Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HEAT PUMP WITH CONVECTIVE SHAFT COOLING
Document Type and Number:
WIPO Patent Application WO/2017/148932
Kind Code:
A1
Abstract:
A heat pump comprises a condenser having a condenser housing; a compressor motor which is attached to the condenser housing and has a rotor (307) and a stator (308), wherein the rotor has a motor shaft (306) to which is attached a radial impeller (304) that extends into an evaporator zone; a guide space (302) which is designed to receive vapor compressed by the radial impeller and guide this into the condenser; a motor housing (300) that surrounds the compressor motor; and a vapor supply (320) for supplying vapor in the motor housing to a motor gap (311) between the stator and the rotor, wherein the motor is designed such that another gap (313) extends from the motor gap along the radial impeller to the guide space.

Inventors:
KNIFFLER OLIVER (DE)
SEDLAK HOLGER (DE)
Application Number:
PCT/EP2017/054624
Publication Date:
September 08, 2017
Filing Date:
February 28, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EFFICIENT ENERGY GMBH (DE)
International Classes:
F25B1/053; F25B30/02; F25B31/00
Domestic Patent References:
WO2014200476A12014-12-18
WO2014072239A12014-05-15
Foreign References:
EP0550381A11993-07-07
US20090044548A12009-02-19
US20030094007A12003-05-22
EP2016349B12011-05-04
DE4431887A11995-03-09
Attorney, Agent or Firm:
ZINKLER, Franz et al. (DE)
Download PDF:
Claims:
Patentansprüche

Wärmepumpe mit folgenden Merkmalen: einem Kondensierer mit einem Kondensierergehäuse (1 14); einem Verdichtermotor, der an dem Kondensierergehäuse (1 14) angebracht ist und einen Rotor (307) und einen Stator (308) aufweist, wobei der Rotor eine Motorwelle (306) aufweist, an der ein Radialrad (304) angebracht ist, das sich in eine Verdampferzone (102) erstreckt; einem Leitraum (302), der ausgebildet ist, um durch das Radialrad (304) verdichteten Dampf aufzunehmen und in den Kondensierer (1 14) zu leiten; einem Motorgehäuse (300), das den Verdichtermotor umgibt; und einer Dampfzuführung (320) zum Zuführen von Dampf (310) in dem Motorgehäuse (300) zu einem Motorspalt (31 1 ) zwischen dem Stator und dem Rotor (307), wobei der Verdichtermotor derart ausgebildet ist, dass sich ein weiterer Spalt (313) von dem Motorspalt (31 1 ) entlang des Radialrads (304) zu dem Leitraum (302) erstreckt, so dass von dem Motorgehäuse (300) über die Dampfzuführung (320) der Dampf (310) entlang des Motorspalts (31 1 ) und des weiteren Spalts (313) in den Kondensierer gezogen wird.

Wärmepumpe nach Anspruch 1 , bei der die Dampf Zuführung (320) so ausgebildet ist, dass eine Dampfströmung (10) durch den Motorspalt (31 1 ) und den weiteren Spalt (313) einen Lagerabschnitt (343), der ausgebildet ist, um die Motorwelle (306) bezüglich des Stators (308) zu lagern, nicht durchtritt.

Wärmepumpe nach Anspruch 1 oder 2, bei der das Motorgehäuse (300) in Betriebsrichtung der Wärmepumpe oben auf dem Kondensierergehäuse (1 14) angebracht ist, so dass sich der Stator (308) oberhalb des Radialrads (304) befindet und die Dampfströmung (310) durch den Motorspa!t (31 1 ) und den weiteren Spalt (313) von oben nach unten verläuft.

Wärmepumpe nach einem der vorhergehenden Ansprüche, die einen Lagerabschnitt (343) aufweist, der ausgebildet ist, um die Motorwelle (306) bezüglich des Stators (308) zu lagern, wobei der Lagerabschnitt so angeordnet ist, dass zwischen dem Lagerabschnitt und dem Radialrad der Rotor (307) und der Stator

(308) des Verdichtermotors angeordnet sind.

Wärmepumpe nach einem der vorhergehenden Ansprüche, bei der das Motorgehäuse (300) einen Arbeitsmittelzulauf (330, 362) aufweist, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an eine Wand

(309) der Verdichtermotors zu führen, und wobei das Motorgehäuse (300) ferner eine Dampfabführung (324) aufweist, um Dampf aus dem Dampfraum (323) in dem Motorgehäuse abzuleiten.

Wärmepumpe nach Anspruch 5, bei der das Motorgehäuse (300) ferner ausgebildet ist, um in einem Betrieb der Wärmepumpe einen Pegel (322) an flüssigem Arbeitsmittel zu halten, und um oberhalb des Pegels an flüssigem Arbeitsmittel einen Dampfraum (323) zu schaffen, wobei die Dampfzuführung (320) ausgebildet ist, um mit dem Dampf räum (323) zu kommunizieren.

Wärmepumpe nach Anspruch 6, bei der ein Überlauf (324) in dem Motorgehäuse (300) angeordnet ist, um flüssiges Arbeitsmittel oberhalb des Pegels (322) in den Kondensierer (1 14) zu leiten, und um als die Dampfabführung (324) einen Dampfweg zwischen dem Dampfraum (323) und dem Kondensierer (1 14) zu schaffen.

Wärmepumpe nach einem der Ansprüche 5 bis 7, die einen Lagerabschnitt aufweist, der ausgebildet ist, um die Motorwelle bezüglich des Stators zu lagern, wobei der Lagerabschnitt so angeordnet ist, dass zwischen dem Lagerabschnitt und dem Radialrad der Rotor und der Stator des Verdichtermotors angeordnet sind, wobei ein von dem Lagerabschnitt (343) abgedichtetes Volumen (364) ausgebildet ist, und wobei der Arbeitsmittelzulauf (362) ausgebildet ist, um zur Lagerkühlung das flüssige Arbeitsmittel in das abgedichtete Volumen (364) zu leiten.

9. Wärmepumpe nach Anspruch 8, bei der der Arbeitsmittelzulauf (362) ferner ausgebildet ist, um flüssiges Arbeitsmittel aus dem abgedichteten Volumen heraus (366) an die Wand (309) des Verdichtermotors zu führen.

10. Wärmepumpe nach Anspruch 9, bei der der Arbeitsmittelzulauf (362) einen Leitungsabschnitt aufweist, der ausgebildet ist, um flüssiges Arbeitsmittel aus dem abgedichteten Volumen (364) heraus zu leiten, wobei sich der Leitungsabschnitt in einem flüssigen Arbeitsmittel in dem Motorgehäuse (300) erstreckt, um flüssiges Arbeitsmittel in dem Leitungsabschnitt einem Boden des Motorgehäuses (300) zuzuführen.

1 1. Wärmepumpe nach einem der vorhergehenden Ansprüche, bei der das Motorgehäuse ausgebildet ist, um in einem Betrieb der Wärmepumpe einen Pegel (323) an flüssigem Arbeitsmittel zu halten, so dass das flüssige Arbeitsmittel eine Wand des Verdichtermotors zumindest teilweise umgibt, wobei die Wand des Verdichtermotors um den Stator herum ausgebildet ist, wobei das Motorgehäuse (300) ferner ausgebildet ist, um einen Innendruck zu haben, der gleich oder größer als ein Druck im Kondensierer (1 14) ist, so dass bei einer Erwärmung der Wand des Verdichtermotors aufgrund einer Motor-Verlustleistung eine Blasen- siedung (367) in dem flüssigen Arbeitsmittel (328) stattfindet.

12. Wärmepumpe nach einem der Ansprüche 6 bis 1 1 , die ferner ein Konvektionsele- ment (342) aufweist, das von der Wand (309) der Verdichtermotors beabstandet in dem flüssigen Arbeitsmittel (328) angeordnet ist und in einem unteren Bereich durchlässiger für das flüssige Arbeitsmittel ist als in einem oberen Bereich.

13. Wärmepumpe nach Anspruch 12, bei der das Konvektionselement (342) kronen- förmig ist, wobei ein Bereich des Konvektionselements mit Kronenzacken den un- teren Bereich definiert und der obere Bereich des Konvektionselements (342) für das flüssige Arbeitsmittel undurchlässig ist.

Wärmepumpe nach einem der vorhergehenden Ansprüche, bei der ein Notlager (344) zum Absichern der Motorwelle (306) zwischen dem Rotor (307) und dem Radialrad (304) angeordnet ist, wobei sich der weitere Spalt durch Bohrungen in dem Notlager (344) oder durch einen Lagerspalt des Notlagers erstreckt.

Wärmepumpe nach einem der vorhergehenden Ansprüche, bei der die Motorwelle folgende Merkmale aufweist: einen Wellenkern (306'); einen Magnetbereich mit Permanentmagneten (307), die auf dem Wellenkern (306') befestigt sind, um den Rotor zu definieren; einer um den Magnetbereich (307) herum angeordneten Sicherungshülse (396) zum Sichern der Permanentmagnete.

Wärmepumpe nach Anspruch 15, bei der der Wellenkern (306') aus Aluminium gebildet ist, oder bei der die Sicherung (396) eine Carbonhülse ist, oder wobei an einem oberen Ende des Magnetbereichs in Richtung eines Lagerbereichs oder an einem unteren Ende eine Carbon-Bandage (397) angebracht ist.

Wärmepumpe nach einem der vorhergehenden Ansprüche, bei der der Leitraum (302) so ausgebildet ist, dass sich der Leitraum von dem Radialrad weg zu dem Kondensierer hin im Querschnitt vergrößert, um einen Druckaufbau zu erreichen.

Wärmepumpe nach einem der vorhergehenden Ansprüche, bei der der Leitraum (302) radialsymmetrisch ist und ausgebildet ist, um eine Um- lenkung einer Dampfströmungsrichtung zu erreichen, so dass eine durch das Ra- dialrad nach oben gerichtete Strömung am Ausgang des Leitraums (302) seitlich oder nach unten gerichtet ist.

19. Wärmepumpe nach einem der Ansprüche 5 bis 10, bei der in dem Motorgehäuse (300) ein Spritzschutz (360) angeordnet ist, der ausgebildet ist, um Arbeitsmitteltropfen von der Dampfzuführung (320) abzuhalten, so dass der Dampf, der in den Motorspalt (31 1 ) einbringbar ist, eine reduzierte Anzahl von Arbeitsmitteltropfen aufweist, im Vergleich zu der Anzahl von Arbeitsmitteltrop- fen pro Volumen in dem Dampf räum (323).

20. Wärmepumpe nach einem der vorhergehenden Ansprüche, bei der das Motorgehäuse ausgebildet ist, um einen Druck zu halten, der höher als ein mittlerer Druck aus dem Verdampfer und dem Kondensierer ist, oder der höher als der Druck in dem weiteren Spalt (313) zwischen dem Radialrad und dem Leitraum (302) ist, oder der größer oder gleich dem Druck in dem Kondensierer ist.

21. Wärmepumpe nach einem der Ansprüche 1 bis 20, bei der das Motorgehäuse (300), ausgebildet ist, um einen Druck zu halten, der wenigstens gleich dem Druck in dem Verdampfer ist, oder bei dem ein Arbeitsmittelzulauf (362, 330) ausgebildet ist, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an eine Motorwand (309) zu sprühen, oder wobei das Motorgehäuse (300) ferner ausgebildet ist, um in dem Betrieb der Wärmepumpe einen maximalen Pegel (322) an flüssigem Arbeitsmittel zu halten und oberhalb des maximalen Pegels (322) einen Dampf räum (323) zu bilden, und wo- bei das Motorgehäuse (300) ferner ausgebildet ist, um Arbeitsmittel oberhalb des maximalen Pegels in den Kondensierer (1 14) zu leiten. Verfahren zum Herstellen einer Wärmepumpe mit folgenden Merkmalen: einem Kondensierer mit einem Kondensierergehäuse (1 14); einem Verdichtermotor, der an dem Kondensierergehäuse (1 14) angebracht ist und einen Rotor (307) und einen Stator (308) aufweist, wobei der Rotor eine Motorwelle (306) aufweist, an der ein Radialrad (304) angebracht ist, das sich in eine Verdampferzone (102) erstreckt; einem Leitraum (302), der ausgebildet ist, um durch das Radialrad (304) verdichteten Dampf aufzunehmen und in den Kondensierer (1 14) zu leiten; einem Motorgehäuse (300), das den Verdichtermotor umgibt; und einer Dampfzuführung (320) zum Zuführen von Dampf (310) in dem Motorgehäuse (300) zu einem Motorspalt (31 1 ) zwischen dem Stator und dem Rotor (307), wobei der Verdichtermotor derart ausgebildet ist, dass sich ein weiterer Spalt (313) von dem Motorspalt (31 1 ) entlang des Radialrads (304) zu dem Leitraum (302) erstreckt, so dass von dem Motorgehäuse (300) über die Dampfzuführung (320) der Dampf (310) entlang des Motorspalts (31 1 ) und des weiteren Spalts (313) in den Kondensierer gezogen wird.

Verfahren zum Betreiben einer Wärmepumpe mit folgenden Merkmalen: einem Kondensierer mit einem Kondensierergehäuse (1 14); einem Verdichtermotor, der an dem Kondensierergehäuse (1 14) angebracht ist und einen Rotor (307) und einen Stator (308) aufweist, wobei der Rotor eine Motorwelle (306) aufweist, an der ein Radialrad (304) angebracht ist, das sich in eine Verdampferzone (102) erstreckt; einem Leitraum (302), der ausgebildet ist, um durch das Radialrad (304) verdichteten Dampf aufzunehmen und in den Kondensierer (1 14) zu leiten; einem Motorgehäuse (300), das den Verdichtermotor umgibt; einem Motorspalt (31 1 ) zwischen dem Stator und dem Rotor (307), wobei der Verdichtermotor derart ausgebildet ist, dass sich ein weiterer Spalt (313) von dem Motorspalt (31 1 ) entlang des Radialrads (304) zu dem Leitraum (302) erstreckt; wobei das Verfahren folgende Merkmale aufweist:

Zuführen von Dampf (310) in dem Motorgehäuse (300) durch eine Dampfzufüh- rung (320) in den Motorspalt (31 1 ) und den weiteren Spalt (313) zu dem Radialrad

(304) und in den Leitraum (302), wobei von dem Motorgehäuse (300) über die Dampfzuführung (320) der Dampf (310) entlang des Motorspalts (31 1 ) und des weiteren Spalts (313) in den Kondensierer gezogen wird.

Description:
Wärmepumpe mit konvektiver Wellenkühlung

Beschreibung

Die vorliegende Erfindung bezieht sich auf Wärmepumpen zum Heizen, Kühlen oder für eine sonstige Anwendung einer Wärmepumpe.

Fig. 8A und Fig. 8B stellen eine Wärmepumpe dar, wie sie in dem europäischen Patent EP 2016349 B1 beschrieben ist. Die Wärmepumpe umfasst zunächst einen Verdampfer 10 zum Verdampfen von Wasser als Arbeitsflüssigkeit, um ausgangsseitig einen Dampf in einer Arbeitsdampfleitung 12 zu erzeugen. Der Verdampfer umfasst einen Verdampfungsraum (in Fig. 8A nicht gezeigt) und ist ausgebildet, um in dem Verdampfungsraum einen Verdampfungsdruck kleiner als 20 hPa zu erzeugen, so dass das Wasser bei Temperatu- ren unter 15 °C im Verdampfungsraum verdampft. Das Wasser ist z.B. Grundwasser, im Erdreich frei oder in Kollektorrohren zirkulierende Sole, also Wasser mit einem bestimmten Salzgehalt, Flusswasser, Seewasser oder Meerwasser. Es können alle Arten von Wasser, also kalkhaltiges Wasser, kalkfreies Wasser, salzhaltiges Wasser oder salzfreies Wasser verwendet werden. Dies liegt daran, dass alle Arten von Wasser, also alle diese "Wasserstoffe", die günstige Wasser-Eigenschaft haben, nämlich dass Wasser, das auch als "R 718" bekannt ist, ein für den Wärmepumpen-Prozess nutzbares Enthalpie- Differenz-Verhältnis von 6 hat, was dem mehr als 2-fachen des typischen nutzbaren Enthalpie-Differenz-Verhältnisses von z.B. R134a entspricht. Der Wasserdampf wird durch die Saugleitung 12 einem Verdichter/Verflüssiger-System 14 zugeführt, das eine Strömungsmaschine wie z.B. einen Radialverdichter, beispielsweise in Form eines Turboverdichters aufweist, der in Fig. 8A mit 16 bezeichnet ist. Die Strömungsmaschine ist ausgebildet, um den Arbeitsdampf auf einen Dampfdruck zumindest größer als 25 hPa zu verdichten. 25 hPa korrespondiert mit einer Verflüssigungstem- peratur von etwa 22 °C, was zumindest an relativ warmen Tagen bereits eine ausreichende Heizungs-Vorlauftemperatur einer Fußbodenheizung sein kann. Um höhere Vorlauftemperaturen zu generieren, können Drücke größer als 30 hPa mit der Strömungsmaschine 16 erzeugt werden, wobei ein Druck von 30 hPa eine Verflüssigungstemperatur von 24 °C hat, ein Druck von 60 hPa eine Verflüssigungstemperatur von 36 °C hat, und ein Druck von 100 hPa einer Verflüssigungstemperatur von 45 °C entspricht. Fußboden- heizungen sind ausgelegt, um mit einer Vorlauftemperatur von 45 °C auch an sehr kalten Tagen ausreichend heizen zu können.

Die Strömungsmaschine ist mit einem Verflüssiger 18 gekoppelt, der ausgebildet ist, um den verdichteten Arbeitsdampf zu verflüssigen. Durch das Verflüssigen wird die in dem Arbeitsdampf enthaltene Energie dem Verflüssiger 18 zugeführt, um dann über den Vorlauf 20a einem Heizsystem zugeführt zu werden. Über den Rücklauf 20b fließt das Ar- beitsfluid wieder in den Verflüssiger zurück. Erfindungsgemäß wird es bevorzugt, dem energiereichen Wasserdampf direkt durch das kältere Heizungswasser die Wärme (-energie) zu entziehen, welche vom Heizungswasser aufgenommen wird, so dass dieses sich erwärmt. Dem Dampf wird hierbei so viel Energie entzogen, dass dieser verflüssigt wird und ebenfalls am Heizungskreislauf teilnimmt. Damit findet ein Materialeintrag in den Verflüssiger bzw. das Heizungssystem statt, der durch einen Ablauf 22 reguliert wird, derart, dass der Verflüssiger in seinem Verflüssigerraum einen Wasserstand hat, der trotz des ständigen Zuführens von Wasserdampf und damit Kondensat immer unterhalb eines Maximalpegels bleibt. Wie es bereits ausgeführt worden ist, wird es bevorzugt, einen offenen Kreislauf zu nehmen, also das Wasser, das die Wärmequelle darstellt, direkt ohne Wärmetauscher zu verdampfen. Alternativ könnte jedoch auch das zu verdampfende Wasser zunächst über einen Wärmetauscher von einer externen Wärmequelle aufgeheizt werden. Darüber kann, um auch Verluste für den zweiten Wärmetauscher, der auf Verflüssiger-Seite bisher not- wendigerweise vorhanden ist, zu vermeiden, auch dort das Medium direkt verwendet, werden, wenn an ein Haus mit Fußbodenheizung gedacht wird, das Wasser, das von dem Verdampfer stammt, direkt in der Fußbodenheizung zirkulieren zu lassen.

Alternativ kann jedoch auch auf Verflüssiger-Seite ein Wärmetauscher angeordnet wer- den, der mit dem Vorlauf 20a gespeist wird und der den Rücklauf 20b aufweist, wobei dieser Wärmetauscher das im Verflüssiger befindliche Wasser abkühlt und damit eine separate Fußbodenheizungsflüssigkeit, die typischerweise Wasser sein wird, aufheizt.

Aufgrund der Tatsache, dass als Arbeitsmedium Wasser verwendet wird, und aufgrund der Tatsache, dass von dem Grundwasser nur der verdampfte Anteil in die Strömungsmaschine eingespeist wird, spielt der Reinheitsgrad des Wassers keine Rolle. Die Strö- mungsmaschine wird, genauso wie der Verflüssiger und die ggf. direkt gekoppelte Fußbodenheizung immer mit destilliertem Wasser versorgt, derart, dass das System im Vergleich zu heutigen Systemen einen reduzierten Wartungsaufwand hat. Anders ausgedrückt ist das System selbstreinigend, da dem System immer nur destilliertes Wasser zugeführt wird und das Wasser im Ablauf 22 somit nicht verschmutzt ist.

Darüber hinaus sei darauf hingewiesen, dass Strömungsmaschinen die Eigenschaften haben, dass sie - ähnlich einer Flugzeugturbine - das verdichtete Medium nicht mit problematischen Stoffen, wie beispielsweise Öl, in Verbindung bringen. Stattdessen wird der Wasserdampf lediglich durch die Turbine bzw. den Turboverdichter verdichtet, jedoch nicht mit Öl oder einem sonstigen die Reinheit beeinträchtigenden Medium in Verbindung gebracht und damit verunreinigt.

Das durch den Ablauf abgeführte destillierte Wasser kann somit - wenn keine sonstigen Vorschriften im Wege stehen - ohne Weiteres dem Grundwasser wieder zugeführt werden. Alternativ kann es jedoch auch z.B. im Garten oder in einer Freifläche versickert werden, oder es kann über den Kanal, sofern dies Vorschriften gebieten - einer Kläranlage zugeführt werden. Die Kombination von Wasser als Arbeitsmittel mit dem um das 2-fache besseren nutzbaren Enthalpie-Differenz- Verhältnis im Vergleich zu R134a und aufgrund der damit reduzierten Anforderungen an die Geschlossenheit des Systems, und aufgrund des Einsatzes der Strömungsmaschine, durch den effizient und ohne Reinheitsbeeinträchtigungen die erforderlichen Verdichtungsfaktoren erreicht werden, wird ein effizienter und umweltneut- raier Wärmepumpenprozess geschaffen.

Fig. 8B zeigt eine Tabelle zur Illustration verschiedener Drücke und den diesen Drücken zugeordneten Verdampfungstemperaturen, woraus sich ergibt, dass insbesondere für Wasser als Arbeitsmedium recht niedrige Drücke im Verdampfer zu wählen sind.

Die DE 4431887 A1 offenbart eine Wärmepumpenanlage mit einem leichtgewichtigen, großvolumigen Hochleistungs-Zentrifugalkompressor. Ein Dampf, der einen Kompressor einer zweiten Stufe verlässt, besitzt eine Sättigungstemperatur, die die Umgebungstemperatur oder diejenige eines verfügbaren Kühlwassers übersteigt, wodurch eine Wärme- abfuhr ermöglicht wird. Der komprimierte Dampf wird von dem Kompressor der zweiten Stufe in die Kondensatoreinheit überführt, die aus einer Schüttschicht besteht, die inner- halb einer Kühlwassersprüheinrichtung an einer Oberseite, die durch eine Wasserzirkulationspumpe versorgt wird, vorgesehen ist. Der komprimierte Wasserdampf steigt in dem Kondensor durch die Schüttschicht an, wo sie in direktem Gegenstromkontakt mit dem nach unten strömenden Kühlwasser gelangt. Der Dampf kondensiert und die latente Wärme der Kondensation, die durch das Kühlwasser absorbiert wird, wird an die Atmosphäre über das Kondensat und das Kühlwasser ausgestoßen, die zusammen aus dem System entfernt werden. Der Kondensor wird kontinuierlich mit nicht kondensierbaren Gasen mittels einer Vakuumpumpe über eine Rohrleitung gespült. Die WO 2014072239 A1 offenbart einen Verflüssiger mit einer Kondensationszone zum Kondensieren von zu kondensierendem Dampf in einer Arbeitsflüssigkeit. Die Kondensationszone ist als Volumenzone ausgebildet und hat eine seitliche Begrenzung zwischen dem oberen Ende der Kondensationszone und dem unteren Ende. Ferner umfasst der Verflüssiger eine Dampfeinleitungszone, die sich entlang des seitlichen Endes der Kon- densationszone erstreckt und ausgebildet ist, um zu kondensierenden Dampf seitlich über die seitliche Begrenzung in die Kondensationszone zuzuführen. Damit wird, ohne das Volumen des Verflüssigers zu vergrößern, die tatsächliche Kondensation zu einer Volumenkondensation gemacht, weil der zu verflüssigende Dampf nicht nur frontal von einer Seite in ein Kondensationsvolumen bzw. in die Kondensationszone eingeleitet wird, son- dem seitlich und vorzugsweise von allen Seiten. Damit wird nicht nur sichergestellt, dass das zur Verfügung gestellte Kondensationsvolumen bei gleichen äußeren Abmessungen im Vergleich zu einer direkten Gegenstromkondensation vergrößert wird, sondern dass gleichzeitig auch die Effizienz des Kondensators verbessert wird, weil der zu verflüssigende Dampf in der Kondensationszone eine Stromrichtung quer zu der Strömungsrich- tung der Kondensationsflüssigkeit aufweist.

Generell problematisch bei Wärmepumpen ist die Tatsache, dass bewegliche Teile und insbesondere schnell bewegliche Teile zu kühlen sind. Hier sind insbesondere der Verdichtermotor und speziell die Motorwelle problematisch. Speziell für Wärmepumpen, bei denen als Verdichter Radialräder verwendet werden, die zum Erreichen einer kleinen Bauform sehr schnell betrieben werden, beispielsweise in Regionen größer als 50.000 Umdrehungen pro Minute, können Wellentemperaturen Werte erreichen, die problematisch sind, da sie zu einer Zerstörung der Bauteile führen können. Die Aufgabe der vorliegenden Erfindung besteht darin, ein sicheres Konzept für eine Wärmepumpe zu schaffen. Diese Aufgabe wird durch eine Wärmepumpe nach Patentanspruch 1 oder ein Verfahren zum Herstellen einer Wärmepumpe nach Patentanspruch 22, oder ein Verfahren zum Betreiben einer Wärmepumpe nach Patentanspruch 23 gelöst.

Die Wärmepumpe gemäß einem Aspekt der vorliegenden Erfindung umfasst eine spezielle konvektive Wellenkühlung. Diese Wärmepumpe hat einen Kondensierer mit einem Kondensierergehäuse, einen Verdichtermotor, der an dem Kondensierergehäuse angebracht ist und einen Rotor und einen Stator aufweist, wobei der Rotor eine Motorwelle aufweist, an der ein Radialrad angebracht ist, das sich in eine Verdampferzone erstreckt, und einen Leitraum, der ausgebildet ist, um durch das Radialrad verdichteten Dampf aufzunehmen und in den Kondensierer zu leiten. Darüber hinaus hat diese Wärmepumpe ein Motorgehäuse, das den Verdichtermotor umgibt und vorzugsweise ausgebildet ist, um einen Druck zu halten, der wenigstens gleich dem Druck in dem Kondensierer ist. Es reicht aber auch bereits ein Druck aus, der größer als der Druck hinter dem Radialrad ist. Dieser Druck stellt sich bei bestimmten Ausführungen auf einen Druck ein, der in der Mitte zwischen dem Kondensiererdruck und dem Verdampferdruck liegt. Darüber hinaus ist eine Dampfzuführung in dem Motorgehäuse vorgesehen, um Dampf in dem Motorgehäuse zu einem Motorspalt zwischen dem Stator und der Motorwelle zuzuführen. Ferner ist der Motor dahin gehend ausgebildet, dass sich ein weiterer Spalt von dem Motorspait zwischen dem Stator und der Motorwelle entlang des Radialrads bis hin zu dem Leitraum erstreckt.

Dadurch wird erfindungsgemäß erreicht, dass in dem Motorgehäuse ein relativ hoher Druck, der höher als der mittlere Druck aus dem Kondensierer und dem Verdampfer und vorzugsweise gleich oder höher als der Kondensiererdruck ist, herrscht, während in dem weiteren Spalt, der sich entlang des Radialrads zu dem Leitraum erstreckt, ein geringerer Druck befindet. Dieser Druck, der gleich dem mittleren Druck aus dem Kondensierer und dem Verdampfer ist, existiert aufgrund der Tatsache, dass das Radialrad bei der Kom- pression des Dampfes aus dem Verdampfer einen Bereich mit hohem Druck vor dem Radialrad und einen Bereich mit kleinem Druck oder Unterdruck hinter dem Radialrad erzeugt. Insbesondere ist der Bereich mit hohem Druck vor dem Radialrad immer noch kleiner als der hohe Druck in dem Kondensator und der kleine Druck gewissermaßen„hinter" dem Radialrad ist noch kleiner als der hohe Druck am Ausgang des Radialrads Erst am Ausgang des Leitraums existiert dann der hohe Kondensatordruck. Dieses Druckgefälle, das an den Motorspalt„angekoppelt" ist, sorgt dafür, dass von dem Motorgehäuse über die Dampfzuführung Arbeitsdampf entlang des Motorspalts und des weiteren Spalts in den Kondensierer gezogen wird. Dieser Dampf ist zwar auf dem Temperaturniveau des Kondensierer-Arbeitsmittels oder darüber. Dies ist allerdings gerade von Vorteil, weil damit sämtliche Kondensationsprobleme innerhalb des Motors und insbesondere innerhalb der Motorwelle, die Korrosionen etc. unterstützen würden, vermieden werden.

So wird bei diesem Aspekt der vorliegenden Erfindung gerade nicht die kälteste Arbeits- flüssigkeit, die nämlich im Verdampfer vorhanden ist, zur konvektiven Wellenkühlung genutzt. Es wird auch nicht der kalte Dampf im Verdampfer eingesetzt. Stattdessen wird zur konvektiven Wellenkühlung der Dampf auf Kondensierer oder Kondensatortemperatur, den es in der Wärmepumpe gibt, eingesetzt. Damit wird nach wie vor eine ausreichende Wellenkühlung erreicht, und zwar aufgrund der konvektiven Natur, d.h. dass die Motorwel- le aufgrund der Dampfzuführung, des Motorspalts und des weiteren Spalts von einer signifikanten und insbesondere einstellbaren Menge an Dampf umspült wird. Gleichzeitig wird aufgrund der Tatsache, dass dieser Dampf im Vergleich zu dem Dampf im Verdampfer relativ warm ist, sichergestellt, dass keine Kondensation entlang der Motorwelle in dem Motorspalt bzw. dem weiteren Spalt stattfindet. Stattdessen wird hier immer eine Tempe- rierung geschaffen, die höher ist als die kälteste Temperatur. Kondensation entsteht immer an der kältesten Temperatur in einem Volumen und damit nicht innerhalb des Motorspalts und des weiteren Spalts, da diese ja von dem warmen Dampf umspült werden.

Damit führt die vorliegende Erfindung zu einer ausreichenden konvektiven Wellenkühlung. Dies verhindert zu hohe Temperaturen in der Motorwelle und damit einhergehende Verschleißerscheinungen. Darüber hinaus wird effektiv vermieden, dass eine Kondensation in dem Motor, z.B. bei Stillstand der Wärmepumpe, auftritt. Damit werden auch sämtliche Betriebssicherheitsprobleme und Korrosionsprobleme, die mit einer solchen Kondensation einhergehen würden, ebenfalls wirksam eliminiert. Die vorliegende Erfindung führt gemäß dem Aspekt der konvektiven Wellenkühlung zu einer signifikant betriebssicheren Wärmepumpe.

Bei einem weiteren Aspekt der vorliegenden Erfindung, der sich auf eine Wärmepumpe mit Motorkühlung bezieht, umfasst die Wärmepumpe einen Kondensierer mit einem Kon- densierergehäuse, einen Verdichtermotor, der an dem Kondensierergehäuse angebracht ist und einen Rotor und einen Stator aufweist. Der Rotor umfasst eine Motorwelle, an der ein Verdichterrad zum Verdichten von Arbeitsmitteldampf angebracht ist. Ferner hat der Verdichtermotor eine Motorwand. Die Wärmepumpe umfasst ein Motorgehäuse, das den Verdichtermotor umgibt und vorzugsweise ausgebildet ist, um einen Druck zu halten, der wenigstens gleich dem Druck in dem Kondensator ist, und der einen Arbeitsmittelzulauf hat, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an die Motorwand zu führen. Der Druck im Motorgehäuse kann hier jedoch ebenfalls niedriger sein, da die Wärmeabfuhr von dem Motorgehäuse durch Sieden bzw. Verdunsten stattfindet. Die Wärmeenergie an der Motorwand wird also hauptsächlich durch den Dampf von der Motorwand weggebracht, wobei dieser erwärmte Dampf dann abgeführt wird, wie beispiels- weise in den Kondensierer. Alternativ kann der Dampf von der Motorkühlung aber auch in den Verdampfer oder nach außen gebracht werden. Bevorzugt wird aber die Leitung des erwärmten Dampfes in den Kondensierer. Im Gegensatz zu einer Wasserkühlung, bei der ein Motor durch vorbeiströmendes Wasser gekühlt wird, findet die Kühlung bei diesem Aspekt der Erfindung durch Verdampfen statt, so dass durch die bereitgestellte Dampfab- fuhr die abzutransportierende Wärmeenergie weggebracht wird. Ein Vorteil ist, dass zur Kühlung weniger Flüssigkeit gebraucht wird und der Dampf einfach weggeleitet werden kann, z. B. automatisch in den Kondensierer, in dem der Dampf dann wieder kondensiert und die Wärmeleistung des Motor damit an die Kondensiererflüssigkeit abgibt. Das Motorgehäuse ist daher ausgebildet, um in dem Betrieb der Wärmepumpe einen Dampfraum zu bilden, in dem sich das aufgrund der Blasensiedung oder Verdunstung befindliche Arbeitsmedium befindet. Das Motorgehäuse ist ferner ausgebildet ist, um den Dampf aus dem Dampf räum in dem Motorgehäuse durch eine Dampfabführung abzuleiten. Diese Ableitung findet vorzugsweise in den Kondensierer statt, so dass die Dampfab- führung durch ein gasdurchlässige Verbindung zwischen dem Kondensierer und dem Motorgehäuse erreicht wird.

Das Motorgehäuse ist vorzugsweise ferner ausgebildet, um in einem Betrieb der Wärmepumpe einen maximalen Pegel an flüssigem Arbeitsmittel in dem Motorgehäuse zu hal- ten, und um ferner oberhalb des maximalen des Pegels einen Dampfraum zu bilden. Das Motorgehäuse ist ferner ausgebildet, um Arbeitsmittel oberhalb des maximalen Pegels in den Kondensierer zu leiten. Diese Ausführung erlaubt es, die Kühlung durch Dampferzeugung sehr robust zu halten, da der Pegel an Arbeitsflüssigkeit immer sicherstellt, dass an der Motorwand genug Arbeitsflüssigkeit zur Blasensiedung vorhanden ist. Alternativ kann statt des Pegels an Arbeitsflüssigkeit, der immer gehalten wird, auch Arbeitsflüssigkeit auf die Motorwand gesprüht werden. Die gesprühte Flüssigkeit ist dann so dosiert, dass sie beim Kontakt mit der Motorwand verdampft und dadurch die Kühlleistung für den Motor erreicht.

Der Motor wird somit an seiner Motorwand mit flüssigem Arbeitsmittel effektiv gekühlt. Dieses flüssige Arbeitsmittel ist jedoch nicht das kalte Arbeitsmittel aus dem Verdampfer, sondern das warme Arbeitsmittel aus dem Kondensierer. Die Verwendung des warmen Arbeitsmittels aus dem Kondensierer schafft dennoch eine ausreichende Motorkühlung. Gleichzeitig wird jedoch sichergestellt, dass der Motor nicht zu stark gekühlt wird und insbesondere nicht dahin gehend abgekühlt wird, dass er der kälteste Teil im Kondensierer bzw. auf dem Kondensierergehäuse ist. Dies würde nämlich dazu führen, dass z.B. bei Stillstand des Motors aber auch im Betrieb eine Kondensation von Arbeitsmitteldampf außen am Motorgehäuse stattfinden würde, die zu Korrosions- und weiteren Problemen führen würde. Stattdessen wird sichergestellt, dass der Motor zwar gut gekühlt ist, jedoch gleichzeitig immer das wärmste Teil der Wärmepumpe ist, dahin gehend, dass eine Kon- densation, die ja immer am kältesten„Ende" stattfindet, gerade an dem Verdichtermotor nicht stattfindet.

Vorzugsweise wird das flüssige Arbeitsmittel im Motorgehäuse auf nahezu demselben Druck gehalten, auf dem der Kondensierer ist. Dies führt dazu, dass das Arbeitsmittel, das den Motor kühlt, nahe an seiner Siedegrenze ist, da dieses Arbeitsmittel Kondensiererarbeitsmittel ist und auf ähnlicher Temperatur wie im Kondensierer ist. Wird nun die Motorwand aufgrund einer Reibung wegen des Motorbetriebs erwärmt, so geht die thermische Energie in das flüssige Arbeitsmittel über. Aufgrund der Tatsache, dass das flüssige Arbeitsmittel nahe am Siedepunkt ist, startet nun in dem Motorgehäuse in dem flüssigen Arbeitsmittel, das das Motorgehäuse bis zu dem maximalen Pegel auffüllt, eine Blasen- siedung.

Diese Blasensiedung ermöglicht eine außerordentlich effiziente Kühlung aufgrund der sehr starken Durchmischung des Volumens an flüssigem Arbeitsmittel in dem Motorge- häuse. Diese durch Siedung unterstützte Kühlung kann ferner durch ein vorzugsweise vorgesehenes Konvektionselement signifikant unterstützt werden, so dass am Ende eine sehr effiziente Motorkühlung mit einem relativen kleinen Volumen oder gar keinem stehenden Volumen an flüssigem Arbeitsmittel, die zudem nicht weiter gesteuert werden muss, weil sie selbststeuernd ist, erreicht wird. Damit wird mit einem geringen techni- sehen Aufwand eine effiziente Motorkühlung erreicht, die wiederum zu einer Betriebssicherheit der Wärmepumpe signifikant beiträgt. - -

Bevorzugte Ausführungsbeispiele der vorliegenden Erfindung werden nachfolgend Bezug nehmend auf die beiliegenden Zeichnungen detailliert erläutert. Es zeigen: Fig. 1 eine schematische Ansicht einer Wärmepumpe mit einer verschränkten Verdampfer/Kondensierer-Anordnung;

Fig. 2 eine schematische Darstellung einer Wärmepumpe mit konvektiver Wellenkühlung gemäß einem Aspekt;

Fig. 3 eine schematische Darstellung einer Wärmepumpe mit konvektiver Wellenküh- iung einerseits und Motorkühlung gemäß einem weiteren Aspekt andererseits;

Fig. 4 eine Schnittdarstellung einer Wärmepumpe gemäß einem Ausführungsbeispiel mit konvektiver Wellenkühlung einerseits und Motorkühlung andererseits unter spezieller Berücksichtigung der konvektiven Wellenkühlung;

Fig. 5 eine Schnittdarstellung einer Wärmepumpe mit einem Verdampferboden und einem Kondensatorboden gemäß dem Ausführungsbeispiei von Fig. 1 ;

Fig. 6 eine perspektivische Darstellung eines Verflüssigers, wie er in der WO 2014072239 A1 gezeigt ist;

Fig. 7 eine Darstellung der Flüssigkeitsverteilerplatte einerseits und der Dampfeinlass- zone mit Dampfeinlassspalt andererseits aus der WO 2014072239 A1 ;

Fig. 8a eine schematische Darstellung einer bekannten Wärmepumpe zum Verdampfen von Wasser; Fig. 8b eine Tabelle zur Veranschaulichung von Drücken und Verdampfungstemperaturen von Wasser als Arbeitsflüssigkeit;

Fig. 9 eine schematische Darstellung einer Wärmepumpe mit Motorkühlung gemäß dem zweiten Aspekt; - -

Fig. 10 eine Wärmepumpe gemäß einem Ausführungsbeispiel mit einer konvektiven Wellenkühiung gemäß dem ersten Aspekt und einer Motorkühlung gemäß dem zweiten Aspekt, wobei besonderer Wert auf die Motorkühlung gelegt ist; und Fig. 1 1 einen Querschnitt durch eine Motorwelle mit einem Lagerabschnitt gemäß Ausführungsbeispielen der vorliegenden Erfindung.

Fig. 1 zeigt eine Wärmepumpe 100 mit einem Verdampfer zum Verdampfen von Arbeitsflüssigkeit in einem Verdampferraum 102. Die Wärmepumpe umfasst ferner einen Kon- densator zum Verflüssigen von verdampfter Arbeitsflüssigkeit in einem Kondensatorraum 104, der von einem Kondensatorboden 106 begrenzt ist. Wie es in Fig. 1 gezeigt ist, die als Schnittdarstellung oder als Seitenansicht angesehen werden kann, ist der Verdampferraum 102 zumindest teilweise von dem Kondensatorraum 104 umgeben. Ferner ist der Verdampferraum 102 durch den Kondensatorboden 106 von dem Kondensator- räum 104 getrennt. Darüber hinaus ist der Kondensatorboden mit einem Verdampferboden 108 verbunden, um den Verdampferraum 102 zu definieren. In einer Implementierung ist oberhalb am Verdampferraum 102 oder an anderer Stelle ein Kompressor 1 10 vorgesehen, der in Fig. 1 nicht näher ausgeführt ist, der jedoch prinzipiell ausgebildet ist, um verdampfte Arbeitsflüssigkeit zu komprimieren und als komprimierten Dampf 1 12 in den Kondensatorraum 104 zu leiten. Der Kondensatorraum ist ferner nach außen hin durch eine Kondensatorwand 1 14 begrenzt. Die Kondensatorwand 1 14 ist ebenfalls wie der Kondensatorboden 106 an dem Verdampferboden 108 befestigt. Insbesondere ist die Dimensionierung des Kondensatorbodens 106 in dem Bereich, der die Schnittstelle zum Verdampferboden 108 bildet, so, dass der Kondensatorboden bei dem in Fig. 1 gezeigten Ausführungsbeispiel vollständig von der Kondensatorraumwand 1 14 umgeben ist. Dies bedeutet, dass sich der Kondensatorraum, wie es in Fig. 1 gezeigt ist, bis zum Verdampferboden erstreckt, und dass sich der Verdampferraum gleichzeitig sehr weit nach oben, typischerweise nahezu durch fast den gesamten Kondensatorraum 104 erstreckt. Diese "verschränkte" oder ineinandergreifende Anordnung von Kondensator und Verdampfer, die sich dadurch auszeichnet, dass der Kondensatorboden mit dem Verdampferboden verbunden ist, liefert eine besonders hohe Wärmepumpeneffizienz und erlaubt daher eine besonders kompakte Bauform einer Wärmepumpe. Größenordnungsmäßig ist die Dimensionierung der Wärmepumpe z.B. in einer zylindrischen Form so, dass die Kondensatorwand 1 14 einen Zylinder mit einem Durchmesser zwischen 30 und 90 cm und einer Höhe zwischen 40 und 100 cm darstellt. Die Dimensionierung kann je- - - doch je nach erforderliche Leistungsklasse der Wärmepumpe gewählt werden, findet jedoch vorzugsweise in den genannten Dimensionen statt. Damit wird eine sehr kompakte Bauform erreicht, die zudem einfach und günstig herstellbar ist, weil die Anzahl der Schnittstellen, insbesondere für den fast unter Vakuum stehenden Verdampferraum ohne weiteres reduziert werden kann, wenn der Verdampferboden gemäß bevorzugten Ausführungsbeispielen der vorliegenden Erfindung dahin gehend ausgeführt wird, dass er sämtliche Flüssigkeits-Zu- und Ableitungen umfasst und damit keine Flüssigkeits-Zu- und Ableitungen von der Seite oder von oben nötig sind. Ferner sei darauf hingewiesen, dass die Betriebsrichtung der Wärmepumpe so ist, wie sie in Fig. 1 gezeigt ist. Dies bedeutet, dass der Verdampferboden im Betrieb den unteren Abschnitt der Wärmepumpe definiert, jedoch abgesehen von Verbindungsleitungen mit anderen Wärmepumpen oder zu entsprechenden Pumpeneinheiten. Dies bedeutet, dass im Betrieb der im Verdampferraum erzeugte Dampf nach oben steigt und durch den Motor umgelenkt wird und von oben nach unten in den Kondensatorraum eingespeist wird, und dass die Kondensatorflüssigkeit von unten nach oben geführt wird, und dann von oben in den Kondensatorraum zugeführt wird und dann im Kondensatorraum von oben nach unten fließt, wie beispielsweise durch einzelne Tröpfchen oder durch kleine Flüssigkeitsströme, um mit dem vorzugsweise quer zugeführten komprimierten Dampf zu Zwecken einer Kondensation zu reagieren.

Diese ineinander "verschränkte" Anordnung, dahin gehend, dass der Verdampfer fast vollständig oder sogar vollständig innerhalb des Kondensators angeordnet ist, ermöglicht eine sehr effiziente Ausführung der Wärmepumpe mit optimaler Platzausnutzung. Nach- dem der Kondensatorraum sich bis zum Verdampferboden hin erstreckt, ist der Kondensatorraum innerhalb der gesamten "Höhe" der Wärmepumpe oder zumindest innerhalb eines wesentlichen Abschnitts der Wärmepumpe ausgebildet. Gleichzeitig ist jedoch auch der Verdampferraum so groß als möglich, weil er sich ebenfalls nahezu fast über die gesamte Höhe der Wärmepumpe erstreckt. Durch die ineinander verschränkte Anordnung im Gegensatz zu einer Anordnung, bei der der Verdampfer unterhalb des Kondensators angeordnet ist, wird der Raum optimal genutzt. Dies ermöglicht zum einen einen besonders effizienten Betrieb der Wärmepumpe und zum anderen einen besonders platzsparenden und kompakten Aufbau, weil sowohl der Verdampfer als auch der Verflüssiger sich über die gesamte Höhe erstrecken. Damit geht zwar die "Dicke" des Verdampferraums und auch des Verfiüssigerraums zurück. Es wurde jedoch herausgefunden, dass die Reduktion der "Dicke" des Verdampferraums, der sich innerhalb des Kondensators verjüngt, - - unproblematisch ist, weil die Hauptverdampfung im unteren Bereich stattfindet, wo der Verdampferraum nahezu das gesamte Volumen, das zur Verfügung steht, ausfüllt. Andererseits ist die Reduktion der Dicke des Kondensatorraums besonders im unteren Bereich, also dort wo der Verdampferraum nahezu den gesamten zur Verfügung stehenden Bereich ausfüllt, unkritisch, weil die Hauptkondensation oben stattfindet, also dort, wo der Verdampferraum bereits relativ dünn ist und damit ausreichend Platz für den Kondensa- torraum zurücklässt. Die ineinander verschränkte Anordnung ist somit optimal dahin gehend, dass jedem Funktionsraum dort das große Volumen gegeben wird, wo dieser Funktionsraum das große Volumen auch benötigt. Der Verdampferraum hat unten das große Volumen, während der Kondensatorraum oben das große Volumen hat. Dennoch trägt auch das entsprechende kleine Volumen, das für den jeweiligen Funktionsraum dort verbleibt, wo der andere Funktionsraum das große Volumen hat, zu einer Effizienzsteigerung bei im Vergleich zu einer Wärmepumpe, bei der die beiden Funktionselemente übereinander angeordnet sind, wie es z.B. in der WO 2014072239 A1 der Fall ist.

Bei bevorzugten Ausführungsbeispielen ist der Kompressor derart an der Oberseite des Kondensatorraums angeordnet, dass der komprimierte Dampf durch den Kompressor einerseits umgelenkt und gleichzeitig in einen Randspalt des Kondensatorraums eingespeist wird. Damit wird eine Kondensation mit besonders hoher Effizienz erreicht, weil eine Querstromrichtung des Dampfes zu einer herabfließenden Kondensationsflüssigkeit erreicht wird. Diese Kondensation mit Querströmung ist besonders im oberen Bereich, wo der Verdampferraum groß ist, wirksam und benötigt im unteren Bereich, wo der Kondensatorraum zugunsten des Verdampferraums klein ist, keinen besonders großen Bereich mehr, um dennoch eine Kondensation von bis zu diesem Bereich vorgedrungenen Dampfpartikeln zu erlauben.

Ein Verdampferboden, der mit dem Kondensatorboden verbunden ist, ist vorzugsweise so ausgebildet, dass er den Kondensator-Zu- und Ablauf und den Verdampfer-Zu- und Ablauf in sich aufnimmt, wobei zusätzlich noch bestimmte Durchführungen für Sensoren in den Verdampfer bzw. in den Kondensator vorhanden sein können. Damit wird erreicht, dass keine Durchführungen von Leitungen für den Kondensator-Zu- und Ablauf durch den nahezu unter Vakuum stehenden Verdampfer nötig sind. Dadurch wird die die gesamte Wärmepumpe weniger fehleranfällig, weil jede Durchführung durch den Verdampfer eine Möglichkeit für ein Leck darstellen würde. Dazu ist der Kondensatorboden an den Stellen, an denen die Kondensator-Zu- und Abläufe sind, mit einer jeweiligen Aussparung verse- - - hen, dahin gehend, dass in dem Verdampferraum, der durch den Kondensatorboden definiert wird, keine Kondensator-Zu/Abführungen verlaufen.

Der Kondensatorraum wird durch eine Kondensatorwand begrenzt, die ebenfalls an dem Verdampferboden anbringbar ist. Der Verdampferboden hat somit eine Schnittstelle sowohl für die Kondensatorwand als auch den Kondensatorboden und hat zusätzlich sämtliche Flüssigkeits-Zuführungen sowohl für den Verdampfer als auch den Verflüssiger.

Bei bestimmten Ausführungen ist der Verdampferboden ausgebildet, um Anschlussstut- zen für die einzelnen Zuführungen zu haben, die einen Querschnitt haben, der sich von einem Querschnitt der Öffnung auf der anderen Seite des Verdampferbodens unterscheidet. Die Form der einzelnen Anschlussstutzen ist dann so ausgebildet, dass sich die Form bzw. Querschnittsform über der Länge des Anschlussstutzens verändert, jedoch der Rohrdurchmesser, der für die Strömungsgeschwindigkeit eine Rolle spielt, in einer Tole- ranz von ± 10 % nahezu gleich ist. Damit wird verhindert, dass durch den Anschlussstutzen fließendes Wasser zu kavitieren beginnt. Damit wird aufgrund der guten durch die Formung der Anschlussstutzen erhaltenen Strömungsverhältnisse sichergestellt, dass die entsprechenden Rohre/Leitungen so kurz wie möglich gemacht werden können, was wiederum zu einer kompakten Bauform der gesamten Wärmepumpe beiträgt.

Bei einer speziellen Implementierung des Verdampferbodens wird der Kondensatorzulauf nahezu in Form einer "Brille" in einen zwei- oder mehrteiligen Strom aufgeteilt. Damit ist es möglich, die Kondensatorflüssigkeit im Kondensator an seinem oberen Abschnitt an zwei oder mehreren Punkten gleichzeitig einzuspeisen. Damit wird eine starke und gleich- zeitig besonders gleichmäßige Kondensatorströmung von oben nach unten erreicht, die es ermöglicht, dass eine hocheffiziente Kondensation des ebenfalls von oben in den Kondensator eingeführten Dampfes erreicht wird.

Eine weitere kleiner dimensionierte Zuführung im Verdampferboden für Kondensatorwas- ser kann ebenfalls vorgesehen sein, um damit einen Schlauch zu verbinden, der dem Kompressormotor der Wärmepumpe Kühlflüssigkeit zuführt, wobei zur Kühlung nicht die kalte, dem Verdampfer zugeführte Flüssigkeit verwendet wird, sondern die wärmere, dem Kondensator zugeführte Flüssigkeit, die jedoch immer noch bei typischen Betriebssituationen kühl genug ist, um den Motor der Wärmepumpe zu kühlen. - -

Der Verdampferboden zeichnet sich dadurch aus, dass er eine Kombinationsfunktionalität hat. Zum einen stellt er sicher, dass keine Kondensatorzuleitungen durch den unter sehr geringem Druck stehenden Verdampfer hindurchgeführt werden müssen. Andererseits stellt er eine Schnittstelle nach außen dar, die vorzugsweise eine kreisrunde Form hat, da bei einer kreisrunden Form möglichst viel Verdampferfläche verbleibt. Alle Zu- und Ableitungen führen durch den einen Verdampferboden und laufen von dort in entweder den Verdampferraum oder den Kondensatorraum. Insbesondere eine Herstellung des Verdampferbodens aus Kunststoffspritzguss ist besonders vorteilhaft, weil die vorteilhaften relativ komplizierten Formgebungen der Zu/Ablaufstutzen in Kunststoffspritzguss ohne weiteres und preisgünstig ausgeführt werden können. Andererseits ist es aufgrund der Ausführung des Verdampferbodens als gut zugängliches Werkstück ohne weiteres möglich, den Verdampferboden mit ausreichender struktureller Stabilität herzustellen, damit er insbesondere dem niedrigen Verdampferdruck ohne weiteres standhalten kann. In der vorliegenden Anmeldung betreffen gleiche Bezugszeichen gleiche oder gleichwirkende Elemente, wobei nicht alle Bezugszeichen in allen Zeichnungen, sofern sie sich wiederholen, erneut dargelegt werden.

Fig. 2 zeigt eine Wärmepumpe gemäß einem Ausführungsbeispiel in Verbindung mit dem ersten Aspekt, der konvektiven Wellenkühlung. So umfasst die Wärmepumpe von Fig. 2 einen Kondensierer mit einem Kondensierergehäuse 14, der einen Kondensiererraum 104 umfasst. Ferner ist der Verdichtermotor angebracht, welcher durch den Stator 308 schematisch in Fig. 4 dargestellt ist. Dieser Verdichtermotor ist auf in Fig. 2 nicht gezeigte Art und Weise an dem Kondensierergehäuse 1 14 angebracht und umfasst den Stator und einen Rotor 307, wobei der Rotor 307 eine Motorwelle 306 aufweist, an der ein Radialrad 304 angebracht, das sich in eine Verdampferzone hinein erstreckt, die in Fig. 2 nicht dargestellt ist. Ferner umfasst die Wärmepumpe einen Leitraum 302, der ausgebildet ist, um durch das Radialrad verdichteten Dampf aufzunehmen und in den Kondensierer zu leiten, wie es bei 1 12 schematisch dargestellt ist.

Ferner umfasst der Motor ein Motorgehäuse 300, das den Verdichtermotor umgibt und vorzugsweise ausgebildet ist, um einen Druck zu halten, der wenigstens gleich dem Druck in dem Kondensierer ist. Alternativ ist das Motorgehäuse ausgebildet, um einen Druck zu halten, der höher als ein mittlerer Druck aus dem Verdampfer und dem Kondensierer ist, oder der höher als der Druck in dem weiteren Spalt 313 zwischen dem Radialrad und dem Leitraum (302) ist, oder der größer oder gleich dem Druck in dem Kondensierer ist. Das - -

Motorgehäuse ist also derart ausgebildet, damit ein Druckabfall vom Motorgehäuse entlang der Motorwe!le in Richtung des Leitraums stattfindet, durch den Arbeitsdampf durch den Motorspalt und den weiteren Spalt an der Motorwelle vorbeigezogen wird, um die Welle zu kühlen.

Dieses Gebiet in dem Motorgehäuse mit dem nötigen Druck ist in Fig. 2 bei 312 dargestellt. Außerdem ist eine Dampf Zuführung 310 ausgebildet, um Dampf in dem Motorgehäuse 300 zu einem Motorspalt 31 1 zuzuführen, der zwischen dem Stator 308 und der Welle 306 vorhanden ist. Ferner umfasst der Motor einen weiteren Spalt 313, der sich von dem Motorspalt 31 1 entlang des Radialrads zu dem Leitraum 302 erstreckt.

Bei der erfindungsgemäßen Anordnung herrscht im Kondensierer ein relativ großer Druck p 3 . Dagegen herrscht im Leitweg oder Leitraum 302 ein mittlerer Druck p 2 . Der kleinste Druck herrscht, abgesehen vom Verdampfer, hinter dem Radialrad, und zwar dort, wo das Radialrad an der Motorwelle befestigt ist, also in dem weiteren Spalt 313. In dem Motorgehäuse 300 existiert ein Druck p 4 , der entweder gleich dem Druck p 3 oder größer als der Druck p 3 ist. Dadurch existiert ein Druckgefälle vom Motorgehäuse zu dem Ende des weiteren Spalts. Dieses Druckgefälle führt dazu, dass eine Dampfströmung durch die Dampfzuführung hindurch in den Motorspalt und den weiteren Spalt bis in den Leitweg 302 statt- findet. Diese Dampf Strömung nimmt Arbeitsdampf aus dem Motorgehäuse an der Motorwelle vorbei in den Kondensierer. Diese Dampfströmung sorgt für die konvektive Wellenkühlung der Motorwelle durch den Motorspalt 31 1 und den weiteren Spalt 313, der sich an den Motorspalt 31 1 anschließt. Das Radialrad saugt also Dampf nach unten heraus, an der Welle des Motors vorbei. Dieser Dampf wird über die Dampfzuführung, die typischer- weise als spezielle ausgeführte Bohrungen implementiert sind, in den Motorspalt hinein gezogen.

Fig. 3 zeigt eine weitere schematische Ausführungsform der konvektiven Wellenkühlung gemäß dem ersten Aspekt der vorliegenden Erfindung, die dort vorzugsweise mit der Mo- torkühlung gemäß dem zweiten Aspekt der vorliegenden Erfindung kombiniert ist.

Es sei jedoch an dieser Stelle generell darauf hingewiesen, dass die beiden Aspekte konvektive Wellenkühlung einerseits und Motorkühlung andererseits auch separat voneinander eingesetzt werden. So führt eine Motorkühlung ohne eine spezielle separate konvekti- ve Wellenkühlung bereits zu einer erheblich erhöhten Betriebssicherheit. Darüber hinaus führt auch eine konvektive Motorwellenkühlung ohne die zusätzliche Motorkühiung zu - - einer erhöhten Betriebssicherheit der Wärmepumpe. Die beiden Aspekte können jedoch, wie es nachfolgend in Fig. 3 dargestellt ist, besonders günstig miteinander verbunden werden, um mit einer besonders vorteilhaften Konstruktion des Motorgehäuses und des Verdichtermotors sowohl die konvektive Wellenkühlung als auch die Motorkühlung zu implementieren, welche zusätzlich noch bei einem weiteren bevorzugten Ausführungsbeispiel jeweils oder gemeinsam durch eine spezielle Kugellagerkühlung ergänzt werden können.

Fig. 3 zeigt ein Ausführungsbeispiel mit kombinierter Verwendung von konvektiver Wel- lenkühlung und Motorkühlung, wobei bei dem in Fig. 3 gezeigten Ausführungsbeispiel die Verdampferzone bei 102 gezeigt ist. Die Verdampferzone wird von der Kondensiererzone, also von dem Kondensiererbereich 104 durch den Kondensiererboden 106 getrennt. Arbeitsdampf, der schematisch bei 314 dargestellt ist, wird durch das sich drehende schematisch und im Schnitt dargestellte Radialrad 304 angesaugt und in den Leitweg 302 hin- ein„gepresst". Der Leitweg 302 ist bei dem in Fig. 3 gezeigten Ausführungsbeispiel so ausgebildet, dass sich sein Querschnitt nach außen hin vergrößert. Damit findet eine weitere Dampfkompression statt. Die erste „Stufe" der Dampfkompression findet bereits durch die Drehung des Radialrads und das„Ansaugen" des Dampfs durch das Radialrad statt. Dann jedoch, wenn das Radialrad den Dampf in den Eingang des Leitwegs ein- speist, also dort, wo das Radialrad betrachtet nach oben„aufhört", stößt der bereits vorkomprimierte Dampf gewissermaßen auf einen Dampfstau, der aufgrund der Verjüngung des Leitwegs und auch aufgrund der Krümmung des Leitwegs vorhanden ist. Dies führt zu einer weiteren Dampfkompression, so dass schließlich der komprimierte und damit erwärmte Dampf 1 12 in den Kondensierer strömt.

Fig. 3 zeigt ferner die Dampfzuführungsöffnungen 320, die in einer schematisch dargestellten Motorwand 309 in Fig. 3 ausgeführt sind. Diese Motorwand 309 hat bei dem in Fig. 3 gezeigten Ausführungsbeispiel Bohrungen für die Dampfzuführungsöffnungen 320 im oberen Bereich, wobei diese Bohrungen jedoch an beliebigen Stellen ausgeführt sein können, an denen Dampf in den Motorspalt 31 1 und damit auch in den weiteren Motorspalt 313 eindringen kann. Die dadurch verursachte Dampfströmung 310 führt zu dem gewünschten Effekt der konvektiven Wellenkühlung.

Das in Fig. 3 gezeigte Ausführungsbeispiel umfasst ferner zur Implementierung der Mo- torkühlung einen Arbeitsmittelzulauf 330, der ausgebildet ist, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an die Motorwand zu führen. Ferner ist das Mo- - - torgehäuse ausgebildet, um in dem Betrieb der Wärmepumpe einen maximalen Flüssigkeitspegel 322 an flüssigem Arbeitsmittel zu halten. Darüber hinaus ist das Motorgehäuse 300 ebenfalls ausgebildet, um oberhalb des maximalen Pegels einen Dampfraum 323 zu bilden. Ferner hat das Motorgehäuse Vorkehrungen, um flüssiges Arbeitsmittel oberhalb des maximalen Pegels in den Kondensierer 104 zu leiten. Diese Ausführung wird bei dem in Fig. 3 gezeigten Ausführungsbeispiel durch einen z. B. flach ausgeführten kanalförmi- gen Überlauf 324 ausgebildet, der die Dampfabführung bildet und irgendwo in der oberen Kondensiererwand angeordnet ist und eine Länge hat, die den maximalen Pegel 322 definiert. Wird durch die Kondensiererflüssigkeitszuführung 330 zu viel Arbeitsflüssigkeit in das Motorgehäuse, also den Flüssigkeitsbereich 328 eingeführt, so läuft das flüssige Arbeitsmittel durch den Überlauf 324 hindurch in das Kondensierervolumen. Darüber hinaus stellt der Überlauf auch bei der in Fig. 3 gezeigten passiven Anordnung, die z.B. auch alternativ ein Röhrchen mit einer entsprechenden Länge sein kann, einen Druckausgleich zwischen dem Motorgehäuse und insbesondere dem Dampf räum 323 des Motorgehäu- ses und dem Kondensierer-Innenraum 104 her. Damit ist der Druck im Dampf räum 323 des Motorgehäuses immer nahezu gleich oder höchstens aufgrund eines Druckverlusts entlang des Überlaufs etwas höher als der Druck im Kondensierer. Damit wird der Siedepunkt der Flüssigkeit 328 im Motorgehäuse ähnlich dem Siedepunkt im Kondensierergehäuse sein. Dadurch führt eine Erwärmung der Motorwand 309 aufgrund einer im Motor erzeugten Verlustleistung dazu, dass eine Blasensiedung in dem Flüssigkeitsvolumen 328 stattfindet, die später noch erläutert wird.

Fig. 3 zeigt ferner diverse Abdichtungen in schematischer Form beim Bezugszeichen 326 und an ähnlichen Stellen zwischen dem Motorgehäuse und dem Kondensierergehäuse einerseits oder aber auch zwischen der Motorwand 309 und dem Kondensierergehäuse 1 14 andererseits. Diese Abdichtungen sollen symbolisieren, dass hier eine flüssigkeits- und druckdichte Verbindung sein soll.

Durch das Motorgehäuse wird ein separater Raum definiert, der jedoch ein nahezu glei- ches Druckgebiet wie der Kondensator darstellt. Dies unterstützt aufgrund einer Erwärmung des Motors und der damit abgegebenen Energie an der Motorwand 309 eine Blasensiedung im Flüssigkeitsvolumen 328, die wiederum eine besonders effiziente Verteilung des Arbeitsmittels im Volumen 328 und damit eine besonders gute Kühlung mit einem kleinen Volumen an Kühlflüssigkeit zur Folge hat. Ferner wird sichergestellt, dass mit dem Arbeitsmittel gekühlt wird, das auf der günstigsten Temperatur, nämlich der wärmsten Temperatur in der Wärmepumpe ist. Dadurch wird sichergestellt, dass sämtliche Kon- - - densationsprob!eme, die immer an kalten Oberflächen auftreten, sowohl für die Motorwand als auch für die Motorwelle und die Bereiche im Motorspalt 31 1 und dem weiteren Spalt 313 ausgeschlossen sind. Ferner ist bei dem in Fig. 3 gezeigten Ausführungsbeispiel der für die konvektive Wellenkühlung verwendete Arbeitsmitteldampf 310 Dampf, der sonst im Dampfraum 323 des Motorgehäuses ist. Dieser Dampf hat ebenfalls wie die Flüssigkeit 328 die optimale (warme) Temperatur. Ferner wird durch den Überlauf 324 sichergestellt, dass der Druck im Bereich 323 aufgrund der Blasensiedung, die durch die Motorkühlung bzw. die Motorwand 309 bewirkt wird, nicht über den Kondensiererdruck steigen kann. Ferner wird durch die Dampfabführung die Wärmeenergie aufgrund der Motorkühlung abgeführt. Damit wird die konvektive Wellenkühlung immer gleich arbeiten. Würde nämlich der Druck zu stark ansteigen, so könnte zu viel Arbeitsmitteldampf durch den Motorspalt 31 1 und den weiteren Spalt 313 gepresst werden.

Die Bohrungen 320 für die Dampfzuführung werden typischerweise in einem Array aus- gebildet sein, das regelmäßig oder unregelmäßig angeordnet sein kann. Die einzelnen Bohrungen sind vom Durchmesser her nicht größer als 5 mm und können bei etwa einer minimalen Größe von 1 mm liegen.

Fig. 6 zeigt einen Verflüssiger, wobei der Verflüssiger in Fig. 6 eine Dampfeinleitungszone 102 aufweist, die sich vollständig um die Kondensationszone 100 herum erstreckt. Insbesondere ist in Fig. 6 ein Teil eines Verflüssigers dargestellt, der einen Verflüssigerboden 200 aufweist. Auf dem Verflüssigerboden ist ein Verflüssigergehäuseabschnitt 202 angeordnet, der aufgrund der Darstellung in Fig. 6 durchsichtig gezeichnet ist, der jedoch in Natur nicht unbedingt durchsichtig sein muss, sondern z.B. aus Kunststoff, Aluminium- druckguss oder etwas Ähnlichem gebildet sein kann. Das seitliche Gehäuseteil 202 liegt auf einem Dichtungsgummi 201 auf, um eine gute Abdichtung mit dem Boden 200 zu erreichen. Ferner umfasst der Verflüssiger einen Flüssigkeitsablauf 203 sowie einen Flüssigkeitszulauf 204 sowie eine in dem Verflüssiger zentral angeordnete Dampfzuführung 205, die sich von unten nach oben in Fig. 6 verjüngt. Es sei darauf hingewiesen, dass Fig. 6 die eigentlich gewünschte Aufstellrichtung einer Wärmepumpe und eines Verflüssigers dieser Wärmepumpe darstellt, wobei in dieser Aufstellrichtung in Fig. 6 der Verdampfer einer Wärmepumpe unterhalb des Verflüssigers angeordnet ist. Die Kondensationszone 100 wird nach außen durch einen korbartigen Begrenzungsgegenstand 207 begrenzt, der ebenso wie das äußere Gehäuseteil 202 durchsichtig gezeichnet ist und normalerweise korbartig ausgebildet ist. - -

Ferner ist ein Gitter 209 angeordnet, das ausgebildet ist um Füllkörper, die in Fig. 6 nicht gezeigt sind, zu tragen. Wie es aus Fig. 6 ersichtlich aus, erstreckt sich der Korb 207 lediglich bis zu einem gewissen Punkt nach unten. Der Korb 207 ist dampfdurchlässig vorgesehen, um Füllkörper zu halten, wie beispielsweise sogenannte Pallringe. Diese Füll- körper werden in die Kondensationszone eingebracht, und zwar lediglich innerhalb des Korbs 207, jedoch nicht in der Dampfeinleitungszone 102. Die Füllkörper werden jedoch so hoch auch außerhalb des Korbs 207 eingefüllt, dass sich die Höhe der Füllkörper entweder bis zu der unteren Begrenzung des Korbs 207 oder etwas darüber erstreckt. Der Verflüssiger von Fig. 6 umfasst einen Arbeitsflüssigkeitszuführer, der insbesondere durch die Arbeitsflüssigkeitszuführung 204, die, wie es in Fig. 6 gezeigt ist, gewunden um die Dampfzuführung in Form einer aufsteigenden Windung angeordnet ist, durch einen Flüssigkeitstransportbereich 210 und durch ein Flüssigkeitsverteilerelement 212 gebildet wird, das vorzugsweise als Lochblech ausgebildet ist. Insbesondere ist der Arbeitsflüssig- keitszuführer also ausgebildet, um die Arbeitsflüssigkeit in die Kondensationszone zuzuführen.

Darüber hinaus ist auch ein Dampfzuführer vorgesehen, der sich, wie es in Fig. 6 gezeigt ist, vorzugsweise aus dem trichterförmig sich verjüngenden Zuführungsbereich 205 und dem oberen Dampfführungsbereich 213 zusammensetzt. In dem Dampfleitungsbereich 213 wird vorzugsweise ein Rad eines Radialkompressors eingesetzt und die Radialkompression führt dazu, dass durch die Zuführung 205 Dampf von unten nach oben gesaugt wird und dann aufgrund der Radialkompression durch das Radialrad bereits gewissermaßen 90 Grad nach außen umgelenkt wird, also von einer Strömung von unten nach oben zu einer Strömung von der Mitte nach außen in Fig. 6 bezüglich des Elements 213.

In Fig. 6 nicht gezeigt ist ein weiterer Umlenker, der den bereits nach außen umgelenkten Dampf noch einmal um 90 Grad umlenkt, um ihn dann von oben in den Spalt 215 zu leiten, der gewissermaßen den Beginn der Dampfeinleitungszone darstellt, die sich seitlich um die Kondensationszone herum erstreckt. Der Dampfzuführer ist daher vorzugsweise ringförmig ausgebildet und mit einem ringförmigen Spalt zum Zuführen des zu kondensierenden Dampfes versehen, wobei die Arbeitsflüssigkeitszuführung innerhalb des ringförmigen Spalts ausgebildet ist. Zur Veranschaulichung wird auf Fig. 7 verwiesen. Fig. 7 zeigt eine Ansicht des„Deckeibereichs" des Verflüssigers von Fig. 6 von unten. Insbesondere ist das Lochblech 212 von - - unten schematisch dargestellt, das als Flüssigkeitsverteilerelement wirkt. Der Dampfeinlassspalt 215 ist schematisch gezeichnet, und es ergibt sich aus Fig. 7, dass der Dampfeinlassspalt lediglich ringförmig ausgebildet ist, derart, dass in die Kondensationszone direkt von oben bzw. direkt von unten kein zu kondensierender Dampf eingespeist wird, sondern nur seitlich herum. Durch die Löcher des Verteilerblechs 212 fließt somit lediglich Flüssigkeit, jedoch kein Dampf. Der Dampf wird erst seitlich in die Kondensationszone „eingesaugt", und zwar aufgrund der Flüssigkeit, die durch das Lochblech 212 hindurchgetreten ist. Die Flüssigkeitsverteilerplatte kann aus Metall, Kunststoff oder einem ähnlichen Material ausgebildet sein und ist mit unterschiedlichen Lochmustern ausführbar. Ferner wird es, wie es in Fig. 6 gezeigt ist, bevorzugt eine seitliche Begrenzung für aus dem Element 210 fließende Flüssigkeit vorzusehen, wobei diese seitliche Begrenzung mit 217 bezeichnet ist. Damit wird sichergestellt, dass Flüssigkeit, die aus dem Element 210 aufgrund der geschwungenen Zuführung 204 bereits mit einem Drall austritt und sich von innen nach außen auf dem Flüssigkeitsverteiler verteilt, nicht über den Rand in die Dampfeinleitungszone spritzt, sofern die Flüssigkeit nicht bereits vorher durch die Löcher der Flüssigkeitsverteilerplatte getropft und mit Dampf kondensiert ist.

Fig. 5 zeigt eine komplette Wärmepumpe in Schnittdarstellung, die sowohl den Verdampferboden 108 als auch den Kondensatorboden 106 umfasst. Wie es in Fig. 5 oder auch in Fig. 1 gezeigt ist, hat der Kondensatorboden 106 einen sich verjüngenden Querschnitt von einem Zulauf für die zu verdampfende Arbeitsflüssigkeit zu einer Absaugöffnung 1 15, die mit dem Kompressor bzw. Motor 1 10 gekoppelt ist, wo also das vorzugsweise verwendete Radialrad des Motors den im Verdampferraum 102 erzeugten Dampf absaugt.

Fig. 5 zeigt einen Querschnitt durch die gesamte Wärmepumpe. Insbesondere ist innerhalb des Kondensatorbodens ein Tropfenabscheider 404 angeordnet. Dieser Tropfenabscheider umfasst einzelne Schaufeln 405. Diese Schaufeln sind, damit der Tropfenabscheider an Ort und Stelle bleibt, in entsprechenden Nuten 406 eingebracht, die in Fig. 5 gezeigt sind. Diese Nuten sind in dem Kondensatorboden in einem Bereich, der zu dem Verdampferboden hin gerichtet ist, in der Innenseite des Verdampferbodens angeordnet. Darüber hinaus hat der Kondensatorboden ferner diverse Führungsmerkmale, die als Stäbchen oder Zungen ausgebildet sein können, um Schläuche zu halten, die für eine Kondensatorwasserführung beispielsweise vorgesehen sind, die also auf entsprechende Abschnitte aufgesteckt werden und die Einspeisepunkte der Kondensatorwasserzuführung ankoppeln. Diese Kondensatorwasserzuführung 402 kann je nach Implementierung - - so ausgebildet sein, wie es in den Fig. 6 und 7 bei den Bezugszeichen 102, 207 bis 250 gezeigt ist. Ferner hat der Kondensator vorzugsweise eine Kondensatorflüssigkeitsvertei- lungsanordnung, die zwei oder auch mehr Einspeisepunkte aufweist. Ein erster Einspeisepunkt ist daher mit einem ersten Abschnitt eines Kondensatorzulaufs verbunden. Ein zweiter Einspeisepunkt ist mit einem zweiten Abschnitt des Kondensatorzulaufs verbunden. Sollten mehr Einspeisepunkte für die Kondensatorflüssigkeitsverteilungseinrichtung vorhanden sein, so wird der Kondensatorzulauf in weitere Abschnitte aufgeteilt sein.

Der obere Bereich der Wärmepumpe von Fig. 5 kann somit genauso wie der obere Be- reich in Fig. 6 ausgebildet sein, dahin gehend, dass die Kondensatorwasserzuführung über das Lochblech von Fig. 6 und Fig. 7 stattfindet, so dass abwärts rieselndes Kondensatorwasser 408 erhalten wird, in das der Arbeitsdampf 1 12 vorzugsweise seitlich eingeführt wird, so dass die Querstrom-Kondensation, die eine besonders hohe Effizienz erlaubt, erhalten werden kann. Wie es auch in Fig. 6 dargestellt ist, kann die Kondensati- onszone mit einer lediglich optionalen Füllung versehen sein, bei der der Rand 207, der auch mit 409 bezeichnet ist, frei bleibt von Füllkörpern oder ähnlichen Dingen, dahin gehend, dass der Arbeitsdampf 1 12 nicht nur oben, sondern auch unten noch seitlich in die Kondensationszone eindringen kann. Die gedachte Begrenzungslinie 410 soll das in Fig. 5 veranschaulichen. Bei dem in Fig. 5 gezeigten Ausführungsbeispiel ist jedoch der ge- samte Bereich des Kondensators mit einem eigenen Kondensatorboden 200 ausgebildet, der oberhalb eines Verdampferbodens angeordnet ist.

Fig. 4 zeigt ein bevorzugtes Ausführungsbeispiel einer Wärmepumpe und insbesondere eines Wärmepumpenabschnitts, der den„oberen'' Bereich der Wärmepumpe, wie sie bei- spielsweise in Fig. 5 dargestellt ist, zeigt. Insbesondere entspricht der Motor M 1 10 von Fig. 5 dem Bereich, der von einer Motorwand 309 umgeben ist, die bei der Querschnittsdarstellung in Fig. 4 in dem Flüssigkeitsbereich 328 außen vorzugsweise mit Kühlrippen ausgebildet ist, um die Oberfläche der Motorwand 309 zu vergrößern. Ferner entspricht der Bereich des Motorgehäuses 300 in Fig. 4 dem entsprechenden Bereich 300 in Fig. 5. In Fig. 4 ist ferner das Radialrad 304 in einem detaillierteren Querschnitt dargestellt. Das Radialrad 304 ist an der Motorwelle 306 in einem im Querschnitt gabelförmigen Befestigungsbereich angebracht. Die Motorwelle 306 hat einen Rotor 307, der dem Stator 308 gegenüberliegt. Der Rotor 307 umfasst schematisch in Fig. 4 dargestellte Permanentmagnete. Insbesondere ist der Dampfweg 310 durch den Motorspalt 31 1 dargelegt. Der Motorspalt 31 1 erstreckt sich zwischen dem Rotor und dem Stator und mündet in dem - - weiteren Spalt 313, der entlang des im Querschnitt gabelförmigen Befestigungsbereichs der Welle 306 bis zum Leitraum 302 verläuft, wie es bei 346 ebenfalls dargestellt ist.

Darüber hinaus ist in Fig. 4 ein Notlager 344 dargestellt, das im Normalbetrieb die Welle nicht lagert. Stattdessen wird die Welle durch den Lagerabschnitt, der bei 343 gezeigt ist, gelagert. Das Notlager 344 ist lediglich vorhanden, um im Falle eines Schadens die Welle und damit das Radialrad zu lagern, damit das sich schnell drehende Radialrad im Falle eines Schadens keinen größeren Schaden in der Wärmepumpe anrichten kann. Fig. 4 zeigt ferner verschiedene Befestigungselemente, wie Schrauben, Muttern, etc. und ver- schiedene Abdichtungen in Form von diversen O-Ringen. Darüber hinaus zeigt Fig. 4 ein zusätzliches Konvektionselement 342, auf das später noch Bezug nehmend auf Fig. 10 eingegangen wird.

Fig. 4 zeigt ferner einen Spritzschutz 360 im Dampf räum oberhalb des maximalen Volu- mens im Motorgehäuse, das normal mit flüssigem Arbeitsmittel gefüllt ist. Dieser Spritzschutz ist ausgebildet, um bei der Blasensiedung in den Dampfraum geschleuderte Flüssigkeitstropfen abzufangen. Vorzugsweise ist der Dampfweg 310, wie er schematisch in Fig. 4 angedeutet ist, so ausgebildet, dass er von dem Spritzschutz 360 profitiert, d.h. dass aufgrund der Strömung in den Motorspalt und den weiteren Spalt lediglich Arbeits- mitteldampf, nicht aber Flüssigkeitstropfen aufgrund der Siedung im Motorgehäuse angesaugt werden.

Die Wärmepumpe mit konvektiver Wellenkühlung hat vorzugsweise eine Dampfzuführung, die so ausgebildet ist, dass eine Dampfströmung durch den Motorspalt und den wei- teren Spalt einen Lagerabschnitt, der ausgebildet ist, um die Motorwelle bezüglich des Stators zu lagern, nicht durchtritt. Dies ist in Fig. 4 angedeutet. Der Lagerabschnitt 343, der im vorliegenden Fall zwei Kugellager umfasst, ist von dem Motorspalt abgedichtet, und zwar z. B. durch O-Ringe 351. Damit kann der Arbeitsdampf lediglich, wie es durch den Weg 310 in Fig. 4 dargestellt ist, durch die Dampfzuführung in einen Bereich inner- halb der Motorwand 309 eintreten, von dort in einem freien Raum nach unten laufen und an dem Rotor 307 entlang durch den Motorspalt 31 1 in den weiteren Spalt 313 gelangen. Vorteilhaft daran ist, dass die Kugellager nicht von Dampf umströmt werden, dass also eine Lagerschmierung in den abgeschlossenen Kugellagern verbleibt und nicht durch den Motorspalt hindurchgezogen wird. Ferner wird auch sichergestellt, dass das Kugellager nicht befeuchtet wird, sondern immer in dem definierten Zustand beim Einbau verbleibt. - -

Bei einem weiteren Ausführungsbeispiel ist das Motorgehäuse, wie es in Fig. 4 gezeigt ist, in der Betriebsposition der Wärmepumpe oben auf dem Kondensierergehäuse 1 14 angebracht, so dass sich der Stator oberhalb des Radialrads befindet und die Dampfströmung 310 durch den Motorspalt und den weiteren Spalt von oben nach unten verläuft.

Ferner umfasst die Wärmepumpe den Lagerabschnitt 343, der ausgebildet ist, um die Motorwelle bezüglich des Stators zu lagern. Ferner ist der Lagerabschnitt so angeordnet, dass zwischen dem Lagerabschnitt und dem Radialrad 304 der Rotor 307 und der Stator

308 angeordnet sind. Dies hat den Vorteil, dass der Lagerabschnitt 343 im Dampfbereich innerhalb des Motorgehäuses angeordnet werden kann und der Rotor/Stator, dort wo die größte Verlustleistung entsteht, unterhalb des maximalen Flüssigkeitspegels 322 (Fig. 3) angeordnet werden kann. Damit ist eine optimale Anordnung geschaffen, durch die jeder Bereich in dem Medium ist, das für den Bereich am besten ist, um die Zwecke zu erreichen, nämlich die Motorkühlung einerseits und die konvektive Wellenkühlung andererseits und gegebenenfalls eine Kugellagerkühlung, auf die noch Bezug nehmend auf Fig. 10 eingegangen wird.

Das Motorgehäuse umfasst ferner den Arbeitsmittelzulauf 330, um flüssiges Arbeitsmittel aus dem Kondensierer zur Motorkühlung an eine Wand des Verdichtermotors zu führen. Fig. 10 zeigt eine spezielle Implementierung dieses Arbeitsmittelzulaufs 362, der dem Zulauf 330 von Fig. 3 entspricht. Dieser Arbeitsmittelzulauf 362 verläuft in ein geschlossenes Volumen 364, das eine Kugellagerkühlung darstellt. Aus der Kugellagerkühlung tritt eine Ableitung heraus, die ein Röhrchen 366 umfasst, das das Arbeitsmittel nicht oben auf das Volumen des Arbeitsmittels 328, wie in Fig. 3 gezeigt, führt, sondern das das Ar- beitsmittel unten an die Wand des Motors, also das Element 309, führt. Insbesondere ist das Röhrchen 366 ausgebildet, um innerhalb des Konvektionselements 342 angeordnet zu sein, das um die Motorwand 309 herum angeordnet ist, und zwar in einem gewissen Abstand, so dass innerhalb des Konvektionselements 342 und außerhalb des Konvektionselements 342 innerhalb des Motorgehäuses 300 ein Volumen an flüssigem Arbeitsflu- id existiert.

Durch eine Blasensiedung aufgrund des Arbeitsmittels, das in Kontakt mit der Motorwand

309 insbesondere im unteren Bereich ist, wo der frische Arbeitsmittelzulauf 366 endet, entsteht eine Konvektionszone 367 innerhalb des Volumens an Arbeitsflüssigkeit 328. Insbesondere werden die Siedeblasen durch das Blasensieden von unten nach oben gerissen. Dies führt zu einem laufenden„Umrühren", dahin gehend, dass heiße Arbeitsflüs- _ . sigkeit von unten nach oben gebracht wird. Die Energie aufgrund des Blasensiedens geht dann in die Dampfblase über, die dann im Dampfvolumen 323 oberhalb des Flüssigkeitsvolumens 328 landet. Der dort entstehende Druck wird unmittelbar durch den Überlauf 324, die Überlauffortsetzung 340 und den Ablauf 342 in den Kondensierer gebracht. Da- mit findet ein dauernder Wärmeabtrag vom Motor in den Kondensierer statt, der hauptsächlich aufgrund der Ableitung von Dampf und nicht aufgrund der Ableitung von erwärmter Flüssigkeit stattfindet.

Dies bedeutet, dass die Wärme, die ja eigentlich die Abwärme des Motors ist, durch die Dampfabführung vorzugsweise genau dort hingelangt, wo sie hin soll, nämlich in das zu wärmende Kondensiererwasser. Damit wird die komplette Motorwärme im System gehalten, was insbesondere für Heizanwendungen der Wärmepumpe besonders günstig ist. Aber auch für Kühlungsanwendungen der Wärmepumpe ist die Wärmeabführung vom Motor in den Kondensierer günstig, weil der Kondensierer typischerweise mit einer effi- zienten Wärmeabführung, z.B. in Form eines Wärmetauschers oder einer direkten Wärmeabführung im zu wärmenden Gebiet gekoppelt ist. Es muss also keine eigene Motorabwärmevorrichtung geschaffen werden, sondern die von der Wärmepumpe ohnehin existierende Wärmeableitung vom Kondensierer nach außen wird durch die Motorkühlung gewissermaßen„mit benutzt".

Das Motorgehäuse ist ferner ausgebildet, um in einem Betrieb der Wärmepumpe den Maximalpegel an flüssigem Arbeitsmittel zu halten und um oberhalb des Pegels an flüssigem Arbeitsmittel den Dampf räum 323 zu schaffen. Die Dampf Zuführung ist ferner derart ausgebildet, dass sie mit dem Dampfraum kommuniziert, so dass der Dampf im Dampfraum zur konvektiven Wellenkühlung durch den Motorspalt und den weiteren Spalt in Fig. 4 geleitet wird.

Bei der in Fig. 10 und Fig. 4 gezeigten Wärmepumpe ist der Ablauf als Überlauf im Motorgehäuse angeordnet, um fiüssiges Arbeitsmittel oberhalb des Pegels in den Kondensierer zu leiten und um ferner einen Dampfweg zwischen dem Dampfraum und dem Kondensierer zu schaffen. Vorzugsweise ist der Ablauf 324 beides, nämlich sowohl Überlauf als auch Dampfweg. Diese Funktionalitäten können jedoch durch eine alternative Ausführung des Überlaufs einerseits und eines Dampfraums andererseits auch unter Verwendung verschiedener Elemente implementiert werden. - -

Die Wärmepumpe umfasst bei dem in Fig. 10 gezeigten Ausführungsbeispiei eine besondere Kugellagerkühlung, die insbesondere dadurch ausgebildet ist, dass um den Lagerabschnitt 343 das abgedichtete Volumen 364 mit flüssigem Arbeitsmittel ausgebildet ist. Der Zulauf 362 tritt in dieses Volumen ein und das Volumen hat einen Ablauf 366 von der Kugellagerkühlung in das Arbeitsmittelvolumen zur Motorkühlung. Damit wird eine separate Kugellagerkühlung geschaffen, die jedoch außen um das Kugellager herum verläuft und nicht innerhalb des Lagers, so dass durch diese Kugellagerkühlung zwar effizient gekühlt wird, jedoch nicht die Schmierfüllung des Lagers beeinträchtigt wird. Wie es ferner in Fig. 10 gezeigt ist, umfasst der Arbeitsmittelzulauf 362 insbesondere den Leitungsabschnitt 366, der sich nahezu bis zum Boden des Motorgehäuses 300 bzw. bis zum Grund des flüssigen Arbeitsmittels 328 im Motorgehäuse erstreckt oder aber wenigstens bis zu einem Bereich unterhalb des maximalen Pegels erstreckt, um insbesondere flüssiges Arbeitsmittel aus der Kugeliagerkühlung heraus zu führen und das flüssige Ar- beitsmittel der Motorwand zuzuführen.

Fig. 10 und Fig. 4 zeigen ferner das Konvektionselement, das von der Wand des Verdichtermotors 309 beabstandet in dem flüssigen Arbeitsmittel angeordnet ist, und das in einem unteren Bereich durchlässiger für das flüssige Arbeitsmittel als in einem oberen Be- reich ist. Insbesondere ist bei dem in Fig. 10 gezeigten Ausführungsbeispiel der obere Bereich nicht durchlässig und der untere Bereich relativ stark durchlässig, und das Konvektionselement ist bei der Ausführung in Form einer„Krone" ausgebildet, die umgekehrt in das Flüssigkeitsvolumen gesetzt ist. Damit kann die Konvektionszone 367 ausgebildet werden, wie sie in Fig. 10 dargestellt ist. Es können jedoch alternative Konvektionsele- mente 342 verwendet werden, die in irgendeiner Weise oben weniger durchlässig als unten sind. So könnte beispielsweise ein Konvektionselement genommen werden, das unten Löcher hat, die in Form oder Anzahl einen größeren Durchlassquerschnitt aufweisen als Löcher im oberen Bereich. Alternative Elemente zur Erzeugung der Konvektionsströ- mung 367, wie sie in Fig. 10 dargestellt ist, sind ebenfalls verwendbar.

Zur Motorsicherung im Falle eines Lagerproblems ist das Notlager 344 vorgesehen, das ausgebildet ist, um die Motorwelle 306 zwischen dem Rotor 370 und dem Radialrad 304 abzusichern. Insbesondere erstreckt sich der weitere Spalt 313 durch einen Lagerspalt des Notlagers oder vorzugsweise durch absichtlich in dem Notlager eingebrachte Boh- rungen. Bei einer Implementierung ist das Notlager mit einer Vielzahl von Bohrungen ver- - - sehen, so dass das Notlager selbst einen möglichst geringen Strömungswiderstand für die Dampfströmung 10 zu Zwecken der konvektiven Wellenkühlung darstellt.

Fig. 1 1 zeigt einen schematischen Querschnitt durch eine Motorwelle 306, wie sie für be- vorzugte Ausführungsformen einsetzbar ist. Die Motorwelle 306 umfasst einen schraffierten Kern, wie er in Fig. 1 1 dargestellt ist, der in seinem oberen Abschnitt, der den Lagerabschnitt 343 darstellt, von vorzugsweise zwei Kugellagern 398 und 399 gelagert ist. Weiter unten an der Welle 306 ist der Rotor mit Permanentmagneten 307 ausgebildet. Diese Permanentmagnete sind auf der Motorwelle 306 aufgesetzt und werden oben und unten durch Stabilisierungsbandagen 397 gehalten, die vorzugsweise aus Karbon sind. Ferner werden die Permanentmagnete durch eine Stabilisierungshülse 396 gehalten, die ebenfalls als Karbonhülse vorzugsweise ausgebildet ist. Diese Sicherungs- oder Stabilisierungshülse führt dazu, dass die Permanentmagnete sicher auf der Welle 306 bleiben und sich nicht aufgrund der sehr starken Fliehkräfte aufgrund der hohen Drehzahl der Welle von der Welle lösen können.

Vorzugsweise ist die Welle aus Aluminium ausgebildet und hat einen im Querschnitt gabelförmigen Befestigungsabschnitt 395, der eine Halterung für das Radialrad 304 darstellt, wenn das Radialrad 304 und die Motorwelle nicht einstückig, sondern mit zwei Elementen ausgebildet sind. Ist das Radialrad 304 mit der Motorwelle 306 einstückig ausgebildet, so ist der Radhalterungsabschnitt 395 nicht vorhanden, sondern dann schließt das Radialrad 304 unmittelbar an die Motorwelle an. In dem Bereich der Radhalterung 395 befindet sich auch, wie es aus Fig. 10 ersichtlich ist, das Notlager 344, das vorzugsweise ebenfalls aus Metall und insbesondere Aluminium ausgebildet ist.

Nachfolgend werden spezielle bevorzugte Ausführungsbeispiele des zweiten Aspekts bezüglich der Motorkühlung anhand von Fig. 10 dargestellt. Insbesondere ist das Motorgehäuse 300, das auch in Fig. 3 dargestellt ist, ausgebildet, um einen Druck zu erhalten, der höchstens um 20 % größer als der Druck im Kondensierergehäuse in einem Betrieb der Wärmepumpe ist. Ferner kann das Motorgehäuse 300 ausgebildet sein, um einen Druck zu erhalten, der so niedrig ist, dass bei einer Erwärmung der Motorwand 309 durch den Betrieb des Motors eine Biasensiedung in dem flüssigen Arbeitsmittel 328 und in dem Motorgehäuse 300 stattfindet. Vorzugsweise ist ferner der Lagerabschnitt 343 oberhalb des maximalen Flüssigkeitspegels angeordnet, so dass selbst bei einer Undichtigkeit der Motorwand 309 kein flüssiges - -

Arbeitsmittel in den Lagerabschnitt kommen kann. Dagegen ist der Bereich des Motors, der zumindest teilweise den Rotor und den Stator umfasst, unterhalb des maximalen Pegels, da typischerweise im Lagerbereich einerseits, aber auch zwischen Rotor und Stator andererseits die größte Verlustleistung anfällt, die durch die konvektive Blasensiedung optimal weg transportiert werden kann.

Wie es insbesondere in Fig. 4 gezeigt ist, ist der Überlauf 324 so ausgebildet, dass er einen ersten Röhrenabschnitt aufweist, der in das Motorgehäuse vorsteht, dass er ferner einen zweiten Leitungsabschnitt 340 hat, der sich von einem Kurvenabschnitt 317 aus zu einem Ablauf 342 erstreckt, der ferner außerhalb eines Bereichs angeordnet ist, in dem der Leitraum 302 durch das Verdichterrad 304 verdichteten Arbeitsdampf in den Kondensierer einführt.

Fig. 9 zeigt femer eine schematische Darstellung der Wärmepumpe zur Motorkühlung. Insbesondere ist der Arbeitsmittelablauf 324 alternativ zu Fig. 4 oder Fig. 20 ausgebildet. Der Ablauf muss nicht unbedingt ein passiver Ablauf sein, sondern kann auch ein aktiver Ablauf sein, der z.B. durch eine Pumpe oder ein anderes Element gesteuert wird und abhängig von einer Pegelerfassung des Pegels 322 etwas Arbeitsmittel aus dem Motorgehäuse 300 absaugt. Alternativ könnte auch statt des röhrenförmigen Ablaufs 324 eine wiederverschließbare Öffnung am Boden des Motorgehäuses 300 sein, um durch kurzes Öffnen der wiederverschließbaren Öffnung eine gesteuerte Menge an Arbeitsmittel von dem Motorgehäuse in den Kondensierer ablaufen zu lassen.

Fig. 9 zeigt ferner das zu erwärmende Gebiet bzw. einen Wärmetauscher 391 , von dem ein Kondensiererzulauf 204 in den Kondensierer verläuft, und aus dem ein Kondensiererablauf 203 austritt. Ferner ist eine Pumpe 392 vorgesehen, um den Kreislauf aus Kondensierer-Zulauf 204 und Kondensierer-Ablauf 203 zu treiben. Diese Pumpe 392 hat vorzugsweise eine Abzweigung zu dem Zulauf 362, wie es schematisch dargestellt ist. Damit wird keine eigene Pumpe benötigt, sondern die ohnehin vorhandene Pumpe für den Kon- densiererablauf treibt auch einen kleinen Teil des Kondensiererablaufs in die Zulaufleitung 362 und damit in das Flüssigkeitsvolumen 328.

Darüber hinaus zeigt Fig. 9 eine allgemeine Darstellung des Kondensierers 1 14, des Verdichtermotors mit Motorwand 309 und des Motorgehäuses 300, wie sie auch anhand von Fig. 3 beschrieben worden ist.