Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HEAT PUMP SYSTEM AND METHOD THEREOF
Document Type and Number:
WIPO Patent Application WO/2018/087640
Kind Code:
A1
Abstract:
A heat pump system comprises two units in fluid communication with each other, with each unit including a housing containing an air/brine heat exchanger that includes a direct contact air/brine heat exchanger pad. A brine inlet in the housing supplies liquid brine to the upper end of the air/brine heat exchanger so that the brine flows downwardly through the heat exchanger pad. An air inlet in the housing directs ambient air into the heat exchanger pad in a direction transverse to the flow of brine through the pad, and an air outlet discharges the air from the housing. A brine reservoir receives brine passed through the air/brine heat exchanger. A pair of brine/refrigerant heat exchangers is coupled to the brine reservoirs, for receiving brine from the reservoirs, and coupled to the brine inlets of different ones of the housings, and a refrigerant supply supplies refrigerant to the brine/refrigerant heat exchangers.

Inventors:
ASSAF GAD (IL)
Application Number:
PCT/IB2017/056877
Publication Date:
May 17, 2018
Filing Date:
November 03, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AGAM ENERGY SYSTEMS LTD (IL)
International Classes:
F24F5/00; F24F3/14
Domestic Patent References:
WO2013054322A12013-04-18
Foreign References:
EP0824659A11998-02-25
US4941324A1990-07-17
GB2042713A1980-09-24
US2269053A1942-01-06
US20030003274A12003-01-02
Download PDF:
Claims:
CLAIMS

1. A heat pump system comprising:

two substantially similar units in fluid communication with each other, each unit including

a housing containing an air/brine heat exchanger that includes a direct contact air/brine heat exchanger pad,

a brine inlet in said housing for supplying liquid brine to the upper end of said air/brine heat exchanger so that the brine flows downwardly through said heat exchanger pad,

an air inlet in said housing for directing ambient air into said heat exchanger pad in a direction transverse to the flow of brine through said pad,

an air outlet receiving air passed through said heat exchanger pad and discharging said air from said housing, and

a brine reservoir receiving brine passed through said air/brine heat exchanger, a pair of brine/refrigerant heat exchangers coupled to said brine reservoirs for receiving brine from said reservoirs, said brine/refrigerant heat exchangers being coupled to said brine inlets of different ones of said housings, and

a refrigerant supply coupled to said brine/refrigerant heat exchangers for supplying refrigerant to said brine/refrigerant heat exchangers.

2. The heat pump system of claim 1 in which the ratio Mb/Ca of (a) the brine flow rate Mb through the direct contact air/brine heat exchanger pad to (b) the air flow rate Ca through the direct contact heat exchanger pad, is between about 0.1 and about 4.

3. The heat pump system of claim 1 in which each of said housings includes an exhaust fan for drawing ambient air through said air/brine heat exchanger in that housing.

4. The heat pump system of claim 1 which includes refrigerant supply lines coupled to said brine/refrigerant heat exchangers for supplying refrigerant to said brine/refrigerant heat exchangers.

5. The heat pump system of claim 1 which includes a pair of brine pumps coupled to different ones of said brine reservoirs for supplying brine to said brine/refrigerant heat exchangers.

6. The heat pump system of claim 1 in which said air/brine heat exchanger pads are porous pads that are wetted by brine flowing through the pads, and are permeable to air that is drawn or forced through the pads, to provide intimate contact between the brine and the air.

7. The heat pump system of claim 1 in which said brine inlets spray brine onto the upper ends of said heat exchanger pads.

8. The heat pump system of claim 1 in which each air/brine heat exchanger includes a pair of direct contact air/brine heat exchanger pads spaced from each other in the direction of air flow through said pads.

9. The heat pump system of claim 1 which includes a brine heat exchanger that includes a first conduit conducting brine from said brine reservoir of a first of said units to said brine reservoir of a second of said units, and a second conduit conducting brine from said brine reservoir of said second unit to said brine reservoir of said first unit.

10. A heat pump method comprising:

supplying liquid brine to the upper end of said direct contact air/brine heat exchanger so that the brine flows downwardly through said heat exchanger pad,

directing ambient air into said heat exchanger pad in a direction transverse to the flow of brine through said pad,

receiving air passed through said heat exchanger pad and discharging said air from said housing, and

receiving brine passed through said air/brine heat exchanger in a brine reservoir, supplying brine from said reservoir to a brine/refrigerant heat exchanger, and supplying refrigerant to said brine/refrigerant heat exchangers.

11. The heat pump method of claim 10 in which the ratio Mb/Ca of (a) the brine flow rate Mb through the direct contact heat exchanger pad to (b) the air flow rate Ca through the direct contact heat exchanger pad, is between about 0.1 and about 4.

12. A heat pump method for controlling the temperature and humidity of the air in an enclosure, said method comprising:

supplying liquid brine to the upper end of a first direct contact air/brine heat exchanger within a first housing located in said enclosure, so that the brine flows downwardly through said first heat exchanger pad,

directing ambient air in said enclosure into said first heat exchanger pad in a direction transverse to the flow of brine through said pad,

discharging air passed through said heat exchanger pad from said housing into the space within said enclosure, and

receiving brine passed through said first air/brine heat exchanger in a first brine reservoir within said first housing,

supplying liquid brine to the upper end of a second direct contact air/brine heat exchanger within a second housing located outside said enclosure, so that the brine flows downwardly through said second heat exchanger pad,

directing ambient air from outside said enclosure into said second heat exchanger pad in a direction transverse to the flow of brine through said pad,

discharging air passed through said second heat exchanger pad from said housing into the space outside said enclosure,

receiving brine passed through said second air/brine heat exchanger in a second brine reservoir within said second housing,

supplying brine from said first brine reservoir to a first brine/refrigerant heat exchanger coupled directly to said first housing,

supplying brine from said second brine reservoir to a second brine/refrigerant heat exchanger coupled directly to said second housing, and

supplying refrigerant to said first and second brine/refrigerant heat exchangers.

13. The heat pump method of claim 12 in which each of said housings includes an exhaust fan for drawing ambient air through said air/brine heat exchanger in that housing.

14. The heat pump method of claim 12 which includes refrigerant supply lines coupled to said brine/refrigerant heat exchangers for supplying refrigerant to said brine/refrigerant heat exchangers.

15. The heat pump method of claim 12 which includes a pair of brine pumps coupled to different ones of said brine reservoirs for supplying brine to said brine/refrigerant heat exchangers.

16. The heat pump method of claim 12 in which said heat exchanger pads are porous pads that are wetted by brine flowing through the pads, and are permeable to air that is drawn or forced through the pads, to provide intimate contact between the brine and the air.

17. The heat pump method of claim 12 in which said brine inlets spray brine onto the upper ends of said heat exchanger pads.

18. The heat pump method of claim 12 in which each air/brine heat exchanger includes a pair of spaced direct contact air/brine heat exchanger pads a pair of direct contact air/brine heat exchanger pads spaced from each other in the direction of air flow through said pads.

19. The heat pump system of claim 12 which includes conducting brine from said brine reservoir of a first of said units to said brine reservoir of a second of said units through a brine heat exchanger, and conducting brine from said brine reservoir of said second unit to said brine reservoir of said first unit through said brine heat exchanger.

Description:
HEAT PUMP SYSTEM AND METHOD THEREOF

CROSS-REFERENCE TO RELATED APPLICATION(S)

[0001] This application claims priority to U.S. Patent Application No. 15/346,216, filed November 8, 2016, which is hereby incorporated by reference herein in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates generally to heat pump systems and, more particularly, to a heat pump system utilizing brine, a refrigerant and ambient air. The invention also relates to a method of air conditioning, utilizing the heat pump system.

BACKGROUND

[0003] Space heating and cooling systems typically include a refrigerant circulated by a compressor through finned pipes located inside and outside a building. In winter, the compressor forces compressed and warmed refrigerant into finned pipe sections within the house where condensation takes place. The liberated heat is usually dispensed into the house by means of a fan. The condensed refrigerant then passes through a throttle valve to an evaporator. The heat of evaporation is provided by the colder outside air. During summer, the sense of circulation of the refrigerant is reversed. The outside finned pipes constitute the condenser, while the inside finned pipes operate as the evaporator.

SUMMARY

[0004] In one embodiment, a heat pump system includes two units in fluid communication with each other, with each unit including a housing containing an air/brine heat exchanger that includes a direct contact air/brine heat exchanger pad. A brine inlet in the housing supplies liquid brine to the upper end of the air/brine heat exchanger so that the brine flows downwardly through the heat exchanger pad. An air inlet in the housing directs ambient air into the heat exchanger pad in a direction transverse to the flow of brine through the pad, and an air outlet receives air passed through the heat exchanger pad and discharges the air from the housing. A brine reservoir receives brine passed through the air/brine heat exchanger, and two brine/refrigerant heat exchangers are coupled to the brine reservoirs for receiving brine from the reservoirs. The brine/refrigerant heat exchangers are coupled to the brine inlets of different ones of the housings, and a refrigerant supply is coupled to the brine/refrigerant heat exchangers for supplying refrigerant to the brine/refrigerant heat exchangers.

[0005] In a preferred embodiment, each of the housings includes an exhaust fan for drawing ambient air through the direct contact air/brine heat exchanger in that housing, refrigerant supply lines are coupled to the brine/refrigerant heat exchangers for supplying refrigerant to those heat exchangers, and a pair of brine pumps are coupled to different ones of the brine reservoirs for supplying brine to the brine/refrigerant heat exchangers. The direct contact air/brine heat exchanger pads are preferably porous pads that are wetted by brine flowing through the pads, and are permeable to air that is drawn or forced through the pads, to provide intimate contact between the brine and the air.

[0006] The invention further provides a heat pump method for controlling the temperature and humidity of the air in an enclosure. The method supplies liquid brine to the upper end of a first direct contact air/brine heat exchanger within a first housing located in the enclosure, so that the brine flows downwardly through the first heat exchanger pad. Ambient air is directed ambient air in the enclosure into the first heat exchanger pad in a direction transverse to the flow of brine through the pad, discharging air passed through the heat exchanger pad from the housing into the space within the enclosure, and receiving brine passed through the first air/brine heat exchanger in a first brine reservoir within the first housing. The method also supplies liquid brine to the upper end of a second direct contact air/brine heat exchanger within a second housing located outside the enclosure, so that the brine flows downwardly through the second heat exchanger pad, directing ambient air from outside the enclosure into the second heat exchanger pad in a direction transverse to the flow of brine through the pad, discharging air passed through the second heat exchanger pad from the housing into the space outside the enclosure, and receiving brine passed through the second air/brine heat exchanger in a second brine reservoir within the second housing.

[0007] Hygroscopic brine such as LiBr, MgCl 2 , CaCl 2 and mixtures thereof, can be advantageously used. The concentrations of these brines are such that no precipitation of salts or ice occurs throughout the working temperature range of the heat pump.

BRIEF DESCRIPTION OF DRAWINGS

[0008] In the drawings:

[0009] FIG. 1 is a schematic diagram of a heat pump system utilizing brine and refrigerant.

[0010] FIG. 2 is a psychrometric diagram illustrating one mode of operation of the system shown in FIG. 1. DETAILED DESCRIPTION

[0011] In the exemplary embodiment illustrated in Fig. 1, a heat pump system includes two substantially similar units 10 and 10' acting as an evaporator and a condenser, respectively. The unit 10 is located inside an enclosure E to be air conditioned, and the unit 10' is located outside the enclosure E. A heat exchanger 12 reduces the temperature and moisture content of the incoming air in the unit 10, so that air exhausted from the unit 10 is cooler than the ambient air inside the enclosure E being air conditioned.

[0012] The heat exchanger 12' in the second unit 10' increases the temperature of the air that is exhausted from the unit 10', and thus the air supply for the enclosure E can be switched to the unit 12' when it is desired to heat, rather than cool, the air inside the enclosure E. That is, air from the unit 10 can be supplied to the enclosure E during the summer, and air from the unit 10' can be supplied to the enclosure E during the winter.

[0013] Each of the units 10 and 10' includes a housing 12 or 12' containing an air/brine heat exchanger 13 or 13' . Brine inlets 10 and 10' disposed in the upper portions of the housings 12 and 12', respectively, supply brine from brine/refrigerant heat exchangers 24 and 24' to a set of drip or spray nozzles or apertures 11 and 11 ' located directly above the air/brine heat exchangers so that the incoming brine is directed onto the upper ends of the pads. The lower portions of the units 10 and 10' contains brine reservoirs 14 and 14', respectively, for receiving brine exiting the air/brine heat exchangers.

[0014] Each of the air/brine heat exchangers 13 and 13' preferably includes a pair of direct contact air/brine heat exchanger pads 13a and 13b, or 13'a and 13'b, spaced slightly apart from each other. The pads 13a and 13b may be pads such as those described in U.S. Patent Publication No. 2003/0003274. It is preferred to use at least two such porous pads in each air/brine heat exchanger, with a vertical gap between the two pads. The cool brine from the brine/refrigerant heat exchanger 24 wets the pads 13a and 13b and cools the air as the air passes through the air-permeable pads 13a, 13b in a direction transverse to that of the brine flowing downwardly through the pads by gravity. The gap between the two pads 13a, 13b may be about 5-10 mm, to prevent the liquid brine from flowing from one pad to another. Thus, the liquid brine in the inner pad 13b is cooler than the liquid brine in the outer pad 13a, and the cross flow of air through the two pads causes the cooler air passing through the inner pad 13b to interact with cooler brine.

[0015] The incoming ambient air is drawn into the housing 12 or 12' by an exhaust fan 20 or 20' or by any other natural or forced means. The incoming air enters the heat exchangers 13 and 13' through openings in one of the wide side walls of the housings 12 and 12'. The openings are aligned with the outer pads 13a and 13'a in the heat exchangers 13 and 13', respectively, and air is drawn through the heat exchangers 13 or 13' by the exhaust fans 20 and 20'. The direct contact air/brine heat exchanger pads 13a and 13b are spaced from each other in the direction of air flow through the pads. The air is cooled by the brine flowing through the heat exchanger 12 or 12', so that the air discharged from the housing is at a lower temperature, and a lower humidity level, than the ambient air entering the heat exchanger.

[0016] Each of the brine inlets 10 and 10' is connected by a conduit 22 or 22' to one of the brine/refrigerant heat exchangers 24 and 24'. Conduits 26 and 26' convey brine to the brine/refrigerant heat exchangers 24 or 24', respectively, from the corresponding brine reservoirs 14 and 14' via circulation pumps 28 and 28'. The brine reservoirs 14 and 14' are also in liquid communication with each other via conduits 30 and 32 and a brine heat exchanger 34.

[0017] The brine/refrigerant heat exchangers 24 and 24' are composed of closed vessels 36 and 36' housing coils 38 and 38', respectively. The coils 38 and 38' are interconnected, in a closed loop, by conduits 40 and 42. A compressor 44 in the conduit 40 forces the refrigerant through the closed loop that includes the coils 38 and 38', the conduits 40 and 42, and a throttle valve 46.

[0018] In order to avoid the need for synchronization and control between the pumps 28 and 28', the brine accumulated in the reservoir 14' is preferably returned to the reservoir 14 by gravity flow through the conduit 32. This is achieved by locating the reservoir 14' at a higher elevation than the reservoir 14. The brine exchange flow rate between the reservoirs 14 and 14' via conduits 30 and 32 is smaller than the circulation rate of the brine through the air/brine heat exchangers 13 and 13'. For operation under certain conditions, it is also possible to stop the circulation of the brine between the two units, if desired.

[0019] FIG. 2 is a psychrometric chart for an air conditioning system designed to keep the air temperature and humidity at a design point DP where:

• the dry bulb temperature is 24 °C. (the vertical coordinates with the horizontal scale at the bottom of the chart),

• the vapor concentration is 8.5 grams moisture per kilogram dry air (the horizontal coordinates with the vertical scale at the right side of the chart), and

• the air enthalpy is 46 kilojoules per kilogram (kJ/kg) dry air (the diagonal coordinates with the diagonal scale at the left side of the chart). [0020] The sensible load SL in FIG. 2 is the vector DP-SL (24 °C. to 29 °C, 51 kJ/kg). The latent load LL is the vector DP-LL (24 °C, 51 kJ/kg). The total load TL is the sum of the vectors DP-SL and DP-LL. TL is at a temperature of 29 °C, a vapor concentration of 10.5 g/kg and an enthalpy of 56 kJ/kg. Without air conditioning, in a 1000-second time interval the air enthalpy of an enclosure with an air mass of 1000 kg. will change from DP with 46 kJ/kg to TL at 56 kJ/kg. The enclosure load is equivalent to (56-46) kJ/kg * lOOOkg/1000 s. = 10 kJ/s = lOkW. To keep the enclosure at the design point DP, with the humidity and temperature at steady state, the DP-TL vector must be balanced by the DP-BTL vector, which corresponds to (SL + LL). When dry air at the design point DP is introduced into a conventional air conditioning system, it is cooled to the dew point (Dew P in FIG. 2) without condensation, which keeps the vapor concentration at 8.5 g/kg.

[0021] The vector sum of (DP-DewP ) + (DP-TL) = (Dew-BSL) in FIG. 2, with exit air at 17°C. and 88% relative humidity (RH). Thus, the 50% RH and 24 °C. of the design point DP will be replaced with BSL, which is 88% RH and 17 °C.

[0022] To balance the enclosure load with conventional air conditioning, the air should be further cooled to the saturated point SP, which is 7.5 °C, and a vapor concentration of 6.5 g/kg., and then heated to the point BTL before exiting.

[0023] The vapor pressure at the liquid interface follows the relative humidity curve of the refrigerant, e.g., LiCl at a salinity of 25% will follow the 50% relative humidity line in FIG. 2. When enclosure air is at 24 °C. and a vapor concentration of 8.5 g/kg, exchange heat and vapor with LiCl at S = 25% and a temperature of 15 °C. with an interface vapor concentration of 5.5 g/kg, the air vapor will condense on the liquid brine, and the air will fallow the vector DP-BTL, which is a capacity of 10 kW as compared with 22 kW when following the vector DP-DewP-SP with an enthalpy differential of 46-24 = 22 kJ/kg with a capacity 22 kW, which represents the design point (DP) of the enclosure climate (temperature of 24 °C, vapor concentration of 8.5 g/kg, and enthalpy of 46 kJ/kg). The enclosure sensible load SL is the vector DP-SL, the enclosure latent load LL is the vector DP-L with a vapor concentration varied between 8.5 g/kg at DP and 10.5 g/kg at LL. The total load TL is the vector DP-TL (where TL is at a vapor concentration of 10.5 g/kg and a temperature of 29 °C), which is presented in FIG. 2 as the vector sum of DP-SL and DP-LL. To keep DP stead, the air conditioning should balance the vector DP-TL with an enthalpy gradient of (56-46) = 10 kJ/kg.

[0024] FIG. 2 presents three vectors which balance TL: 1. DP-DewP, where temperature decreases from 24 °C. to 12 °C, vapor concentration remains 8.5 g/kg and enthalpy varies from 46 to 34 kJ/kg.

2. DewP-SP at temperature of 8.5 °C, vapor concentration 6.5 g/kg, and enthalpy of 24 kJ kg.

3. SP-BTL at temperature of 18 °C, vapor concentration of 6.5 g/kg and enthalpy of 35 kJ/kg.

[0025] DP to DewP is associated with dry cooling. The balancing of the sensible load SL brings DP to BSL where temperature is 17 °C. and relative humidity is 88%.

[0026] For an enclosure with 1000 kg air where DP temperature is at DP varied to TL in 1000 s, with an air flow of lkg/s at HAC, the cooling load is given as:

(56-46) kJ/kg * 1000 kg/(1000s.) = 10 kW.

[0027] In the air/brine heat exchanger 13 in FIG. 1, the air loses heat to the cold brine in the pads 13a and 13b, and that brine then flows into the reservoir 14. The heated brine is pumped from the reservoir 14 by the pump 28 to be cooled at the refrigerant/brine heat exchanger 24. Eq (1) shows that the air flow Ca is determined by the total load TL on the enclosure and the design point DP of air conditioning for a given enclosure:

(1) Ca = TL(kW)/[En(TL) - En(DP)] kg/s.

[0028] Here, Ca is the air flow (kg/s), TL is the total load (kW), En(TL) is the air enthalpy at TL, and En(DP) is the enthalpy at the design point DP. The air cooling capacity Qa is equal to the brine cooling at the refrigerant/brine heat exchanger 24. Thus, the cooling capacity Qa is:

(2) Qa = [Ca * (En(Tl)-En(DP)] kwThe brine flow Mb is related to the cooling capacity Qa in Eq (3)

(3) Mb = Ca * [En(Tl) - En(Dp)]/[Cpb * (Tbr-Tbc)] kg/s, where Cpb is the specific heat of brine.

Eq (3) can be written as:

(4) Mb/Ca = AEn/(Cpb ATb)

[0029] The brine-to-air flow Mb/Ca is related to the temperature gradient ATb because ΔΕη is determined by load, the design point DP is given in (Eq 1),

[0030] For a given enclosure with a given load, Eq (4) shows that a large mass ratio Mb/Ca is associated with a small brine temperature gradient.

[0031] A large Mb is associated with a large pump (28 in FIG. 1) and enhanced liquid drifts from spray distribution at the brine inlet 10 or the direct contact heat exchangers 12. Tests confirm that for: Mb/Ca > 4, the pump 28 power exceeds the practical limit and friction dissipation at the evaporator 4. This enhances brine drift from the brine inlet 10 and the heat exchanger 12. Thus, Eq (5) defines the number 4 as the upper limit on the brine/air mass ratio flow:

(5) Mb/Ca < 4

[0032] On the other hand, a small brine flow rate Mb is associated with a large liquid temperature gradient Tbr -Tbc, which is associated with a large enthalpy gradient at the brine interface. The brine enthalpy at the reservoir 14 must be smaller than the air enclosure enthalpy for the air entering the heat exchanger 12. Otherwise the enclosure air would be heated in the heat exchanger 12. Also, the brine in the reservoir 14 would be warmer than the refrigerant in the evaporator 24.

[0033] Thus, the lower limit for the brine-to-air flow ratio is given on the right side of Eq. (6), as follows:

(6) Mb/Ca > (En(DP) - En(BTL)/(cpb) * (Ta(enc) - T(Ref))

In Eq (6):

Ca is given in Eq (1), and

En (DP) is determined by the design points.

[0034] The load TL = -BTL is given, and thus En(BTL) can be determined from the psychrometric chart in FIG. 2:

Ta (enclosure) is given at the design point.

T (refrigerant) is usually part of the heat pump and evaporator design.

Tests and the limit of Eq (5) show that:

(7) 0.1 < Mb/Ca <4

[0035] While particular embodiments, aspects and applications of the present invention have been illustrated and described, it is to be understood that the invention is not limited to the precise construction and compositions disclosed herein and that various modifications, changes and variations may be apparent from the foregoing description without departing from the spirit and scope of the invention as defined in the appended claims.