Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HARD METAL COMPOSITE BODY AND PROCESS FOR PRODUCING IT
Document Type and Number:
WIPO Patent Application WO/1990/007017
Kind Code:
A1
Abstract:
Hard metal composite body consisting of hard metals, a binder and an intercalated reinforcing material, and process for producing a hard metal composite body by powder metallurgical methods. A hard metal composite body which possesses improved toughness, hardness and breaking strength is obtained by incorporating monocrystalline reinforcing materials in whisker and/or lamina form composed of borides and carbides, and/or nitrides and/or carbonitrides of the Group IVa or Group Va elements or mixtures thereof, preferably provided with a coating inert to the binder metal phase, and/or a coated monocrystalline reinforcing material made of SiC, Si3N4, Si2N2O, Al2O3, ZrO2, AlN and/or BN. The hard metal composite body is produced by powder metallurgical methods. The deagglomerated and graded reinforcing material, possibly provided with a coating inert to the binder metal phase and deposited by CVD or PVD, is mixed with the ground mixture of hard metals and binders. It is then dried, granulated, pressed uniaxially or isostatically at low temperature, and subjected to sintering or combined or separate sintering/high-temperature isostatic pressing or to axial hot-pressing. The axial hot-pressing is preferably carried out when the content of the reinforcing material is greater than 20 vol. %. At lower contents, the other processes are preferred.

Inventors:
DREYER KLAUS (DE)
KOLASKA HANS (DE)
Application Number:
PCT/DE1989/000740
Publication Date:
June 28, 1990
Filing Date:
November 27, 1989
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KRUPP WIDIA GMBH (DE)
International Classes:
C22C1/05; C22C29/02; C22C29/00; C22C29/06; C22C29/08; C22C29/10; C22C29/16; C22C47/14; C22C49/08; C22C49/14; (IPC1-7): C22C29/00
Foreign References:
EP0289476A21988-11-02
FR1454756A1966-10-07
Other References:
PATENT ABSTRACTS OF JAPAN, Band 9, Nr. 45 (C-268), 26. Februar 1985; & JP-A-59190339 (Mitsubishi Kinzoku K.K.) 29. Oktober 1984
PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 222 (C-246), 9. Oktober 1984; & JP-A-59107059 (Kubota Tekko K.K.) 21. Juni 1984
Download PDF:
Claims:
Patentansprüche
1. Hartmetallverbundkörper bestehend aus Hartstoffphasen, wie Wolf¬ ramcarbid und/oder Carbiden bzw. Nitriden der Elemente der IVa oder VaGruppe des Periodensystems, aus Verstärkungsmaterialien und aus einer Bindemetallphase, wie Cobalt und/oder Eisen und/oder Nickel, dadurch gekennzeichnet, daß einkristallines na del und/oder plättchenförmiges Verstärkungsmaterial aus Boriden und/oder Carbiden und/oder Nitriden und/oder Carbonitriden der Elemente der Gruppe IVa (Ti, Zr, Hf) oder Va (V, Nb, Ta) oder Mischungen hiervon und/oder einkristallines Verstärkungsmaterial aus SiC, Si3N4, Si^O, A1203, Zr02, A1N und/oder BN eingebaut ist, wobei der Anteil des Verstärkungsmaterials jeweils 2 bis 40 Volumen%, vorzugsweise 10 bis 20 Volumen% beträgt.
2. Hartmetallverbundkörper nach Anspruch 1, dadurch gekennzeichnet, daß die nadeiförmigen Einkristalle (Whisker) eine Länge von 3 μm bis 100 μm aufweisen.
3. Hartmetallverbundkörper nach einem der Ansprüche 1 oder 2, da¬ durch gekennzeichnet, daß die nadeiförmigen Einkristalle einen Durchmesser von 0,1 bis 10 μm haben.
4. Hartmetallverbundkörper nach Anspruch 1, dadurch gekennzeichnet, daß die plättchenförmigen Einkristalle (Plättchen) eine Dicke von 0,5 μm bis 10 μm und einen Durchmesser 3 μm bis 100 μm auf¬ weisen.
5. Hartmetallverbundkörper nach einem der Ansprüche 1 bis 4, da¬ durch gekennzeichnet, daß SiCnadel oder plättchenförmige Ein¬ kristalle vorliegen und zu mehr als 90 % die ß SiCStruktur aufweisen.
6. Hartmetallverbundkörper nach einem der Ansprüche 1 bis 5, da¬ durch gekennzeichnet, daß das Verstärkungsmaterial mit einer ge¬ genüber der Bindemetallphase inerten Beschichtung versehen ist.
7. Hartmetallverbundkörper nach Anspruch 6, dadurch gekennzeichnet, daß das Verstärkungsmaterial ganz oder teilweise durch Boride und/oder Carbide und/oder Nitride und/oder Carbonitride der Ele¬ mente der VlaGruppe des Periodensystems oder Mischungen hiervon ersetzt ist.
8. Hartmetallverbundkörper nach Anspruch 6 oder 7, gekennzeichnet durch eine inerte Beschichtung aus Carbiden, Nitriden und/oder Carbonitriden der IVaGruppe (Ti, Zr, Hf) und/oder aus Zr02, A1203 und/oder BN.
9. Hartmetallverbundkörper nach einem der Ansprüche 6 bis 8, da¬ durch gekennzeichnet, daß die Dicke der Beschichtung mindestens 0,02 μm und maximal 2/10 des Nadeldurchmessers bzw. der Plätt¬ chendicke, vorzugsweise 1/10 hiervon bzw. mindestens 0,05 μm, beträgt.
10. Hartmetallverbundkörper nach einem der Ansprüche 6 bis 9, da¬ durch gekennzeichnet, daß die inerte Beschichtung der nadel und/oder plättchenförmigen Einkristalle mittels des CVD (chemical vapour deposition)Verfahrens oder des PVD(physical vapour deposition)Verfahrens auf die Einkristalle aufgebracht ist.
11. Verfahren zur Herstellung des Hartmetallverbundkörpers nach Ansprüchen 1 bis 5 auf pulvermetallurgischem Weg, dadurch ge¬ kennzeichnet, daß das Verstärkungsmaterial in desagglomerierter und klassifizierter Form mit der gemahlenen Mischung aus Hart¬ stoffen und Binder vermischt, dann getrocknet, granuliert, uni¬ axial oder kaltisostatisch gepreßt und der Verbundkörper durch Sintern, durch einen kombinierten Sinter/HIPProzeß, durch Sin¬ tern mit einem HIPProzeß nach zwischenzeitiger Abkühlung oder durch AxialHeißpressen hergestellt wird.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß das Ver¬ stärkungsmaterial in desagglomerierter und klassifizierter Form mittels des CVD oder PVDVerfahrens mit Carbiden, Nitriden und/oder Carbonitriden der IVaGruppe, VaGruppe oder VlaGruppe oder Mischungen hiervon und/oder SiC, S N., S N^O, A1203> Zr02, A1N und/oder BN beschichtet wird, bevor es mit der gemah¬ lenen Mischung aus Hartstoffen und Binder vermischt, dann ge¬ trocknet, granuliert, uniaxial oder kaltisostatisch gepreßt und der Verbundkörper durch Sintern, durch einen kombinierten Sin¬ ter/HIPProzeß, durch Sintern mit einem HIPProzeß nach zwi¬ schenzeitiger Abkühlung oder durch AxialHeißpressen hergestellt wird.
13. Verfahren nach Anspruch 11 oder 12, dadurch gekennzeichnet, daß bei VerstärkungsmaterialGehalten bis zu 20 Volumen3. das nor¬ male Sintern, das Sintern mit einem nach Abkühlung erfolgenden heißisostatischen Pressen oder der kombinierte SinterHIPProzeß und bei Gehalten oberhalb von 20 Volumen5. das AxialHeißpressen durchgeführt wird bzw. werden.
Description:
Beschreibung

Hartmetallverbundkörper und Verfahren zu seiner Herstellung

Die Erfindung betrifft einen Hartmetallverbundkörper, bestehend aus Hartstoffphasen, wie Wolframcarbid und/oder Carbiden bzw. Nitriden de Elemente der IVa- oder Va-Gruppe des Periodensystems, aus Verstär¬ kungsmaterialien und aus einer Bindemetallphase, wie Cobalt und/oder Eisen und/oder Nickel. Ferner betrifft die Erfindung ein Verfahren zur Herstellung eines HartmetallVerbundwerkstoffes auf pulvermetallurgi¬ schem Weg.

Die nach dem Stand der Technik im Prinzip bekannten Einkristalle be¬ sitzen hervorragende mechanische Eigenschaften, wie z.B. eine große Zug- und Schubfestigkeit.

In der DE-PS 259249 wird ein aus Hartstoffen und Bindemitteln beste¬ hendes Sinterhartmetall beschrieben, das Hartstoffe in Form- von nadel- förmigen Einkristallen in einer Menge von wenigstens 0,1 %, vorzugs¬ weise 0,5 bis 1,5 % des gesamten Hartstoffanteils enthält. Zur Her¬ stellung dieses Sinterhartmetalls wird dem Hartstoffanteil vor dem Vermählen WC in Form von nadeiförmigen Einkristallen zugesetzt, wobei nach Zusatz eines Bindemetalls der Eisengruppe der Hartmetallansatz gepreßt und unter Bildung einer flüssigen Phase gesintert wird. Nach¬ teiligerweise löst sich jedoch der einkristalline WC-Anteil weitgehend in der Bindephase (vgl. DE-Z "Metall", Juli 1974, Heft 7). Im übrigen reichen die vorgeschlagenen Hartstoff-Einkristalle nicht aus, um eine merkliche Verbesserung der Verschleißeigenschaften zu erhalten, insbe¬ sondere auch deshalb nicht, weil maximal nur so viel Hartstoff-Einkri¬ stalle zugegeben werden sollen, bis der Hartstoffeinkornanteil (Körner mit mittlerem Durchmesser unter 2 μm) ersetzt ist.

Es ist Aufgabe der vorliegenden Erfindung, einen Hartmetallverbundkör- per anzugeben, der gegenüber den bisher bekannten Hartmetallverbund- körpern eine höhere Zähigkeitsbelastbarkeit, eine größere Härte, auch bei starker thermischer Belastung des Hartmetallverbundkörpers und eine geringere Bruchanfälligkeit aufweist. Ferner ist es Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung eines solchen Hartmetallverbundkörpers anzugeben.

Die Aufgabe wird durch einen HartmetallVerbundkörper der im Anspruch 1 genannten Zusammensetzung gelöst.

Die Verwendung von Whiskern ist zwar nach dem Stand der Technik bei anderen Stoffen bereits vorgeschlagen worden:

So z.B. in der US-PS 3441 392 eine faserverstärkte Metallegierung, die auf pulvermetallurgischem Wege hergestellt worden ist und die bei¬ spielsweise Fasern aus <C-Aluminiumoxid und Siliciumcarbid enthält.

Die US-PS 4543345 beschreibt eine Keramik (AlpOg-Matrix) mit einge¬ lagerten SiC-Einkristallen.

Aus der DE-3303295 A1 ist bekannt, daß die Festigkeits- und Bruchzä¬ higkeitseigenschaften einer siliciumcarbidfaserverstärkten Keramik besser als die der Keramikmatrix sind. Entsprechende Angaben werden auch in der DE-Z ZwF 83 (1988) 7, Seiten 354 bis 359 gemacht.

Die EP-0067584 B1 beschreibt ein Verfahren zur Herstellung eines Verbundwerkstoffes aus einem metallischen, keramischen Glas- oder Kunststoff-Grundmaterial und darin im wesentlichen homogen und gleich¬ mäßig verteilten desagglomerierten Siliciumcarbidwhiskern zur Verstär¬ kung des Grundmaterials, bei dem man Siliciumcarbidwhisker in einem polaren Lösungsmittel zur Bildung einer Aufschlämmung rührt und an¬ schließend die Aufschlämmung zur Bildung einer Aufschlämmung aus desagglomerierten Siliciumcarbidwhiskern vermahlt, die Aufschlä mung hieraus mit einem Grundmaterial zur Bildung einer homogenen Mischung vermischt, anschließend trocknet und zu einem Rohling formt.

Schließlich sind aus der EP-0213615 A2 Verbundwerkstoffe bekannt, bei denen in einer Metallmatrix Siliciumcarbid- und Siliciu nitrid- whisker enthalten sind.

Die Einbringung von nadel- oder plättchenförmigen Einkristallen bei Hartmetallen in größeren Mengen wurde jedoch nie durchgeführt, weil bisher eine Lösung der Einkristalle in der flüssigen Bindemittelphase befürchtet worden ist. In der Tat ist die Löslichkeit des WC in einem Bindemittel wie Cobalt groß, was bewirkt, daß die Verwendung von WC- Einkristallen - wie in der DE-PS 259242 vorgeschlagen - keine Verbes¬ serung der Verschleißeigenschaften bringt.

Weiterentwicklungen der Erfindung sind in den Unteransprüchen 2 bis 10 dargelegt.

Ein besonderer Vorteil einer inerten Whiskerbeschichtung liegt jedoch darin, daß eine gezielte Festigkeit der Bindung mit der Matrix einge¬ stellt werden kann. Insgesamt führt die Einlagerung von beschichteten Whiskern zu einer Härteerhöhung mit einer gleichzeitigen Zähigkeitssteigerung, und zwar auch bei Hochtemperaturbelastungen, wie sie z.B. bei Schneidwerkstoffeπ stattfinden. Vorteilhafterweise wird dies auch bei solchen Hartmetallen erreicht, die einen geringen Bindemittelgehalt aufweisen (weniger als 8 Volumen-%).

Darüber hinaus kommt der inerten Beschichtung eine gewissen Schutz¬ funktion für die umhüllten Einkristalle zu, d.h. die Einkristalle kön¬ nen nicht im Bindemittel gelöst werden, insbesondere lassen sich erst¬ malig WC-Einkristalle in einem bezogen auf die Hartmetallzusammenset¬ zung wirkungsvollen Anteil verwenden.

Der auf das nach dem Stand der Technik bekannte Verfahren bezogene Aufgabenteil wird durch die im Anspruch 11 angegebenen Merkmale ge¬ löst, wobei insbesondere bei Gehalten bis zu 20 Volumen-3. dem normalen Sinter-, dem kombinierten Sinter/HIP-Prozeß oder dem Sintern mit einem nachfolgenden heißisostatischen Pressen in einer getrennten Anlage und bei höheren Verstärkungsmaterialgehalten dem Heißpressen der Vorzug gegeben wird.

Die Herstellung der Whisker-Hartmetallverbundwerkstoffe lehnt sich grundsätzlich an bekannte pulvermetallurgische Verfahrensschritte an. So werden im Unterschied zum Stand der Technik die Verstärkungsmate¬ rialien (Whisker, Plättchen) zunächst aufbereitet, desagglomeriert und klassifiziert sowie vorzugsweise mittels eines CVD- oder PVD-Verfah- rens beschichtet, bevor sie den weiteren Verfahrensschritten unterzo¬ gen werden. Grundsätzlich unterscheidet man dabei zwischen vier Verdichtungsverfahren: Dem üblichen Sintern, einem kombinierten Sin¬ ter/HIP-Prozeß, bei dem unmittelbar auf den Sintervorgang in der Hitze ein heißisostatisches Pressen bei 20 bis 100 bar, maximal 200 bar, durchgeführt wird, dem Sintern mit nachfolgenden heißisostatischen Pressen bei Drücken um beispielsweise ca. 1000 bar in einer getrennten Anlage und schließlich dem erwähnten Heißpressen.

In einem konkreten Ausführungsbeispiel der Erfindung sind in einer Mi¬ schung aus 4 Volumen-% Co, Rest WC im Anschluß an das Naßmahleπ 21 Volumen-% TiC-Whisker in desagglomerierter und klassifizierter Form zugegeben worden.

In einem weiteren Ausführungsbeispiel der Erfindung sind in einer Mi¬ schung aus 4 Volumen-% Co, Rest WC im Anschluß an das Naßmahlen 21 Volumen-% WC-whisker in desagglomerierter und klassifizierter Form, die mittels des im Prinzip nach dem Stand der Technik bekannten CVD- Prozesses mit TiC beschichtet worden sind, zugegeben worden. Die ge¬ samte Mischung wurde jeweils anschließend getrocknet, granuliert und kaltisostatisch zu einem Grünling vorgepreßt, bevor über das Heißpres¬ sen der Whisker-Verbundwerkstoff fertiggestellt wurde.

Insgesamt besitzt der erfindungsgemäße Hartmetallverbundwerkstoff eine größere Härte und höhere Festigkeitswerte als nach dem Stand der Tech¬ nik bekannte Verbundwerkstoffe. Die Zähigkeitsbelastbarkeit ist bei vermindertem Bruchrisiko höher, ohne daß höhere Bindegehalte einge¬ stellt werden mußten.