Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HAIR CARE TREATMENT AGENTS CONTAINING POLYVINYL ALCOHOL
Document Type and Number:
WIPO Patent Application WO/2006/032321
Kind Code:
A1
Abstract:
The invention relates to hair care treatment agents containing 0.1 to 20 % by weight of polyvinyl alcohol (PVAL) and/or poly(vinyl alcohol/vinyl acetate) with cationic groups, and characterized by having an improved caring action and by hindering resoiling.

Inventors:
SCHULZE ZUR WIESCHE ERIK (DE)
HOLLENBERG DETLEF (DE)
Application Number:
PCT/EP2005/008177
Publication Date:
March 30, 2006
Filing Date:
July 28, 2005
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HENKEL KGAA (DE)
SCHULZE ZUR WIESCHE ERIK (DE)
HOLLENBERG DETLEF (DE)
International Classes:
A61K8/81; A61Q5/00; A61Q5/02; A61Q5/06; A61Q5/12; (IPC1-7): A61K7/06
Foreign References:
US4645794A1987-02-24
EP0773015A21997-05-14
EP1384467A12004-01-28
Other References:
R. DAVIS: "New polymers for cosmetic products", COSMETICS & TOILETRIES, vol. 102, no. 7, 1987, pages 39 - 42, XP008054323
DATABASE CA CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002349929, retrieved from STN Database accession no. 127: 55625
DATABASE CA CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; XP002349930, retrieved from STN Database accession no. 125: 338741
DATABASE REGISTRY CHEMICAL ABSTRACTS SERVICE; XP002349931, retrieved from STN Database accession no. 80821-79-0
Download PDF:
Claims:
Patentansprüche:
1. Haarbehandlungsmittel, enthaltend 0,1 bis 20 Gew.% Polyvinylalkohol (PVAL) und/oder Poly(vinylalkohol/vinylacetat), dadurch gekennzeichnet, daß der Polyvinylalkohol bzw. das Poly(vinylalkohol/vinylacetat) kationische Gruppen beinhaltet.
2. Haarbehandlungsmittel nach Anspruch 1 , dadurch gekennzeichnet, daß es ein Poly(vinylalkohol/vinylacetat)Copolymer enthält, welches 5 bis 40 Mol.%, vorzugsweise 7,5 bis 35 Mol.% und insbesondere 10 bis 30 Mol.% unverseifte Acetatgruppen (entsprechend einem Hydrolysegrad von 60 bis 95 Mol%, vorzugsweise von 65 bis 92,5 Mol% und insbesondere von 70 bis 90 Mol%), aufweist.
3. Haarbehandlungsmittel nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß es einen Polyvinylalkohol (PVAL) und/oder ein Poly(vinylalkohol/vinylacetat)Copolymer enthält, welche(r/s) 0,5 bis 20 Mol.%, vorzugsweise 1 bis 15 Mol.% und insbesondere 2 bis 10 Mol.% kationischer Gruppen aufweist.
4. Haarbehandlungsmittel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß es ein Copolymer der Formel (I) enthält [CH2CH]a[CH2CH]b[CH2CH]c[CH2CH]d[CH2CH]e[CH2CH]r (I), OH OC(O) OH O OH OC(O) CH3 XN+(R1R2R3) CH3 in der die Indizes a, b, c, e und f jeweils für Zahlen zwischen 0 und 2000 stehen, mit der Maßgabe, daß die Summe (a+c+e) > 0 ist; d für eine Zahl zwischen 1 und (a+b+c+e+f)/5 steht, X eine verbindende Gruppe ist, die vorzugsweise ausgewählt ist aus gegebenenfalls substituierten Alkylengruppen, und R1 , R2 und R3 jeweils unabhängig voneinander ausgewählt sind aus der Gruppe Phenyl, Benzyl, der C1 20Alkylreste, vorzugsweise CH3, CH2CH3, CH2CH2CH3, CH(CH3)2, CH2CH2CH2H3, CH2CH(CHs)2, CH(CH3)CH2CH3, C(CHs)3.
5. Haarbehandlungsmittel nach Anspruch 4, dadurch gekennzeichnet, daß es ein Copolymer der Formel (I) enthält, in der X für eine verbindenden Gruppe aus der Gruppe CH2, (CHz)2, (CHz)3, (CHz)4, (CHz)5, (CHz)6, (CHz)7, (CHz)8, (CH2)g, (CH2)io, (CH2)ii, (CH2)i2, (CH2)2, (CH2)i3, (CH2)14, (CH2)i5, (CH2)Ie, (CHz)iβ , (CHz)11T, (CHs)20, (CH2)21, (CHz)22, steht.
6. Haarbehandlungsmittel nach einem der Ansprüche 4 oder 5, dadurch gekennzeichnet, daß es ein Copolymer der Formel (I) enthält, in der R1 , R2 und R3 unabhängig voneinander für CH3 oder CH2CH3 stehen, wobei in bevorzugten Mitteln R1 = R2 = R3 ist.
7. Haarbehandlungsmittel nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es ein es Poly(vinylalkohol/vinylacetat)Copolymer enthält, bei dem der Quotient der Anzahl der Acetatgruppen zur Anzahl der kationischen Gruppen 15 : 1 bis 1 : 1 , vorzugsweise 12 : 1 bis 1 ,5 : 1 , besonders bevorzugt 10 : 1 bis 2 : 1 und insbesondere 6 : 1 bis 3 : 1 beträgt.
8. Haarbehandlungsmittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es, bezogen auf das Gewicht des Mittels, 0,01 bis 5 Gew.%, vorzugsweise 0,1 bis 4 Gew.%, besonders bevorzugt 0,15 bis 3,5 Gew.% und insbesondere 0,3 bis 2,5 Gew.% Polyhydroxyverbindung(en) enthält, wobei bevorzugte Polyhydroxyverbindungen ausgewählt sind aus Ethylenglycol, Propylenglycol, Polyethylenglycol, Polypropylenglycol, Glycerin, Pentaerythrit, Sorbit, Mannit, Xylit und ihren Mischungen.
9. Haarbehandlungsmittel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es zusätzlich mindestens einen Stoff aus der Gruppe der Vitamine, Provitamine und Vitaminvorstufen sowie deren Derivate enthält, wobei Vitamine, ProVitamine und Vitaminvorstufen bevorzugt sind, die den Gruppen A, B, C, E, F und H zugeordnet werden.
10. Verwendung von Polyvinylalkoholen (PVAL) und/oder Poly(vinylalkohol/vinylacetat)Copolymeren, welche kationische Gruppen, vorzugsweise 0,5 bis 20 Mol.%, vorzugsweise 1 bis 15 Mol.% und insbesondere 2 bis 10 Mol.% kationische Gruppen, enthalten, in kosmetischen Mitteln.
11. Verwendung von Polyvinylalkoholen (PVAL) und/oder Poly(vinylalkohol/vinylacetat)Copolymeren, welche kationische Gruppen, vorzugsweise 0,5 bis 20 Mol.%, vorzugsweise 1 bis 15 Mol.% und insbesondere 2 bis 10 Mol.% kationische Gruppen, enthalten, zum Schutz von Haaren vor Wiederanschmutzung.
12. Verwendung einer Zubereitung nach einem der Ansprüche 1 bis 9 zur Reinigung von Haut und Haar.
13. Verwendung einer Zubereitung nach einem der Ansprüche 1 bis 9 zur Restrukturierung von keratinischen Fasern, insbesondere menschlichen Haaren.
14. Verfahren zur Behandlung von Haut oder Haar, bei dem eine Zubereitung gemäß einem der Ansprüche 1 bis 9 auf die Haut und/oder das Haar aufgetragen wird, wobei die Zubereitung nach einer Einwirkzeit von 0 bis 45 Minuten wieder ausgespült wird.
15. Verfahren zur Behandlung von Haut oder Haar, bei dem eine Zubereitung gemäß einem der Ansprüche 1 bis 9 auf die Haut und/oder das Haar aufgetragen und dort bis zur nächsten Wäsche belassen wird.
Description:
„Pflegende Haarbehandlungsmittel mit Polyvinylalkohol"

Die Erfindung betrifft Haarbehandlungsmittel, welche dem mit ihnen behandelten Haar mehr Pflege geben.

Die kosmetische Behandlung von Haut und Haaren ist ein wichtiger Bestandteil der menschlichen Körperpflege. So wird menschliches Haar heute in vielfältiger Weise mit haarkosmetischen Zubereitungen behandelt. Dazu gehören etwa die Reinigung der Haare mit Shampoos, die Pflege und Regeneration mit Spülungen und Kuren sowie das Bleichen, Färben und Verformen der Haare mit Färbemitteln, Tönungsmitteln, Wellmitteln und Stylingpräparaten.

Nicht zuletzt durch die starke Beanspruchung der Haare, beispielsweise durch das Färben oder Dauerwellen als auch durch die Reinigung der Haare mit Shampoos und durch Umweltbelastungen, nimmt die Bedeutung von Pflegeprodukten mit möglichst langanhaltender Wirkung zu. Derartige Pflegemittel beeinflussen die natürliche Struktur und die Eigenschaften der Haare. So können anschließend an solche Behandlungen beispielsweise die Naß- und Trockenkämmbarkeit des Haares, der Halt und die Fülle des Haares optimiert sein oder die Haare vor erhöhtem Spliß geschützt sein.

Es ist daher seit langem üblich, die Haare einer speziellen Nachbehandlung zu unterziehen. Dabei werden, üblicherweise in Form einer Spülung, die Haare mit speziellen Wirkstoffen, beispielsweise quaternären Ammoniumsalzen oder speziellen Polymeren, behandelt. Durch diese Behandlung werden je nach Formulierung die Kämmbarkeit, der Halt und die Fülle der Haare verbessert und die Splißrate verringert.

Weiterhin wurden in jüngster Zeit sogenannte Kombinationspräparate entwickelt, um den Aufwand der üblichen mehrstufigen Verfahren, insbesondere bei der direkten Anwendung durch Verbraucher, zu verringern.

Diese Präparate enthalten neben den üblichen Komponenten, beispielsweise zur Reinigung der Haare, zusätzlich Wirkstoffe, die früher den Haarnachbehandlungsmitteln vorbehalten waren. Der Konsument spart somit einen Anwendungsschritt; gleichzeitig wird der Verpackungsaufwand verringert, da ein Produkt weniger gebraucht wird.

Die zur Verfügung stehenden Wirkstoffe sowohl für separate Nachbehandlungsmittel als auch für Kombinationspräparate wirken im allgemeinen bevorzugt an der Haaroberfläche. So sind Wirkstoffe bekannt, welche dem Haar Glanz, Halt, Fülle, bessere Naß- oder Trockenkämmbarkeiten verleihen oder dem Spliß vorbeugen.

Die bekannten Wirkstoffe können jedoch nicht alle Bedürfnisse in ausreichendem Maße abdecken. Es besteht daher weiterhin ein Bedarf nach Wirkstoffen bzw. Wirkstoffkom¬ binationen für kosmetische Mittel mit guten pflegenden Eigenschaften und guter biologischer Abbaubarkeit. Insbesondere in farbstoff- und/oder elektrolythaltigen Formulierungen besteht Bedarf an zusätzlichen pflegenden Wirkstoffen, die sich problemlos in bekannte Formulierungen einarbeiten lassen.

Der vorliegenden Erfindung lag die Aufgabe zugrunde, Haarreinigungs- und/oder Haarpflegemittel bereitzustellen, die sich durch besondere pflegende Eigenschaften auszeichnen. Dabei sollten die Mittel die Eigenschaften des behandelten Haares, insbesondere Naß- und Trockenkämmbarkeit sowie den Griff des nassen und trockenen Haares verbessern.

Es wurde nun gefunden, daß sich quaternierte Polyvinylalkohole bzw. Polyvinylalkohol/Polyvinylacetat-Copolymere hervorragend in Haarbehandlungsmittel einarbeiten lassen und ihnen herausragende Pflegeeigenschaften verleihen.

Ein erster Gegenstand der vorliegenden Erfindung ist ein Haarbehandlungsmittel, enthaltend 0,1 bis 20 Gew.-% Polyvinylalkohol (PVAL) und/oder

Poly(vinylalkohol/vinylacetat), wobei der Polyvinylalkohol bzw. das Poly(vinylalkohol/vinylacetat) kationische Gruppen beinhaltet.

"Polyvinylalkohole" (Kurzzeichen PVAL, gelegentlich auch PVOH) ist dabei die Bezeichnung für Polymere der allgemeinen Struktur

— CH 2 -CH-CH 2 -CH — OH OH

die in geringen Anteilen (ca. 2%) auch Struktureinheiten des Typs

enthalten.

Polyvinylalkohol kann nicht direkt durch Polymerisation von Vinylalkohol (H 2 C=CHOH) erhalten werden, da dessen Konzentration im Tautomeren-Gleichgewicht mit Acetaldehyd (H 3 C-CHO) zu gering ist. Polyvinylalkohole werden daher vor allem aus Polyvinylacetaten über polymeranaloge Reaktionen wie Hydrolyse, technisch insbesondere aber durch alkalische katalysierte Umesterung mit Alkoholen (vorzugsweise Methanol) in Lösung hergestellt.

Handelsübliche Polyvinylalkohole, die als weiß-gelbliche Pulver oder Granulate mit Polymerisationsgraden im Bereich von ca. 100 bis 2500 (Molmassen von ca. 4000 bis 100.000 g/mol) angeboten werden, haben Hydrolysegrade von 98-99 bzw. 87-89 MoI- %, enthalten also noch einen Restgehalt an Acetyl-Gruppen und sind damit exakt bezeichnet Polyvinylalkohol-Polyvinylacetat-Copolymere, die nachfolgend auch als Poly(vinylalkohol/vinylacetat)~Copolymere bezeichnet werden. Charakterisiert werden die Polyvinylalkohole von Seiten der Hersteller durch Angabe des Polymerisationsgrades des Ausgangspolymeren, des Hydrolysegrades, der Verseifungszahl bzw. der Lösungsviskosität.

Polyvinylalkohole sind abhängig vom Hydrolysegrad löslich in Wasser und wenigen stark polaren organischen Lösungsmitteln (Formamid, Dimethylformamid, Dimethylsulfoxid); von (chlorierten) Kohlenwasserstoffen, Estern, Fetten und Ölen werden sie nicht angegriffen. Polyvinylalkohole werden als toxikologisch unbedenklich eingestuft und sind biologisch zumindest teilweise abbaubar. Die Wasserlöslichkeit kann man durch Nachbehandlung mit Aldehyden (Acetalisierung), durch Komplexierung mit Ni- oder Cu- Salzen oder durch Behandlung mit Dichromaten, Borsäure od. Borax verringern. Polyvinylalkohol ist weitgehend undurchdringlich für Gase wie Sauerstoff, Stickstoff, Helium, Wasserstoff, Kohlendioxid, läßt jedoch Wasserdampf hindurchtreten.

Im Rahmen-der-vor-liegenden Erfindung sind Haarbehandlungsmittel bevorzugt, die ein Poly(vinylalkohol/vinylacetat)-Copolymer enthalten, welches 5 bis 40 Mol.-%, vorzugsweise 7,5 bis 35 Mol.-% und insbesondere 10 bis 30 Mol.-% unverseifte Acetatgruppen (entsprechend einem Hydrolysegrad von 60 bis 95 Mol-%, vorzugsweise von 65 bis 92,5 Mol-% und insbesondere von 70 bis 90 Mol-%), aufweist.

Vorzugsweise werden Polyvinylalkohole bzw. Poly(vinylalkohol/vinylacetat)-Copolymere eines bestimmten Molekulargewichtsbereichs eingesetzt, wobei erfindungsgemäß bevorzugt ist, daß das Haarbehandlungsmittel einen Polyvinylalkohol bzw. Poly(vinylalkohol/vinylacetat)-Copolymer umfaßt, dessen Molekulargewicht im Bereich von 10.000 bis 100.000 gmol "1 , vorzugsweise von 11.000 bis 90.000 gmol "1 , besonders bevorzugt von 12.000 bis 80.000 gmol '1 und insbesondere von 13.000 bis 70.000 gmol "1 liegt.

Der Polymerisationsgrad solcher bevorzugten Polyvinylalkohole bzw. Poly(vinylalkohol/vinylacetat)-Copolymere liegt zwischen ungefähr 200 bis ungefähr 2100, vorzugsweise zwischen ungefähr 220 bis ungefähr 1890, besonders bevorzugt zwischen ungefähr 240 bis ungefähr 1680 und insbesondere zwischen ungefähr 260 bis ungefähr 1500.

Erfindungsgemäß weist der in den Haarbehandlungsmitteln enthaltene Polyvinylalkohol bzw. das Poly(vinylalkohol/vinylacetat)-Copolymer kationische Gruppen auf. Die Polymere werden dabei auch als „quatemierte" Polyvinylalkohole bzw. Poly(vinylalkohol/vinylacetat)-Copolymere bezeichnet, da die am häufigsten

anzutreffende kationische Gruppe ein positiv geladener Stickstoff ist. Die Quaternierung erfolgt beispielsweise durch Umsetzung des Polymers mit Alkylenoxiden, welche quartäre Gruppen tragen.

Die nicht quaternierten Polyvinylalkohole bzw. Poly(vinylalkohol/vinylacetat)-Copolymere sind kommerziell breit verfügbar, beispielsweise unter dem Warenzeichen Mowiol ® (Clariant). Im Rahmen der vorliegenden Erfindung besonders geeignete Polyvinylalkohole sind beispielsweise Mowiol ® 3-83, Mowiol ® 4-88, Mowiol ® 5-88 sowie Mowiol ® 8-88. Aus diesen kann durch geeignete Umsetzung ein Polymer erhalten werden, welches kationische Gruppen aufweist.

Weitere als Ausgangsmaterialien für quatemierte Polymere besonders geeignete Polyvinylalkohole bzw. PolyCvinylalkohol/vinylacetatJ-Copolymere sind der nachstehenden Tabelle zu entnehmen:

Weitere als Ausgangsmaterialien für quatemierte Polymere geeignete Polyvinylalkohole bzw. Poly(vinylalkohol/vinylacetat)-Copolymere sind ELVANOL ® 51-05, 52-22, 50-42, 85- 82, 75-15, T-25, T-66, 90-50 (Warenzeichen der Du Pont), ALCOTEX ® 72.5, 78, B72, F80/40, F88/4, F88/26, F88/40, F88/47 (Warenzeichen der Harlow Chemical Co.), Gohsenol ® NK-05, A-300, AH-22, C-500, GH-20, GL-03, GM-14L, KA-20, KA-500, KH- 20, KP-06, N-300, NH-26, NM11Q, KZ-06 (Warenzeichen der Nippon Gohsei K.K.).

Die Wasserlöslichkeit von PVAL - auch von Polyvinylalkoholen bzw. Poly(vinylalkohol/vinylacetat)-Copolymeren mit kationischen Gruppen - kann durch

Nachbehandlung mit Aldehyden (Acetalisierung) oder Ketonen (Ketalisierung) verändert werden. Als besonders bevorzugt und aufgrund ihrer ausgesprochen guten Kaltwasseriöslichkeit besonders vorteilhaft haben sich hierbei Polyvinylalkohole herausgestellt, die mit den Aldehyd bzw. Ketogruppen von Sacchariden oder Polysacchariden oder Mischungen hiervon acetalisiert bzw. ketalisiert werden. Als äußerst vorteilhaft einzusetzen sind die Reaktionsprodukte aus PVAL und Stärke.

Weiterhin läßt sich die Wasserlöslichkeit durch Komplexierung mit Ni- oder Cu-Salzen oder durch Behandlung mit Dichromaten, Borsäure, Borax verändern und so gezielt auf gewünschte Werte einstellen.

Der Anteil kationischer Gruppen im erfindungsgemäß eingesetzten Polymer beträgt vorzugsweise bis zu einem Viertel aller funktionellen Gruppen im Molekül. Erfindungsgemäße Haarbehandlungsmittel, die einen Polyvinylalkohol (PVAL) und/oder ein Poly(vinylalkohol/vinylacetat)-Copolymer enthalten, welche(r/s) 0,5 bis 20 Mol.-%, vorzugsweise 1 bis 15 Mol.-% und insbesondere 2 bis 10 Mol.% kationischer Gruppen aufweist, sind besonders bevorzugt.

Die in den erfindungsgemäßen Mitteln enthaltenen Polyvinylalkohole bzw. Poly(vinylalkohol/vinylacetat)-Copolymere mit kationischen Gruppen weisen mindestens zwei bzw. drei grundlegende Monomereinheiten auf. Polyvinylalkohole mit kationischen Gruppen besitzen die Monomereinheiten -[CH 2 -CH(OH)]- und -[CH 2 -CH(O-Y-X + )]-, während Poly(vinylalkohol/vinylacetat)-Copolymere mit kationischen Gruppen zusätzlich noch die Monomereinheit -[CH 2 -CH(OC(O)CH 3 )]- aufweisen. Diese Monomereinheiten können in beliebiger Anzahl und Reihenfolge miteinander verknüpft sein.

Die kationische Gruppe kann beispielsweise ein positiv geladenes Atom aus der fünften Hauptgruppe des Periodensystems sein. Besonders bevorzugt aus dieser Gruppe sind Phosphor und Stickstoff. Bevorzugte N-haltige positiv geladene Gruppen sind Tetraalkylammonium-, Imidazolium-, Thiazolium- oder Pyridiniumgruppen.

Besonders bevorzugte erfindungsgemäße Haarbehandlungsmittel sind dadurch gekennzeichnet, daß sie ein Copolymer der Formel (I) enthalten

-[CH 2 -CH] a -[CH 2 -CH] b -[CH 2 -CH] c -[CH 2 -CH] d -[CH 2 -CH] e -[CH 2 -CH] f (D,

OH O-C(O) OH O OH 0-C(O)

CH 3 X-N + (R 1 R 2 R 3 ) CH 3

in der die Indizes a, b, c, e und f jeweils für Zahlen zwischen O und 2000 stehen, mit der Maßgabe, daß die Summe (a+c+e) > O ist; d für eine Zahl zwischen 1 und (a+b+c+e+f)/5 steht, X eine verbindende Gruppe ist, die vorzugsweise ausgewählt ist aus gegebenenfalls substituierten Alkylengruppen, und R1 , R2 und R3 jeweils unabhängig voneinander ausgewählt sind aus der Gruppe -Phenyl, -Benzyl, der C 1-2 o-Alkylreste, vorzugsweise -CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 3 , -CH(CH 3 ) 2 , -CH 2 CH 2 CH 2 H 3 , -CH 2 CH(CH 3 ) 2 , -CH(CH 3 )CH 2 CH 3 , -C(CHs) 3 .

Die Indizes a, b, c, d, e und f geben jeweils an, ob und in welcher Anzahl eine bestimmte Monomereinheit im Molekül enthalten ist. Bei reinen Polyvinylalkoholen (Hydrolysegrad = 100 %) sind die Indizes b und f = O.

In bevorzugten erfindungsgemäßen Haarbehandlungsmitteln ist ein Copolymer der Formel (I) enthalten, in der X für eine verbindenden Gruppe aus der Gruppe -CH 2 -, - (CHz) 2 -, -(CH 2 )S-, -(CHz) 4 -, -(CHs) 5 -, -(CHz) 6 -, -(CHz) 7 -, -(CHz) 8 -, -(CHz) 8 -, -(CHa) 10 -, - (CH 2 )n-, -(CH 2 )i 2 -, -(CH 2 ) 2 -, -(CHz)i 3 -, -(CH 2 )i 4 -, -(CH 2 )is-, -(CH 2 )i 6 -, -(CH 2 )i 8 -, -(CH 2 )i 9 -, - (CH Z ) 20 -, -(CH 2 )Zi-, -(CH 2 ) 22 -, steht.

Weiter bevorzugte erfindungsgemäße Haarbehandlungsmittel sind dadurch gekennzeichnet, daß sie ein Copolymer der Formel (I) enthalten, in der R1 , R2 und R3 unabhängig voneinander für -CH 3 oder -CH 2 CH 3 stehen, wobei in bevorzugten Mitteln R1 = R2 = R3 ist.

Die angegebenen Polymerisationsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Aufgrund der Herstellverfahren bestehen Handelsprodukte der genannten Formeln zumeist nicht aus einem individuellen Vertreter, sondern aus

Gemischen, wodurch sich für die Polymerisationsgrade Mittelwerte und daraus folgend gebrochene Zahlen ergeben können. In der nachstehenden Tabelle sind besonders bevorzugt in den erfindungsgemäßen Mitteln enthaltene Polyvinylalkohole bzw. Poly(viny!alkohol/vinylacetat)-Coplymere mit kationischen Gruppen bezüglich der Reste R 1 , R 2 und R 3 sowie der Gruppe X charakterisiert. Bevorzugte erfindungsgemäße Mittel enthalten ein oder mehrere Polyvinylalkohole bzw. Poly(vinylalkohol/vinylacetat)-Coplymere mit kationischen Gruppen aus der nachstehenden Tabelle oder Gemische aus diesen.

Mit besonderem Vorzug enthalten die erfindungsgemäßen Mittel - wie bereits oben erwähnt - keinen vollständig hydrolysierten Polyvinylalkohol, sondern ein Po!y(vinylalkohol/vinylacetat)-Copolymer. Hier ist es bevorzugt, daß die Anzahl der kationischen Gruppen und die Anzahl der Acetatgruppen im Molekül zueinander in einem bestimmten Verhältnis stehen. Besonders bevorzugte erfindungsgemäße Haarbehandlungsmittel sind daher dadurch gekennzeichnet, daß sie ein Poly(vinylalkohol/vinylacetat)-Copolymer enthalten, bei dem der Quotient der Anzahl der Acetatgruppen zur Anzahl der kationischen Gruppen 15 : 1 bis 1 : 1 , vorzugsweise 12 : 1 bis 1 ,5 : 1 , besonders bevorzugt 10 : 1 bis 2 : 1 und insbesondere 6 : 1 bis 3 : 1 beträgt.

Die erfindungsgemäßen Mittel enthalten neben den bereits beschriebenen Inhaltsstoffen weitere Inhaltsstoffe von Haarbehandlungsmitteln,. Besondere Vorteile resultieren dabei aus dem Einsatz von Polyhydroxyverbindungen, so daß bevorzugte Haarbehandlungsmittel dadurch gekennzeichnet sind, daß sie, bezogen auf das Gewicht des Mittels, 0,01 bis 5 Gew.%, vorzugsweise 0,1 bis 4 Gew.%, besonders bevorzugt 0,15 bis 3,5 Gew.% und insbesondere 0,3 bis 2,5 Gew.% Polyhydroxyverbindung(en) enthalten, wobei bevorzugte Polyhydroxyverbindungen ausgewählt sind aus Ethylenglycol, Propylenglycol, Polyethylenglycol, Polypropylenglycol, Glycerin, Pentaerythrit, Sorbit, Mannit, Xylit und ihren Mischungen.

Vorzugsweise enthalten die erfindungsgemäßen Mittel mindestens eine Polyhydroxyverbindung mit mindestens 2 OH-Gruppen. Unter diesen Verbindungen sind diejenigen mit 2 bis 12 OH-Gruppen und insbesondere diejenigen mit 2, 3, 4, 5, 6 oder 10 OH-Gruppen bevorzugt.

Polyhydroxyverbindungen mit 2 OH-Gruppen sind beispielsweise Glycol (CH 2 (OH)CH 2 OH) und andere 1 ,2-Diole wie H-(CH 2 ) n -CH(OH)CH 2 OH mit n = 1 , 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. Auch 1,3-Diole wie H-(CH 2 ),,- CH(OH) CH 2 CH 2 OH mit n = 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 , 12, 13, 14, 15, 16, 17, 18, 19, 20 sind erfindungsgemäß einsetzbar. Die (n,n+1)- bzw. (n,n+2)-Diole mit nicht endständigen OH-Gruppen können ebenfalls eingesetzt werden.

Wichtige Vertreter von Polyhydroxyverbindungen mit 2 OH-Gruppen sind auch die Polyethylen- und Polypropylenglycole.

Unter den Polyhydroxyverbindungen mit 3 OH-Gruppen hat das Gylcerin eine herausragende Bedeutung.

Zusammenfassend sind erfindungsgemäße Mittel bevorzugt, bei denen die Polyhydroxyverbindung ausgewählt ist aus Ethylenglycol, Propylenglycol, Polyethylenglycol, Polypropylenglycol, Glycerin, Pentaerythrit, Sorbit, Mannit, Xylit und ihren Mischungen.

Unabhängig vom Typ der eingesetzten Polyhydroxyverbindung mit mindestens 2 OH- Gruppen sind erfindungsgemäße Mittel bevorzugt, die, bezogen auf das Gewicht des Mittels, 0,01 bis 5 Gew.%, vorzugsweise 0,1 bis 4 Gew.%, besonders bevorzugt 0,15 bis 3,5 Gew.% und insbesondere 0,3 bis 2,5 Gew.% Polyhydroxyverbindung (en) enthalten.

Mit besonderem Vorzug können die erfindungsgemäßen Mittel zusätzlich Polyethylenglycolether der Formel (IV)

H(CH 2 ) k (OCH 2 CH 2 ) π OH (IV)

enthalten, worin k eine Zahl zwischen 1 und 18 unter besonderer Bevorzugung der Werte 0, 10, 12, 16 und 18 und n eine Zahl zwischen 2 und 20 unter besonderer Bevorzugung der Werte 2, 4, 5, 6, 7, 8, 9, 10, 12 und 14 bedeutet. Bevorzugt sind unter diesen die Alkylderivate des Diethylenglycols, des Triethylenglycols, des Tetraethylenglycols, des Pentathylenglycols, des Hexaethylenglycols, des Heptaethylenglycols, des Octaethylenglycols, des Nonaethylenglycols, des Decaethylenglycols, des Dodecaethylenglycols und des Tetradecaethylenglycols sowie die Alkylderivate des Dipropylenglycols, des Tripropylenglycols, des

Tetrapropylenglycols, des Peπtapropylenglycols, des Hexapropylenglycols, des Heptapropylenglycols, des Octapropylenglycols, des Nonapropylenglycols, des Decapropylenglycols, des Dodecapropylenglycols und des Tetradecapropyolenglycols, wobei unter diesen die Methyl-, Ehyl-, Propyl-, n-Butyl, n-Pentyl, n-Hexyl-, n-Heptyl-, n- Octyl-, n-Nonyl, n-Decyl-, n-Undecyl-, n-Dodecyl- und n-Tetradecyl-Derivate bevorzugt sind.

Es hat sich gezeigt, daß Mischungen „kurzkettiger" Poiyalkylenglycolether mit solchen „langkettiger" Poiyalkylenglycolether Vorteile besitzen. „Kurz- bzw. langkettig" bezieht sich in diesem Zusammenhang auf den Polymerisationsgrad des Polyalkylenglycols. Besonders bevorzugt sind Mischungen von ~ Polyalkylenglycolethem mit einem Oligomerisierungsgrad von 5 oder weniger mit Polyalkylenglycolethem mit einem Oligomerisierungsgrad von 7 oder mehr. Bevorzugt sind Mischungen von Alkylderivaten des Diethylenglycols, des Triethylenglycols, des Tetraethylenglycols, des Pentathylenglycols, des Dipropylenglycols, des Tripropylenglycols, des Tetrapropylenglycols oder des Pentapropylenglycols mit Alkylderivaten des Hexaethylenglycols, des Heptaethylenglycols, des Octaethylenglycols, des Nonaethylenglycols, des Decaethylenglycols, des Dodecaethylenglycols, des Hexapropylenglycols, des Heptapropylenglycols, des Octapropylenglycols, des Nonapropylenglycols, des Decapropylenglycols, des Dodecapropylenglycols oder des Tetradecapropyolenglycols, wobei in beiden Fällen die n-Octyl-, n-Decyl-, n-Dodecyl- und n-Tetradecyl-Derivate bevorzugt sind.

Besonders bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß es mindestens einen Poiyalkylenglycolether (IV a) der Formel (IV), in der n für die Zahlen 2, 3, 4 oder 5 steht und mindestens einen Poiyalkylenglycolether (IV b)der Formel (IV) enthält, in der n für die Zahlen 10, 12; 14 oder 16 steht, wobei das Gewichtsverhäitnis (IV b) zu (IV a) 10 : 1 bis 1 : 10, vorzugsweise 7,5 : 1 bis 1 : 5 und insbesondere 5 : 1 bis 1 : 1 beträgt.

Zusätzlich zu den genannten Stoffen können die erfindungsgemäßen Mittel weitere Inhaltsstoffe enthalten. Mit besonderem Vorzug sind dies beispielsweise Vitamine, Provitamine oder Vitaminvorstufen, so daß erfindungsgemäß bevorzugte Haarbehandlungsmittel dadurch gekennzeichnet sind, daß sie zusätzlich mindestens

einen Stoff aus der Gruppe der Vitamine, Provitamine und Vitaminvorstufen sowie deren Derivate enthalten, wobei Vitamine, Pro-Vitamine und Vitaminvorstufen bevorzugt sind, die den Gruppen A 1 B, C, E, F und H zugeordnet werden.

Zur Gruppe der als Vitamin A bezeichneten Substanzen gehören das Retinol (Vitamin A 1 ) sowie das 3,4-Didehydroretinol (Vitamin A 2 ). Das ß-Carotin ist das Provitamin des Retinols. Als Vitamin A-Komponente kommen erfindungsgemäß beispielsweise Vitamin A-Säure und deren Ester, Vitamin A-Aldehyd und Vitamin A-Alkohol sowie dessen Ester wie das Palmitat und das Acetat in Betracht. Die erfindungsgemäßen Mittel enthalten die Vitamin A-Komponente bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf die gesamte Zubereitung.

Zur Vitamin B-Gruppe oder zu dem Vitamin B-Komplex gehören u. a.

- Vitamin B 1 (Thiamin)

- Vitamin B 2 (Riboflavin)

- Vitamin B 3 . Unter dieser Bezeichnung werden häufig die Verbindungen Nicotinsäure und Nicotinsäureamid (Niacinamid) geführt. Erfindungsgemäß bevorzugt ist das Nicotinsäureamid, das in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0,05 bis 1 Gew.-%, bezogen auf das gesamte Mittel, enthalten ist.

- Vitamin B 5 (Pantothensäure, Panthenol und Pantolacton). Im Rahmen dieser Gruppe wird bevorzugt das Panthenol und/oder Pantolacton eingesetzt. Erfindungsgemäß einsetzbare Derivate des Panthenols sind insbesondere die Ester und Ether des Panthenols sowie kationisch derivatisierte Panthenole. Einzelne Vertreter sind beispielsweise das Panthenoltriacetat, der Panthenolmonoethylether und dessen Monoacetat sowie die in der WO 92/13829 offenbarten kationischen Panthenolderivate. Die genannten Verbindungen des Vitamin B 5 -Typs sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 - 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 - 5 Gew.-% sind besonders bevorzugt.

- Vitamin B 6 (Pyridoxin sowie Pyridoxamin und Pyridoxal).

Vitamin C (Ascorbinsäure). Vitamin C wird in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,1 bis 3 Gew.-%, bezogen auf das gesamte Mittel eingesetzt. Die

Verwendung in Form des Palmitinsäureesters, der Glucoside oder Phosphate kann bevorzugt sein. Die Verwendung in Kombination mit Tocopherolen kann ebenfalls bevorzugt sein.

Vitamin E (Tocopherole, insbesondere α-Tocopherol). Tocopherol und seine Derivate, worunter insbesondere die Ester wie das Acetat, das Nicotinat, das Phosphat und das Succinat fallen, sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05-1 Gew.-%, bezogen auf das gesamte Mittel, enthalten.

Vitamin F. Unter dem Begriff "Vitamin F" werden üblicherweise essentielle Fettsäuren, insbesondere Linolsäure, Linolensäure und Arachidonsäure, verstanden.

Vitamin H. Als Vitamin H wird die Verbindung (3aS,4S, 6aR)-2-Oxohexahydrothienol[3,4- d]-imidazol-4-valeriansäure bezeichnet, für die sich aber inzwischen der Trivialname Biotin durchgesetzt hat. Biotin ist in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,0001 bis 1 ,0 Gew.-%, insbesondere in Mengen von 0,001 bis 0,01 Gew.- % enthalten.

Bevorzugt enthalten die erfindungsgemäßen Mittel Vitamine, Provitamine und Vitamin¬ vorstufen aus den Gruppen A, B, E und H. Panthenol, Pantolacton, Pyridoxin und seine Derivate sowie Nicotinsäureamid und Biotin sind besonders bevorzugt.

In einer bevorzugten Ausführungsform der Erfindung kann die Wirkung der erfindungsgemäßen Mittel durch Fettstoffe (D) weiter gesteigert werden. Unter Fettstoffen sind zu verstehen Fettsäuren, Fettalkohole, natürliche und synthetische Wachse, welche sowohl in fester Form als auch flüssig in wäßriger Dispersion vorliegen können, und natürliche und synthetische kosmetische Ölkomponenten zu verstehen.

Als Fettsäuren (D1) können eingesetzt werden lineare und/oder verzweigte, gesättigte und/oder ungesättigte Fettsäuren mit 6 - 30 Kohlenstoffatomen. Bevorzugt sind Fettsäuren mit 10 - 22 Kohlenstoffatomen. Hierunter wären beispielsweise zu nennen die Isostearinsäuren, wie die Handelsprodukte Emersol ® 871 und Emersol ® 875, und Isopalmitinsäuren wie das Handelsprodukt Edenor ® IP 95, sowie alle weiteren unter den Handelsbezeichnungen Edenor ® (Cognis) vertriebenen Fettsäuren. Weitere typische Beispiele für solche Fettsäuren sind Capronsäure, Caprylsäure, 2-Ethylhexansäure,

Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Besonders bevorzugt sind üblicherweise die Fettsäureschnitte, welche aus Cocosöl oder Palmöl erhältlich sind; insbesondere bevorzugt ist in der Regel der Einsatz von Stearinsäure.

Die Einsatzmenge beträgt dabei 0,1 - 15 Gew.%, bezogen auf das gesamte Mittel. Bevorzugt beträgt die Menge 0,5 - 10 Gew.%, wobei ganz besonders vorteilhaft Mengen von 1 - 5 Gew.% sein können.

Als Fettalkohole (D2) können eingesetzt werden gesättigte, ein- oder mehrfach unge¬ sättigte, verzweigte oder unverzweigte Fettalkohole mit C 6 - C 3 o-, bevorzugt C 10 - C 22 - und ganz besonders bevorzugt C 12 - C 22 - Kohlenstoff atomen. Einsetzbar im Sinne der Erfindung sind beispielsweise Decanol, Octanol, Octenol, Dodecenol, Decenol, Octadienol, Dodecadienol, Decadienol, Oleylalkohol, Erucaalkohol, Ricinolalkohol, Stearylalkohol, Isostearylalkohol, Cetylalkohol, Laurylalkohol, Myristylalkohol, Arachidylalkohol, Caprylalkohol, Caprinalkohol, Linoleylalkohol, Linolenylalkohol und Behenylalkohol, sowie deren Guerbetalkohole, wobei diese Aufzählung beispielhaften und nicht limitierenden Charakter haben soll. Die Fettalkohole stammen jedoch von bevorzugt natürlichen Fettsäuren ab, wobei üblicherweise von einer Gewinnung aus den Estern der Fettsäuren durch Reduktion ausgegangen werden kann. Erfindungsgemäß einsetzbar sind ebenfalls solche Fettalkoholschnitte, die durch Reduktion natürlich vorkommender Triglyceride wie Rindertalg, Palmöl, Erdnußöl, Rüböl, Baumwollsaatöl, Sojaöl, Sonnenblumenöl und Leinöl oder aus deren Umesterungsprodukten mit entsprechenden Alkoholen entstehenden Fettsäureestern erzeugt werden, und somit ein Gemisch von unterschiedlichen Fettalkoholen darstellen. Solche Substanzen sind beispielsweise unter den Bezeichnungen Stenol ® , z.B. Stenol ® 1618 oder Lanette ® , z.B. Lanette ® O oder Lorol ® , z.B. Lorol ® C8, Lorol ® C14, Lorol ® C18, Lorol ® C8-18, HD- Ocenol ® , Crodacol ® , z.B. Crodacol ® CS, Novol ® , Eutanol ® G, Guerbitol ® 16, Guerbitol ® 18, Guerbitol ® 20, Isofol ® 12, Isofol ® 16, Isofol ® 24, Isofol ® 36, Isocarb ® 12, Isocarb ® 16 oder Isocarb ® 24 käuflich zu erwerben. Selbstverständlich können erfindungsgemäß

auch Wollwachsalkohole, wie sie beispielsweise unter den Bezeichnungen Corona ® , White Swan ® , Coronet ® oder Fluilan ® käuflich zu erwerben sind, eingesetzt werden. Die Fettalkohole werden in Mengen von 0,1 - 30 Gew.-%, bezogen auf die gesamte Zubereitung, bevorzugt in Mengen von 0,1 - 20 Gew.-% eingesetzt.

Als natürliche oder synthetische Wachse (D3) können erfindungsgemäß eingesetzt werden feste Paraffine oder Isoparaffine, Carnaubawachse, Bienenwachse, Candelillawachse, Ozokerite, Ceresin, Walrat, Sonnenblumenwachs, Fruchtwachse wie beispielsweise Apfelwachs oder Citruswachs, Microwachse aus PE- oder PP. Derartige Wachse sind beispielsweise erhältlich über die Fa. Kahl & Co., Trittau.

Die Einsatzmenge beträgt 0,1 - 50 Gew.% bezogen auf das gesamte Mittel, bevorzugt 0,1 - 20 Gew.% und besonders bevorzugt 0,1 - 15 Gew.% bezogen auf das gesamte Mittel.

Zu den natürlichen und synthetischen kosmetischen Ölkörpern (D4), welche die Wirkung des erfindungsgemäßen Wirkstoffkomplexes (A) steigern können, sind beispielsweise zu zählen:

- pflanzliche Öle. Beispiele für solche Öle sind Sonnenblumenöl, Olivenöl, Sojaöl, Rapsöl, Mandelöl, Jojobaöl, Orangenöl, Weizenkeimöl, Pfirsichkernöl und die flüssigen Anteile des Kokosöls. Geeignet sind aber auch andere Triglyceridöle wie die flüssigen Anteile des Rindertalgs sowie synthetische Triglyceridöle.

- flüssige Paraffinöle, Isoparaffinöle und synthetische Kohlenwasserstoffe sowie Di-n- alkylether mit insgesamt zwischen 12 bis 36 C-Atomen, insbesondere 12 bis 24 C- Atomen, wie beispielsweise Di-n-octylether, Di-n-decylether, Di-n-nonylether, Di-n- Undecylether, Di-n-dodecylether, n-Hexyl-n-octylether, n-Octyl-n-decylether, n-Decyl- n-undecylether, n-Undecyl-n-dodecylether und n-Hexyl-n-Undecylether sowie Di-tert- butylether, Di-iso-pentylether, Di-3-ethyldecylether, tert.-Butyl-n-octylether, iso- Pentyl-n-octylether und 2-Methyl-pentyl-n-octylether. Die als Handelsprodukte erhält¬ lichen Verbindungen 1,3-Di-(2-ethyl-hexyl)-cyclohexan (Cetiol ® S) und Di-n-octylether (Cetiol ® OE) können bevorzugt sein.

Esteröle. Unter Esterölen sind zu verstehen die Ester von C 6 - C 3 o - Fettsäuren mit C 2 - C 30 - Fettalkoholen. Bevorzugt sind die Monoester der Fettsäuren mit Alkoholen mit 2 bis 24 C-Atomen. Beispiele für eingesetzte Fettsäurenanteile in den Estern sind

Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmitoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die z.B. bei der Druckspaltung von natürlichen Fetten und Ölen, bei der Oxidation von Aldehyden aus der Roelen'schen Oxosynthese oder der Dimerisierung von ungesättigten Fettsäuren anfallen. Beispiele für die Fettalkoholanteile in den Esterölen sind Isopropylalkohol, Capronalkohol, Caprylalkohol, 2-Ethylhexylalkohol, Caprinalkohol, Laurylalkohol, Isotridecylalkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Linolylalkohol, -Linolenylalkohol, Elaeostearylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol und Brassidylalkohol sowie deren technische Mischungen, die z.B. bei der Hochdruckhydrierung von technischen Methylestern auf Basis von Fetten und Ölen oder Aldehyden aus der Roelen'schen Oxosynthese sowie als Monomerfraktion bei der Dimerisierung von ungesättigten Fettalkoholen anfallen. Erfindungsgemäß besonders bevorzugt sind Isopropylmyristat (Rilanit ® IPM), Isononansäure-C16-18- alkylester (Cetiol ® SN), 2-Ethylhexylpalmitat (Cegesoft ® 24), Stearinsäure-2- ethylhexylester (Cetiol ® 868), Cetyloleat, Glycerintricaprylat, Kokosfettalkohol- caprinatAcaprylat (Cetiol ® LC), n-Butylstearat, Oleylerucat (Cetiol ® J 600), Isopropylpalmitat (Rilanit ® IPP), Oleyl Oleate (Cetiol ® ), Laurinsäurehexylester (Cetiol ® A), Di-n-butyladipat (Cetiol ® B), Myristylmyristat (Cetiol ® MM), Cetearyl Isononanoate (Cetiol ® SN), Ölsäuredecylester (Cetiol ® V).

Dicarbonsäureester wie Di-n ^ butyladipat, Di-(2-ethylhexyl)-adipat, Di-(2-ethylhexyl)- succinat und Di-isotridecylacelaat sowie Diolester wie Ethylenglykol-dioleat, Ethylenglykol-di-isotridecanoat, Propylenglykol-di(2-ethylhexanoat), Propylenglykol- di-isostearat, Propylenglykol-di-pelargonat, Butandiol-di-isostearat, Neopentylglykol- dicaprylat, symmetrische, unsymmetrische oder cyclische Ester der Kohlensäure mit Fettalko¬ holen, beispielsweise beschrieben in der DE-OS 197 56 454, Glycerincarbonat oder Dicaprylylcarbonat (Cetiol ® CC),

Trifettsäureester von gesättigten und/oder ungesättigten linearen und/oder verzweigten Fettsäuren mit Glycerin,

- Fettsäurepartialglyceride, das sind Monoglyceride, Diglyceride und deren technische Gemische. Bei der Verwendung technischer Produkte können herstellungsbedingt noch geringe Mengen Triglyceride enthalten sein. Die Partialglyceride folgen vorzugsweise der Formel (D4-I),

CH 2 O(CH 2 CH 2 O) m R 1

I CHO(CH 2 CH 2 O) n R 2 (D4-I)

I CH 2 O(CH 2 CH 2 O) q R 3

in der R 1 , R 2 und R 3 unabhängig voneinander für Wasserstoff oder für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22, vorzugs¬ weise 12 bis 18, Kohlenstoffatomen stehen mit der Maßgabe, daß mindestens eine dieser Gruppen für einen Acylrest und mindestens eine dieser Gruppen für Wasserstoff steht. Die Summe (m+n+q) steht für 0 oder Zahlen von 1 bis 100, vorzugsweise für 0 oder 5 bis 25. Bevorzugt steht R 1 für einen Acylrest und R 2 und R 3 für Wasserstoff und die Summe (m+n+q) ist 0. Typische Beispiele sind Mono- und/oder Diglyceride auf Basis von Capronsäure, Caprylsäure, 2-Ethylhexansäure, Caprinsäure, Laurinsäure, isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen. Vorzugsweise werden Ölsäuremonoglyceride eingesetzt.

Die Einsatzmenge der natürlichen und synthetischen kosmetischen Ölkörper in den erfin¬ dungsgemäßen Mitteln beträgt üblicherweise 0,1 - 30 Gew.%, bezogen auf das gesamte Mittel, bevorzugt 0,1 - 20 Gew.-%, und insbesondere 0,1 - 15 Gew.-%.

Die Gesamtmenge an Öl- und Fettkomponenten in den erfindungsgemäßen Mitteln beträgt üblicherweise 0,5 - 75 Gew.-%, bezogen auf das gesamte Mittel. Mengen von 0,5 - 35 Gew.-% sind erfiήdungsgemäß bevorzugt.

In Abhängigkeit von den weiteren Effekten, die neben der Verbesserung der Pflegewirkung mit den erfindungsgemäßen Mitteln erzielt werden sollen, können diese weitere Inhaltsstoffe enthalten. Diese werden nachfolgend beschrieben.

Mit besonderem Vorzug enthalten die erfindungsgemäßen Mittel ein oder mehrere Lösungsmittel neben Wasser sind Alkohole die wichtigsten Lösungsmittel, die in den erfindungsgemäßen Mitteln enthalten sein können. Bevorzugte erfindungsgemäße Haarbehandlungsmittel sind daher dadurch gekennzeichnet, daß sie einen Alkohol, vorzugsweise Ethanol und/oder 2-Propanol, bevorzugt in Mengen von 5 bis 30 Gew.-%, vorzugsweise von 7,5 bis 25 Gew.-% und insbesondere von 10 bis 20 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.

Haarreinigungsmittel (Shampoos) können beispielsweise schäumende anionische, zwitterionische, ampholytische und nichtionische Tenside enthalten. Haarspülmittel und Avivagemittel enthalten bevorzugt kationische Tenside und wasserlösliche Polymere mit quartären Ammoniumgruppen zur Verringerung der statischen Aufladbarkeit und zur Verbesserung der Kämmbarkeit. Dauerwell-Fixiermittel enthalten bevorzugt Oxidationsmittel wie z. B. Kaliumbromat oder Wasserstoffperoxid. Haarfärbeshampoos enthalten direktziehende Haarfärbemittel oder Oxidationsfarbstoff-Vorprodukte. Haarfestiger und Haarlegemittel sowie andere Haarstyling-Zubereitungen enthalten üblicherweise filmbildende in wässrigen oder wässrig-alkoholischen Medien lösliche Polymerisate, gegebenenfalls gemeinsam mit kationischen Tensiden oder kationischen Polymeren.

Als besonders vorteilhaft hat sich der Einsatz von Tensiden (E) in den erfindungsgemäßen Mitteln erwiesen. In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäßen Mittel daher Tenside. Unter dem Begriff Tenside werden grenzflächenaktive Substanzen, die an Ober- und Grenzflächen Adsorptionsschichten bilden oder in Volumenphasen zu Mizellkolloiden oder lyotropen Mesophasen aggregieren können, verstanden. Man unterscheidet Aniontenside bestehend aus einem hydrophoben Rest und einer negativ geladenen hydrophilen Kopfgruppe, amphotere Tenside, welche sowohl eine negative als auch eine kompensierende positive Ladung tragen, kationische Tenside, welche neben einem hydrophoben Rest eine positiv geladene hydrophile Gruppe aufweisen, und nichtionische

Tenside, welche keine Ladungen sondern starke Dipolmomente aufweisen und in wäßriger Lösung stark hydratisiert sind.

Als anionische Tenside (E1) eignen sich in erfindungsgemäßen Zubereitungen alle für die Verwendung am menschlichen Körper geeigneten anionischen oberflächenaktiven Stoffe. Diese sind gekennzeichnet durch eine wasserlöslich machende, anionische Gruppe wie z. B. eine Carboxylat-, Sulfat-, Sulfonat- oder Phosphat-Gruppe und eine lipophile Alkylgruppe mit etwa 8 bis 30 C-Atomen. Zusätzlich können im Molekül Glykol- oder Polyglykolether-Gruppen, Ester-, Ether- und Amidgruppen sowie Hydroxylgruppen enthalten sein. Beispiele für geeignete anionische Tenside sind, jeweils in Form der Na¬ trium-, Kalium- und Ammonium- sowie der Mono-, Di- und Trialkanolammoniumsalze mit 2 bis 4 C-Atomen in der Alkanolgruppe,

- lineare und verzweigte Fettsäuren mit 8 bis 30 C-Atomen (Seifen),

- Ethercarbonsäuren der Formel R-O-(CH 2 -CH 2 O) x -CH 2 -COOH, in der R eine lineare

Alkylgruppe mit 8 bis 30 C-Atomen und x = O oder 1 bis 16 ist,

- Acylsarcoside mit 8 bis 24 C-Atomen in der Acylgruppe,

- Acyltauride mit 8 bis 24 C-Atomen in der Acylgruppe,

- Acylisethionate mit 8 bis 24 C-Atomen in der Acylgruppe,

- Sulfobernsteinsäuremono- und -dialkylester mit 8 bis 24 C-Atomen in der Alkylgruppe und Sulfobernsteinsäuremono-alkylpolyoxyethylester mit 8 bis 24 C-Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen,

- lineare Alkansulfonate mit 8 bis 24 C-Atomen,

- lineare Alpha-Olefinsulfonate mit 8 bis 24 C-Atomen,

- Alpha-Sulfofettsäuremethylester von Fettsäuren mit 8 bis 30 C-Atomen,

- Alkylsulfate und Alkylpolyglykolethersulfate der Formel R-O(CH 2 -CH 2 O) x -OSO 3 H, in der R eine bevorzugt lineare Alkylgruppe mit 8 bis 30 C-Atomen und x = O oder 1 bis 12 ist,

- sulfatierte Hydroxyalkylpolyethylen- und/oder Hydroxyalkylenpropylenglykolether

- Sulfonate ungesättigter Fettsäuren mit 8 bis 24 C-Atomen und 1 bis 6 Doppelbindun¬ gen

- Ester der Weinsäure und Zitronensäure mit Alkoholen, die Anlagerungsprodukte von etwa 2-15 Molekülen Ethylenoxid und/oder Propylenoxid an Fettalkohole mit 8 bis 22 C-Atomen darstellen,

Alky I- und/oder Alkenyletherphosphate der Formel (E 1 -I),

R 1 (OCH 2 CH 2 ) π -O-P(O)(OX)-OR 2 (E1-l)

in der R 1 bevorzugt für einen aliphatischen Kohlenwasserstoffrest mit 8 bis 30 Kohlenstoff atomen, R 2 für Wasserstoff, einen Rest (CH 2 CH 2 O) n R 2 oder X, n für Zahlen von 1 bis 10 und X für Wasserstoff, ein Alkali- oder Erdalkalimetall oder NR 3 R 4 R 5 R 6 , mit R 3 bis R 6 unabhängig voneinander stehend für Wasserstoff oder einen Ci bis C 4 - Kohlenwasserstoffrest, steht, sulfatierte Fettsäurealkylenglykolester der Formel (E1-II) R 7 CO(AIkO) n SO 3 M (EMI) in der R 7 CO- für einen linearen oder verzweigten, aliphatischen, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 C-Atomen, Alk für CH 2 CH 2 , CHCH 3 CH 2 und/oder CH 2 CHCH 3 , n für Zahlen von 0,5 bis 5 und M für ein Kation steht, Monoglyceridsulfate und Monoglyceridethersulfate der Formel (E1-III)

CH 2 O(CH 2 CH 2 O) x -COR 8

I CHO(CH 2 CH 2 O) y H (E1-III)

I CH 2 O(CH 2 CH 2 O) Z SO 3 X

in der R 8 CO für einen linearen oder verzweigten Acylrest mit 6 bis 22 Kohlenstoff¬ atomen, x, ' y und z in Summe für O oder für Zahlen von 1 bis 30, vorzugsweise 2 bis 10, und X für ein Alkali- oder Erdalkalimetall steht. Typische Beispiele für im Sinne der Erfindung geeignete Monoglycerid(ether)sulfate sind die Umsetzungsprodukte von Laurinsäuremonoglycerid, Kokosfettsäuremonoglycerid, Palmitinsäuremonogly- cerid, Stearinsäuremonoglycerid, Ölsäuremonoglycerid und Talgfettsäuremonogly- cerid sowie deren Ethylenoxidaddukte mit Schwefeltrioxid oder Chlorsulfonsäure in Form ihrer Natriumsalze. Vorzugsweise werden Monoglyceridsulfate der Formel (E1- III) eingesetzt, in der R 8 CO für einen linearen Acylrest mit 8 bis 18 Kohlenstoffatomen steht, , Am idethercarbonsäuren ,

- Kondensationsprodukte aus C 8 - C 30 - Fettalkoholen mit Proteinhydrolysaten und/oder Aminosäuren und deren Derivaten.welche dem Fachmann als Eiweissfettsäurekondensate bekannt sind, wie beispielsweise die Lamepon ® - Typen, Gluadin ® - Typen, Hostapon ® KCG oder die Amisoft ® - Typen.

Bevorzugte anionische Tenside sind Alkylsulfate, Alkylpolyglykolethersulfate und Ether- carbonsäuren mit 10 bis 18 C-Atomen in der Alkylgruppe und bis zu 12 Glykolether- gruppen im Molekül, Sulfobemsteinsäuremono- und -dialkylester mit 8 bis 18 C-Atomen in der Alkylgruppe und Sulfobemsteinsäuremono-alkylpolyoxyethylester mit 8 bis 18 C- Atomen in der Alkylgruppe und 1 bis 6 Oxyethylgruppen, Monoglycerdisulfate, Alkyl- und Alkenyletherphosphate sowie Eiweissfettsäurekondensate.

Als zwitterionische Tenside (E2) werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine -COO 9 - oder -SO 3 0 -Gruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl-N,N-dimethylammonium- glycinate, beispielsweise das Kokosalkyl-dimethylammoniumglycinat, N-Acyl- aminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Ko- kosacylaminopropyl-dimethylammoniumglycinat, und 2-Alkyl-3-carboxymethyl-3- hydroxyethyl-imidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethylglycinat. Ein bevorzugtes zwitteriσnisches Tensid ist das unter der INCI-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat.

Unter ampholytischen Tensiden (E3) werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cs - C 24 - Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SO 3 H-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N- Alkyliminodipropionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N- Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 24 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das C- 12 - Ci8 - Acylsarcosin.

Nichtionische Tenside (E4) enthalten als hydrophile Gruppe z.B. eine Polyolgruppe, eine Polyalkylenglykolethergruppe oder eine Kombination aus Polyol- und Polyglykolether- gruppe. Solche Verbindungen sind beispielsweise

- Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylen- oxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fettsäuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, mit einem Methyl- oder C 2 - C 6 - Alkylrest endgruppenverschlossene Anlagerungsprodukte von 2 bis 50 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylenoxid an lineare und verzweigte Fettalkohole mit 8 bis 30 C-Atomen, an Fett¬ säuren mit 8 bis 30 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, wie beispielsweise die unter den Verkaufsbezeichnungen Dehydol ® LS, Dehydol ® LT (Cognis) erhältlichen Typen,

- Ci 2 -C 3 o-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin,

- Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Rizi¬ nusöl,

Polyolfettsäureester, wie beispielsweise das Handelsprodukt Hydagen ® HSP (Cognis) oder Sovermol - Typen (Cognis),

- alkoxilierte Triglyceride, alkoxilierte Fettsäurealkylester der Formel (E4-I)

R 1 CO-(OCH 2 CHR 2 ) W OR 3 (E4-I)

in der R 1 CO für einen linearen oder verzweigten, gesättigten und/oder ungesättigten Acylrest mit 6 bis 22 Kohlenstoffatomen, R 2 für Wasserstoff oder Methyl, R 3 für li¬ neare oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen und w für Zahlen von 1 bis 20 steht,

- Aminoxide, Hydroxymischether,

Sorbitanfettsäureester und Anlagerungeprodukte von Ethylenoxid an Sorbitanfettsäureester wie beispielsweise die Polysorbate,

Zuckerfettsäureester und Anlagerungsprodukte von Ethylenoxid an Zuckerfettsäure¬ ester,

Anlagerungsprodukte von Ethylenoxid an Fettsäurealkanolamide und Fettamine/ Zuckertenside vom Typ der Alkyl- und Alkenyloligoglykoside gemäß Formel (E4-II),

in der R 4 für einen Alkyl- oder Alkenylrest mit 4 bis 22 Kohlenstoffatomen, G für einen Zuckerrest mit 5 oder 6 Kohlenstoffatomen und p für Zahlen von 1 bis 10 steht. Sie können nach den einschlägigen Verfahren der präparativen organischen Chemie erhalten werden.

Die Alkyl- und Alkenyloligoglykoside können sich von Aldosen bzw. Ketosen mit 5 oder 6 Kohlenstoffatomen, vorzugsweise von Glucose, ableiten. Die bevorzugten Alkyl- und/oder Alkenyloligoglykoside sind somit Alkyl- und/oder Alkenyloligogluco- side. Die Indexzahl p in der allgemeinen Formel (E4-II) gibt den Oligomerisierungs- grad (DP), d. h. die Verteilung von Mono- und Oligoglykosiden an und steht für eine Zahl zwischen 1 und 10. Während p im einzelnen Molekül stets ganzzahlig sein muß und hier vor allem die Werte p = 1 bis 6 annehmen kann, ist der Wert p für ein be¬ stimmtes Alky loiig og Iy kosid eine analytisch ermittelte rechnerische Größe, die mei¬ stens eine gebrochene Zahl darstellt. Vorzugsweise werden Alkyl- und/oder Alkenyl¬ oligoglykoside mit einem mittleren Oligomerisierungsgrad p von 1 ,1 bis 3,0 eingesetzt. Aus anwendungstechnischer Sicht sind solche Alkyl- und/oder Alkenyloli¬ goglykoside bevorzugt, deren Oligomerisierungsgrad kleiner als 1 ,7 ist und insbe¬ sondere zwischen 1,2 und 1 ,4 liegt. Der Alkyl- bzw. Alkenylrest R 4 kann sich von primären Alkoholen mit 4 bis 11 , vorzugsweise 8 bis 10 Kohlenstoffatomen ableiten. Typische Beispiele sind Butanol, Capronalkohol, Caprylalkohol, Caprinalkohol und Undecylalkohol sowie deren technische Mischungen, wie sie beispielsweise bei der Hydrierung von technischen Fettsäuremethylestern oder im Verlauf der Hydrierung von Aldehyden aus der Roelen'schen Oxosynthese erhalten werden. Bevorzugt sind Alkyloligoglucoside der Kettenlänge C 8 -C 10 (DP = 1 bis 3), die als Vorlauf bei der destillativen Auftrennung von technischem C 8 -C 18 -Kokosfettalkohol anfallen und mit einem Anteil von weniger als 6 Gew.-% C 12 -Alkohol verunreinigt sein können sowie Alkyloligoglucoside auf Basis technischer C 9/1 i-Oxoalkohole (DP = 1 bis 3). Der Alkyl- bzw. Alkenylrest R 15 kann sich ferner auch von primären Alkoholen mit 12 bis 22,

vorzugsweise 12 bis 14 Kohlenstoffatomen ableiten. Typische Beispiele sind Lauryl- alkohol, Myristylalkohol, Cetylalkohol, Palmoleylalkohol, Stearylalkohol, Isostearylalkohol, Oleylalkohol, Elaidylalkohol, Petroselinylalkohol, Arachylalkohol, Gadoleylalkohol, Behenylalkohol, Erucylalkohol, Brassidylalkohol sowie deren techni¬ sche Gemische, die wie oben beschrieben erhalten werden können. Bevorzugt sind Alkyloligoglucoside auf Basis von gehärtetem C 12/ i 4 -Kokosalkohol mit einem DP von 1 bis 3.

Zuckertenside vom Typ der Fettsäure-N-alkylpolyhydroxyalkylamide, ein nicht¬ ionisches Tensid der Formel (E4-III),

R 5 CO-NR 6 -[Z] (E4-III)

in der R 5 CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R 6 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 12 Kohlenstoff¬ atomen und 3 bis 10 Hydroxylgruppen steht. Bei den Fettsäure-N-alkylpolyhydroxy- alkylamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden. Vorzugsweise leiten sich die Fettsäure-N-alkylpolyhydroxyalkylamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Die bevorzugten Fettsäure-N-alkylpolyhydroxyalkylamide stellen daher Fettsäure-N-alkylglucamide dar, wie sie durch die Formel (E4-IV) wiedergegeben werden:

R 7 CO-NR 8 -CH 2 -(CHOH) 4 -CH 2 OH (E4-IV)

Vorzugsweise werden als Fettsäure-N-alkylpolyhydroxyalkylamide Glucamide der Formel (E4-IV) eingesetzt, in der R 8 für Wasserstoff oder eine Alkylgruppe steht und R 7 CO für den Acylrest der Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elaidinsäure, Petroselinsäure, Linolsäure, Linolensäure, Arachinsäure, Gadoleinsäure, Behensäure oder Erucasäure bzw. derer technischer Mischungen steht. Besonders bevorzugt sind Fettsäure-N-alkylglucamide der Formel (E4-IV), die

durch reduktive Aminieruπg von Glucose mit Methylamin und anschließende Acylierung mit Laurinsäure oder C12/14-Kokosfettsäure bzw. einem entsprechenden Derivat erhalten werden. Weiterhin können sich die Polyhydroxyalkylamide auch von Maltose und Palatinose ableiten.

Als bevorzugte nichtionische Tenside haben sich die Alkylenoxid-Anlagerungsprodukte an gesättigte lineare Fettalkohole und Fettsäuren mit jeweils 2 bis 30 Mol Ethylenoxid pro Mol Fettalkohol bzw. Fettsäure erwiesen. Zubereitungen mit hervorragenden Eigen¬ schaften werden ebenfalls erhalten, wenn sie als nichtionische Tenside Fettsäureester von ethoxyliertem Glycerin enthalten.

Diese Verbindungen sind durch die folgenden Parameter gekennzeichnet. Der Alkylrest R enthält 6 bis 22 Kohlenstoffatome und kann sowohl linear als auch verzweigt sein. Be¬ vorzugt sind primäre lineare und in 2-Stellung methylverzweigte aliphatische Reste. Solche Alkylreste sind beispielsweise 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl, 1-Cetyl und 1-Stearyl. Besonders bevorzugt sind 1-Octyl, 1-Decyl, 1-Lauryl, 1-Myristyl. Bei Verwen¬ dung sogenannter "Oxo-Alkohole" als Ausgangsstoffe überwiegen Verbindungen mit ei¬ ner ungeraden Anzahl von Kohlenstoffatomen in der Alkylkette.

Weiterhin sind ganz besonders bevorzugte nichtionische Tenside die Zuckertenside. Diese können in den erfindungsgemäß verwendeten Mitteln bevorzugt in Mengen von 0, 1 - 20 Gew.-%, bezogen auf das gesamte Mittel, enthalten sein. Mengen von 0,5 - 15 Gew.-% sind bevorzugt, und ganz besonders bevorzugt sind Mengen von 0,5 - 7,5 Gew.%.

Bei den als Tensid eingesetzten Verbindungen mit Alkylgruppen kann es sich jeweils um einheitliche Substanzen handeln. Es ist jedoch in der Regel bevorzugt, bei der Herstellung dieser Stoffe von nativen pflanzlichen oder tierischen Rohstoffen auszuge¬ hen, so daß man Substanzgemische mit unterschiedlichen, vom jeweiligen Rohstoff ab¬ hängigen Alkylkettenlängen erhält.

Bei den Tensiden, die Anlagerungsprodukte von Ethylen- und/oder Propylenoxid an Fettalkohole oder Derivate dieser Anlagerungsprodukte darstellen, können sowohl Pro¬ dukte mit einer "normalen" Homologenverteilung als auch solche mit einer eingeengten

Homologenverteilung verwendet werden. Unter "normaler" Homologenverteilung werden dabei Mischungen von Homologen verstanden, die man bei der Umsetzung von Fettalkohol und Alkylenoxid unter Verwendung von Alkalimetallen, Alkalimetallhy- droxiden oder Alkalimetallalkoholaten als Katalysatoren erhält. Eingeengte Homolo¬ genverteilungen werden dagegen erhalten, wenn beispielsweise Hydrotalcite, Erdalkali¬ metallsalze von Ethercarbonsäuren, Erdalkalimetalloxide, -hydroxide oder -alkoholate als Katalysatoren verwendet werden. Die Verwendung von Produkten mit eingeengter Homologenverteilung kann bevorzugt sein.

Erfindungsgemäß einsetzbar sind kationische Tenside vom Typ der quartemären Ammoniumverbindungen, der Esterquats und der Amidoamine. Bevorzugte quatemäre Ammoniumverbindungen sind Ammoniumhalogenide, insbesondere Chloride und Bro¬ mide, wie Alkyltrimethylammoniurhchloride, Dialkyldimethylammoniurnchloride und Trialkylmethylammoniumchloride, z. B. Cetyltrimethylammoniumchlorid, Stearyltri- methylammoniumchlorid, Distearyldimethylammoniumchlorid, Lauryldimethylammo- niumchlorid, Lauryldimethylbenzylammoniumchlorid und Tricetylmethylammoniumchlo- rid, sowie die unter den INCI-Bezeichnungen Quaternium-27 und Quatemium-83 bekannten Imidazolium-Verbindungen. Die langen Alkylketten der oben genannten Tenside weisen bevorzugt 10 bis 18 Kohlenstoffatome auf.

Bevorzugt einsetzbar sind erfindungsgemäß QAV mit Behenylresten, insbesondere die unter der Bezeichnung Behentrimoniumchlorid bzw. • -bromid

(Docosanyltrimethylammonium Chlorid bzw. -Bromid) bekannten Substanzen. Andere bevorzugte QAV weisen mindestens zwei Behenylreste auf, wobei QAV, welche zwei Behenylreste an einem Imidazoliniumrückgrat besonders bevorzugt sind. Kommerziell erhältlich sind diese Substanzen beispielsweise unter den Bezeichnungen Genamin ® KDMP (Clariant) und Crodazosoft ® DBQ (Crodauza).

Bei Esterquats handelt es sich um bekannte Stoffe, die sowohl mindestens eine Ester¬ funktion als auch mindestens eine quartäre Ammoniumgruppe als Strukturelement ent¬ halten. Bevorzugte Esterquats sind quaternierte Estersalze von Fettsäuren mit Trietha- nolamin,. quaternierte Estersalze von Fettsäuren mit Diethanolalkylaminen und quater- nierten Estersalzen von Fettsäuren mit 1 ,2-Dihydroxypropyldialkylaminen. Solche Pro¬ dukte werden beispielsweise unter den Warenzeichen Stepantex ® , Dehyquart ® und

Armocare ® vertrieben. Die Produkte Armocare ® VGH-70, ein N,N-Bis(2-Palmitoyloxy- ethyl)dimethylammoniumchlorid, sowie Dehyquart ® F-75, Dehyquart ® C-4046, Dehyquart ® L80 und Dehyquart ® AU-35 sind Beispiele für solche Esterquats.

Die Alkylamidoamine werden üblicherweise durch Amidierung natürlicher oder synthe¬ tischer Fettsäuren und Fettsäureschnitte mit Dialkylaminoaminen hergestellt. Eine erfin¬ dungsgemäß besonders geeignete Verbindung aus dieser Substanzgruppe stellt das unter der Bezeichnung Tegoamid ® S 18 im Handel erhältliche Stearamidopropyl- dimethylamin dar.

Die kationischen Tenside sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt

Die Tenside (E) werden in Mengen von 0,1 - 45 Gew.%, bevorzugt 0,5 - 30 Gew.% und ganz besonders bevorzugt von 0,5 - 25 Gew.%, bezogen auf das gesamte erfindungsgemäß verwendete Mittel, eingesetzt.

Anionische, nichtionische, zwitterionische und/oder amphotere Tenside sowie deren Mischungen können erfindungsgemäß bevorzugt sein.

In einer weiteren bevorzugten Ausführungsform können die erfindungsgemäßen Mittel Emulgatoren (F) enthalten. Emulgatoren bewirken an der Phasengrenzfläche die Ausbildung von wasser- bzw. ölstabilen Adsorptionsschichten, welche die dispergierten Tröpfchen gegen Koaleszenz schützen und damit die Emulsion stabilisieren. Emulgatoren sind daher wie Tenside aus einem hydrophoben und einem hydrophilen Molekülteil aufgebaut. Hydrophile Emulgatoren bilden bevorzugt O/W - Emulsionen und hydrophobe Emulgatoren bilden bevorzugt W/O - Emulsionen. Unter einer Emulsion ist eine tröpfchenförmige Verteilung (Dispersion) einer Flüssigkeit in einer anderen Flüssigkeit unter Aufwand von Energie zur Schaffung von stabilisierenden Phasengrenz¬ flächen mittels Tensiden zu verstehen. Die Auswahl dieser emulgierenden Tenside oder Emulgatoren richtet sich dabei nach den zu dispergierenden Stoffen und der jeweiligen äußeren Phase sowie der Feinteiligkeit der Emulsion. Erfindungsgemäß verwendbare Emulgatoren sind beispielsweise

- Anlagerungsprodukte von 4 bis 30 Mol Ethylenoxid und/oder 0 bis 5 Mol Propylen- oxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C- Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe, C-i 2 -C 22 -Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Polyole mit 3 bis 6 Kohlenstoffato.men, insbesondere an Glycerin,

- Ethylenoxid- und Polyglycerin-Anlagerungsprodukte an Methylglucosid-Fettsäure- ester, Fettsäurealkanolamide und Fettsäureglucamide,

C 8 -C 22 -Alkylmono- und -oligoglycoside und deren ethoxylierte Analoga, wobei OH- . gomerisierungsgrade von 1 ,1 bis 5, insbesondere 1 ,2 bis 2,0, und Glucose als Zuc¬ kerkomponente bevorzugt sind,

Gemische aus Alkyl-(oligo)-glucosiden und Fettalkoholen zum Beispiel das im Han¬ del erhältliche Produkt Montanov ® 68,

- Anlagerungsprodukte von 5 bis 60 Mol Ethylenoxid an Rizinusöl und gehärtetes Ri¬ zinusöl,

Partialester von Polyolen mit 3-6 Kohlenstoffatomen mit gesättigten Fettsäuren mit 8 bis 22 C-Atomen,

- Sterine. Als Sterine wird eine Gruppe von Steroiden verstanden, die am C-Atom 3 des Steroid-Gerüstes eine Hydroxylgruppe tragen und sowohl aus tierischem Gewebe (Zoosterine) wie auch aus pflanzlichen Fetten (Phytosterine) isoliert werden. Beispiele für Zoosterine sind das Cholesterin und das Lanosterin. Beispiele geeigneter Phytosterine sind Ergosterin, Stigmasterin und Sitosterin. Auch aus Pilzen und Hefen werden Sterine, die sogenannten Mykosterine, isoliert.

- Phospholipide. Hierunter werden vor allem die Glucose-Phospolipide, die z.B. als Lecithine bzw. Phospahtidylcholine aus z.B. Eidotter oder Pflanzensamen (z.B. Soja¬ bohnen) gewonnen werden, verstanden.

Fettsäureester von Zuckern und Zuckeralkoholen, wie Sorbit,

- Polyglycerine und Polyglycerinderivate wie beispielsweise Polyglycerinpoly-12-hy- droxystearat (Handelsprodukt Dehymuls ® PGPH),

- Lineare und verzweigte Fettsäuren mit 8 bis 30 C - Atomen und deren Na-, K-, Ammonium-, Ca-, Mg- und Zn - Salze.

Die erfindungsgemäßen Mittel enthalten die Emulgatoren bevorzugt in Mengen von 0,1 - 25 Gew.-%, insbesondere 0,5 - 15 Gew.-%, bezogen auf das gesamte Mittel.

Bevorzugt können die erfindungsgemäßen Zusammensetzungen mindestens einen nichtionogenen Emulgator mit einem HLB-Wert von 8 bis 18 enthalten. Nichtionogene Emulgatoren mit einem HLB-Wert von 10 - 15 können erfindungsgemäß besonders bevorzugt sein.

Als weiterhin vorteilhaft hat es sich gezeigt, wenn Polymere (G) in den erfindungsgemäßen Mitteln enthalten sind. In einer bevorzugten Ausführungsform werden den erfindungsgemäß verwendeten Mitteln daher Polymere zugesetzt, wobei sich sowohl kationische, anionische, amphotere als auch nichtionische Polymere als wirksam erwiesen haben.

Unter kationischen bzw. amphoteren Polymeren sind Polymere zu verstehen, welche in der Haupt- und/oder Seitenkette eine Gruppe aufweisen, welche "temporär" oder "permanent" kationisch sein kann. Als "permanent kationisch" werden erfindungsgemäß solche Polymere bezeichnet, die unabhängig vom pH-Wert des Mittels eine kationische Gruppe aufweisen. Dies sind in der Regel Polymere, die ein quartäres Stickstoffatom, beispielsweise in Form einer Ammoniumgruppe, enthalten. Bevorzugte kationische Gruppen sind quartäre Ammoniumgruppen. Insbesondere solche Polymere, bei denen die quartäre Ammoniumgruppe über eine C1-4-Kohlenwasserstoffgruppe an eine aus Acrylsäure, Methacrylsäure oder deren Derivaten aufgebaute Polymerhauptkette gebunden sind, haben sich als besonders geeignet erwiesen.

Homopolymere der allgemeinen Formel (G1-I),

R 1

I -[CH 2 -C-I n X " (GM)

I CO-O-(CH 2 ) m -N + R 2 R 3 R 4

in der R 1 = -H oder -CH 3 ist, R 2 , R 3 und R 4 unabhängig voneinander ausgewählt sind aus C1-4-Alkyl-, -Alkenyl- oder -Hydroxyalkylgruppen, m = 1 , 2, 3 oder 4, n eine natürliche

Zahl und X ' ein physiologisch verträgliches organisches oder anorganisches Anion ist, sowie Copolymere, bestehend im wesentlichen aus den in Formel (G1-I) aufgeführten Monomereinheiten sowie nichtionogenen Monomereinheiten, sind besonders bevorzugte kationische Polymere. Im Rahmen dieser Polymere sind diejenigen erfindungsgemäß bevorzugt, für die mindestens eine der folgenden Bedingungen gilt:

- R 1 steht für eine Methylgruppe

- R 2 , R 3 und R 4 stehen für Methylgruppen

- m hat den Wert 2.

Als physiologisch verträgliches Gegenionen X ' kommen beispielsweise Halogenidionen, Sulfationen, Phosphationen, Methosulfationen sowie organische Ionen wie Lactat-, Citrat-, Tartrat- und Acetationen in Betracht. Bevorzugt sind Halogenidionen, insbesondere Chlorid.

Ein besonders geeignetes Homopolymer ist das, gewünschtenfalls vernetzte, Poly(methacryloyloxyethyltrimethylammoniumchlorid) mit der INCI-Bezeichnung Polyquaternium-37. Solche Produkte sind beispielsweise unter den Bezeichnungen Rheocare ® CTH (Cosmetic Rheologies) und Synthalen ® CR (Ethnichem) im Handel erhältlich. Die Vernetzung kann gewünschtenfalls mit Hilfe mehrfach olefinisch ungesättigter Verbindungen, beispielsweise Divinylbenzol, Tetraallyloxyethan, Methylen- bisacrylamid, Diallylether, Polyallylpolyglycerylether, oder Allylethem von Zuckern oder Zuckerderivaten wie Erythritol, Pentaerythritol, Arabitol, Mannitol, Sorbitol, Sucrose oder Glucose erfolgen. Methylenbisacrylamid ist ein bevorzugtes Vernetzungsagens.

Das Homopolymer wird bevorzugt in Form einer nichtwäßrigen Polymerdispersion, die einen Polymeranteil nicht unter 30 Gew.-% aufweisen sollte, eingesetzt. Solche Polymer¬ dispersionen sind unter den Bezeichnungen Salcare ® SC 95 (ca. 50 % Polymeranteil, weitere Komponenten: Mineralöl (INCI-Bezeichnung: Mineral OiI) und Tridecyl-polyoxy- propylen-polyoxyethylen-ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) und Salcare ® SC 96 (ca. 50 % Polymeranteil, weitere Komponenten: Mischung von Diestem des Propylenglykols mit einer Mischung aus Capryl- und Caprinsäure (INCI-Bezeichnung: Propylene Glycol Dicaprylate/Dicaprate) und Tridecyl-polyoxypropylen-polyoxyethylen- ether (INCI-Bezeichnung: PPG-1-Trideceth-6)) im Handel erhältlich.

Copolymere mit Monomereinheiten gemäß Formel (G 1-1) enthalten als nichtionogene Monomereinheiten bevorzugt Acrylamid, Methacrylamid, Acrylsäure-C 1-4 -alkylester und Methacrylsäure-C- M -alkylester. Unter diesen nichtionogenen Monomeren ist das Acryl¬ amid besonders bevorzugt. Auch diese Copolymere können, wie im Falle der Homopo- lymere oben beschrieben, vernetzt sein. Ein erfindungsgemäß bevorzugtes Copolymer ist das vernetzte Acrylamid-Methacryloyloxyethyltrimethylammoniumchlorid-Copol ymer. Solche Copolymere, bei denen die Monomere in einem Gewichtsverhältnis von etwa 20:80 vorliegen, sind im Handel als ca. 50 %ige nichtwäßrige Polymerdispersion unter der Bezeichnung Salcare ® SC 92 erhältlich.

Weitere bevorzugte kationische Polymere sind beispielsweise

- quaternisierte Cellulose-Derivate, wie sie unter den Bezeichnungen Celquat ® und Polymer JR ® im Handel erhältlich sind. Die Verbindungen Celquat ® H 100, Celquat ® L 200 und Polymer JR ® 400 sind bevorzugte quaternierte Cellulose-Derivate,

- kationische Alkylpolyglycoside gemäß der DE-PS 44 13 686,

- kationiserter Honig, beispielsweise das Handelsprodukt Honeyquat ® 50, kationische Guar-Derivate, wie insbesondere die ' unter den Handelsnamen Cosme- dia ® Guar und Jaguar ® vertriebenen Produkte, polymere Dimethyldiallylammoniumsalze und deren Copolymere mit Estern und Ami- den von Acrylsäure und Methacrylsäure. Die unter den Bezeichnungen Merquat ® 100 (Poly(dimethyldiallylammoniurnchlorid)) und Merquat ® 550 (Dimethyldiallylammoni- umchlorid-Acrylamid-Copolymer) im Handel erhältlichen Produkte sind Beispiele für solche kationischen Polymere,

Copolymere des Vinylpyrrolidons mit quaternierten Derivaten des Dialkylaminoal- kylacrylats und -methacrylats, wie beispielsweise mit Diethylsulfat quaternierte Vinyl- pyrrolidon-Dimethylaminoethylmethacrylat-Copolymere. Solche Verbindungen sind unter den Bezeichnungen Gafquat ® 734 und Gafquat ® 755 im Handel erhältlich,

- Vinylpyrrolidon-Vinyiimidazoliummethochlorid-Copolymere, wie sie unter den Be¬ zeichnungen Luviquat ® FC 370, FC 550, FC 905 und HM 552 angeboten werden,

sowie die unter den Bezeichnungen Polyquaternium 2, Polyquaternium 17, Polyquaternium 18 und Polyquaternium 27 bekannten Polymeren mit quartären Stickstoffatomen in der Polymerhauptkette.

Gleichfalls als kationische Polymere eingesetzt werden können die unter den Bezeich¬ nungen Polyquaternium-24 (Handelsprodukt z. B. Quatrisoft ® LM 200), bekannten Poly¬ mere. Ebenfalls erfindungsgemäß verwendbar sind die Copolymere des Vinylpyrrolidons, wie sie als Handelsprodukte Copolymer 845 (Hersteller: ISP), Gaffix ® VC 713 (Hersteller: ISP), Gafquat ® ASCP 1011 , Gafquat ® HS 110, Luviquat ® 8155 und Luviquat ® MS 370 er¬ hältlich sind.

Weitere in den erfindungsgemäßen Mitteln einsetzbare kationische Polymere sind die sogenannten "temporär kationischen" Polymere. Diese Polymere enthalten üblicherweise eine Aminogruppe, die bei bestimmten pH-Werten als quartäre Ammoniumgruppe und somit kationisch vorliegt. Bevorzugt sind beispielsweise Chitosan und dessen Derivate, wie sie beispielsweise unter den Handelsbezeichnungen Hydagen ® CMF, Hydagen ® HCMF, Kytamer ® PC und Chitolam ® NB/101 im Handel frei verfügbar sind.

Erfindungsgemäß bevorzugte kationische Polymere sind kationische Cellulose-Derivate und Chitosan und dessen Derivate, insbesondere die Handelsprodukte Polymer ® JR 400, Hydagen ® HCMF und Kytamer ® PC, kationische Guar-Derivate, kationische Honig-Deri¬ vate, insbesondere das Handelsprodukt Honeyquat ® 50, kationische Alkylpolyglycodside gemäß der DE-PS 44 13 686 und Polymere vom Typ Polyquaternium-37.

Weiterhin sind kationiserte Proteinhydrolysate zu den kationischen Polymeren zu zählen, wobei das zugrunde liegende Proteinhydrolysat vom Tier, beispielsweise aus Collagen, Milch oder Keratin, von der Pflanze, beispielsweise aus Weizen, Mais, Reis, Kartoffeln, Soja oder Mandeln, von marinen Lebensformen, beispielsweise aus Fischcollagen oder Algen, oder biotechnologisch gewonnenen Proteinhydrolysaten, stammen kann. Die den erfindungsgemäßen kationischen Derivaten zugrunde liegenden Proteinhydrolysate können aus den entsprechenden Proteinen durch eine chemische, insbesondere alkalische oder saure Hydrolyse, durch eine enzymatische Hydrolyse und/oder einer Kombination aus beiden Hydrolysearten gewonnen werden. Die Hydrolyse von Proteinen

ergibt in der Regel ein Proteinhydrolysat mit einer Molekulargewichtsverteilung, von etwa 100 Dalton bis hin zu mehreren tausend Dalton. Bevorzugt sind solche kationischen Proteinhydrolysate, deren zugrunde liegender Proteinanteil ein Molekulargewicht von 100 bis zu 25000 Dalton, bevorzugt 250 bis 5000 Dalton aufweist. Weiterhin sind unter kationischen Proteinhydrolysaten quatemierte Aminosäuren und deren Gemische zu verstehen. Die Quatemisierung der Proteinhydrolysate oder der Aminosäuren wird häufig mittels quartemären Ammoniumsalzen wie beispielsweise N,N-Dimethyl-N-(n-Alkyl)-N- (2-hydroxy-3-chloro-n-propyl)-ammoniumhalogeniden durchgeführt. Weiterhin können die kationischen Proteinhydrolysate auch noch weiter derivatisiert sein. Als typische Beispiele für die erfindungsgemäßen kationischen Proteinhydrolysate und -derivate seien die unter den INCI - Bezeichnungen im "International Cosmetic Ingredient Dictionary and Handbook", (seventh edition 1997, The Cosmetic, Toiletry, and Fragrance Association 1101 17 th Street, N.W., Suite 300, Washington, DC 20036-4702) genannten und im Handel erhältlichen Produkte genannt: Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimopnium Hydroxypropyl Hydrolyzed Casein, Cocodimonium Hydroxypropyl Hydrolyzed Collagen, Cocodimonium Hydroxypropyl Hydrolyzed Hair Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Keratin, Cocodimonium Hydroxypropyl Hydrolyzed Rice Protein, Cocodimonium Hydroxypropyl Hydrolyzed Soy Protein, Cocodimonium Hydroxypropyl Hydrolyzed Wheat Protein, Hydroxypropyl Arginine Lauryl/Myristyl Ether HCl, Hydroxypropyltrimonium Gelatin, Hydroxypropyltrimonium Hydrolyzed Casein, Hydroxypropyltrimonium Hydrolyzed Collagen, Hydroxypropyltrimonium Hydrolyzed Conchiolin Protein,

Hydroxypropyltrimonium Hydrolyzed Keratin, Hydroxypropyltrimonium Hydrolyzed Rice Bran Protein, Hydroxypropyltrimonium Hydrolyzed Soy Protein, Hydroxypropyl Hydrolyzed Vegetable Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein, Hydroxypropyltrimonium Hydrolyzed Wheat Protein/Siloxysilicate, Laurdimonium Hydroxypropyl Hydrolyzed Soy Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein, Laurdimonium Hydroxypropyl Hydrolyzed Wheat Protein/Siloxysilicate, Lauryldimonium Hydroxypropyl Hydrolyzed Casein, Lauryldimonium Hydroxypropyl Hydrolyzed Collagen, Lauryldimonium Hydroxypropyl Hydrolyzed Keratin, Lauryldimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium Hydroxypropyl Hydrolyzed Casein, Steardimonium Hydroxypropyl Hydrolyzed Collagen, Steardimonium Hydroxypropyl Hydrolyzed Keratin, Steardimonium Hydroxypropyl Hydrolyzed Rice Protein, Steardimonium Hydroxypropyl Hydrolyzed Soy Protein, Steardimonium

Hydroxypropyl Hydrolyzed Vegetable Protein, Steardimonium Hydroxypropyl Hydrolyzed Wheat Protein, Steartrimonium Hydroxyethyl Hydrolyzed Collagen, Quatemium-76 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Collagen, Quaternium-79 Hydrolyzed Keratin, Quaternium-79 Hydrolyzed Milk Protein, Quaternium-79 Hydrolyzed Soy Protein, Quaternium-79 Hydrolyzed Wheat Protein.

Ganz besonders bevorzugt sind die kationischen Proteinhydrolysate und -derivate auf pflanzlicher Basis.

Zusätzlich zu kationischen Polymerisaten oder an ihrer Stelle können die erfindungsgemäßen Mittel auch amphotere Polymere enthalten. Diese weisen zusätzlich mindestens eine negativ geladene Gruppe im Molekül auf und werden auch als zwitterionische Polymere bezeichnet. Im Rahmen der vorliegenden Erfindung bevorzugt einsetzbare zwitterionische Polymerisate setzen sich im wesentlichen zusammen aus

A) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (Z-I),

R 1 -CH=CR 2 -CO-Z-(C n H 2n )-N( + )R 3 R 4 R 5 A< " ) < Z" ')

In der R 1 und R 2 unabhängig voneinander stehen für Wasserstoff oder eine Methylgruppe und R 3 , R 4 und R 5 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoff-Atomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und A^ " ) das Anion einer organischen oder anorganischen Säure ist

und

B) monomeren Carbonsäuren der allgemeinen Formel (Z-Il),

R 6 -CH=CR 7 -COOH (II)

in denen R^ und R^ unabhängig voneinander Wasserstoff oder Methylgruppen sind.

Geeignete Ausgangsmonomere sind z. B. Dimethylaminoethylacrylamid, Dimethylaminoethylmethacrylamid, Dimethylaminopropylacrylamid,

Dimethylaminopropylmethacrylamid und Diethylaminoethylacrylamid, wenn Z eine NH- Gruppe bedeutet oder Dimethylaminoethylacrylat, Dimethylaminoethylmethacrylat und Diethylaminoethylacrylat, wenn Z ein Sauerstoffatom ist.

Die eine tertiäre Aminogruppe enthaltenden Monomeren werden dann in bekannter Weise quarterniert, wobei als Alkylierungsreagenzien Methylchlorid, Dimethylsulfat oder Diethylsulfat besonders geeignet sind. Die Quaternisierungsreaktion kann in wäßriger Lösung oder im Lösungsmittel erfolgen.

Vorteilhafterweise werden solche Monomere der Formel (Z-I) verwendet, die Derivate des Acrylamids oder Methacrylamids darstellen. Weiterhin bevorzugt sind solche Monomeren, die als Gegenionen Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ionen enthalten. Ebenfalls bevorzugt sind solche Monomeren der Formel (Z-I) 1 bei denen R 3 , R 4 und R 5 Methylgruppen sind.

Das Acrylamidopropyl-trimethylammoniumchlorid ist ein ganz besonders bevorzugtes Monomer der Formel (Z-I).

Als monomere Carbonsäuren der Formel (Z-Il) eignen sich Acrylsäure, Methacrylsäure, Crotonsäure und 2-Methyl-crotonsäure. Bevorzugt werden Acryl- oder Methacrylsäure, insbesondere Acrylsäure, eingesetzt.

Die erfindungsgemäß einsetzbaren zwitterionischen Polymerisate werden aus Monomeren der Formeln (Z-I) und (Z-Il) nach an sich bekannten Polymeri¬ sationsverfahren hergestellt. Die Polymerisation kann entweder in wäßriger oder wäßrig- alkoholischer Lösung erfolgen. Als Alkohole werden Alkohole mit 1 bis 4 Kohlenstoffatomen, vorzugsweise Isopropanol, verwendet, die gleichzeitig als Poly¬ merisationsregler dienen. Der Monomerlösung können aber auch andere Komponenten

als Regler zugesetzt werden, z. B. Ameisensäure oder Mercaptane, wie Thioethanol und Thioglykolsäure. Die Initiierung der Polymerisation erfolgt mit Hilfe von radikalbildenden Substanzen. Hierzu können Redoxsysteme und/oder thermisch zerfallende Radikalbildner vom Typ der Azoverbindungen, wie z. B. Azoisobuttersäurenitril, Azo-bis- (cyanopentansäure) oder Azo-bis-(amidinopropan)dihydrochlorid verwendet werden. Als Redoxsysteme eignen sich z. B. Kombinationen aus Wasserstoffperoxid, Kalium- oder Ammoniumperoxodisulfat sowie tertiäres Butylhydroperoxid mit Natriumsulfit, Natriumdithionit oder Hydroxylaminhydrochlorid als Reduktionskomponente.

Die Polymerisation kann isotherm oder unter adiabatischen Bedingungen durchgeführt werden, wobei in Abhängigkeit von den Konzentrationsverhältnissen durch die freiwerdende Polymerisationswärme der Temperaturbereich für den Ablauf der Reaktion zwischen 20 und 200 0 C schwanken kann, und die Reaktion gegebenenfalls unter dem sich einstellenden Überdruck durchgeführt werden muß. Bevorzugterweise liegt die Reaktionstemperatur zwischen 20 und 100 0 C.

Der pH-Wert während der Copolymerisation kann in einem weiten Bereich schwanken. Vorteilhafterweise wird bei niedrigen pH-Werten polymerisiert; möglich sind jedoch auch pH-Werte oberhalb des Neutralpunktes. Nach der Polymerisation wird mit einer wäßrigen Base, z. B. Natronlauge, Kalilauge oder Ammoniak, auf einen pH-Wert zwischen 5 und 10, vorzugsweise 6 bis 8, eingestellt. Nähere Angaben zum Polymerisationsverfahren können den Beispielen entnommen werden.

Als besonders wirksam haben sich solche Polymerisate erwiesen, bei denen die Monomeren der Formel (Z-I) gegenüber den Monomeren der Formel (Z-Il) im Überschuß vorlagen. Es ist daher erfindungsgemäß bevorzugt, solche Polymerisate zu verwenden, die aus Monomeren der Formel (Z-I) und die Monomeren der Formel (Z-Il) in einem Molverhältnis von 60:40 bis 95:5, insbesondere von 75:25 bis 95:5, bestehen.

Die kationischen bzw. amphoteren Polymere sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5 Gew.-% sind besonders bevorzugt.

Bei den anionischen Polymeren (G2) handelt es sich um anionische Polymere, welche Carboxylat- und/oder Sulfonatgruppen aufweisen. Beispiele für anionische Monomere, aus denen derartige Polymere bestehen können, sind Acrylsäure, Methacrylsäure, Crotonsäure, Maleinsäureanhydrid und 2-Acrylamido-2-methylpropansulfonsäure. Dabei können die sauren Gruppen ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen. Bevorzugte Monomere sind 2- Acrylamido-2-methylpropansulfönsäure und Acrylsäure.

Als ganz besonders wirkungsvoll haben sich anionische Polymere erwiesen, die als allei¬ niges oder Co-Monomer 2-Acrylamido-2-methylpropansulfonsäure enthalten, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegen kann.

Besonders bevorzugt ist das Homopolymer der 2-Acrylamido-2- methylpropansulfonsäure, das beispielsweise unter der Bezeichnung Rheothik ® 11-80 im Handel erhältlich ist.

Innerhalb dieser Ausführungsform kann es bevorzugt sein, Copolymere aus mindestens einem anionischen Monomer und mindestens einem nichtionogenen Monomer einzusetzen. Bezüglich der anionischen Monomere wird auf die oben aufgeführten Sub¬ stanzen verwiesen. Bevorzugte nichtionogene Monomere sind Acrylamid, Methacrylamid, Acrylsäureester, Methacrylsäureester, Vinylpyrrolidon, Vinylether und Vinylester.

Bevorzugte anionische Copolymere sind Acrylsäure-Acrylamid-Copolymere sowie insbe¬ sondere Polyacrylamidcopolymere mit Sulfonsäuregruppen-haltigen Monomeren. Ein be¬ sonders bevorzugtes anionisches Copolymer besteht aus 70 bis 55 Mol-% Acrylamid und 30 bis 45 Mol-% 2-Acrylamido-2-methylpropansulfonsäure, wobei die Sulfonsäuregruppe ganz oder teilweise als Natrium-, Kalium-, Ammonium-, Mono- oder Triethanolammonium-Salz vorliegt. Dieses Copolymer kann auch vernetzt vorliegen, wobei als Vernetzungsagentien bevorzugt polyolefinisch ungesättigte Verbindungen wie Tetraallyloxyethan, Allylsucrose, Allylpentaerythrit und Methylen-bisacrylamid zum Einsatz kommen. Ein solches Polymer ist in dem Handelsprodukt Sepigel ® 305 der Firma SEPPlC enthalten. Die Verwendung dieses Compounds, das neben der

Polymerkomponente eine Kohlenwasserstoffmischung (Ci 3 -Ci 4 -lsoparaffin) und einen nichtionogeneπ Emulgator (Laureth-7) enthält, hat sich im Rahmen der erfindungsgemäßen Lehre als besonders vorteilhaft erwiesen.

Auch die unter der Bezeichnung Simulgel ® 600 als Compound mit Isohexadecan und Polysorbat-80 vertriebenen Natriumacryloyldimethyltaurat-Copolymere haben sich als erfindungsgemäß besonders wirksam erwiesen.

Ebenfalls bevorzugte anionische Homopolymere sind unvernetzte und vernetzte Polyacrylsäuren. Dabei können Allyiether von Pentaerythrit, von Sucrose und von Propylen bevorzugte Vernetzungsagentien sein. Solche Verbindungen sind beispielsweise unter dem Warenzeichen Carbopol ® im Handel erhältlich.

Copolymere aus Maleinsäureanhydrid und Methylvinylether, insbesondere solche mit Vernetzungen, sind ebenfalls farberhaltende Polymere. Ein mit 1 ,9-Decadiene vernetztes Maleinsäure-Methylvinylether-Copolymer ist unter der Bezeichnung Stabileze ® QM im Handel erhältlich.

Weiterhin können als Polymere zur Steigerung der Wirkung des erfindungsgemäßen Wirkstoffkomplexes (A) amphotere Polymere (G3) verwendet werden. Unter dem Begriff amphotere Polymere werden sowohl solche Polymere, die im Molekül sowohl freie Aminogruppen als auch freie -COOH- oder SO 3 H-Gruppen enthalten und zur Ausbildung innerer Salze befähigt sind, als auch zwitterionische Polymere, die im Molekül quartäre Ammoniumgruppen und -COO. ' - oder -SO 3 ' -Gruppen enthalten, und solche Polymere zusammengefaßt, die -COOH- oder SO 3 H-Gruppen und quartäre Ammoniumgruppen enthalten.

Ein Beispiel für ein erfindungsgemäß einsetzbares Amphopolymer ist das unter der Be¬ zeichnung Amphomer ® erhältliche Acrylharz, das ein Copolymeres aus tert.-Butylamino- ethylmethacrylat, N-(1 ,1 ,3,3-Tetramethylbutyl)acrylamid sowie zwei oder mehr Mono¬ meren aus der Gruppe Acrylsäure, Methacrylsäure und deren einfachen Estern darstellt.

Bevorzugt eingesetzte amphotere Polymere sind solche Polymerisate, die sich im wesentlichen zusammensetzen aus

(a) Monomeren mit quartären Ammoniumgruppen der allgemeinen Formel (G3-I),

R 1 -CH=CR 2 -CO-Z-(C n H 2n )-N (+) R 3 R 4 R 5 A H (G3-I)

in der R 1 und R 2 unabhängig voneinander stehen für Wasserstoff oder eine Methyl¬ gruppe und R 3 , R 4 und R 5 unabhängig voneinander für Alkylgruppen mit 1 bis 4 Kohlenstoffatomen, Z eine NH-Gruppe oder ein Sauerstoffatom, n eine ganze Zahl von 2 bis 5 und A das Anion einer organischen oder anorganischen Säure ist, und

(b) monomeren Carbonsäuren der allgemeinen Formel (GS-If),

R 6 -CH=CR 7 -COOH (G3-II)

in denen R 6 und R 7 unabhängig voneinander Wasserstoff oder Methylgruppen sind.

Diese Verbindungen können sowohl direkt als auch in Salzform, die durch Neutralisation der Polymerisate, beispielsweise mit einem Alkalihydroxid, erhalten wird, erfindungsge¬ mäß eingesetzt werden. Ganz besonders bevorzugt sind solche Polymerisate, bei denen Monomere des Typs (a) eingesetzt werden, bei denen R 3 , R 4 und R 5 Methylgruppen sind, Z eine NH-Gruppe und A w ein Halogenid-, Methoxysulfat- oder Ethoxysulfat-Ion ist; Acrylamidopropyl-trimethyl-ammoniumchlorid ist ein besonders bevorzugtes Monomeres (a). Als Monomeres (b) für die genannten Polymerisate wird bevorzugt Acrylsäure verwendet.

Die erfindungsgemäßen Mittel können in einer weiteren Ausführungsform nichtionogene Polymere (G4) enthalten.

Geeignete nichtionogene Polymere sind beispielsweise:

Vinylpyrrolidon/Vinylester-Copolymere, wie sie beispielsweise unter dem Waren¬ zeichen Luviskol ® (BASF) vertrieben werden. Luviskol ® VA 64 und Luviskol ® VA 73, jeweils Vinylpyrrolidon/Vinylacetat-Copolymere, sind ebenfalls bevorzugte nichtionische Polymere.

Celluloseether, wie Hydroxypropylcellulose, Hydroxyethylcellulose und Methylny- droxypropylcellulose, wie sie beispielsweise unter den Warenzeichen Culminal ® und Benecel ® (AQUALON) und Natrosol ® -Typen (Hercules) vertrieben werden.

Stärke und deren Derivate, insbesondere Stärkeether, beispielsweise Structure ® XL (National Starch), eine multifunktionelle, salztolerante Stärke;

Schellack

Polyvinylpyrrolidone, wie sie beispielsweise unter der Bezeichnung Luviskol ® (BASF) vertrieben werden.

Siloxane. Diese Siloxane können sowohl wasserlöslich als auch wasserunlöslich sein. Geeignet sind sowohl flüchtige als auch nichtflüchtige Siloxane, wobei als nichtflüchtige Siloxane solche Verbindungen verstanden werden, deren Siedepunkt bei Normaldruck oberhalb von 200 0 C liegt. Bevorzugte Siloxane sind Polydialkylsiloxane, wie beispielsweise Polydimethylsiloxan, Polyalkylarylsiloxane, wie beispielsweise PoIy- phenylmethylsiloxan, ethoxylierte Polydialkylsiloxane sowie Polydialkylsiloxane, die Amin- und/oder Hydroxy-Gruppen enthalten.

Glycosidisch substituierte Silicone.

Es ist erfindungsgemäß auch möglich, daß die verwendeten Zubereitungen mehrere, insbesondere zwei verschiedene Polymere gleicher Ladung und/oder jeweils ein ionisches und ein amphoteres und/oder nicht ionisches Polymer enthalten.

Die Polymere (G) sind in den erfindungsgemäßen Mitteln bevorzugt in Mengen von 0,05 bis 10 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,1 bis 5, insbesondere von 0,1 bis 3 Gew.-%, sind besonders bevorzugt.

Weiterhin kann in einer bevorzugten Ausführungsform der Erfindung ein erfindungsgemäßes Mittel auch UV - Filter (I) enthalten. Die erfindungsgemäß zu verwendenden UV-Filter unterliegen hinsichtlich ihrer Struktur und ihrer physikalischen Eigenschaften keinen generellen Einschränkungen. Vielmehr eignen sich alle im Kosmetikbereich einsetzbaren UV-Filter, deren Absorptionsmaximum im UVA(315-400 nm)-, im UVB(280-315nm)- oder im UVC(<280 nm)-Bereich liegt. UV-Filter mit einem Absorptionsmaximum im UVB-Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevorzugt.

Die erfindungsgemäß verwendeten UV-Filter können beispielsweise ausgewählt werden aus substituierten Benzophenonen, p-Aminobenzoesäureestem, Diphenylacrylsäure- estern, Zimtsäureestem, Salicylsäureestern, Benzimidazolen und o-Aminobenzoesäure- estern.

Beispiele für erfindungsgemäß verwendbar UV-Filter sind 4-Amino-benzoesäure, N 1 N 1 N- Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsulfat, 3,3,5-Trimethyl-cyclohexyl- salicylat (Homosalate), 2-Hydroxy-4-methoxy-benzophenon (Benzophenone-3; Uvinul ® M 40, Uvasorb ® MET, Neo Heliopan ® BB, Eusolex ® 4360), 2-Phenylbenzimidazol-5-sulfon- säure und deren Kalium-, Natrium- und Triethanolaminsalze (Phenylbenzimidazole sulfonic acid; Parsol ® HS; Neo Heliopan ® Hydro), 3,3'-(1,4-Phenylendimethylen)-bis(7,7- dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-yl-methan-sulfonsäure) und deren Salze, 1-(4-tert.- Butylphenyl)-3-(4-methoxyphenyl)-propan-1 ,3-dion (Butyl methoxydibenzoylmethane; Parsol ® 1789, Eusolex ® 9020), α-(2-Oxobom-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoesäure-ethylester (PEG-25 PABA; Uvinul ® P 25), 4-Di- methylaminobenzoesäure-2-ethylhexylester (Octyl Dimethyl PABA; Uvasorb ® DMO, Escalol ® 507, Eusolex ® 6007), Salicylsäure-2-ethylhexylester (Octyl Salicylat; Escalol ® 587, Neo Heliopan ® OS, Uvinul ® 018), 4-Methoxyzimtsäure-isopentylester (Isoamyl p- Methoxycinnamate; Neo Heliopan ® E 1000), 4-Methoxyzimtsäure-2-ethylhexyl-ester (Octyl Methoxycinnamate; Parsol ® MCX, Escalol ® 557, Neo Heliopan ® AV), 2-Hydroxy-4- methoxybenzophenon-5-sulfonsäure und deren Natriumsalz (Benzophenone-4; Uvinul ® MS 40; Uvasorb ® S 5), 3-(4'-Methylbenzyliden)-D,L : Campher (4-Methylbenzyli- dene camphor; Parsol ® 5000, Eusolex ® 6300), 3-Benzyliden-campher (3-Benzylidene camphor), 4-lsopropylbenzylsalicylat, 2,4,6-Trianilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1 ,3,5- triazin, 3-lmidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2- oxoborn-3-ylidenmethyl]benzyl}-acrylamids, 2,4-Dihydroxybenzophenon (Benzophe- none-1; Uvasorb ® 20 H, Uvinul ® 400), 1,1'-Diphenylacrylonitrilsäure-2-ethylhexyl-ester (Octocrylene; Eusolex ® OCR, Neo Heliopan ® Type 303, Uvinul ® N 539 SG), o-Aminoben- zoesäure-menthylester (Menthyl Anthranilate; Neo Heliopan ® MA), 2,2',4,4'-Tetrahy- droxybenzophenon (Benzophenone-2; Uvinul ® D-50), 2,2'-Dihydroxy-4,4'-dimethoxyben- zophenon (Benzophenone-6), 2,2'-Dihydroxy-4,4'-dimethoxybenzophenon-5-natriumsul- fonat und 2-Cyano-3,3-dipheny)acrylsäure-2'-ethylhexylester. Bevorzugt sind 4-Amino- benzoesäure, N,N,N-Trimethyl-4-(2-oxoborn-3-ylidenmethyl)anilin-methylsul fat, 3,3,5- Trimethyl-cyclohexylsalicylat, 2-Hydroxy-4-methoxy-benzophenon, 2-Phenylbenzimi-

dazol-5-sulfonsäure und deren Kalium-, Natrium- und Trietbanolaminsalze, 3,3'-(1 ,4- PhenylendimethylenJ-bisCT.y-dimethyl^-oxo-bicyclo-^^.IJhept- i-yl-methan-sulfon- säure) und deren Salze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1,3-dior , α- (2-Oxoborn-3-yliden)-toluol-4-sulfonsäure und deren Salze, ethoxylierte 4-Aminobenzoe- säure-ethylester, 4-Dimethylaminobenzoesäure-2-ethylhexylester, Salicylsäure-2-ethyl- hexylester, 4-Methoxyzimtsäure-isopentylester, 4-Methoxyzimtsäure-2-ethylhexyl-ester, 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure und deren Natriumsalz, 3-(4'-Methyl- benzyliden)-D,L-Campher, 3-Benzyliden-campher, 4-lsopropylbenzylsalicylat, 2,4,6-Tri- anilino-(p-carbo-2'-ethylhexyl-1'-oxi)-1,3,5-triazin, 3-lmidazol-4-yl-acrylsäure und deren Ethylester, Polymere des N-{(2 und 4)-[2-oxobom-3-ylidenmethyl]benzyl}-acrylamid. Erfindungsgemäß ganz besonders bevorzugt sind 2-Hydroxy-4-methoxy-ben2ophenon, 2-Phenylbenzimidazol-5-sulfonsäure und deren Kalium-, Natrium- und Triet- hanolaminsalze, 1-(4-tert.-Butylphenyl)-3-(4-methoxyphenyl)-propan-1 ,3-dion, 4-Me- thoxyzimtsäure-2-ethylhexyl-ester und 3-(4'-Methylbenzyliden)-D,L-Campher.

Bevorzugt sind solche UV-Filter, deren molarer Extinktionskoeffizient am Absorptions¬ maximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.

Weiterhin wurde gefunden, daß bei strukturell ähnlichen UV-Filtern in vielen Fällen die wasserunlösliche Verbindung im Rahmen der erfindungsgemäßen Lehre die höhere Wir¬ kung gegenüber solchen wasserlöslichen Verbindungen aufweist, die sich von ihr durch eine oder mehrere zusätzlich ionische Gruppen unterscheiden. Als wasserunlöslich sind im Rahmen der Erfindung solche UV-Filter zu verstehen, die sich bei 20 0 C zu nicht mehr als 1 Gew.-%, insbesondere zu nicht mehr als 0,1 Gew.-%, in Wasser lösen. Weiterhin sollten diese Verbindungen in üblichen kosmetischen Ölkomponenten bei Raumtempera¬ tur zu mindestens 0,1 , insbesondere zu mindestens 1 Gew.-% löslich sein). Die Verwen¬ dung wasserunlöslicher UV-Filter kann daher erfindungsgemäß bevorzugt sein.

Gemäß einer weiteren Ausführungsform der Erfindung sind solche UV-Filter bevorzugt, die eine kationische Gruppe, insbesondere eine quartäre Ammoniumgruppe, aufweisen.

Diese UV-Filter weisen die allgemeine Struktur U - Q auf.

Der Strukturteil U steht dabei für eine UV-Strahlen absorbierende Gruppe. Diese Gruppe kann sich im Prinzip von den bekannten, im Kosmetikbereich einsetzbaren, oben ge¬ nannten UV-Filtern ableiten, in dem eine Gruppe, in der Regel ein Wasserstoff atom, des UV-Filters durch eine kationische Gruppe Q, insbesondere mit einer quartären Amino- funktion, ersetzt wird. Verbindungen, von denen sich der Strukturteil U ableiten kann, sind beispielsweise

- substituierte Benzophenone,

- p-Aminobenzoesäureester,

- Diphenylacrylsäureester,

- Zimtsäureester,

- Salicylsäureester, Benzimidazole und

- o-Aminobenzoesäureester.

Strukturteile U, die sich vom Zimtsäureamid oder vom N,N-Dimethylamino-benzoesäu- reamid ableiten, sind erfindungsgemäß bevorzugt.

Die Strukturteile U können prinzipiell so gewählt werden, daß das Absorptionsmaximum der UV-Filter sowohl im UVA(315-400 nm)-, als auch im UVB(280-315nm)- oder im UVC(<280 nm)-Bereich liegen kann. UV-Filter mit einem Absorptionsmaximum im UVB- Bereich, insbesondere im Bereich von etwa 280 bis etwa 300 nm, sind besonders bevor¬ zugt.

Weiterhin wird der Strukturteil U, auch in Abhängigkeit von Strukturteil Q, bevorzugt so gewählt, daß der molare Extinktionskoeffizient des UV-Filters am Absorptionsmaximum oberhalb von 15 000, insbesondere oberhalb von 20000, liegt.

Der Strukturteil Q enthält als kationische Gruppe bevorzugt eine quartäre Ammonium¬ gruppe. Diese quartäre Ammoniumgruppe kann prinzipiell direkt mit dem Strukturteil U verbunden sein, so daß der Strukturteil U einen der vier Substituenten des positiv gela¬ denen Stickstoffatomes darstellt. Bevorzugt ist jedoch einer der vier Substitueηten am positiv geladenen Stickstoffatom eine Gruppe, insbesondere eine Alkylengruppe mit 2

bis 6 Kohlenstoffatomen, die als Verbindung zwischen dem Strukturteil U und dem positiv geladenen Stickstoff atom fungiert.

Vorteilhafterweise hat die Gruppe Q die allgemeine Struktur -(CH 2 )χ-N + R 1 R 2 R 3 X ' , in der x steht für eine ganze Zahl von 1 bis 4, R 1 und R 2 unabhängig voneinander stehen für Ci- 4 -Alkylgruppen, R 3 steht für eine C 1-22 -Alkylgruppe oder eine Benzylgruppe und X " für ein physiologisch verträgliches Anion. Im Rahmen dieser allgemeinen Struktur steht x bevor¬ zugt für die die Zahl 3, R 1 und R 2 jeweils für eine Methylgruppe und R 3 entweder für eine Methylgruppe oder eine gesättigte oder ungesättigte, lineare oder verzweigte Kohlen¬ wasserstoffkette mit 8 bis 22, insbesondere 10 bis 18, Kohlenstoffatomen.

Physiologisch verträgliche Anionen sind beispielsweise anorganische Anionen wie Halo¬ genide, insbesondere Chlorid, Bromid und Fluorid, Sulfationen und Phosphationen sowie organische Anionen wie Lactat, Citrat, Acetat, Tartrat, Methosulfat und Tosylat.

Zwei bevorzugte UV-Filter mit kationischen Gruppen sind die als Handelsprodukte erhält¬ lichen Verbindungen Zimtsäureamidopropyl-trimethylammoniumchlorid (lncroquat ® UV- 283) und Dodecyl-dimethylaminobenzamidopropyl-dimethylammoniumtosylat (Escalol ® HP 610).

Selbstverständlich umfaßt die erfindungsgemäße Lehre auch die Verwendung einer Kombination von mehreren UV-Filtern. Im Rahmen dieser Ausführungsform ist die Kombination mindestens eines wasserunlöslichen UV-Filters mit mindestens einem UV- Filter mit einer kationischen Gruppe bevorzugt.

Die UV-Filter (I) sind in den erfindungsgemäß verwendeten Mitteln üblicherweise in Men¬ gen 0,1-5 Gew.-%, bezogen auf das gesamte Mittel, enthalten. Mengen von 0,4-2,5 Gew.-% sind bevorzugt.

Die erfindungsgemäßen Mittel können weiterhin eine 2-Pyrrolidinon-5-carbonsäure und deren Derivate (J) enthalten. Bevorzugt sind die Natrium-, Kalium-, Calcium-, Magne¬ sium- oder Ammoniumsalze, bei denen das Ammoniumion neben Wasserstoff eine bis drei C 1 - bis C 4 -Alkylgruppen trägt. Das Natriumsalz ist ganz besonders bevorzugt. Die eingesetzten Mengen in den erfindungsgemäßen Mitteln betragen vorzugsweise 0,05 bis

10 Gew.%, bezogen auf das gesamte Mittel, besonders bevorzugt 0,1 bis 5, und insbesondere 0,1 bis 3 Gew.%.

Schließlich können die erfindungsgemäßen Mittel auch Pflanzenextrakte (L) enthalten.

Üblicherweise werden diese Extrakte durch Extraktion der gesamten Pflanze hergestellt. Es kann aber in einzelnen Fällen auch bevorzugt sein, die Extrakte ausschließlich aus Blüten und/oder Blättern der Pflanze herzustellen.

Hinsichtlich der erfindungsgemäß verwendbaren Pflanzenextrakte wird insbesondere auf die Extrakte hingewiesen, die in der auf Seite 44 der 3. Auflage des Leitfadens zur Inhaltsstoffdeklaration kosmetischer Mittel, herausgegeben vom Industrieverband Körperpflege- und Waschmittel e.V. (IKW), Frankfurt, beginnenden Tabelle aufgeführt sind.

Erfindungsgemäß sind vor allem die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Henna, Kamille, Klettenwurzel, Schachtelhalm, Weißdorn, Linden¬ blüten, Mandel, Aloe Vera, Fichtennadel, Roßkastanie, Sandelholz, Wacholder, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Malve, Wiesenschaumkraut, Quendel, Schafgarbe, Thymian, Melisse, Hauhechel, Huflattich, Eibisch, Meristem, Ginseng und Ingwerwurzel bevorzugt.

Besonders bevorzugt sind die Extrakte aus Grünem Tee, Eichenrinde, Brennessel, Hamamelis, Hopfen, Kamille, Klettenwurzel, Schachtelhalm, Lindenblüten, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi, Melone, Orange, Grapefruit, Salbei, Rosmarin, Birke, Wiesenschaumkraut, Quendel, Schafgarbe, Hauhechel, Meri¬ stem, Ginseng und Ingwerwurzel.

Ganz besonders für die erfindungsgemäße Verwendung geeignet sind die Extrakte aus Grünem Tee, Mandel, Aloe Vera, Kokosnuß, Mango, Aprikose, Limone, Weizen, Kiwi und Melone.

Als Extraktionsmittel zur Herstellung der genannten Pflanzenextrakte können Wasser, Alkohole sowie deren Mischungen verwendet werden. Unter den Alkoholen sind dabei niedere Alkohole wie Ethanol und Isopropanol, insbesondere aber mehrwertige Alkohole wie Ethylenglykol und Propylenglykol, sowohl als alleiniges Extraktionsmittel als auch in Mischung mit Wasser, bevorzugt. Pflanzenextrakte auf Basis von Wasser/Prppylenglykol im Verhältnis 1:10 bis 10:1 haben sich als besonders geeignet erwiesen.

Die Pflanzenextrakte können erfindungsgemäß sowohl in reiner als auch in verdünnter Form eingesetzt werden. Sofern sie in verdünnter Form eingesetzt werden, enthalten sie üblicherweise ca. 2 - 80 Gew.-% Aktivsubstanz und als Lösungsmittel das bei ihrer Ge¬ winnung eingesetzte Extraktionsmittel oder Extraktionsmittelgemisch.

Weiterhin kann es bevorzugt sein, in den erfindungsgemäßen Mitteln Mischungen aus mehreren, insbesondere aus zwei, verschiedenen Pflanzenextrakten einzusetzen.

Zusätzlich kann es sich als vorteilhaft erweisen, wenn in den erfindungsgemäßen Mitteln Penetrationshilfsstoffe und/ oder Quellmittel (M) enthalten sind. Hierzu sind beispielsweise zu zahlen Harnstoff und Harnstoffderivate, Guanidin und dessen Derivate, Arginin und dessen Derivate, Wasserglas, Imidazol und Dessen Derivate, Histidin und dessen Derivate, Benzylalkohol, Glycerin, Glykol und Glykolether, Propylenglykol und Propylenglykolether, beispielsweise Propylenglykolmonoethylether, Carbonate, Hydrogencarbonate, Diole und Triole, und insbesondere 1 ,2-Diole und 1 ,3- Diole wie beispielsweise 1 ,2-Propandiol, 1 ,2-Pentandiol, 1 ,2-Hexandiol, 1 ,2-Dodecandiol, 1 ,3-Propandiol, 1 ,6-Hexandiol, 1 ,5-Pentandiol, 1 ,4-Butandiol.

Vorteilhaft im Sinne der Erfindung können zusätzlich kurzkettige Carbonsäuren (N) den Wirkstoffkomplex (A) aus mindestens einen apolaren Inhaltsstoff und mindestens einem Protein-komplexierten Spurenelement aus der Gruppe Zn, Mg, Cu, Mn, Si, K, Fe unterstützen. Unter kurzkettigen Carbonsäuren und deren Derivaten im Sinne der Erfindung werden Carbonsäuren verstanden, welche gesättigt oder ungesättigt und/oder geradkettig oder verzweigt oder cyclisch und/oder aromatisch und/oder heterocyclisch sein können und ein Molekulargewicht kleiner 750 aufweisen. Bevorzugt im Sinne der Erfindung können gesättigte oder ungesättigte geradkettigte oder verzweigte Carbonsäuren mit einer Kettenlänge von 1 bis zu 16 C-Atomen in der Kette sein, ganz

besonders bevorzugt sind solche mit einer Ketteniänge von 1 bis zu 12 C - Atomen in der Kette.

Die kurzkettigen Carbonsäuren im Sinne der Erfindung können ein, zwei, drei oder mehr Carboxygruppen aufweisen. Bevorzugt im Sinne der Erfindung sind Carbonsäuren mit mehreren Carboxygruppen, insbesondere Di- und Tricarbonsäuren. Die Carboxygruppen können ganz oder teilweise als Ester, Säureanhydrid, Lacton, Amid, Imidsäure, Lactam, Lactim, Dicarboximid, Carbohydrazid, Hydrazon, Hydroxam, Hydroxim, Amidin, Ami- doxim, Nitril, Phosphon- oder Phosphatester vorliegen. Die erfindungsgemäßen Carbon¬ säuren können selbstverständlich entlang der Kohlenstoffkette oder des Ringgerüstes substituiert sein. Zu den Substituenten der erfindungsgemäßen Carbonsäuren sind beispielsweise zu zählen C1-C8-Alkyl-, C2-C8-Alkenyl-, Aryl-, Aralkyl- und Aralkenyl-, Hydroxymethyl-, C2-C8-Hydroxyalkyl-,C2-C8-Hydroxyalkenyl-, Aminomethyl-, C2-C8- Aminoalkyl-, Cyano-, Formyl-, Oxo-, Thioxo-, Hydroxy-, Mercapto-, Amino-, Carboxy- oder Iminogruppen. Bevorzugte Substituenten sind C1-C8-Alkyl-, Hydroxymethyl-, Hydroxy-, Amino- und Carboxygruppen. Besonders bevorzugt sind Substituenten in D - Stellung. Ganz besonders bevorzugte Substituenten sind Hydroxy-, Alkoxy- und Amino- gruppen, wobei die Aminofunktion gegebenenfalls durch Alkyl-, Aryl-, Aralkyl- und/oder Alkenylreste weiter substituiert sein kann. Weiterhin sind ebenfalls bevorzugte Carbon¬ säurederivate die Phosphon- und Phosphatester.

Als Beispiele für erfindungsgemäße Carbonsäuren seien genannt Ameisensäure, Essig¬ säure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Pivalinsäure, Oxalsäure, Malonsäure, Bernsteinsäure, Glutarsäure, Glycerinsäure, Glyoxylsäure, Adipinsäure, Pimelinsäure, Korksäure, Azelainsäure, Sebacinsäure, Propiolsäure, Crotonsäure, Isocrotonsäure, Elaidinsäure, Maleinsäure, Fumarsäure, Muconsäure, Citraconsäure, Mesaconsäure, Camphersäure, Benzoesäure, o,m,p- Phthalsäure, Naphthoesäure, Toluoylsäure, Hydratropasäure, Atropasäure, Zimtsäure, Isonicotinsäure, Nicotinsäure, Bicarbaminsäure, 4,4 ' -Dicyano-6,6'-binicotinsäure, 8- Carbamoyloctansäure, 1 ,2,4-Pentantricarbonsäure, 2-Pyrrolcarbonsäure, 1 ,2,4,6,7- Napthalinpentaessigsäure, Malonaldehydsäure, 4-Hydroxy-phthalamidsäure, 1- Pyrazolcarbonsäure, Gallussäure oder Propantricarbonsäure, eine Dicarbonsäure ausgewählt aus der Gruppe, die gebildet wird durch Verbindungen der allgemeinen Formel (N-I),

(N-I)

in der Z steht für eine lineare oder verzweigte Alkyl- oder Alkenylgruppe mit 4 bis 12 Kohlenstoffatomen, n für eine Zahl von 4 bis 12 sowie eine der beiden Gruppen X und Y für eine COOH-Gruppe und die andere für Wasserstoff oder einen Methyl- oder Ethylrest, Dicarbonsäuren der allgemeinen Formel (N-I), die zusätzlich noch 1 bis 3 Methyl- oder Ethylsubstituenten am Cyclohexenring tragen sowie Dicarbonsäuren, die aus den Dicarbonsäuren gemäß Formel (N-I) formal durch Anlagerung eines Moleküls Wasser an die Doppelbindung im Cyclohexenring entstehen.

Dicarbonsäuren der Formel (N-I) sind in der Literatur bekannt.

Die Dicarbonsäuren der Formel (N-I) können beispielsweise durch Umsetzung von mehr¬ fach ungesättigten Dicarbonsäuren mit ungesättigten Monocarbonsäuren in Form einer Diels-Alder-Cyclisierung hergestellt werden. Üblicherweise wird man von einer mehrfach ungesättigten Fettsäure als Dicarbonsäurekomponente ausgehen. Bevorzugt ist die aus natürlichen Fetten und Ölen zugängliche Linolsäure. Als Monocarbonsäurekomponente sind insbesondere Acrylsäure, aber auch z.B. Methacrylsäure und Crotonsäure bevorzugt. Üblicherweise entstehen bei Reaktionen nach Diels-Alder Isomerengemische, bei denen eine Komponente im Überschuß vorliegt. Diese Isomerengemische können erfindungsgemäß ebenso wie die reinen Verbindungen eingesetzt werden.

Erfindungsgemäß einsetzbar neben den bevorzugten Dicarbonsäuren gemäß Formel (N- I) sind auch solche Dicarbonsäuren, die sich von den Verbindungen gemäß Formel (N-I) durch 1 bis 3 Methyl- oder Ethyl-Substituenten am Cyclohexylring unterscheiden oder

aus diesen Verbindungen formal durch Anlagerung von einem Molekül Wasser an die Doppelbildung des Cyclohexenrings gebildet werden.

Als erfindungsgemäß besonders wirksam hat sich die Dicarbonsäύre(-mischung) erwiesen, die durch Umsetzung von Linolsäure mit Acrylsäure entsteht. Es handelt sich dabei um eine Mischung aus 5- und 6-Carboxy-4-hexyl-2-cyclohexen-1-octansäure. Solche Verbindungen sind kommerziell unter den Bezeichnungen Westvaco Diaeid ® 1550 und Westvaco Diaeid ® 1595 (Hersteller: Westvaco) erhältlich.

Neben den zuvor beispielhaft aufgeführten erfindungsgemäßen kurzkettigen Carbonsäuren selbst können auch deren physiologisch verträgliche Salze erfindungsgemäß eingesetzt werden. Beispiele für solche Salze sind die Alkali-, Erdalkali-, Zinksalze sowie Ammoniumsalze, worunter im Rahmen der vorliegenden Anmeldung auch die Mono-, Di- und Trimethyl-, -ethyl- und -hydroxyethyl- Ammoniumsalze zu verstehen sind. Ganz besonders bevorzugt können im Rahmen der Erfindung jedoch mit alkalisch reagierenden Aminosäuren, wie beispielsweise Arginin, Lysin, Ornithin und Histidin, neutralisierte Säuren eingesetzt werden. Weiterhin kann es aus Formulierungsgründen bevorzugt sein, die Carbonsäure aus den wasserlöslichen Vertretern, insbesondere den wasserlöslichen Salzen, auszuwählen.

Weiterhin ist es erfindungsgemäß bevorzugt, Hydroxycarbonsäuren und hierbei wiederum insbesondere die Dihydroxy-, Trihydroxy- und Polyhydroxycarbonsäuren sowie die Dihydroxy-, Trihydroxy- und Polyhydroxy- di-, tri- und polycarbonsäuren gemeinsam mit dem Wirkstoff (A) einzusetzen. Hierbei hat sich gezeigt, daß neben den Hydroxycarbonsäuren auch die Hydroxycarbonsäureester sowie die Mischungen aus Hydroxycarbonsäuren und deren Estern als auch polymere Hydroxycarbonsäuren und deren Ester ganz besonders bevorzugt sein können. Bevorzugte Hydroxycarbonsäureester sind beispielsweise Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der ß-Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, der Zuckersäure, der Schleimsäure oder der Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8 - 22 C-Atomen, also z.B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C12-C15-Fettalkoholen besonders bevorzugt.

Ester dieses Typs sind im Handel erhältlich, z.B. unter dem Warenzeichen Cosmacol ® der EniChem, Augusta Industriale. Besonders bevorzugte Polyhydroxypolycarbonsäuren sind Polymilchsäure und Polyweinsäure sowie deren Ester.

Weiterhin hat sich gezeigt, dass die Wirkung des erfindungsgemäßen Wirkstoffkomplexes gesteigert werden kann, wenn er mit Hydroxycarbonsäureestern kombiniert wird. Bevorzugte Hydroxycarbonsäureester sind Vollester der Glycolsäure, Milchsäure, Äpfelsäure, Weinsäure oder Citronensäure. Weitere grundsätzlich geeigneten Hydroxycarbonsäureester sind Ester der ß-Hydroxypropionsäure, der Tartronsäure, der D-Gluconsäure, Zuckersäure, Schleimsäure oder Glucuronsäure. Als Alkoholkomponente dieser Ester eignen sich primäre, lineare oder verzweigte aliphatische Alkohole mit 8 - 22 C-Atomen, also z.B. Fettalkohole oder synthetische Fettalkohole. Dabei sind die Ester von C 12 -C 15 -Fettalkoholen besonders bevorzugt. Ester dieses Typs sind im Handel erhältlich, z.B. unter dem Warenzeichen Cosmacol ® der EniChem, Augusta Industriale.

Die Einsatzmenge der Hydroxycarbonsäureester beträgt dabei 0,1 - 15 Gew.% bezogen auf das Mittel, bevorzugt 0,1 - 10 Gew.% und ganz besonders bevorzugt 0,1 - 5 Gew.%.

Gemäß einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäßen Mittel weiterhin mindestens einen Feststoff, insbesondere mindestens einen Fettstoff, in nanopartikulärer Form. Ein solcher Feststoff ist beispielsweise hydriertes Rizinusöl. Die Größe der Nanopartikel liegt dabei bevorzugt bei etwa 100 nm oder darunter.

In einer weiteren Ausführungsform wird der in den erfindungsgemäßen Mitteln enthaltene Wirkstoffkomplex aus aus mindestens einem apolarem Inhaltsstoff und mindestens einem Protein-komplexierten Spurenelement aus der Gruppe Zn, Mg, Cu, Mn, Si, K, Fe in Mitteln zum Färben keratinischer Fasern eingesetzt. Dabei kann der erfindungsgemäße Wirkstoffkomplex prinzipiell dem Färbemittel direkt zugegeben werden oder das Aufbringen des Wirkstoff-haltigen Mittels erfolgt auf die gefärbte keratinische Faser in einem getrennten Schritt entweder direkt im Anschluss an den eigentlichen Färbevorgang oder in getrennten Behandlungen, gegebenenfalls auch Tage oder Wochen nach dem Färbevorgang.

Der Begriff Färbevorgang umfasst dabei alle dem Fachmann bekannten Verfahren, bei denen auf das, gegebenenfalls angefeuchtete, Haar ein Färbemittel aufgebracht wird und dieses entweder für eine Zeit zwischen wenigen Minuten und ca. 45 Minuten auf dem Haar belassen und anschließend mit Wasser oder einem tensidhaltigen Mittel ausgespült wird oder ganz auf dem Haar belassen wird. Es wird in diesem Zusammenhang ausdrücklich auf die bekannten Monographien, z. B. Kh. Schrader, Grundlagen und Rezepturen der Kosmetika, 2. Auflage, Hüthig Buch Verlag, Heidelberg, 1989, verwiesen, die das entsprechende Wissen des Fachmannes wiedergeben.

Wie bereits zuvor erwähnt ist es im Rahmen der erfindungsgemäßen Lehre möglich, den Wirkstoff direkt in die Färbe- oder Tönungsmittel einzuarbeiten.

Die Zusammensetzung des Färbe- oder Tönungsmittels unterliegt keinen prinzipiellen

Einschränkungen.

Als Farbstoff(vorprodukt)e können

• Oxidationsfarbstoffvorprodukte vom Entwickler- und Kuppler-Typ,

• natürliche und synthetische direktziehende Farbstoffe und

• Vorstufen naturanaloger Farbstoffe, wie Indol- und Indolin-Derivate, sowie Mischungen von Vertretern einer oder mehrerer dieser Gruppen eingesetzt werden.

Konventionelle Haarfärbemittel bestehen in der Regel aus mindestens einer Entwickler- und mindestens einer Kupplersubstanz und enthalten ggf. noch direktziehende Farbstoffe (= Haarfarbstoffe) als Nuanceure. Kuppler- und Entwicklerkomponenten werden auch als Oxidationsfarbstoffvorprodukte bezeichnet.

Als Entwicklerkomponenten werden üblicherweise primäre aromatische Amine mit einer weiteren, in para- oder ortho-Position befindlichen freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyridinderivate, heterocyclische Hydrazone, 4-Aminopyra- zolonderivate sowie 2,4,5,6-Tetraaminopyrimidin und dessen Derivate eingesetzt.

Spezielle Vertreter sind beispielsweise p-Phenylendiamin, p-Toluylendiamin, 2,4,5,6-Te- traaminopyrimidin, p-Aminophenol, N,N-Bis-(2-hydroxyethyl)-p-phenylendiamin, 2-(2,5- Diaminophenyl)-ethanol, 2-(2,5-Diaminophenoxy)-ethanol, 1-Phenyl-3-carboxyamido-4- amino-pyrazol-5-on, 4-Amino-3-methylphenol, 2-Aminomethyl-4-aminophenol, 2- Hydroxymethyl-4-aminophenol, 2-Hydroxy-4,5,6-triaminopyrimidin, 2,4-Dihydroxy-5,6- diaminopyrimidin und 2,5,6-Triamino-4-hydroxypyrimidin.

Als Kupplerkomponenten werden in der Regel m-Phenylendiaminderivate, Naphthole, Resorcin und Resorcinderivate, Pyrazolone, m-Aminophenole und substituierte Pyridin- derivate verwendet. Als Kupplersubstanzen eignen sich insbesondere α-Naphthol, 1 ,5-, 2,7- und 1 ,7-Dihydroxynaphthalin, 5-Amino-2-methylphenol, m-Aminophenol, Resorcin, Resorcinmonomethylether, m-Phenylendiamin, 2,4-Diaminophenoxyethanol, 2-Amino-4- (2-hydroxyethylamino)-anisol (Lehmanns Blau), 1-Phenyl-3-methyl-pyrazol-5-on, 2,4-Di- chlor-3-aminophenol, 1 ,3-Bis-(2,4-diaminophenoxy)-propan, 2-Chlorresorcin, 4-Chlorre- sorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Methylresorcin, 5-Methylresorcin, 3-Amino-6- methoxy-2-methylamino-pyridin und 3,5-Diamino-2,6-dimethoxypyridin.

Wie bereits erwähnt, können die erfindungsgemäßen Mittel ein oder mehrere Farbstoff Vorprodukte enthalten. Hierbei sind erfindungsgemäße Mittel, die mindestens ein Oxidationsfarbstoffvorprodukt vom Entwicklertyp und/gegebenenfalls mindestens ein Oxidationsfarbstoffvorprodukt vom Kupplertyp enthalten, bevorzugt.

Hinsichtlich der in den erfindungsgemäßen Mitteln einsetzbaren Farbstoffvorprodukte unterliegt die vorliegende Erfindung keinerlei Einschränkungen. Die erfindungsgemäßen Mittel können als weitere Farbstoffvorprodukte

- Oxidationsfarbstoffvorprodukte vom Entwickler- und/oder Kuppler-Typ, und

- Vorstufen naturanaloger Farbstoffe, wie Indol- und Indolin-Derivate, sowie Mischungen von Vertretern dieser Gruppen enthalten.

In einer ersten bevorzugten Ausführungsform enthalten die erfindungsgemäßen Mittel mindestens eine Entwicklerkomponente. Als Entwicklerkomponenten werden üblicherweise primäre aromatische Amine mit einer weiteren, in para- oder ortho-Position befindlichen, freien oder substituierten Hydroxy- oder Aminogruppe, Diaminopyri-

dinderivate, heterozyklische Hydrazoπe, 4-Aminopyrazolderivate sowie 2,4,5,6- Tetraaminopyrimidin und dessen Derivate eingesetzt.

Es kann erfindungsgemäß bevorzugt sein, als Entwicklerkomponente ein p- Phenylendiaminderivat oder eines seiner physiologisch verträglichen Salze einzusetzen. Besonders bevorzugt sind p-Phenylendiaminderivate der Formel (E1)

wobei

G 1 steht für ein Wasserstoff atom, einen C 1 - bis C 4 -Alkylrest, einen C 1 - bis C 4 -

Monohydroxyalkylrest, einen C 2 - bis C 4 -Polyhydroxyalkylrest, einen (C 1 - bis C 4 )-

Alkoxy-(Ci- bis C 4 )-alkylrest, einen 4'-Aminophenylrest oder einen C 1 - bis C 4 -

Alkylrest, der mit einer stickstoffhaltigen Gruppe, einem Phenyl- oder einem 4'-

Aminophenylrest substituiert ist;

G 2 steht für ein Wasserstoffatom, einen C 1 - bis C 4 -Alkylrest, einen C 1 - bis C 4 -

Monohydroxyalkylrest, einen C 2 - bis C 4 -Polyhydroxyalkylrest, einen (C 1 - bis C 4 )-

AIkOXy-(C 1 - bis C 4 )-alkylrest oder einen C 1 - bis C 4 -Alkylrest, der mit einer stickstoffhaltigen Gruppe substituiert ist;

G 3 steht für ein Wasserstoff atom, ein Halogenatom, wie ein Chlor-, Brom-, lod- oder

Fluoratom, einen C 1 - bis C 4 -Alkylrest, einen C r bis C 4 -Monohydroxyalkylrest, einen

C 2 - bis C 4 -Polyhydroxyalkylrest, einen C 1 - bis C 4 -Hydroxyalkoxyrest, einen C 1 - bis

C 4 -Acetylaminoalkoxyrest, einen C 1 - bis C 4 - Mesylaminoalkoxyrest oder einen C 1 - bis C 4 -Carbamoylaminoalkoxyrest;

G 4 steht für ein Wasserstoffatom, ein Halogenatom oder einen C 1 - bis C 4 -Alkylrest oder wenn G 3 und G 4 in ortho-Stellung zueinander stehen, können sie gemeinsam eine verbrückende α,ω-Alkylendioxogruppe, wie beispielsweise eine Ethylendioxygruppe bilden.

Beispiele für die als Substituenten in den erfindungsgemäßen Verbindungen genannten Cr bis C 4 -Alkylreste sind die Gruppen Methyl, Ethyl, Propyl, Isopropyl und Butyl. Ethyl und Methyl sind bevorzugte Alkylreste. Erfindungsgemäß bevorzugte C 1 - bis C 4 - Alkoxyreste sind beispielsweise eine Methoxy ^ oder eine Ethoxygruppe. Weiterhin können als bevorzugte Beispiele für eine Cr bis C 4 -Hydroxyalkylgruppe eine Hydroxymethyl-, eine 2-Hydroxyethyl-, eine 3-Hydroxypropyl- oder eine 4- Hydroxybutylgruppe genannt werden. Eine 2-Hydroxyethylgruppe ist besonders bevorzugt. Eine besonders bevorzugte C 2 - bis C 4 -Polyhydroxyalkylgruppe ist die 1 ,2- Dihydroxyethylgrύppe. Beispiele für Halogenatome sind erfindungsgemäß F-, Cl- oder Br-Atome, Cl-Atome sind ganz besonders bevorzugt. Die weiteren verwendeten Begriffe leiten sich erfindungsgemäß von den hier gegebenen Definitionen ab. Beispiele für stickstoffhaltige Gruppen der Formel (E1) sind insbesondere die Aminogruppen, C 1 - bis C 4 -Monoalkylaminogruppen, Cr bis C 4 -Dialkylaminogruppen, C 1 - bis C 4 - Trialkylammoniumgruppen, C 1 - bis C 4 -Monohydroxyalkylaminogruppen, Imidazolinium und Ammonium.

Besonders bevorzugte p-Phenylendiamine der Formel (E1) sind ausgewählt aus p- Phenylendiamin, p-Toluylendiamin, 2-Chlor-p-phenylendiamin, 2,3-Dimethyl-p- phenylendiamin, 2,6-Dimethyl-p-phenylendiamin, 2,6-Diethyl-p-phenylendiamin, 2,5- Dimethyl-p-phenylendiamin, N,N-Dimethyl-p-phenylendiamin, N,N-Diethyl-p- phenylendiamin, N,N-Dipropyl-p-phenylendiamin, 4-Amino-3-methyl-(N,N-diethyl)-anilin, N,N-Bis-(ß-hydroxyethyl)-p-phenylendiamin, 4-N,N-Bis-(ß-hydroxyethyl)amino-2- methylanilin, 4-N,N-Bis-(ß-hydroxyethyl)amino-2-chloranilin, 2-(ß-Hydroxyethyl)-p- phenylendiamin, 2-(α,ß-Dihydroxyethyl)-p-phenylendiamin, 2-Fluor-p-phenylendiamin, 2- Isopropyl-p-phenylendiamin, N-(ß-Hydroxypropyl)-p-phenylendiamin, 2-Hydroxymethyl-p- phenylendiamin, N,N-Dimethyl-3-methyl-p-phenylendiamin, N,N-(Ethyl,ß-hydroxyethyl)-p- phenylendiamin, N-(ß,γ-Dihydroxypropyl)-p-phenylendiamin, N-(4'-Aminophenyl)-p- phenylendiamin, N-Phenyl-p-phenylendiamin, 2-(ß-Hydroxyethyloxy)-p-phenylendiamin, 2-(ß-Acetylaminoethyloxy)-p-phenylendiamin, N-(ß-Methoxyethyl)-p-phenylendiamin und 5,8-Diaminobenzo-1 ,4-dioxan sowie ihren physiologisch verträglichen Salzen.

Erfindungsgemäß ganz besonders bevorzugte p-Phenylendiaminderivate der Formel (E1) sind p-Phenylendiamin, p-TolUylendiamin, 2-(ß-Hydroxyethyl)-p-phenylendiamin, 2- (α,ß-Dihydroxyethyl)-p-phenylendiamin und N,N-Bis-(ß-hydroxyethyl)-p-phenylendiarήin.

Es kann erfindungsgemäß weiterhin bevorzugt sein, als Entwicklerkomponente Verbindungen einzusetzen, die mindestens zwei aromatische Kerne enthalten, die mit Amino- und/oder Hydroxylgruppen substituiert sind.

Unter den zweikernigen Entwicklerkomponenten, die in den Mitteln gemäß der Erfindung verwendet werden können, kann man insbesondere die Verbindungen nennen, die der folgenden Formel (E2) entsprechen, sowie ihre physiologisch verträglichen Salze:

wobei:

Z 1 und Z 2 stehen unabhängig voneinander für einen Hydroxyl- oder NH 2 -Rest, der gegebenenfalls durch einen C 1 - bis C 4 -Alkylrest, durch einen C 1 - bis C 4 - Hydroxyalkylrest und/oder durch eine . Verbrückung Y substituiert ist oder der gegebenenfalls Teil eines verbrückenden Ringsystems ist, die Verbrückung Y steht für eine Alkylengruppe mit i bis 14 Kohlenstoffatomen, wie beispielsweise eine lineare oder verzweigte Alkylenkette oder einen Alkylenring, die von einer oder mehreren stickstoffhaltigen Gruppen und/oder einem oder mehreren Heteroatomen wie Sauerstoff-, Schwefel- oder Stickstoffatomen unterbrochen oder beendet sein kann und eventuell durch einen oder mehrere Hydroxyl- oder C 1 - bis C 8 -Alkoxyreste substituiert sein kann, oder eine direkte Bindung, G 5 und G 6 stehen unabhängig voneinander für ein Wasserstoff- oder Halogenatom, einen C 1 - bis C 4 -Alkylrest, einen C 1 - bis C 4 -Monohydroxyalkylrest, einen C 2 - bis C 4 -

Polyhydroxyalkylrest, einen Cr bis C 4 -Aminoalkylrest oder eine direkte Verbindung zur Verbrückung Y,

G 7 , G 8 , G 9 , G 10 , G 11 und G 12 stehen unabhängig voneinander für ein

Wasserstoff atom, eine direkte Bindung zur Verbrückung Y oder einen C 1 - bis C 4 -

Alkylrest, mit den Maßgaben, dass die Verbindungen der Formel (E2) nur eine Verbrückung Y pro Molekül enthalten und die Verbindungen der Formel (E2) mindestens eine Aminogruppe enthalten, die mindestens ein Wasserstoffatom trägt.

Die in Formel (E2) verwendeten Substituenten sind erfindungsgemäß analog zu den obigen Ausführungen definiert.

Bevorzugte zweikernige Entwicklerkomponenten der Formel (E2) sind insbesondere: N,N'-Bis-(ß-hydroxyethyl)-N,N'-bis-(4'-aminophenyl)-1 ,3-diamino-propan-2-ol, N,N'-Bis- (ß-hydroxyethyl)-N,N'-bis-(4'-aminophenyl)-ethylendiamin, N,N'-Bis-(4-aminophenyl)- tetramethylendiamin, N,N'-Bis-(ß-hydroxyethyl)-N,N'-bis-(4-aminophenyl)- tetramethylendiamin, N,N'-Bis-(4-methyl-aminophenyl)-tetramethylendiamin, N 1 N'- Diethyl-N,N l -bis-(4'-amino-3 l -methylphenyl)-ethylendiamin, Bis-(2-hydroxy-5- aminophenyl)-methan, 1 ,3-Bis-(2,5-diaminophenoxy)-propan-2-ol, N,N'-Bis-(4'- aminophenyl)-1 ,4-diazacycloheptan, N,N'-Bis-(2-hydroxy-5-aminobenzyl)-piperazin, N- (4'-Aminophenyl)-p-phenylendiamin und 1 , 10-Bis-(2',5'-diaminophenyl)-1 ,4,7,10- tetraoxadecan und ihre physiologisch verträglichen Salze.

Ganz besonders bevorzugte zweikernige Entwicklerkomponenten der Formel (E2) sind N,N'-Bis-(ß-hydroxyethyl)-N,N'-bis-(4'-aminophenyl)-1 ,3-diamino-propan-2-ol, Bis-(2- hydroxy-5-aminophenyi)-methan, 1 ,3-Bis-(2,5-diaminophenoxy)-propan-2-ol, N,N'-Bis- (4'-aminophenyl)-1 ,4-diazacycloheptan und 1 , 10-Bis-(2',5'-diaminophenyl)-1 ,4,7,10- tetraoxadecan oder eines ihrer physiologisch verträglichen Salze.

Weiterhin kann es erfindungsgemäß bevorzugt sein, als Entwicklerkomponente ein p- Aminophenolderivat oder eines seiner physiologisch verträglichen Salze einzusetzen. Besonders bevorzugt sind p-Aminophenolderivate der Formel (E3)

wobei:

G 13 steht für ein Wasserstoff atom, ein Halogenatom, einen C 1 - bis C 4 -Alkylrest, einen C 1 - bis C 4 -Monohydroxyalkylrest, einen C 2 - bis C 4 -Polyhydroxyalkylrest, einen (C 1 - bis C 4 )-Alkoxy-(Cr bis C 4 )-alkylrest, einen C 1 - bis C 4 -Aminoalkylrest, einen Hydroxy-(C r bis C 4 )-alkylaminorest, einen C 1 - bis C 4 -Hydroxyalkoxyrest, einen C 1 - bis C 4 -Hydroxyalkyl-(Crbis C 4 )-aminoalkylrest oder einen (Di-C 1 - bis C 4 -Alkylamino)- (C 1 - bis C 4 )-alkylrest, und

G 14 steht für ein Wasserstoff- oder Halogenatom, einen C 1 - bis C 4 -Alkylrest, einen C 1 - bis C 4 -Monohydroxyalkylrest, einen C 2 - bis C 4 -Polyhydroxyalkylrest, einen (C 1 - bis C^-AIkOXy-(C 1 - bis C 4 )-alkylrest, einen C 1 - bis C 4 -Aminoalkylrest oder einen C 1 - bis C 4 -Cyanoalkylrest,

G 15 steht für Wasserstoff, einen C 1 - bis C 4 -Alkylrest, einen C 1 - bis C 4 - Monohydroxyalkylrest, einen C 2 - bis C 4 -Polyhydroxyalkylrest, einen Phenylrest oder einen Benzylrest, und

G 16 steht für Wasserstoff oder ein Halogenatom.

Die in Formel (E3) verwendeten Substituenten sind erfindungsgemäß analog zu den obigen Ausführungen definiert.

Bevorzugte p-Aminophenole der Formel (E3) sind insbesondere p-Aminophenol, N- Methyl-p-aminophenol, 4-Amino-3-methyl-phenol, 4-Amino-3-fluorphenol, 2- Hydroxymethylamino-4-aminophenol, 4-Amino-3-hydroxymethylphenol, 4-Amino-2-(D- hydroxyethoxy)-phenol, 4-Amino-2-methylphenol, 4-Amino-2-hydroxymethylphenol, A- Amino-2-methoxymethyl-phenol, 4-Amino-2-aminomethylphenol, 4-Amino-2-(ß- hydroxyethyl-aminomethyl)-phenol, 4-Amino-2-(α,ß-dihydroxyethyl)-phenol, 4-Amino-2-

fluorphenol, 4-Amino-2-chlorphenol, 4-Amino-2,6-dichlorphenol, 4-Amino-2-(diethyl- aminomethyl)-phenol sowie ihre physiologisch verträglichen Salze.

Ganz besonders bevorzugte Verbindungen der Formel (E3) sind p-Aminophenol, 4- Amino-3-methylphenol, .4-Amino-2-aminomethylphenol, 4-Amino-2-(α,ß-dihydroxyethyl)- phenol und 4-Amino-2-(diethyl-aminomethyl)-phenol.

Ferner kann die Entwicklerkomponente ausgewählt sein aus o-Aminophenol und seinen Derivaten, wie beispielsweise 2-Amino-4-methylphenol, 2-Amino-5-methylpheno! oder 2- Amino-4-chlorphenol.

Weiterhin kann die Entwicklerkomponente ausgewählt sein aus heterozyklischen Entwicklerkomponenten, wie beispielsweise den Pyridin-, Pyrimidin-, Pyrazol-, Pyrazol- Pyrimidin-Derivaten und ihren physiologisch verträglichen Salzen.

Bevorzugte Pyridin-Derivate sind insbesondere die Verbindungen 2,5-Diamino-pyridin, 2- (4'-Methoxyphenyl)amino-3-arnino-pyridin, 2,3-Diamino-6-methoxy-pyridin, 2-(ß- Methoxyethyl)amino-3-arnino-6-methoxy-pyridin und 3,4-Diamino-pyridin.

Bevorzugte Pyrimidin-Derivate sind insbesondere 2,4,5,6-Tetraaminopyrimidin, 4- Hydroxy-2,5,6-triaminopyrimidin, 2-Hydroxy-4,5,6-triaminopyrimidin, 2-Dimethylamino- 4,5,6-triaminopyrimidin, 2,4-Dihydroxy-5,6-diaminopyrimidin und 2,5,6-Triaminopyrimidin.

Bevorzugte Pyrazol-Derivate sind insbesondere 4,5-Diamino-1-methylpyrazol, 4,5- Diamino-1-(ß-hydroxyethyl)-pyrazol, 3,4-Diaminopyrazol, 4,5-Diamino-1-(4'-chlorbenzyl)- pyrazol, 4,5-Diamino-1 ,3-dimethylpyrazol, 4,5-Diamino-3-methyl-1-phenylpyrazol, 4,5- Diamino-i-methyl-3-phenylpyrazol, 4-Amino-1 ,3-dimethyl-5-hydrazinopyrazol, 1-Benzyl- 4,5-diamino-3-methylpyrazol, 4,5-Diamino-3-tert.-butyl-1-methylpyrazol, 4,5-Diamino-1- tert.-butyl-3-methylpyrazol, 4,5-Diamino-1-(ß-hydroxyethyl)-3-methylpyrazol, 4,5- Diamino-1-ethy!-3-methylpyrazol, 4,5-Diamino-1-ethyl-3-(4'-methoxyphenyl)-pyrazol, 4,5- Diamino-1-ethyl-3-hydroxymethylpyrazol, 4,5-Diamino-3-hydroxymethyl-1-methylpyrazol, 4,5-Diamino-3-hydroxymethyl-1-isopropylpyrazol, 4,5-Diamino-3-methyl-1- isopropylpyrazol, 4-Amino-5-(G-aminoethyl)amino-1 ,3-dimethylpyrazol, 3,4,5-

Triaminopyrazol, 1 -Methyl-3,4,5-triaminopyrazol, 3,5-Diamino-1 -methyl-4- methylaminopyrazol und 3,5-Diamino-4-(ß-hydroxyethyl)amino-1 -methylpyrazol.

Bevorzugte Pyrazol-Pyrimidin-Derivate sind insbesondere die Derivate des Pyrazol-[1 ,5- a]-pyrimidin der folgenden Formel (E4) und dessen tautomeren Formen, sofern ein tautomeres Gleichgewicht besteht:

wobei:

G 17 , G 18 , G 19 und G 20 unabhängig voneinander stehen für ein Wasserstoffatom, einen C 1 - bis C 4 -Alkylrest, einen Aryl-Rest, einen CV bis C 4 -Hydroxyalkylrest, einen C 2 - bis C 4 -Polyhydroxyalkylrest einen (C 1 - bis C 4 )-Alkoxy-(C r bis C 4 )-alkylrest, einen C 1 - bis C 4 -Aminoalkylrest, der gegebenenfalls durch ein Acetyl-Ureid- oder einen Sulfonyl-Rest geschützt sein kann, einen (C 1 - bis C 4 )-Alkylamino-(Cr bis C 4 )- alkylrest, einen Di-[(C r bis C 4 )-alkyl]-(Cr bis C 4 )-aminoalkylrest, wobei die Dialkyl- Reste gegebenenfalls einen Kohlenstoffzyklus oder einen Heterozyklus mit 5 oder 6 Kettengliedern bilden, einen C 1 - bis C 4 -Hydroxyalkyl- oder einen Di-(C 1 - bis C 4 )- [Hydroxyalkyl]-(C 1 - bis C 4 )-aminoalkylrest, die X-Reste stehen unabhängig voneinander für ein Wasserstoffatom, einen d- bis C 4 -Alkylrest, einen Aryl-Rest, einen C 1 - bis C 4 -Hydroxyalkylrest, einen C 2 - bis C 4 - Polyhydroxyalkylrest, einen C 1 - bis C 4 -Aminoalkylrest, einen (C 1 - bis C 4 )-Alkylamino- (C 1 - bis C 4 )-alkylrest, einen Di-[(C r bis C 4 )alkyl]- (C 1 - bis C 4 )-aminoalkylrest, wobei die Dialkyl-Reste gegebenenfalls einen Kohlenstoffzyklus oder einen Heterozyklus mit 5 oder 6 Kettengliedern bilden, einen C 1 - bis C 4 -Hydroxyalkyl- oder einen Di-(C 1 - bis C 4 -hydroxyalkyl)aminoalkylrest, einen Aminorest, einen C 1 - bis C 4 -Alkyl- oder Di- (C 1 - bis C 4 -hydroxyalkyl)aminorest, ein Halogenatom, eine Carboxylsäuregruppe oder eine Sulfonsäuregruppe, i hat den Wert 0, 1, 2 oder 3, p hat den Wert 0 oder 1 , q hat den Wert 0 oder 1 und

n hat den Wert O oder 1 , mit der Maßgabe, dass die Summe aus p + q ungleich 0 ist, wenn p + q gleich 2 ist, n den Wert 0 hat, und die Gruppen NG 17 G 18 und NG 19 G 20 belegen die Positionen (2,3); (5,6); (6,7); (3,5) oder (3,7); wenn p + q gleich 1 ist, n den Wert 1 hat, und die Gruppen NG 17 G 18 (oder NG 19 G 20 ) und die Gruppe OH belegen die Positionen (2,3); (5,6); (6,7); (3,5) oder (3,7);

Die in Formel (E4) verwendeten Substituenten sind erfindungsgemäß analog zu den obigen Ausführungen definiert.

Wenn das Pyrazol-[1 ,5-a]-pyrimidin der obenstehenden Formel (E4) eine Hydroxygruppe an einer der Positionen 2, 5 oder 7 des Ringsystems enthält, besteht ein tautomeres Gleichgewicht, das zum Beispiel im folgenden Schema dargestellt wird:

Unter den Pyrazol-[1 ,5-a]-pyrimidinen der obenstehenden Formel (E4) kann man insbesondere nennen:

Pyrazol-[1 ,5-a]-pyrimidin-3,7-diamin;

2,5-Dimethyl-pyrazol-[1 ,5-a]-pyrimidin-3,7-diamin;

Pyrazo.l-[1 ,5-a]-pyrimidin-3,5-diamin;

2,7-Dimethyl-pyrazol-[1 ,5-a]-pyrimidin-3,5-diamin;

3-Aminopyrazol-[1 ,5-a]-pyrimidin-7-ol;

3-Aminopyrazol-[1 ,5-a]-pyrimidin-5-ol;

2-(3-Aminopyrazol-[1 ,5-a]-pyrimidin-7-ylamino)-ethanol;

2-(7-Aminopyrazol-[1 ,5-a]-pyrimidin-3-ylamino)-ethanol;

2-[(3-Aminopyrazol-[1 ,5-a]-pyrimidin-7-yl)-(2-hydroxy-ethyl)amino]-ethanol;

2-[(7-Aminopyrazol-[1 ,5-a]-pyrimidin-3-yl)-(2-hydroxy-ethyl)amino]-ethanol;

δ.θ-DimethylpyrazoHI .S-aJ-pyrimidm-SJ-diamin;

2,6-Dimethylpyrazol-[1 ,5-a]-pyrimidin-3,7-diamin;

3-Amino-7-dimethylamino-2,5-dimethylpyrazol-[1 ,5-a]-pyrimidin; sowie ihre physiologisch verträglichen Salze und ihre tautomeren Formen, wenn ein tautomers Gleichgewicht vorhanden ist.

Die Pyrazol-[1,5-a]-pyrimidine der obenstehenden Formel (E4) können wie in der Literatur beschrieben durch Zyklisierung ausgehend von einem Aminopyrazol oder von Hydrazin hergestellt werden.

In einer weiteren bevorzugten Ausführungsform enthalten die erfindungsgemäßen Mittel mindestens eine Kupplerkomponente.

Als Kupplerkomponenten werden in der Regel m-Phenylendiaminderivate, Naphthole, Resorcin und Resorcinderivate, Pyrazolone und m-Aminophenolderivate verwendet. Als Kupplersubstanzen eignen sich insbesondere 1-Naphthol, 1 ,5-, 2,7- und 1 ,7- Dihydroxynaphthalin, 5-Amino-2-methylphenol, m-Aminophenol, Resorcin, Resor- cinmonomethylether, m-Phenylendiamin, 1-Phenyl-3-methyl-pyrazolon-5, 2,4-Dichlor-3- aminophenol, 1,3-Bis-(2' ) 4'-diaminophenoxy)-propan, 2-Chlor-resorcin, 4-Chlor-resorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Amino-3-hydroxypyridin, 2-Methylresörcin, 5- Methylresorcin und 2-Methyl-4-chlor-5-aminophenol.

Erfindungsgemäß bevorzugte Kupplerkomponenten sind m-Aminophenol und dessen Derivate wie beispielsweise 5-Amino-2-methylphenol, N- Cyclopentyl-3-aminophenol, 3-Amino-2-chlor-6-methylphenol, 2-Hydroxy-4- aminophenoxyethanol, 2,6-Dimethyl-3-aminophenol, 3-Trifluoroacetylamino-2-chlor- 6-methylphenol, 5-Amino-4-chlor-2-methylphenol, 5-Amino-4-methoxy-2- methylphenol, 5-(2'-Hydroxyethyl)amino-2-methylphenol, 3-(Diethylamino)-phenol, N- Cyclopentyl-3-aminophenol, 1 ,3-Dihydroxy-5-(methylamino)-benzol, 3-Ethylamiπo-4- methylphenol und 2,4-Dichlor-3-aminophenol,

- o-Aminophenol und dessen Derivate, m-Diaminobenzol und dessen Derivate wie beispielsweise 2,4- Diaminophenoxyethanol, 1 ,3-Bis-(2',4'-diaminophenoxy)-propan, 1-Methoxy-2-amino- 4-(2'-hydroxyethylamino)benzol, 1 ,3-Bis-(2',4'-diaminophenyl)-propan, 2,6-Bis-(2'-

hydroxyethylamino)-1-methylbenzol und 1-Amino-3-bis-(2'- hydroxyethyl)aminobenzol,

- o-Diaminobenzol und dessen Derivate wie beispielsweise 3,4-Diaminobenzoesäure und 2,3-Diamino-1-methylbenzol,

- Di- beziehungsweise Trihydroxybenzolderivate wie beispielsweise. Resorcin, Resorcinmonomethylether, 2-Methylresorcin, 5-Methylresorcin, 2,5-Dimethylresorcin, 2-Chlorresorcin, 4-Chlorresorcin, Pyrogallol und 1 ,2,4-Trihydroxybenzol, Pyridinderivate wie beispielsweise 2,6-Dihydroxypyridin, 2-Amino-3-hydroxypyridin, 2-Amino-5-chlor-3-hydroxypyridin, 3-Amino-2-methylamino-6-methoxypyridin, 2,6- Dihydroxy-3,4-dimethylpyridin, 2,6-Dihydroxy-4-methylpyridin, 2,6-Diaminopyridin, 2,3-Diamino-6-methoxypyridin und 3,5-Diamino-2,6-dimethoxypyridin, Naphthalinderivate wie beispielsweise 1-Naphthol, 2-Methyl-1-naphthol, 2- Hydroxymethyl-1-naphthol, 2-Hydroxyethyl-1-naphthol, 1 ,5-Dihydroxynaphthaliη, 1 ,6- Dihydroxynaphthalin, 1 ,7-Dihydroxynaphthalin, 1 ,8-Dihydroxynaphthalin, 2,7- Dihydroxynaphthalin und 2,3-Dihydroxynaphthalin,

Morpholinderivate wie beispielsweise 6-Hydroxybenzomorpholin und 6-Amino- benzomorpholin,

- Chinoxalinderivate wie beispielsweise 6-Methyl-1 ,2,3,4-tetrahydrochinoxalin,

- Pyrazolderivate wie beispielsweise 1-Phenyl-3-methylpyrazol-5-on,

- Indolderivate wie beispielsweise 4-Hydroxyindol, 6-Hydroxyindol und 7-Hydroxyindol,

- Pyrimidinderivate, wie beispielsweise 4,6-Diaminopyrimidin, 4-Amino-2,6- dihydroxypyrimidin, 2,4-Diamino-6-hydroxypyrimidin, 2,4,6-Trihydroxypyrimidin, 2- Amino-4-methylpyrimidin, 2-Amino-4-hydroxy-6-methylpyrimidin und 4,6-Dihydroxy-2- methylpyrimidin, oder

- Methylendioxybenzolderivate wie beispielsweise 1-Hydroxy-3,4- methylendioxybenzol, 1-Amino-3,4-methylendioxybenzol und 1-(2'- Hydroxyethyl)amino-3,4-methylendioxybenzol.

Erfindungsgemäß besonders bevorzugte Kupplerkomponenten sind 1-Naphthol, 1,5-, 2,7- und 1 ,7-Dihydroxynaphthalin, 3-Aminophenol, 5-Amino-2-methylphenol, 2-Amino-3- hydroxypyridin, Resorcin, 4-Chlorresorcin, 2-Chlor-6-methyl-3-aminophenol, 2-Methyl¬ resorcin, 5-Methylresorcin, 2,5-Dimethylresorcin und 2,6-Dihydroxy-3,4-dimethylpyridin.

Als Vorstufen naturanaloger Farbstoffe werden bevorzugt solche Indole und Indoline ein¬ gesetzt, die mindestens eine Hydroxy- oder Aminogruppe, bevorzugt als Substituent am Sechsring, aufweisen. Diese Gruppen können weitere Substituenten tragen, z. B. in Form einer Veretherung oder Veresterung der Hydroxygruppe oder eine Alkylierung der Aminogruppe. In einer zweiten bevorzugten Ausführungsform enthalten die Mittel min¬ destens ein Indol- und/oder Indolinderivat.

Besonders gut als Vorstufen naturanaloger Haarfarbstoffe geeignet sind Derivate des 5,6-Dihydroxyindolins der Formel (lila),

in der unabhängig voneinander

R 1 steht für Wasserstoff, eine C r C 4 -Alkylgruppe oder eine C r C 4 -Hydroxy-alkyl- gruppe,

R 2 steht für Wasserstoff oder eine -COOH-Gruppe, wobei die -COOH-Gruppe auch als Salz mit einem physiologisch verträglichen Kation vorliegen kann,

- R 3 steht für Wasserstoff oder eine C r C 4 -Alkylgruppe,

R 4 steht für Wasserstoff, eine C r C 4 -Alkylgruppe oder eine Gruppe -CO-R 6 , in der R 6 steht für eine C r C 4 -Alkylgruppe, und

- R 5 steht für eine der unter R 4 genannten Gruppen, sowie physiologisch verträgliche Salze dieser Verbindungen mit einer organischen oder anorganischen Säure.

Besonders bevorzugte Derivate des Indolins sind das 5,6-Dihydroxyindolin, N-Methyl- 5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5,6-dihydroxyindolin, 5,6-Dihydroxyindolin-2-carbonsäure sowie das 6-Hydroxy- indolin, das 6-Aminoindolin und das 4-Aminoindolin.

Besonders hervorzuheben sind innerhalb dieser Gruppe N-Methyl-5,6-dihydroxyindolin, N-Ethyl-5,6-dihydroxyindolin, N-Propyl-5,6-dihydroxyindolin, N-Butyl-5,6-dihydroxyindolin und insbesondere das 5,6-Dihydroxyindolin.

Als Vorstufen naturanaloger Haarfarbstoffe hervorragend geeignet sind weiterhin Derivate des 5,6-Dihydroxyindols der Formel (Illb),

(IHb) in der unabhängig voneinander

R 1 steht für Wasserstoff, eine C r C 4 -Alkylgruppe oder eine C r C 4 -Hydroxyalkyl- gruppe,

- R 2 steht für Wasserstoff oder eine -COOH-Gruppe, wobei die -COOH-Gruppe auch als Salz mit einem physiologisch verträglichen Kation vorliegen kann,

R 3 steht für Wasserstoff oder eine C r C 4 -Alkylgruppe,

R 4 steht für Wasserstoff, eine CrC 4 -Alkylgruppe oder eine Gruppe -CO-R 6 , in der R 6 steht für eine C r C 4 -Alkylgruppe, und

R 5 steht für eine der unter R 4 genannten Gruppen,

- sowie physiologisch verträgliche Salze dieser Verbindungen mit einer organischen oder anorganischen Säure.

Besonders bevorzugte Derivate des Indols sind 5,6-Dihydroxyindol, N-Methyl-5,6-dihy- droxyindol, N-Ethyl-5,6-dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6-dihy- droxyindol, 5,6-Dihydroxyindol-2-carbonsäure, 6-Hydroxyindol, 6-Aminoindol und 4- Aminoindol.

Innerhalb dieser Gruppe hervorzuheben sind N-Methyl-5,6-dihydroxyindol, N-Ethyl-5,6- dihydroxyindol, N-Propyl-5,6-dihydroxyindol, N-Butyl-5,6-dihydroxyindol sowie insbe¬ sondere das 5,6-Dihydroxyindol.

Die Indolin- und Indol-Derivate können in den im Rahmen des erfindungsgemäßen Ver¬ fahrens eingesetzten Mitteln sowohl als freie Basen als auch in Form ihrer physiologisch

verträglichen Salze mit anorganischen oder organischen Säuren, z. B. der Hydrochlori- de, der Sulfate und Hydrobromide, eingesetzt werden. Die Indol- oder Indolin-Derivate sind in diesen üblicherweise in Mengen von 0,05-10 Gew.-%, vorzugsweise 0,2-5 Gew.- % enthalten.

In einer weiteren Ausführungsform kann es erfindungsgemäß bevorzugt sein, das Indolin- oder Indolderivat in Haarfärbemitteln in Kombination mit mindestens einer Aminosäure oder einem Oligopeptid einzusetzen. Die Aminosäure ist vorteilhafterweise eine α-Aminosäure; ganz besonders bevorzugte α-Aminosäuren sind Arginin, Ornithin, Lysin, Serin und Histidin, insbesondere Arginin.

Bevorzugte erfindungsgemäße Mittel sind dadurch gekennzeichnet, daß sie mindestens einen Farbstoffvorläufer aus den Gruppen der aromatischen und heteroaromatischen Diamine, Aminophenole, Naphthole, Polyphenole CH-aciden Kupplerkomponenten und ihrer Derivate in Mengen von 0,01 bis 25 Gew.%, vorzugsweise von 0,5 bis 10 Gew.%, insbesondere von 1 bis 5 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten.

Zusätzlich zu dem/den Oxidationsfarbstoffvorprodukt(en) kann die Zubereitung (A) zur Nuancierung einen oder mehrere direktziehende Farbstoffe enthalten. Direktziehende Farbstoffe sind üblicherweise Nitrophenylendiamine, Nitroaminophenole, Azofarbstoffe, Anthrachinone oder Indophenole. Bevorzugte direktziehende Farbstoffe sind die unter den internationalen Bezeichnungen bzw. Handelsnamen HC Yellow 2, HC Yellow 4, HC Yellow 5, HC Yellow 6, HC Yellow 12, Acid Yellow 1 , Acid Yellow 10, Acid Yellow 23, Acid Yellow 36, HC Orange 1, Disperse Orange 3, Acid Orange 7, HC Red 1, HC Red 3, HC Red 10, HC Red 11 , HC Red 13, Acid Red 33, Acid Red 52, HC Red BN, Pigment Red 57:1 , HC Blue 2, HC Blue 12, Disperse Blue 3, Acid Blue 7, Acid Green 50,. HC Violet 1 , Disperse Violet 1 , Disperse Violet 4, Acid Violet 43, Disperse Black 9, Acid Black 1 , und Acid Black 52 bekannten Verbindungen sowie 1 ,4-Diamino-2-nitrobenzol, 2- Amino-4-nitrophenol, 1 ,4-Bis-(ß-hydroxyethyl)amino-2-nitrobenzol, 3-Nitro-4-(ß- hydroxyethyl)aminophenol, 2-(2'-Hydroxyethyl)amino-4,6-dinitrophenol, 1-(2'-

Hydroxyethyl)amino-4-methyl-2-nitrobenzol, 1-Amino-4-(2'-hydroxyethyl)amino-5-chlor-2- nitrobenzol, 4-Amino-3-nitrophenol, 1-(2'-Ureidoethyl)amino-4-nitrobenzol, 4-Amino-2- nitrodiphenylamin-2'-carbonsäure, 6-Nitro-1 ,2,3,4-tetrahydrochinoxalin, 2-Hydroxy-1 ,4-

naphthochinon, Pikraminsäure und deren Salze, 2-Amino-6-chloro-4-nitrophenol, 4- Ethylamino-3-nitrobenzoesäure und 2-Chloro-6-ethylamino-1-hydrqxy-4-nitrobenzol. Entsprechende erfindungsgemäße Mittel, die dadurch gekennzeichnet sind, daß sie mindestens einen direktziehenden Farbstoff aus der Gruppe der kationischen (basischen) Farbstoffe, vorzugsweise Basic Blue 6, C.l.-No. 51 ,175; Basic Blue 7, Cl. - No. 42,595; Basic Blue 9, C.l.-No. 52,015; Basic Blue 26, C.l.-No. 44,045; Basic Blue 41 , C.l.-No. 11 ,154; Basic Blue 99, C.l.-No. 56,059; Basic Brown 4, C.l.-No. 21 ,010; Basic Brown 16, C.l.-No. 12,250; Basic Brown 17, C.l.-No. 12,251 ; Basic Green 1 , C.l.-No. 42,040; Basic Orange 31 ; Basic Red 2, C.l.-No. 50,240; Basic Red 22, C.l.-No. 11,055; Basic Red 46; Basic Red 51 ; Basic Red 76, C.l.-No. 12,245; Basic Violet 1 , C.l.-No. 42,535; Basic Violet 2; Basic Violet 3, C.l.-No. 42,555; Basic Violet 10, C.l.-No. 45,170; Basic Violet 14, C.l.-No. 42,510; Basic Yellow 57, C.l.-No. 12,719; Basic Yellow 87 und/oder der anionischen (sauren) Farbstoffe, und/oder der nichtionischen Farbstoffe, vorzugsweise Acid Black 1 , C.l.-No. 20,470; Acid Black 52; Acid Blue 7; Acid Blue 9, C.l.-No. 42,090; Acid Blue 74, C.l.-No. 73,015, Acid Red 18, C.l.-No. 16,255; Acid Red 23; Acid Red 27, C.l.-No. 16,185; Acid Red 33; Acid Red 52; Acid Red 87, C.l.-No. 45,380; Acid Red 92, C.l.-No. 45,410; Acid Orange 3; Acid Orange 7; Acid Violet 43, C.l.- No. 60,730; Acid Yellow 1, C.l.-No. 10,316; Acid Yellow 10; Acid Yellow 23, C.l.-No. 19,140; Acid Yellow 3, C.l.-No. 47,005; Acid Yellow 36; D& C Brown No. 1 , C.l.-No. 20,170 (Acid Orange 24); D&C Green No. 5, C.l.-No. 61,570 (Acid Green G); D&C Orange No. 4, C.l.-No. 15,510 (Acid Orange II); D&C Orange No. 10, C. I.-No. 45,425 : 1 (Solvent Red 73); D&C Orange No. 11 , C.l.-No. 45,425 (Acid Red 95); D&C Red No. 21 , C.l.-No. 45,380 : 2 (Solvent Red 43); D&C Red No. 27, C.l.-No. 45,410 : 1 (Solvent Red 48); D&C Red No. 33, C.l.-No. 17,200 (Acid Red 2A 1 Acid Red B); D&C Yellow No. 7, C. I.-No. 45,350 : 1 (Solvent Yellow 94); D&C Yellow No. 8, C.l.-No. 45,350 (Acid Yellow 73); FD& C Red No. 4, C.l.-No. 14,700 (Food Red 4); FD&C Yellow No. 6, C.l.-No. 15,985 (Food Yellow 3); Food Green 3; Pigment Red 57-1 ; Disperse Black 9; Disperse Blue 1 ; Disperse Blue 3; Disperse Violet 1; Disperse Violet 4; HC Orange 1; HC Red 1; HC Red 3; HC Red 13; HC Yellow 2; HC Yellow 4; Na-Pikramat; 1,4-Bis-(2 ' - hydroxyethyl)amino- 2-nitro-p-phenylendiamin; HC Yellow 5; HC Blue 2; HC Blue 12; 4- Amino-3-nitrophenol; HC Yellow 6; HC Yellow 12; 2-Nitro-1-(2 ' hydroxyethyl)amino-4- methylbenzol; 2-Nitro-4-amino-diphenylamin-2 -carbonsäure; 2-Amino-6-chlor-4- nitrophenol; HC Red BN; 6-Nitro-1,2,3,4-tetranitrochinoxalin; o-Nitro-p-phenylendiamin; p-Nitro-m-phenylendiamin; HC Red B 54; HC Red 10; HC Red 11 ; HC Red 13; 2-(2 ' -

Hydroxyethyl)amino-1 -hydroxy-4,6-dinitrobenzol; 4-Ethylamino-3-nitrobenzoesäure; 2- Chlor-6-ethylamino-4-nitrophenol; 2-Hydroxy-1 ,4-napthochinon; 1 -Propen-(4-amino-2- nitrophenyl)amin; lsatin; N-methylylisatin; HC Violet 1 ; HC Violet 2; 4-Nitrophenyl- aminoethylharnstoff in Mengen von 0,01 bis 25 Gew.%, vorzugsweise von 0,5 bis 10 Gew.%, insbesondere von 1 bis 5 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten, sind bevorzugte Ausführungsformen der vorliegenden Erfindung.

Unter den vorstehend genannten Farbstoffen sind einige Vertreter besonders bevorzugt, weshalb weiter bevorzugte erfindungsgemäße Mittel, die dadurch gekennzeichnet sind, daß sie mindestens einen Direktzieher, ausgewählt aus Basic Blue 7, Basic Blue 99, Basic Violet 14, Basic Brown 16, Basic Brown 17, Basic Orange 31, Basic Red 46, Basic Red 51, Basic Red 76, Basic Yellow 57, Basic Yellow 87, Acid Black 1, Acid Blue 7, Acid Violet 43, Acid Red 23, Acid Red 52, Acid Orange 7, Acid Yellow 1 , Acid Yellow 10, Acid Yellow 36, Food Green 3, Pigment Red 57-1 , Disperse Black 9, Disperse Blue 1 , Disperse Blue 3, Disperse Violet 1 , Disperse Violet 4, HC Orange 1 , HC Red 1 , HC Red 3, HC Red 13, HC Yellow 2, HC Yellow 4, Na-Pikramat, 1 ,4-Bis-(2 ' -hydroxyethyl)amino- 2-nitro- p-phenylendiamin, HC Yellow 5, HC Blue 2, HC Blue 12, 4-Amino-3-nitrophenol, HC Yellow 6, HC Yellow 12, 2-Nitro-1-(2 ' hydroxyethyl)amino-4-methylbenzol, 2-Nitro-4- amino-diphenylamin-2 ' -carbonsäure, 2-Amino-6-chlor-4-nitrophenol, HC Red BN; 6- Nitro-1 ,2,3,4-tetranitrochinoxalin, o-Nitro-p-phenylendiamin, p-Nitro-m-phenylendiamin, HC Red B 54, HC Red 10, HC Red 11 , HC Red 13, 2-(2'-Hydroxyethyl)amino-1-hydroxy- 4,6-dinitrobenzol, 4-Ethylamino-3-nitrobenzoesäure, 2-Chlor-6-ethylamino-4-nitrophenol, 2-Hydroxy-1 ,4-napthochinon, 1-Propen-(4-amino-2-nitrophenyl)amin, lsatin, N- Methylylisatin, HC Violet 1 , HC Violet 2, 4-Nitrophenyl-aminoethylharnstoff in Mengen von 0,01 bis 25 Gew.%, vorzugsweise von 0,5 bis 10 Gew.%, insbesondere von 1 bis 5 Gew.-%, jeweils bezogen auf das gesamte Mittel, enthalten, bevorzugt sind.

Ferner können die erfindungsgemäßen Mittel einen kationischen direktziehenden Farbstoff enthalten. Besonders bevorzugt sind dabei

(a) kationische Triphenylmethanfarbstoffe, wie beispielsweise Basic Blue 7, Basic Blue 26, Basic Violet 2 und Basic Violet 14,

(b) aromatischen Systeme, die mit einer quaternären Stickstoffgruppe substituiert sind, wie beispielsweise Basic Yellow 57, Basic Red 76, Basic Blue 99, Basic Brown 16 und Basic Brown 17, sowie

(C) direktziehende Farbstoffe, die einen Heterozyklus enthalten, der. mindestens ein quaternäres Stickst off atom aufweist, wie sie beispielsweise in der EP-A2-998 908, auf die an dieser Stelle explizit Bezug genommen wird, in den Ansprüchen 6 bis 11 genannt werden.

Bevorzugte kationische direktziehende Farbstoffe der Gruppe (c) sind insbesondere die folgenden Verbindungen:

CH 3 SO 4 "

Die Verbindungen der Formeln (DZ1), (DZ3) und (DZ5), die auch unter den Bezeichnungen Basic Yellow 87, Basic Orange 31 und Basic Red 51 bekannt sind, sind ganz besonders bevorzugte kationische direktziehende Farbstoffe der Gruppe (c).

Die kationischen direktziehenden Farbstoffe, die unter dem Warenzeichen Arianor ® vertrieben werden, sind erfindungsgemäß ebenfalls ganz besonders bevorzugte kationische direktziehende Farbstoffe.

Die erfindungsgemäßen Mittel gemäß dieser Ausführungsform enthalten die direktziehenden Farbstoffe bevorzugt in einer Menge von 0,01 bis 20 Gew.-%, bezogen auf das gesamte Mittel.

Weiterhin können die erfindungsgemäßen Zubereitungen auch in der Natur vorkommende Farbstoffe wie sie beispielsweise in Henna rot, Henna neutral, Henna schwarz, Kamillenblüte, Sandelholz, schwarzem Tee, Faulbaumrinde, Salbei, Blauholz, Krappwurzel, Catechu, Sedre und Alkannawurzel enthalten sind, enthalten.

Es ist nicht erforderlich, dass die Oxidationsfarbstoffvorprodukte oder die direktziehenden Farbstoffe jeweils einheitliche Verbindungen darstellen. Vielmehr können in den erfindungsgemäßen Mitteln, bedingt durch die Herstellungsverfahren für die einzelnen Farbstoffe, in untergeordneten Mengen noch weitere Komponenten enthalten sein, soweit diese nicht das Färbeergebnis nachteilig beeinflussen oder aus anderen Gründen, z.B. toxikologischen, ausgeschlossen werden müssen.

Bezüglich der in erfindungsgemäß als Haarfärbe- und -tönungsmittel formuilierten einsetzbaren Farbstoffe wird weiterhin ausdrücklich auf die Monographie Ch. Zviak, The Science of Hair Gare, Kapitel 7 (Seiten 248-250; direktziehende Farbstoffe) sowie Kapitel 8, Seiten 264-267; Oxidationsfarbstoffvorprodukte), erschienen als Band 7 der Reihe "Dermatology" (Hrg.: Ch., Culnan und H. Maibach), Verlag Marcel Dekker Inc., New York, Basel, 1986, sowie das "Europäische Inventar der Kosmetik-Rohstoffe", herausgegeben von der Europäischen Gemeinschaft, erhältlich in Diskettenform vom Bundesverband Deutscher Industrie- und Handelsunternehmen für Arzneimittel, Reformwaren und Körperpflegemittel e.V., Mannheim, Bezug genommen.

Erfindungsgemäß kann aber das Oxidationsfärbemittel auch zusammen mit einem Katalysator auf das Haar aufgebracht werden, der die Oxidation der Farbstoffvorprodukte, z.B. durch Luftsauerstoff, aktiviert. Solche Katalysatoren sind z.B. Metallionen, lodide, Chinone oder bestimmte Enzyme.

Geeignete Metallionen sind beispielsweise Zn 2+ , Cu 2+ , Fe 2+ , Fe 3+ , Mn 2+ , Mn 4+ , Li + , Mg 2+ , Ca 2+ und Al 3+ . Besonders geeignet sind dabei Zn 2+ , Cu 2+ und Mn 2+ . Die Metallionen kön¬ nen prinzipiell in der Form eines beliebigen, physiologisch verträglichen Salzes oder in Form einer Komplexverbindung eingesetzt werden. Bevorzugte Salze sind die Acetate, Sulfate, Halogenide, Lactate und Tartrate. Durch Verwendung dieser Metallsalze kann sowohl die Ausbildung der Färbung beschleunigt als auch die Farbnuance gezielt beeinflusst werden.

Geeignete Enzyme sind z.B. Peroxidasen, die die Wirkung geringer Mengen an Wasserstoffperoxid deutlich verstärken können. Weiterhin sind solche Enzyme erfindungsgemäß geeignet, die mit Hilfe von Luftsauerstoff die Oxidationsfarbstoffvorprodukte direkt oxidieren, wie beispielsweise die Laccasen, oder in situ geringe Mengen Wasserstoffperoxid erzeugen und auf diese Weise die Oxidation der Farbstoffvorprodukte biokatalytisch aktivieren. Besonders geeignete Katalysatoren für die Oxidation der Farbstoffvorläufer sind die sogenannten 2-Elektronen- Oxidoreduktasen in Kombination mit den dafür spezifischen Substraten, z.B.

Pyranose-Oxidase und z.B. D-Glucose oder Galactose, Glucose-Oxidase und D-Glucose, Glycerin-Oxidase und Glycerin,

Pyruvat-Oxidase und Benztraubensäure oder deren Salze, - Alkohol-Oxidase und Alkohol (MeOH, EtOH), Lactat-Oxidase und Milchsäure und deren Salze, Tyrosinase-Oxidase und Tyrosin, Uricase und Harnsäure oder deren Salze, Cholinoxidase und Cholin, Aminosäure-Oxidase und Aminosäuren.

Üblicherweise werden Färbemittel als Kombinationspackung angeboten, die eine Färbecreme und eine separat verpackte Oxidationslösung beinhalten. Kurz vor der Anwendung werden beide Komponenten miteinander vermischt, und die zubereitete

Mischung wird auf das zu färbende Haar aufgetragen. Das Mischungsverhältnis der beiden Komponenten kann dabei frei gewählt werden. Zweckmäßigerweise wird die Zubereitung des Oxidationsmittels dann unmittelbar vor dem Färben der Haare mit der Zubereitung mit den Farbstoffvorprodukten vermischt. Das dabei entstehende gebrauchsfertige Haarfärbepräparat sollte bevorzugt einen pH-Wert im Bereich von 6 bis 10 aufweisen. Besonders bevorzugt ist die Anwendung der Haarfärbemittel in einem schwach alkalischen Milieu. Die Anwendungstemperaturen können in einem Bereich zwischen 15 und 40 0 C, bevorzugt bei der Temperatur der Kopfhaut, liegen. Nach einer Einwirkungszeit von ca. 5 bis 45, insbesondere 15 bis 30, Minuten wird das Haarfärbe¬ mittel durch Ausspülen von dem zu färbenden Haar entfernt. Das Nachwaschen mit ei¬ nem Shampoo entfällt, wenn ein stark tensidhaltiger Träger, z. B. ein Färbeshampoo, verwendet wurde.

Insbesondere bei schwer färbbarem Haar kann die Zubereitung mit den Farbstoffvorpro¬ dukten ohne vorherige Vermischung mit der Oxidationskomponente auf das Haar aufge¬ bracht werden. Nach einer Einwirkdauer von 20 bis 30 Minuten wird dann - gegebenenfalls nach einer Zwischenspülung - die Oxidationskomponente aufgebracht. Nach einer weiteren Einwirkdauer von 10 bis 20 Minuten wird dann gespült und ge- wünschtenfalls nachshampooniert. Bei dieser Ausführungsform wird gemäß einer ersten Variante, bei der das vorherige Aufbringen der Farbstoffvorprodukte eine bessere Penetration in das Haar bewirken soll, das entsprechende Mittel auf einen pH-Wert von etwa 4 bis 7 eingestellt. Gemäß einer zweiten Variante wird zunächst eine Luftoxidation angestrebt, wobei das aufgebrachte Mittel bevorzugt einen pH-Wert von 7 bis 10 aufweist. Bei der anschließenden beschleunigten Nachoxidation kann die Verwendung von sauer eingestellten Peroxidisulfat-Lösungen als Oxidationsmittel bevorzugt sein.

Weitere fakultative Inhaltsstoffe der erfindungsgemäßen Mittel sind nichtionische Polymere wie beispielsweise Vinylpyrrolidon/Vinylacrylat-Copolymere,

Polyvinylpyrrolidon und Vinylpyrrolidon/Vinylacetat-Copolymere, anionische Polymere, wie Polyacryl- und Polymethacrylsäuren in Form ihrer Co- polymere mit Acrylsäure- und Methacrylsäureestern und -amiden,

Polyoxycarbonsäuren, wie Polyketo- und Polyaldehydocarbonsäuren und deren

Salze,

sowie Polymere und Copolymere der Crotonsäure mit Estern und Amiden der Acryl- und der Methacrylsäure, wie Vinylacetat-Crotonsäure- und Vinylacetat-Vinylpropio- nat-Crotonsäure-Copolymere,

Strukturanten wie Glucose und Maleinsäure, haarkonditionierende Verbindungen wie Phospholipide, beispielsweise Sojalecithin,

Ei-Lecithin und Kephaline,

Parfümöle, insbesondere solche mit der Duftnote einer Frucht, wie beispielsweise von Apfel, Birne, Erdbeere, Pfirsich, Aprikose, Ananas, Banane, Kirsche, Kiwi,

Mango, Kokos, Mandel, Grapefruit, Maracuja, Mandarine und Melone, oder der

Duftnote eines Genussmittels, wie beispielsweise von Tabak, Cola, Kaugummi,

Guarana, Schokolade, Kakao, Vanille, Sarsaparilla, Pfefferminze und Rum.

Dimethylisosorbid und Cyclodextrine,

Lösungsvermittler, wie Ethanol, Isopropanol, Ethylenglykol, Propylenglykol,

Glycerin, Diethylenglykol und ethoxylierte Triglyceride,

Farbstoffe,

Antischuppenwirkstoffe wie Climbazol, Piroctone Olamine und Zink Omadine,

Wirkstoffe wie Bisabolol, Allantoin, Panthenol, Niacinmid, Tocopherol und

Pflanzenextrakte,

Lichtschutzmittel,

Konsistenzgeber wie Zuckerester, Polyolester oder Polyolalkylether,

Fette und Wachse, wie Walrat, Bienenwachs, Montanwachs, Paraffine, Ester,

Glyceride und Fettalkohole,

Fettsäurealkanolamide,

Komplexbildner wie EDTA, NTA, ß-Alanindiessigsäure und Phosphonsäuren,

Quell- und Penetrationsstoffe wie PCA, Glycerin, Propylenglykolmonoethylether,

Carbonate, Hydrogencarbonate, Guanidine, Harnstoffe sowie primäre, sekundäre und tertiäre Phosphate,

Trübungsmittel wie Latex oder Styrol/Acrylamid-Copolymere,

Perlglanzmittel wie Ethylenglykolmono- und -distearat oder PEG-3-distearat,

Weißpigmente

Reduktionsmittel wie z.B. Thioglykolsäure und deren Derivate, Thiomilchsäure,

Cysteamin, Thioäpfelsäure und α-Mercaptoethansulfonsäure,

Oxidationsmittel wie Wasserstoffperoxid, Kaliumbromat und Natriumbromat,

Treibmittel wie Propan-Butan-Gemische, N2O, Dimethylether, CO2 und Luft sowie

Antioxidantien,

Bitterstoffe, wie beispielsweise Denatonium Benzoate,

Konservierungsmittel.

Hinsichtlich der Art, gemäß der erfindungsgemäße verwendete Wirkstoff beziehungsweise die erfindungsgemäßen Wirkstoffkombinationen auf das Haar und/oder auf die Haut aufgebracht werden, bestehen keine prinzipiellen Einschränkungen. Als Konfektionierung dieser Zubereitungen sind beispielsweise Cremes, Lotionen, Lösungen, Wässer, Emulsionen wie W/O-, ONSI-, PIT-Emulsionen (Emulsionen nach der Lehre der Phaseninversion, PIT genannt), Mikroemulsionen und multiple Emulsionen, Nanoemulsionen, grobe, instabile, ein oder mehrphasige Schüttelmixturen, Gele, Sprays, Aerosole und Schaumaerosole geeignet. Diese werden in der Regel auf wässriger oder wässrig-alkoholischer Basis formuliert. Als alkoholische Komponente kommen dabei niedere Alkanole sowie Polyole wie Propylenglykol und Glycerin zum Einsatz. Ethanol und Isopropanol sind bevorzugte Alkohole. Wasser und Alkohol können in der wässrig alkoholischen Basis in einem Gewichtsverhältnis von 1 : 10 bis 10 : 1 vorliegen. Wasser sowie wässrig-alkoholische Mischungen, die bis zu 50 Gew.-%, insbesondere bis zu 25 Gew.-%, Alkohol, bezogen auf das Gemisch Alkohol/Wasser, enthalten, können erfindungsgemäß bevorzugte Grundlagen sein. Der pH-Wert dieser Zubereitungen kann prinzipiell bei Werten von 2 - 11 liegen. Er liegt bevorzugt zwischen 2 und 7, wobei Werte von 3 bis 6 besonders bevorzugt sind. Zur Einstellung dieses pH- Wertes kann praktisch jede für kosmetische Zwecke verwendbare Säure oder Base verwendet werden. Üblicherweise werden als Säuren Genusssäuren verwendet. Unter Genusssäuren werden solche Säuren verstanden, die im Rahmen der üblichen Nahrungsaufnahme aufgenommen werden und positive Auswirkungen auf den menschlichen Organismus haben. Genusssäuren sind beispielsweise Essigsäure, Milchsäure, Weinsäure, Zitronensäure, Äpfelsäure, Ascorbinsäure und Gluconsäure. Im Rahmen der Erfindung ist die Verwendung von Zitronensäure und Milchsäure besonders bevorzugt. Bevorzugte Basen sind Ammoniak, Alkalihydroxide, Monoethanolamin, Triethanolamin sowie N,N,N',N'-Tetrakis-(2-hydroxypropyl)-ethylendiamin.

Ein weiterer Gegenstand der vorliegenden Erfindung ist die Verwendung von Polyvinylalkoholen (PVAL) und/oder Poly(vinylalkohol/vinylacetat)-Copolymeren, welche kationische Gruppen, vorzugsweise 0,5 bis 20 Mol.-%, vorzugsweise 1 bis 15 Mol.-% und insbesondere 2 bis 10 Mol.% kationische Gruppen, enthalten, in kosmetischen Mitteln.

Neben einer verbesserten Pflegewirkung, die sich unter anderem in deutlich verbesserten Trocken- und Naßkämmbarkeiten sowie einem volleren Griff in trockenem und nassen Haar äußert, führt die erfindungsgemäße Verwendung auch dazu, daß die erfindungsgemäß behandelten Haare weniger anfällig gegen erneute Verschmutzung sind. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung von Polyvinylalkoholen (PVAL) und/oder Poly(vinylalkohol/vinylacetat)-Copolymeren, welche kationische Gruppen, vorzugsweise 0,5 bis 20 Mol.-%, vorzugsweise 1 bis 15 Mol.-% und insbesondere 2 bis 10 Mol.% kanonische Gruppen, enthalten, zum Schutz von Haaren vor Wiederanschmutzung.

Die erfindungsgemäße Verwendung wird vorzugsweise mittels erfindungsgemäßer Mittel bewirkt. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung einer erfindungsgemäßen Zubereitung zur Reinigung von Haut und Haar.

Erfindungsgemäße Mittel können auch als Dauerwell- oder Stylingmittel formuliert werden. Ein weiterer Gegenstand der vorliegenden Erfindung ist daher die Verwendung einer erfindungsgemäßen Zubereitung zur Restrukturierung von keratinischen Fasern, insbesondere menschlichen Haaren.

Die erfindungsgemäßen Mittel können als Haarshampoos, Haarkonditionierer, konditionierende Shampoos, als Haarsprays, Haarspülungen, Haarkuren, Haarpackungen, Haar-Tonics, Dauerwell-Fixierlösungen, Haarfärbeshampoos, Haarfärbemittel, Haarfestiger, Haarlegemittel, Haärstyling-Zubereitungen, z.B. Fönwell- Lotionen, Schaumfestiger, Haargele, Haarwachse und anderen Haarreinigungs- und Haarbehandlungsmittel formuliert werden. Sie können als auf dem Haar verbleibende („leave-on") oder abzuspülende („rinse-off") Produkte formuliert werden, wobei erstgenannte im Hinblick auf längeranhaltende Wirkung bevorzugt sind.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung von Haut oder Haar, bei dem eine erfindungsgemäße Zubereitung auf die Haut und/oder das Haar aufgetragen wird, wobei die Zubereitung nach einer Einwirkzeit von 0 bis 45 Minuten wieder ausgespült wird.

Wie bereits erwähnt, können die erfindungsgemäßen Produkte auch als „leave-on"- Produkte formuliert werden. Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Behandlung von Haut oder Haar, bei dem eine erfindungsgemäße Zubereitung auf die Haut und/oder das Haar aufgetragen und dort bis zur nächsten Wäsche belassen wird.

Sowohl für das erfindungsgemäße Verfahren als auch für die erfindungsgemäßen Verwendungen gelten mutatis mutandis die bevorzugten Ausführungsformen, die bereits weiter oben zu den erfindungsgemäßen Mittel detailliert beschrieben wurden.

Die folgenden Beispiele sollen die Erfindung näher erläutern.

Beispiele:

Es wurden folgende Pflegeshampoos hergestellt (Angaben in Gew.-%):

erfindungsgemäß Vergleich

E V

Poly(vinylalkohol/viny!acetat)-Copolymer

(Hydrolysegrad 80%) - 5,0

Poly(vinylalkohol/vinylacetat)-Copolymer

(Hydrolysegrad 80%) mit 10 mol.-%

Propylentrimethylammonium-Gruppen 5,0

Texapon ® NSO* 40,0 40,0

Disodium Cocoampho diacetat 7,0 7,0

Euxyl ® K 100** 0,2 0,2

Rheodol ® TWIS*** 1 ,0 1 ,0

Wasser ad 100 ad 100

* INCI: Natriumlaurethsulfat

** 5-Chlor-2methyl-3(2H)-isothiazolinon

*** INCI: Polyoxyethylene sorbitan tristearate

6 cm lange Strähnen Menschenhaares (Kerling Euronaturhaar, blond) wurden mit gleichen Mengen der Pflegeshampoos gewaschen und anschließend getrocknet. Das Haar erhielt durch ein Expertenpanel von 10 Personen die in der Tabelle angegebenen Leistungsbewertungen nach dem Schulnotensystem (1 = sehr gut, 6 = ungenügend).