l'entrée de torche suivante sous forme de gaz.

Typiquement dans la première torche est soufflé un plasma à base de CO puis dans la deuxième torche un plasma à base de H2 et ainsi de suite le long du réacteur. Par exemple 10 ou 100 couples de torches CO et H2 peuvent se succéder, sans limitation de nombre. Dans d'autres modes de réalisation, la succession entre des plasmas CO et H2 se fait dans la même torche.

I) Le réacteur sera isolé de l'atmosphère par un procédé de chargement et de déchargement des particules catalytiques et de déchargement des hydrocarbures et des autres composés formés gaz ou liquide.

1-1) A l'entrée du dispositif de chargement, seront par exemple disposés deux cylindres emboîtés tournant en sens inverse, le cylindre le plus intérieur 20 sera plein, et muni d'une cavité 21 percée en son fond par une série de pores 22 à l'opposé de l'ouverture de la cavité. Le cylindre extérieur incluant le cylindre intérieur sera muni d'une ouverture 23 de même taille que l'ouverture de la cavité du cylindre intérieur. Les deux cylindres seront inclus dans une chambre cylindrique23, munie de deux ouvertures 25 au-dessus et en- dessous de même dimension que les ouvertures des deux cylindres précédents, et de deux séries de pores opposées et disposées latéralement en position équatoriale 26. Chaque série de pores de la chambre cylindrique sera disposée sur un bosselage extérieur 26 permettant d'éviter l'occlusion des pores lors du croisement avec les pores disposés sur le cylindre intérieur durant la rotation des différents cylindres.

En position :

Fig7-a) les ouvertures des cylindres sont alignées vers le haut avec l'ouverture de la chambre cylindrique, et permet le remplissage de la cavité.

Fig7-b) en tournant en sens inverse par exemple ¼ de tour la cavité de cylindre intérieur est occultée par le cylindre extérieur alors que les pores du fond de la cavité sont positionnés en face de l'ouverture du cylindre extérieur en vis-à-vis du premier bosselage de la chambre cylindrique. Le premier bosselage est relié à une pompe à vide vidant l'atmosphère de la cavité (atmosphère extérieure).

Fig7-c) (en continuant les rotations en sens inverse par exemple ¼ de tour supplémentaire pour atteindre ½ tour, les deux ouvertures des cylindres intérieur et extérieur s'alignent sur l'ouverture basse de la chambre cylindrique, permettant au contenu de la cavité d'être déversé à l'intérieur du réacteur sans contamination de l'air extérieur, les pores du fond de la cavité étant occultés par le cylindre extérieur.

Fig7-d) en continuant la rotation par exemple ¼ de tour pour atteindre ¾, les pores du fond de la cavité s'alignent avec l'ouverture du cylindre extérieur en face du second bosselage lui-même relié à un second vide permettant de pomper l'atmosphère provenant du réacteur vers l'intérieur du réacteur. Puis un autre cycle recommence. Les vides sont réalisés par des pompes ou des Venturi pompant les atmosphères respectivement vers l'extérieur et vers l'intérieur du réacteur.

Dans un mode de réalisation particulier, la cavité haute de la chambre cylindrique est reliée à la sortie basse d'un cyclone de chargement 27. 1-2) Dans un mode de réalisation particulier, le dispositif de sortie des substrats et des particules catalytiques sera constitué par un système de cyclones. Dans une configuration particulière, le système de cyclones sera constitué d'un cyclone de charge 30 à double entrée longitudinale 31 pour les substrats et particules, et tangentielle 32 pour les gaz. Le réacteurl débouche 37 dans une première chambre cylindrique de collection 33, dans laquelle tombent les substrats provenant des réactions FT et les particules catalytiques. Cette chambre de collection surplombe l'entrée longitudinale 31 d'un cyclone de charge conique. L'entrée longitudinale du cyclone de charge est constituée de pales inclinées 34 de manière à laisser passer les particules et les substrats liquides et solides, les orientant dans le sens de rotation du vortex qui sera induit par le cône du cyclone. Au travers de l'entrée longitudinale. Un tuyau 35 récupère les gaz remontant de la colonne centrale de gaz formés dans le cyclone de charge et les conduits au travers du réservoir vers d'autres unités de distillation pour être récupérés. Un piquage situé en fin du tuyau réacteur 36 récupère les gaz circulant dans le réacteur et les conduits à l'entrée tangentielle 32 du cyclone de charge. Sous l'action de ces gaz, un vortex descendant se formera dans le cyclone, entraînant les substrats et les particules vers la sortie inférieure du cyclone alors que les gaz remonteront dans une colonne centrale vers le tuyau de récupération. La sortie inférieure du cyclone de charge débouche dans l'entrée d'un dispositif similaire décrit en I- 1. Cette sortie permettant d'évacuer les solides et liquides du réacteur sans contamination par l'air extérieur. A la partie haute du tuyau de récupération peut être installée une valve anti-retour. Les gaz sortant du tuyau de récupération pourront être distillés dans leurs différentes fractions.

J) Dans un mode de réalisation particulier, l'échangeur thermique du réacteur est interrompu avant la fin de celui-ci et est remplacé par un isolant, de ce fait cette partie du réacteur n'étant plus thermostatée, la température augmente à ce niveau du fait de la réaction FT. L'augmentation de température interrompt la réaction et entraîne la vaporisation des composés organiques synthétisés qui seront alors récupérés dans la phase gazeuse et pourront être distillés. Ne resteront éventuellement sur les particules catalytiques que certains composés tels que des goudrons qui seront évacués avec les particules catalytiques et craqués ultérieurement.

K) Dans certains modes de réalisation les particules catalytiques en sortie du réacteur seront transférées dans un four solaire tel que décrit ci-dessus, comprenant éventuellement :

- un tuyau métallique clos aux extrémités, par des moyens pour faire pénétrer et sortir les substrats et les particules catalytiques sans contamination atmosphérique extérieure et sans échappement des gaz intérieurs,

-des moyens pour concentrer la lumière solaire à la surface du four,

-des moyens optiquement transparents pour isoler thermiquement le four solaire du milieu extérieur, notamment par des systèmes de tuyaux transparents sous vide et/ou de confinement par flux gazeux,

-des moyens pour injecter des micro-ondes combinées éventuellement avec des infrarouges et des plasmas, à l'intérieur du four afin de les faire réagir avec les substrats par exemple pour les craquer, les évaporer ou pour régénérer les particules catalytiques,

-des moyens pour injecter des gaz notamment du C02, CO ou de 02 ou des plasmas gazeux de ces gaz à l'intérieur du four solaire,

-des moyens tels qu'une vis-sans-fïn pour faire progresser les substrats et les particules à l'intérieur du four solaire. L) Dans certains modes de réalisation, une partie du réacteur jouera le rôle de four solaire tubulaire, notamment les parties sans échangeur en fin de réacteur, qui sera isolée au moyen de tubes transparents sous vide et sur lesquels la lumière solaire sera concentrée, formant un four solaire intégré au réacteur, et comprendra des moyens pour l'injection des gaz ou plasma. Cette partie de réacteur permettra de vaporiser les substrats en gaz afin de les séparer des particules catalytiques au moment de la sortie.

La présente invention concerne également :

1) Un procédé Fischer-Tropsch pour la synthèse d'oléfïnes, de paraffines, d'alcools et/ou d'eau, caractérisé en ce qu'il comprend les étapes consistant à faire circuler dans un tube réacteur (1) une phase particulaire comportant des particules de taille comprise entre 5nm et 5cm, et à soumettre à intervalles réguliers cette phase particulaire à au moins un plasma provenant d'au moins un gaz tel que du dihydrogène, du monoxyde de carbone et/ou leur mélange ;

2) Un procédé selon le paragraphe 1), caractérisé en ce que les particules sont choisies parmi : des particules de fer, des particules de carbure de silicium recouvertes ou intégrant du cobalt, des particules de fer recouvertes ou intégrant du cobalt, des particules de diamant, des particules de diamant creuses, des particules de diamant recouvertes ou intégrant du cobalt, des particules de diamant recouvertes ou intégrant du fer, des particules de carbure de silicium comprenant des particules de diamant, des particules de cuivre comprenant un mélange quelconque des éléments précités, des particules dont les cœurs sont en céramique tel que le carbure de silicium, des céramiques d'aluminium ou d'oxydes tels que les oxydes de silicium, d'aluminium, de titane, de zirconium, de magnésium, de silicium magnésium, de gallium, de césium ou encore de particules de carbone ou de tamis zéolithes, préférentiellement des particules avec des cœurs comprenant chacun une éponge en carbure de silicium et des nanoparticules de diamant préférentiellement creuses ;

3) Un procédé selon le paragraphe 2), caractérisé en ce que les cœurs ou les particules sont recouverts par des catalyseurs ioniques, des catalyseurs d'oxydes métalliques, tels qu'un mélange d'ions et/ou d'oxydes tels que des oxydes, correspondant au fer, au fer ferrique, au fer ferreux, au cuivre, au cuivre cuivrique, au cuivre cuivreux, au cérium, au potassium, au lanthane, au cobalt, au calcium, au zinc, à l'aluminium, au fluor, au magnésium , au manganèse, au nickel, au ruthénium, au rubidium, et/ou aux métaux de groupe I (alcalin, Li, Na, Rb, Cs, Fr) et/ou du groupe II (alcalins terreux Be, Mg, Ca, Sr, Ba, Ra) ;

4) Un procédé selon l'un quelconque des paragraphes précédents, caractérisé en ce que le plasma est d'origine micro-ondes (5), inductifs (13), arcs électriques (8, 9, 10, 11), arcs électriques hors équilibre, ou d'une combinaison quelconque d'origine micro-ondes, inductifs, arcs électriques et arcs électriques hors équilibre.

L'invention concerne également :

5) Un dispositif de mise en œuvre du procédé selon l'un des paragraphes 1) à 4), caractérisé en ce qu'il comprend un tube réacteur (1) en métal ou en céramique, tel qu'en alumine, AITi, acier, titane, nickel, cuivre, cobalt, acier réfractaire, et zirconium, des moyens (2) pour faire avancer les particules dans le tube réacteur, et des moyens (5, 8, 13) pour générer un plasma dans le tube réacteur ;

6) Un dispositif selon le paragraphe 5), caractérisé en ce que les moyens pour faire avancer les particules dans le tube réacteur comportent une vis-sans-fïn (3) ou une hélice ;

7) Un dispositif selon le paragraphe 6), caractérisé en ce qu'il comprend au moins un magnétron (5) de génération de micro-ondes, ce magnétron étant relié à un guide d'ondes (7) qui est traversé par le tube réacteur (1) qui est réalisé en matériau transparent aux micro-ondes et qui a un diamètre égal à λ/4 ou λ/2, où λ représente la longueur d'onde des micro-ondes, les micro-ondes se propageant dans le guide d'ondes étant destinées à traverser le tube réacteur et à interagir avec le gaz circulant dans le tube pour former le 5 plasma ;

8) Un dispositif selon le paragraphe 6) ou 7), caractérisé en ce qu'il comprend un solénoïde (13) entourant le tube réacteur (14) qui est réalisé dans un matériau perméable aux champs électromagnétiques et dans lequel circule le gaz, le solénoïde étant destiné à être parcouru par un courant alternatif haute fréquence pour entraîner par induction la

10 formation du plasma dans le gaz traversant le tube réacteur ;

9) Un dispositif selon l'un quelconque des paragraphes 6) à 8), caractérisé en ce que des électrodes (8) sous tension capables d'initier un plasma sont disposées à une entrée du tube réacteur et sont destinées à former des arcs électriques hors équilibre sous l'action de la forme des électrodes et de la circulation du gaz dans le tube ;

15 10) Un dispositif selon l'un quelconque des paragraphes 6 à 9, caractérisé en ce que l'isolement des atmosphères intérieure et extérieure du tube réacteur est réalisé par des systèmes (20,23) comprenant au moins deux cylindres coaxiaux emboîtés tournant en sens inverse dans une chambre cylindrique (24), chaque cylindre comprenant au moins une cavité (21, 23) dont l'atmosphère peut être vidée sans que l'atmosphère de la cavité de 0 l'autre cylindre soit vidée ;

11) Un dispositif selon l'un quelconque des paragraphes 6) à 10), caractérisé en ce qu'il comprend un four solaire permettant de chauffer les particules, ce four solaire comprenant :

- au moins un tuyau métallique fermé à ses extrémités par des moyens pour faire pénétrer et sortir les particules catalytiques et des substrats sans contamination atmosphérique 5 extérieure et sans échappement du gaz intérieur,

- au moins un moyen pour concentrer la lumière solaire à la surface du four,

- au moins un moyen optiquement transparent pour isoler thermiquement le four solaire du milieu extérieur, notamment par des systèmes de tuyaux transparents sous vide et/ou de confinement par flux gazeux,

30 - au moins un moyen pour injecter des micro-ondes combinées éventuellement avec des infrarouges et des plasmas, à l'intérieur du four afin de les faire réagir avec les substrats, par exemple pour les craquer ou pour régénérer les particules catalytiques,

- au moins un moyen pour injecter au moins un gaz notamment du C02, CO ou 02 ou des plasmas gazeux de ces gaz à l'intérieur du four solaire, et

35 - au moins un moyen, tel qu'une vis-sans-fin, pour faire progresser les substrats et les particules à l'intérieur du four solaire.

LEGENDES DE L'ENSEMBLE DES FIGURES

5

1) tuyau / tube réacteur

2) système d'hélice ou de vis-sans-fïn

3) schéma représentatif d'hélice ou de vis-sans-fïn

4) racloir souple ou un système de balais métalliques sur hélice ou de vis-sans-fïn

10 5) magnétron

6) tube transparent pour les micro-ondes tel que le quartz

7) guide d'ondes

8) électrodes sous tension disposées à l'entrée du cylindre transparent

9) électrodes divergentes

15 10) tripode de trois électrodes disposées à 120° les unes des autres et portées à un même potentiel

11) pale de l'hélice à trois pales disposées à 120° , telles que chaque pale constitue une électrode

12) bornes d'un connecteur tournant

20 13) solénoïde

14) le tube en quartz ou en carbure de silicium ou tout autre céramique entourée par solénoïde

15) tube incluant le tube de quartz et solénoïde

16) échangeur incluant le réacteur

25 17) arrivée fluide caloriporteur

18) sortie fluide caloriporteur

19) entrées pour les torches à plasma

Eql) M : catalyseurs, initiation

Eq2 -Eq3) interaction d'hydrogène dans les espèces carbonées

30 Eq4-Eq5) croissance des chaînes

20) cylindre tournant intérieur

21) entrée cavité cylindre intérieur

22) pores disposés au fond de la cavité du cylindre intérieur

23) ouverture du cylindre extérieur de même taille que l'ouverture de la cavité du cylindre 35 intérieur

24) chambre cylindrique

25) ouverture de la chambre cylindrique

26) bosselage muni de pores de la chambre cylindrique

27) cyclone de chargement

40 28) entrée cyclone air plus particules

29) évacuation air cyclone

30) cyclone à double entrée longitudinale et tangentielle

31) entrée longitudinale pour les substrats et particules

32) entrée tangentielle des gaz

45 33) chambre cylindrique de collection

34) pales inclinées à entrée longitudinale du cyclone

35) tuyau de récupération des gaz remontant dans le cyclone

36) piquage situé en fin du tuyau réacteur

37) sortie du tuyau réacteur