Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HEADSPACE ELIMINATING MICROTITER PLATE LID AND METHOD OF OPTICALLY MEASURING WELL OXYGEN CONCENTRATION THROUGH THE LID
Document Type and Number:
WIPO Patent Application WO/2018/213275
Kind Code:
A1
Abstract:
An implement for eliminating headspace in the testing space(s) (T9 or MPWell) of a test tube (T) or microtiter plate (MP), and methods of using such implements to measure oxygen concentration in a test sample. The implement projects into a test chamber (T9 or MPWell) to displace a portion of a fluid sample within the test chamber (T9 or MPWell) and has longitudinally extending grooves (109 and 229) through which the displaced fluidic content can be discharged from the test chamber (T9 or MPWell).

Inventors:
HAYES IAN M (IE)
HYNES JAMES N (IE)
Application Number:
PCT/US2018/032713
Publication Date:
November 22, 2018
Filing Date:
May 15, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AGILENT TECHNOLOGIES INC (US)
International Classes:
B65D39/04; B01L3/14; B01L9/06; B65D39/14; B65D41/28; B65D59/02
Domestic Patent References:
WO2016155618A12016-10-06
WO2013014413A12013-01-31
WO2008146087A22008-12-04
WO2012052068A12012-04-26
Foreign References:
US20070000950A12007-01-04
US20150132841A12015-05-14
US20020195448A12002-12-26
US3483997A1969-12-16
US2655280A1953-10-13
US20110136247A12011-06-09
US20090029402A12009-01-29
US20080199360A12008-08-21
US20080190172A12008-08-14
US20070042412A12007-02-22
US20040033575A12004-02-19
US8242162B22012-08-14
US8158438B22012-04-17
US7862770B22011-01-04
US7849729B22010-12-14
US7749768B22010-07-06
US7679745B22010-03-16
US7674626B22010-03-09
US7569395B22009-08-04
US7534615B22009-05-19
US7368153B22008-05-06
US7138270B22006-11-21
US6989246B22006-01-24
US6689438B22004-02-10
US6395506B12002-05-28
US6379969B12002-04-30
US6080574A2000-06-27
US5885843A1999-03-23
US5863460A1999-01-26
US5718842A1998-02-17
US5595708A1997-01-21
US5567598A1996-10-22
US5462879A1995-10-31
US5407892A1995-04-18
US5114676A1992-05-19
US5094959A1992-03-10
US5030420A1991-07-09
US4965087A1990-10-23
US4810655A1989-03-07
US4476870A1984-10-16
EP1134583A12001-09-19
US20130280751A12013-10-24
US20140147882A12014-05-29
Other References:
See also references of EP 3625136A4
Attorney, Agent or Firm:
SHERRILL, Michael (US)
Download PDF:
Claims:
We Claim:

1. An implement, comprising a stopper formed from an oxygen barrier material

configured and arranged to longitudinally and sealingly project into a cavity of a test tube, the stopper having an outwardly projecting convex distal end and a plurality of longitudinally extending grooves operable for providing peripheral outlet channels between the stopper and the test tube through which fluidic content within the cavity of the test tube, displaced by insertion of the stopper into the cavity of the test tube, can be discharged from the cavity.

2. The implement of claim 1 wherein the stopper has a longitudinal length and a lateral outer width, and the convex distal end of the stopper has a radius of curvature of between about 2 to 10 times the outer width of the stopper.

3. The implement according to any one of claims 1 or 2 wherein the stopper is formed from a material having an oxygen transmission rate of less than 16 cm3/m2/24 hr at 23 °C and 0% RH.

4. The implement according to any one of claims 1 -3 wherein the stopper has a

longitudinal length of between 0.5 to 2 cm.

5. The implement according to any one of claims 1 -4 wherein the stopper has between 2 and 10 longitudinally extending grooves.

6. The implement according to any one of claims 1 -4 wherein the stopper has between 2 and 6 longitudinally extending grooves.

7. The implement according to any one of claims 1 -4 wherein the stopper has between 4 and 6 uniformly circumferentially spaced longitudinally extending grooves.

8. The implement according to any one of claims 1 -7 wherein the grooves form

peripheral outlet channels having a radial cross-section of between 0.2 and 4 mm2 when the stopper is sealingly engaged within the cavity of the test tube.

9. A lid for a microtiter plate having any array of wells, the lid formed from an oxygen barrier material and comprising:

(a) a cover plate for engaging the microtiter plate, and

(b) projections extending longitudinally from the cover plate in an array

conforming with the array of wells, with each proj ection (i) configured and arranged to longitudinally and sealingly project into a corresponding well in the microtiter plate, (ii) having an outwardly projecting convex distal end, and (iii) having a plurality of longitudinally extending grooves operable for providing peripheral outlet channels between the projection and the well through which fluidic content within the well, displaced by insertion of the projection into the well, can be discharged from the well.

10. The lid of claim 9 wherein the projections have a longitudinal length and a lateral outer width, and the convex distal end of each proj ection has a radius of curvature of between about 2 to 10 times the outer width of the projection.

11. The lid according to any one of claims 9 or 10 wherein the lid is formed from a material having an oxygen transmission rate of less than 16 cm3/m2/24 hr at 23°C and 0% RH.

12. The lid according to any one of claims 9-1 1 wherein the lid is a single-piece.

13. The lid according to any one of claims 9-12 wherein each projection has a

longitudinal length of between 4 to 12 mm.

14. The lid according to claim 13 wherein the proj ections have the same longitudinal length of between 6 to 12 mm.

15. The lid according to any one of claims 9-14 wherein each projection has between 2 and 10 longitudinally extending grooves.

16. The lid according to any one of claims 9-14 wherein each projection has between 2 and 6 longitudinally extending grooves.

17. The lid according to any one of claims 9-14 wherein each projection has between 4 and 6 uniformly circumferentially spaced longitudinally extending grooves.

18. The lid according to any one of claims 9-17 wherein the peripheral outlet channels are in fluid communication with atmosphere through openings in the cover plate.

19. The lid according to any one of claims 9-18 wherein the grooves on each projection form peripheral outlet channels having a radial cross-section of between 0.1 and 0.4 mm2 when the projection is sealingly engaged within a well.

20. The lid according to any one of claims 9-19 wherein the lid has a uniform array of 6, 24, 96, 384 or 1536 projections.

21. An assembly comprising:

(a) a microtiter plate formed from an oxygen barrier material and having an array of wells, and

(b) a lid according to any one of claims 9-19 configured and arranged for fitted engagement over the microtiter plate with the projections extending longitudinally from the cover plate in an array conforming with the array of wells in the microtiter plate whereby the projections extend into the wells when the lid is placed over the microtiter plate.

22. A method of measuring oxygen concentration within a test tube, comprising the steps of:

(a) placing an oxygen-sensitive photoluminescent material and a fluid test sample within a cavity of a test tube,

(b) inserting an implement according to any of claims 1-8 into frictional

engagement within the cavity of the tube to form an enclosed chamber, forming peripheral outlet channels between the implement and the test tube through which fluidic content within the cavity of the test tube, displaced by insertion of the implement into the cavity of the test tube, can be discharged from the cavity, and

(c) ascertaining oxygen concentration within the enclosed chamber by (i)

exposing the oxygen-sensitive photoluminescent material within the enclosed chamber to excitation radiation passed through the implement to create excited oxygen-sensitive photoluminescent material, (ii) measuring radiation emitted by the excited oxygen-sensitive photoluminescent material through the implement, and (iii) converting the measured emission to a target-analyte concentration based upon a known conversion algorithm.

23. The method according to claim 22 wherein the implement is hollow with a closed distal end and an open proximal end.

24. The method according to any one of claims 22 or 23 wherein the implement is

inserted a distance sufficient to displace fluid test sample into each peripheral outlet channel.

25. A method of measuring oxygen concentration within an array of wells in a microtiter plate, comprising the steps of:

(a) obtaining an assembly in accordance with claim 21 ,

(b) placing an oxygen-sensitive photoluminescent material and a fluid test sample within the plurality of wells in the microtiter plate,

(c) covering the microtiter plate with the cover plate whereby each projection extends into and sealingly engages within each well in the microtiter plate so as to displace fluid from within each well towards the periphery of the projection and out of the well through peripheral outlet channels formed between the projection and the well, and

(d) ascertaining oxygen concentration within each well of the covered microtiter plate by (i) exposing the oxygen-sensitive photoluminescent material within each well to excitation radiation passed through the projection extending therein to create excited oxygen-sensitive photoluminescent material, (ii) measuring radiation emitted by the excited oxygen-sensitive photoluminescent material through the proj ection, and (iii) converting the measured emission to a target-analyte concentration based upon a known conversion algorithm.

26. The method according to claim 25 wherein each projection is hollow with a closed distal end and an open proximal end.

27. The method according to any one of claims 25 or 26 wherein sufficient fluid test sample is placed within each well that fluid test sample is displaced into each peripheral outlet channel in each well when the cover plate is secured to the microtiter plate.

28. The method according to any one of claims 22-27 wherein the oxygen-sensitive

photoluminescent material comprises an oxygen-sensitive indicator dye incorporated in an oxygen permeable polymeric matrix.

29. The method according to any one of claims 22-28 wherein the oxygen-sensitive

photoluminescent material comprises a nanoparticle containing an oxygen-sensitive indicator dye.

30. The method according to any one of claims 22-29 wherein the fluid test sample

contains viable cells.

31. The method according to claim 30 wherein the viable cells are viable mammalian cells.

32. The method according to any one of claims 22-29 wherein the fluid test sample

contains viable microbes.

Description:
HEADSPACE ELIMINATING MICROTITER PLATE LID AND METHOD OF OPTICALLY MEASURING WELL OXYGEN CONCENTRATION THROUGH THE

LID

BACKGROUND

[0001] Test tubes and microtiter plates are commonly used with oxygen-sensitive photolumiscent probes to measure and monitor aerobic activity of a sample by measuring and monitoring oxygen concentration within the tube or well. This requires sealing of the sample from fluid communication with the surrounding environment, often accomplished by providing an oil layer over the sample and interrogating the oxygen-sensitive photolumiscent probes in the sample through the oil layer. Use of an oil layer to seal off the sample provides the additional benefit of limiting the presence of gaseous headspace between the sample and the oil layer. Gaseous headspace trapped underneath the oxygen barrier layer is known to slow detection of changes in oxygen concentration due to the relatively large supply of oxygen available in such gaseous headspace.

[0002] While generally effective at sealing off the sample from direct fluid

communication with the surrounding environment and limiting the presence of gaseous headspace underneath the oil layer, the oil layer is not a particularly effective oxygen barrier, is difficult to properly and consistently deploy, and is labor intensive.

[0003] Accordingly, a substantial need exists for an effective, quick and easy implement and technique for efficiently sealing a sample in a test tube or well of a microtiter plate from fluid communication with the surrounding environment, which does not leave gaseous headspace between the oxygen barrier and the sample and does not interfere with

interrogation of oxygen-sensitive photolumiscent probes in the sample through the implement.

SUMMARY OF THE INVENTION

[0004] An implement, such as a stopper for a test tube or a lid for a multi-well microtiter plate, for eliminating headspace in a testing cavity, and methods of using such implements in combination with one or more testing cavities to measuring oxygen concentration.

[0005] One embodiment of the implement is a stopper formed from an oxygen barrier material configured and arranged to longitudinally and sealingly project into a cavity of a test tube, the stopper having an outwardly projecting convex distal end and a plurality of longitudinally extending grooves operable for providing peripheral outlet channels between the stopper and the test tube through which fluidic content within the cavity of the test tube, displaced by insertion of the stopper into the cavity of the test tube, can be discharged from the cavity.

[0006] Another embodiment of the implement is a lid formed from an oxygen barrier material for a microtiter plate having any array of wells. The lid includes (A) a cover plate for engaging the microtiter plate, and (B) projections extending longitudinally from the cover plate in an array conforming with the array of wells, with each projection (i) configured and arranged to longitudinally and sealingly project into a corresponding well in the microtiter plate, (ii) having an outwardly projecting convex distal end, and (iii) having a plurality of longitudinally extending grooves operable for providing peripheral outlet channels between the projection and the well through which fluidic content within the well, displaced by insertion of the projection into the well, can be discharged from the well.

[0007] The lid may be combined with a microtiter plate, formed from an oxygen barrier material and having an array of wells, to form an assembly. The lid is configured and arranged for fitted engagement over the microtiter plate with the projections extending longitudinally from the cover plate in an array conforming with the array of wells in the microtiter plate whereby the projections extend into the wells when the lid is placed over the microtiter plate.

[0008] Oxygen concentration within a test tube may be measured with the stopper embodiment of the implement by (A) placing an oxygen-sensitive photoluminescent material and a fluid test sample within a cavity of a test tube, (B) inserting the implement into frictional engagement within the cavity of the tube to form an enclosed chamber, forming peripheral outlet channels between the implement and the test tube through which fluidic content within the cavity of the test tube, displaced by insertion of the implement into the cavity of the test tube, can be discharged from the cavity, and (C) ascertaining oxygen concentration within the enclosed chamber by (i) exposing the oxygen-sensitive

photoluminescent material within the enclosed chamber to excitation radiation passed through the implement to create excited oxygen-sensitive photoluminescent material, (ii) measuring radiation emitted by the excited oxygen-sensitive photoluminescent material through the implement, and (iii) converting the measured emission to a target-analyte concentration based upon a known conversion algorithm. [0009] Oxygen concentration within an array of wells in a microtiter plate may be measured with the lid embodiment of the implement by (A) placing an oxygen-sensitive photoluminescent material and a fluid test sample within the plurality of wells in the microtiter plate, (B) covering the microtiter plate with the cover plate whereby each projection extends into and sealingly engages within each well in the microtiter plate so as to displace fluid from within each well towards the periphery of the projection and out of the well through peripheral outlet channels formed between the projection and the well, and (C) ascertaining oxygen concentration within each well of the covered microtiter plate by (i) exposing the oxygen-sensitive photoluminescent material within each well to excitation radiation passed through the projection extending therein to create excited oxygen-sensitive photoluminescent material, (ii) measuring radiation emitted by the excited oxygen-sensitive photoluminescent material through the projection, and (iii) converting the measured emission to a target-analyte concentration based upon a known conversion algorithm.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Figure 1 is a side-view of a first embodiment of the invention, above a standard test tube.

[0011] Figure 2 is an enlarged top view of the invention depicted in Figure 1 inserted into the test tube depicted in Figure 1.

[0012] Figure 3 is a perspective view of a second embodiment of the invention having a single row array of proj ections.

[0013] Figure 4 is another perspective view of the lid depicted in Figure 3.

[0014] Figure 5 is a top view of the lid depicted in Figure 3.

[0015] Figure 6 is a bottom view of the lid depicted in Figure 3.

[0016] Figure 7 is a right side view of the lid depicted in Figure 3.

[0017] Figure 8 is a left side view of the lid depicted in Figure 3.

[0018] Figure 9 is a cross-sectional view of the lid depicted in Figure 5 taken along line B- B.

[0019] Figure 10 is a cross-sectional view of the lid depicted in Figure 5 taken along line C-C. [0020] Figure 11 is an end view of the lid depicted in Figure 3.

[0021] Figure 12 is perspective view of a third embodiment of the invention suitable for use as a lid for a standard 96 well microtiter plate.

[0022] Figure 13 is a top view of a standard 96 well microtiter plate.

DETAILED DESCRIPTION OF THE INVENTION

Nomenclature Table

[0023] The invention is a plug for displacing fluid, predominantly gaseous headspace, from the cavity T9 of a test tube T or well MPweii of a microtiter plate MP, without impacting top-down interrogation of oxygen-sensitive phololuminescent material placed within the cavity T9 of a test tube T or well MPweii of a microtiter plate MP through a central optical light path. [0024] Referring to Figures 1 and 2, a first embodiment of the invention is a stopper 100, configured and arranged for use with an individual test tube T. The stopper 100 has a proximal end 101 and a convex distal end 102, with a series of grooves 109 extending along the longitudinal length x of the stopper 100. When inserted into the cavity T9 of a test tube T, the grooves 109 cooperate with the inner wall (unnumbered) of the test tube T to form peripheral outlet channels 119 through which fluid displaced from the cavity T9 of a test tube T upon insertion of the stopper 100 can exit the cavity T9.

[0025] The stopper 100 preferably has (-) a longitudinal length of between 0.5 to 2 cm, (- ) a convex distal end 102 with a radius of curvature of between about 2 to 10 times the outer width y or z of the stopper 100, and (-) between 2 and 10, more preferably between 2 and 6, and most preferably between 4 and 6, uniformly circumferentially spaced longitudinally x extending grooves 109.

[0026] The grooves 109 are preferably configured, arranged and sized and form peripheral outlet channels 119 having a radial cross-section of between 0.2 and 4 mm 2 when the stopper 100 is sealingly engaged within the cavity T9 of a test tube T.

[0027] The stopper 100 is preferably formed from an oxygen barrier material, most preferably a material having an oxygen transmission rate of less than 16 cm 3 /m 2 /24 hr at 23 °C and 0% RH.

[0028] Referring to Figures 3-12, a second embodiment of the invention is a lid 200 comprising a cover plate 210 for engaging a microtiter plate MP, and an array of proj ections

220 extending longitudinally x from the cover plate 210 so as to conform to and mate with an array of wells MPweii in the microtiter plate MP. Each projection 220 has a proximal end

221 and a convex distal end 222, with a series of grooves 229 extending along the longitudinal length x of the projection 220. When the cover plate 210 is attached over a microtiter plate MP, each of the projections 220 extend into one of the wells MPweii on a microtiter plate MP. When inserted into a well MPweii, the grooves 229 on each proj ection 220 cooperate with the inner wall (unnumbered) of the corresponding well MPweii to form peripheral outlet channels through which fluid displaced from the well MPweii upon insertion of the projection 220 can exit the well MPweii.

[0029] Each lid 200 preferably has a uniform array of 6, 24, 96, 384 or 1536 projections, configured, arranged and sized to mate with the same number of wells MPweii on a microtiter plate MP. [0030] Each projection 220 preferably has (-) a longitudinal x length of between 4 to 12 mm, (-) a convex distal end 222 with a radius of curvature of between about 2 to 10 times the outer width y or z of the projection 220, and (-) between 2 and 10, more preferably between 2 and 6, and most preferably between 4 and 6, uniformly circumferentially spaced

longitudinally x extending grooves 229. All projections 220 on a lid 200 are preferably of uniform dimension.

[0031] The grooves 229 are preferably configured, arranged and sized and form peripheral outlet channels having a radial cross-section of between 0.1 and 0.4 mm 2 when the projection 220 is sealingly engaged within a well MPweii on a microtiter plate MP.

[0032] The peripheral outlet channels are preferably in fluid communication with atmosphere through openings (not numbered) in the cover plate 210.

[0033] The lid 200 is preferably formed as a single piece from an oxygen barrier material, most preferably a material having an oxygen transmission rate of less than 16 cm 3 /m 2 /24 hr at 23 °C and 0% RH.

[0034] Oxygen-sensitive photoluminescent probes capable of sensing and reporting the oxygen concentration of an environment in fluid communication with the probe are widely known. See for example, United States Published Patent Applications 2011/0136247, 2009/0029402, 2008/199360, 2008/190172, 2007/0042412, and 2004/0033575; United States Patents 8,242,162, 8,158,438, 7,862,770, 7,849,729, 7,749,768, 7,679,745, 7,674,626, 7,569,395, 7,534,615, 7,368,153, 7,138,270, 6,989,246, 6,689,438, 6,395,506, 6,379,969, 6,080,574, 5,885,843, 5,863,460, 5,718,842, 5,595,708, 5,567,598, 5,462,879, 5,407,892, 5,114,676, 5,094,959, 5,030,420, 4,965,087, 4,810,655, and 4,476,870; PCT International Published Application WO 2008/146087; and European Published Patent Application EP 1134583, all of which are hereby incorporated by reference. Such optical sensors are available from a number of suppliers, including Presens Precision Sensing, GmbH of Regensburg, Germany, Oxysense of Dallas, Texas, USA, and Luxcel Biosciences, Ltd of Cork, Ireland.

[0035] Methods and techniques for sensing of oxygen within a test tube or well of a microtiter plate using oxygen-sensitive photoluminescent probes are widely known as exemplified by WO2012/052068, US Pat. Appln. Pub 2013/0280751 and US Pat. Appln Pub. 2014/0147882, all incorporated herein by reference. These methods and techniques are suitable for use in determining oxygen concentration within a test tube or well sealed with an implement in accordance with the present invention.

[0036] Instruments suitable for reading oxygen-sensitive photoluminescent probes within wells of a microtiter plate are known and available from a number of sources, including the CLARIOstar plate reader from BMG Labtech GmbH of Ortenberg, Germany.

[0037] Oxygen concentration within a test tube T may be measured and monitored using a stopper 100 in accordance with the first embodiment of the invention by: (a) placing an oxygen- sensitive photoluminescent material and a fluid test sample within a cavity T9 of a test tube T, (b) inserting the stopper 100 into frictional engagement within the cavity T9 of a test tube T to form an enclosed chamber with peripheral outlet channels 119 formed between the stopper 100 and the test tube T through which fluidic content within the cavity T9 of a test tube T, displaced by insertion of the stopper 100 into the cavity T9 of a test tube T, can be discharged from the cavity T9, and (c) ascertaining oxygen concentration within the enclosed chamber by exposing the oxygen-sensitive photoluminescent material within the enclosed chamber to excitation radiation passed through the stopper 100 to create excited oxygen-sensitive photoluminescent material, measuring radiation emitted by the excited oxygen-sensitive photoluminescent material through the stopper 100, and converting the measured emission to a target-analyte concentration based upon a known conversion algorithm.

[0038] In a similar fashion, oxygen concentration within each well MPweii of a microtiter plate MP may be measured and monitored using a lid 200 in accordance with the second embodiment of the invention by: (a) placing an oxygen-sensitive photoluminescent material and a fluid test sample within each of a plurality of wells MPweii in a microtiter plate MP, (b) covering the microtiter plate MP with a lid 200 in accordance with the second embodiment of the invention whereby each projection 220 on the lid 200 extends into and sealingly engages within each well MPweii in the microtiter plate MP as the cover plate 210 is placed over and secured to the microtiter plate MP, thereby displacing fluid from within each well MPweii towards the periphery of the projection 220 and out of the well MPweii through peripheral outlet channels formed between the projection 220 and the well MPweii, and (c) ascertaining oxygen concentration within each well MPweii of the covered microtiter plate MP by exposing the oxygen-sensitive photoluminescent material within each well MPweii to excitation radiation passed through the proj ection 220 extending therein to create excited oxygen-sensitive photoluminescent material, measuring radiation emitted by the excited oxygen-sensitive photoluminescent material through the projection 220, and converting the measured to a target-analyte concentration based upon a known conversion algorithm.