Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HANDLING SYSTEM FOR SOLAR ENERGY RECEPTOR DEVICES
Document Type and Number:
WIPO Patent Application WO/2017/103953
Kind Code:
A1
Abstract:
A handling system for receptor devices of solar energy suitable for allowing the handling of said devices on a first axis (X) and on a second axis (Y), substantially orthogonal with respect to each other, said system being constrainable on fixed structures composed of supporting poles (2) kept in position by a network of tie-rods (3). The system comprises a main tube (4) rotating around said first axis (X), to which a plurality of secondary tubes (5) are connected, also rotating around their own axis (Y), fixed substantially perpendicularly to the main tube, the receptor devices being fixed on said secondary tubes. The main rotating tube comprising both the handling mechanism around the first axis (X) and the handling mechanism around the second axis (Y) activated by a respective first motor (41) and second motor (51).

Inventors:
PARMA PAOLO (IT)
REBOLDI ALESSANDRO (IT)
Application Number:
PCT/IT2015/000315
Publication Date:
June 22, 2017
Filing Date:
December 18, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
REM TEC S R L (IT)
International Classes:
F24J2/52; F24J2/54; H01L31/042; H02S20/00
Domestic Patent References:
WO2010103378A12010-09-16
WO2012046134A12012-04-12
WO2014072280A12014-05-15
Foreign References:
US20110132433A12011-06-09
EP2119940A12009-11-18
Attorney, Agent or Firm:
DI GENNARO, Sergio et al. (IT)
Download PDF:
Claims:
CLAIMS

1. A handling system for receptor devices of solar energy suitable for allowing the handling of said devices on a first axis (X) and on a second axis (Y) , substantially orthogonal with respect to each other, said system being constrainable on fixed structures composed of supporting poles (2) kept in position by a network of tie-rods (3),

comprising

a main tube (4) rotating around said first axis (X) , to which a plurality of secondary tubes (5) are connected, also rotating around their own axis (Y) , fixed substantially perpendicularly to the main tube, the receptor devices being fixed on said secondary tubes, the main rotating tube comprising both the handling mechanism around the first axis (X) and the handling mechanism around the second axis (Y) activated by a respective first motor (41) and second motor (51) , the handling mechanism around the second axis (Y) comprising a series of racks (54) positioned longitudinally inside the main tube (4) which move along said first axis (X) activated by said second motor (51), which, along its route, encounters, in correspondence with said racks, a plurality of gears (55) , each engaged on a secondary tube (5) in the intersection position of these with the main tube, allowing the rotation of said second axis, characterized in that

the handling mechanism around the first axis (X) comprises a central shaft (43) which receives the rotation of said motor and at least one pair of rotating satellite pinions (44,44'), symmetrical with respect to said shaft and rotating in compliance with each other, a tubular flange (45) being engaged on said end of the main tube (4) , which is connected to said fixed structure, provided on the internal circumference with a round rack (46) which encounters the pair of satellite pinions allowing the rotation of the main tube around the first axis (X) .

2. The system according to claim 1, also comprising means for constraining pairs of main tubes (4,4') to the bearing structure, aligned with each other, which comprise, on said tubular flange (45,45') of each main tube of the pair, a supporting plate (48,48') and a groove (49,49'), an insert (61) being positioned inside the grooves (49,49'), and forming a connection element between one tube (4) and the next (4') .

3. The system according to claim 2, wherein said groove (49,49') is positioned vertically and has a dovetail conformation.

4. The system according to claim 1, wherein the first motor (41) is positioned with its axis perpendicular to the first longitudinal axis (X) of the main tube (4) . 5. The system according to claim 1, wherein said rack (54) is moved by means of a straight pushing profile (56) by the second motor (51) which, by means of a suitable gear mechanism, rotates a worm screw (52) positioned longitudinally in the main tube (4), said worm screw penetrating a threaded hole of a lead screw (53) of said rack.

6. The system according to claim 5, wherein the second motor (51) is positioned with its axis perpendicular to said worm screw.

7. The system according to claim 5, wherein the main tube is also provided with a pair of openings (46,47) closed by equivalent lids positioned in correspondence with the motors and reducing mechanisms .

8. The system according to claim 1, wherein said receptor devices are panels capable of producing energy through solar collection (P) .

9. The system according to claim 1, wherein a single electronic controller controls the movement of two adjacent systems contemporaneously, which, however, continue to move independently of each other.

10. The system according to claim 9, wherein the main tubes (4,4') are mounted on a pole (3) with the terminal parts that comprise both handling mechanisms adjacent to each other.

11. The system according to claim 1, wherein the receptor devices are associated with the secondary tube (5) by means of a panel-holder frame (7) which comprises at least one pair of supporting ribs (71) of the devices (P) , so as to allow the combination of secondary tube and panels to have a balanced centre of gravity on the rotation axis Y and associated with the secondary tube by means of sleeves (72) fixed integrally to the tube itself, connecting cross-pieces (73) of the ribs being envisaged at least at the ends and in the central area of the ribs themselves .

12. The system according to claim 1, wherein the ribs are provided with holes (74) along their surface.

Description:
HANDLING SYSTEM FOR SOLAR ENERGY RECEPTOR DEVICES

The present invention relates to a handling system for devices suitable for receiving solar light, for example photovoltaic panels. In particular, the system of the present invention allows the handling of said devices on two axes to enable photovoltaic panels or other devices suitable for capturing solar energy, to remain correctly oriented towards the sun.

Handling systems of solar panels on two axes are known and are technically known as "solar trackers" .

The main objective of a tracker is to maximize the efficiency of the device housed on board. In the photovoltaic field, the modules assembled on board a tracker are generally arranged geometrically on a single panel, which avoids the use of a tracker for every single module. The greater the perpendicular alignment with the solar rays, the greater the conversion efficiency and energy produced, with the same surface, will be, and the smaller the surface of the solar panel necessary, with the same power required, the lower the costs of the plant will be.

The most sophisticated trackers have two degrees of freedom, whereby the orthogonal of the photovoltaic panels is aligned perfectly and in real time with the solar rays. The most economical, but not the only, way for producing them is to mount a tracker on board of another. With these trackers, increases in electric production are registered, which reach even 35%-40%, against, however, a greater construction complexity.

A type of this solar tracker is disclosed in patent WO2010/103378 which describes a bearing structure composed of supporting poles kept in position by a network of tie-rods, both the supporting poles and the tie-rods being fixed in the ground by means of a hinged bolt.

The solar tracker comprises a main horizontal load- bearing tube that is able to rotate around its own axis, to which a plurality of secondary tubes are connected, fixed perpendicularly to the main tube and which can be rotated around their own axis. Solar panels are fixed to said secondary tubes. The ends of the main tube of the tracker rest and are fixed on said supporting poles . The electric connection cables of the various panels are situated inside the main tube and externally carry the current generated by the same.

The control system of the tracker, integrated in the tracker itself, is capable of keeping the panels constantly oriented towards the sun, rotating both the main tube and the secondary tubes so that the sun is perpendicular to the capturing surface of the panels.

Patent WO2010/103378 describes a structure of supporting poles which are such as to also support wind modules. This structure is produced in a two- dimensional "checkerboard" form and can be installed also on agricultural land as it is elevated and the distance between the supporting poles is such as to allow the passage of even massive agricultural means.

The solar panels and handling mechanisms of the same obviously have quite a considerable weight and therefore one of the problems to be solved is how to make the system as light as possible. Furthermore, the encumbrance of both the panels and the bearing structure must also be reduced to the minimum to allow the solar light to reach the underlying soil of the agricultural land.

The objective of the present invention is to solve the drawbacks indicated above by providing a system having the characteristics of the enclosed claim 1.

The characteristics and advantages of the present invention will appear more evident from the following illustrative and non-limiting description of an embodiment of the invention, referring to the enclosed schematic drawings, in which:

figure 1 illustrates the supporting structure with the handling system according to the present invention, installed;

figure 2 illustrates the handling system according to the present invention;

figures 3a and 3b illustrate a first handling mechanism of the system along the first axis;

figures 4a and 4b illustrate a second handling mechanism of the system along the second axis;

figures 5a- 5d illustrate the fixing mechanism of the handling system and the poles of the supporting structure;

figures 6a and 6b illustrate the panel-holder frame associated with the secondary tube according to the present invention.

With reference to the above figures, the handling system for devices suitable for receiving solar light according to the present invention allows the handling of said devices on a first axis X and on a second axis Y, substantially orthogonal with respect to each other, allowing it to keep a correct orientation towards the sun. Said devices, for example, are photovoltaic panels or other devices suitable for capturing solar energy.

For this purpose, it can be installed on bearing structures composed of supporting poles 2 kept in position by a network of tie-rods 3, both the supporting poles and the tie-rods being fixed in the ground by means of a hinged bolt. Said structure can advantageously have a two-dimensional configuration, for example of the "checkerboard" type, and can also be installed on agricultural land, as it is elevated, and the distance between the supporting poles is such as to allow the passage of even massive agricultural means.

When the handling systems have been installed on this structure, said axes X and Y can be substantially horizontal or slightly tilted.

The handling system comprises a main tube 4 rotating around its own axis, and, when operating, arranged substantially on a horizontal plane, to which a plurality of secondary tubes 5 are connected, also rotating around their own axis, preferably fixed perpendicularly to the main tube. The receptor devices, in this specific case illustrated photovoltaic panels P, are fixed on said secondary tubes. The ends of the main tube 4 rest and are fixed on said supporting poles 2 by fixing means which allow a rapid and safe assembly of the structure.

The main rotating tube 4 comprises both the handling mechanism around the first axis and also the handling mechanism around the second axis. In particular, it comprises, in the proximity of at least one of its ends and in its interior, a first motor 41 (in the drawing, 45 is written instead of 41) which is interfaced with a reducing mechanism 42 in which there is a central shaft 43 which receives the rotation of said motor and at least a pair of rotating satellite pinions 44 and 44', symmetrical with respect to said shaft and rotating in compliance with each other. Said end of the main tube 4 is engaged in a tubular flange 45, which is connected to fixed parts of the structure such as, for example, the supporting poles, provided on its internal circumference with a round rack 46 which encounters the pair of pinions .

The motor is advantageously positioned with its axis perpendicular to said central shaft, optimizing the spaces inside the tube and facilitating both its assembly and disassembly.

The handling system operates in relation to the movement around the first axis X as follows. The tubular flange 45 is fixed and consequently, when the motor is activated and the pinions are rotated, the whole structure composed of the main tube rotates around its own axis X.

The handling mechanism around the second axis is also included inside the main tube, and comprises a second motor 51 which, associated with a reducing system, rotates a worm screw 52 positioned longitudinally in the main tube . Said worm screw penetrates a threaded hole 53 of a lead screw, fixed to a straight pushing profile 56, also positioned longitudinally inside the main tube to which a series of racks 54 are fixed.

Along their route, the racks encounter a plurality of gears 55, each engaged on a secondary tube in the intersection position of these with the main tube.

The racks are positioned on a pushing profile 56 which allows them to run longitudinally with respect to the main tube .

The second motor, together with a reducing mechanism, is advantageously positioned with its axis perpendicular to said worm screw, optimizing the spaces inside the tube.

The handling system operates in relation to the movement around the second axis Y as follows .

The motor 51 causes the worm screw 52 to rotate, which, in turn, rotating in the threaded hole 53 of the lead screw, moves the pushing profile along the axis of the tube 4 and with it the rack 54. The rotation gears 55 that encounter the various racks are rotated and, as they are integral with the secondary tubes 5, allow the rotation of the same and therefore the panels around the axis Y.

The main tube is also provided with a pair of openings 46 and 47 closed by equivalent lids positioned in correspondence with the motors and reducing mechanisms .

The handling system comprises means for constraining a pair to each pole of the bearing structure in pairs, which, on each tubular flange 45, comprise a supporting plate 48 on the pole (provided with suitable holes for fixing to the pole itself) . Furthermore, a groove 49 is present on said flange, preferably positioned vertically and also preferably having a dovetail conformation.

The handling systems are positioned and constrained on the poles of the structure in pairs on opposite sides of the pole itself, as illustrated in particular in figure 5b. An insert 61 is positioned inside guides and forms the connection element between one system and the next, therefore making the connection of the same with the pole 2 of the structure by means of the plate 48, more reliable. The constraint is completed by a sleeve 62 which joins the two main adjacent tubes 4 and 4 ' .

A panel-holder frame 7 is associated with the secondary tube 5, said panels comprising at least one pair of ribs 71 associated with the secondary tube by means of sleeves 72 fixed to the same secondary tube. Connection cross-pieces 73 are envisaged at least at the ends and in the central area of the same ribs .

The ribs are provided with holes 74 along their surface .

The structure of said frame allows the combination of secondary tube and panels to have a balanced centre of gravity on the rotation axis Y without creating unbalancing and dangerous moments of resistance especially in the presence of wind.

Suitable types of motors for moving the tubes are stepper motors and the presence of gear motors and transmission effected through gears, allows an improved reliability of the structure, above all with the passing of time. Furthermore, all the mechanical and electrical elements are contained in the main tube and are therefore protected from atmospheric agents, with an increase in the operating life.

The stepper motors used preferably have an operating torque of about 3 Nm.

Considering the torque of the stepper motor and overall transmission ratio, the handling system can reach an adequate driving torque on the main axis .

Said torque is a design constraint due to the necessity of overcoming possible resistance due to the wind. The handling system equipped with panels in a typical case, could in fact be produced with main tubes having a length of 12 m, on parallel rows positioned at a distance ranging from about 8 to 15 m with poles from 4 to 6 m high, and dimensional panels up to a number of 32, fixed to tubes spaced apart by about 3 m. With this configuration, there are no limits for the type of crops and size of agricultural machines that must pass under the bearing structure.

If the load torque due to the wind is higher than the driving torque, the mechanical friction will allow the main tube to rotate so as to avoid damage to the transmission system.

The materials for the various parts have obviously been adequately selected for a proper balance between weight and robustness.

The movements of the motors are controlled by a specific electronic controller which determines the angulation that the panels must have during the day and in all climatic conditions. The system envisages that the main tubes be assembled on a pole with the endpoints that comprise both adjacent handling mechanisms.

In this way, a single electronic controller can be used for controlling the movement of the two systems contemporaneously, which, however, continue to move independently .

The electronic card of said controller is open to different communication systems (for example, Wi-fi, RS485 cable or optical fibre) . Either of these solutions can be adopted, depending on the requirements .