Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HERBICIDAL PYRIDINE COMPOUNDS
Document Type and Number:
WIPO Patent Application WO/2018/019755
Kind Code:
A1
Abstract:
The present invention relates to the pyridine compound s of formula (I), (I), or their agriculturally acceptable salts or derivatives as herbicides, wherein the variables are defined according to the description, use of pyridine compound s of formula (I) as herbicide, compositions comprising them and their use as herbicides, i.e. for controlling harmful plants, and also a method for controlling unwanted vegetation which comprises allowing a herbicidal effective amount of at least one pyridine compound s of the formula (I) to act on plants, their seed and/or their habitat.

Inventors:
VOGT FLORIAN (DE)
WITSCHEL MATTHIAS (DE)
SEISER TOBIAS (DE)
LOPEZ CARRILLO VERONICA (DE)
SEITZ THOMAS (DE)
KRAEMER GERD (DE)
NEWTON TREVOR WILLIAM (DE)
TRESCH STEFAN (DE)
SCHACHTSCHABEL DOREEN (DE)
KREUZ KLAUS (DE)
Application Number:
PCT/EP2017/068599
Publication Date:
February 01, 2018
Filing Date:
July 24, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BASF SE (DE)
International Classes:
C07D401/00; A01N43/40; A01P13/00; C07D213/02
Domestic Patent References:
WO2016071360A12016-05-12
WO2015018432A12015-02-12
WO2015018431A12015-02-12
WO2013178585A12013-12-05
WO2013104561A12013-07-18
WO2003066623A12003-08-14
WO2014142273A12014-09-18
WO2008124610A12008-10-16
WO2015181747A12015-12-03
WO2014055548A12014-04-10
WO2006024820A12006-03-09
WO2006037945A12006-04-13
WO2007071900A12007-06-28
WO2007096576A12007-08-30
WO2002015701A22002-02-28
WO1993007278A11993-04-15
WO1995034656A11995-12-21
WO2003018810A22003-03-06
WO2003052073A22003-06-26
WO2003018810A22003-03-06
Foreign References:
EP0374753A21990-06-27
EP0427529A11991-05-15
EP0451878A11991-10-16
EP0392225A21990-10-17
Other References:
"Organic and Bio-Organic Chemistry", JOURNAL OF THE CHEMICAL SOCIETY, vol. 10, 1972, pages 2141 - 5
JOURNAL OF HETEROCYCLIC CHEMISTRY, vol. 41, no. 3, 2004, pages 443 - 447
SYNLETT, vol. 5, 1997, pages 561 - 562
JOURNAL OF ORGANIC CHEMISTRY, vol. 48, no. 15, 1983, pages 2622 - 5
JOURNAL OF INORGANIC BIOCHEMISTRY, vol. 105, no. 4, 2011, pages 509 - 517
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 132, no. 31, 2010, pages 10706 - 10716
ANGEWANDTE CHEMIE, INTERNATIONAL EDITION, vol. 49, no. 11, 2010, pages S2014,1 - S2014,76
TETRAHEDRON, vol. 44, no. 14, 1988, pages 4351 - 5
BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 12, no. 20, 2002, pages 3009 - 3013
KAMEI ET AL., TETRAHEDRON LETT., vol. 55, 2014, pages 4245 - 4247
SYNLETT, vol. 5, 2002, pages 808 - 810
THE COMPENDIUM OF PESTICIDE COMMON NAMES, Retrieved from the Internet
"Farm Chemicals Handbook", vol. 86, 2000, MEISTER PUBLISHING COMPANY
B. HOCK; C. FEDTKE; R. R. SCHMIDT: "Herbizide [Herbicides", 1995, GEORG THIEME VERLAG
W. H. AHRENS: "Herbicide Handbook", 1994, WEED SCIENCE SOCIETY OF AMERICA
K. K. HATZIOS: "Herbicide Handbook, Supplement for the 7th edition", 1998, WEED SCIENCE SOCIETY OF AMERICA
"Catalogue of pesticide formulation types and international coding system, Technical Monograph No. 2, 6th Ed.", May 2008, CROPLIFE INTERNATIONAL
MOLLET; GRUBEMANN: "Formulation technology", 2001, WILEY VCH
KNOWLES: "Agrow Reports DS243", 2005, T&F INFORMA, article "New developments in crop protection product formulation"
MCCUTCHEON: "Emulsifiers & Detergents", vol. 1, 2008, MCCUTCHEON'S DIRECTORIES
KNOWLES: "Agrow Reports DS256", 2006, T&F INFORMA, article "Adjuvants, and additives (chapter 5)"
PEST MANAGEMENT SCIENCE, vol. 61, 2005, pages 246
PEST MANAGEMENT SCIENCE, vol. 61, 2005, pages 258
PEST MANAGEMENT SCIENCE, vol. 61, 2005, pages 277
PEST MANAGEMENT SCIENCE, vol. 61, 2005, pages 269
PEST MANAGEMENT SCIENCE, vol. 61, 2005, pages 286
PEST MANAGEMENT SCIENCE, vol. 64, 2008, pages 326
PEST MANAGEMENT SCIENCE, vol. 64, 2008, pages 332
WEED SCIENCE, vol. 57, 2009, pages 108
AUSTRALIAN JOURNAL OF AGRICULTURAL RESEARCH, vol. 58, 2007, pages 708
SCIENCE, vol. 316, 2007, pages 1185
Attorney, Agent or Firm:
BASF IP ASSOCIATION (DE)
Download PDF:
Claims:
Claims

1 . The pyridine compounds of formula (I)

wherein

the dotted line ( ) is a single bond or a double bond;

R1 is Ci-C6-alkyl, Ci-C6-haloalkyl, hydroxy-Ci-C6-alkyl, C3-C6-alkenyl, C3-C6-haloal- kenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, Ci-C6-alkoxy-Ci-C6-alkyl, Ci-C6-alkoxy, C3- C6-alkenyloxy, C3-C6-haloalkenyloxy, C3-C6-alkynyloxy, C3-C6-haloalkynyloxy, C1-C6 haloalkoxy, C3-C6-cycloalkoxy, C3-C6-halocycloalkoxy, C3-C6-cycloalkenyloxy, C3-C6 halocycloalkenyloxy, Ci-C6-alkylthio, Ci-C6-haloalkylthio, (Ci-C6-alkyl)amino, di(Ci- C6-alkyl)amino, Ci-C6-alkylsulfinyl, Ci-C6-alkylsulfonyl, C3-C6-cycloalkyl, C3-C6-cyclo alkenyl, C3-C6-halocycloalkyl, C3-C6-halocycloalkenyl, [1 -(Ci-C6-alkyl)]-C3-C6-cycloal kyl, [1 -(C3-C6-alkenyl)]-C3-C6-cycloalkyl, [1 -(C2-C6-alkynyl)]-C3-C6-cycloalkyl, [1 -(Ci- C6-haloalkyl)]-C3-C6-cycloalkyl, [1 -(C3-C6-haloalkenyl)]-C3-C6-cycloalkyl, [1 -(C3-C6- haloalkynyl)]-C3-C6-cycloalkyl, C3-C6-cycloalkyl-Ci-C6-alkyl, C3-C6-cycloalkyl-Ci-C6- haloalkyl, C3-C6-cycloalkyl-Ci-C6-alkoxy, C3-C6-cycloalkyl-Ci-C6-haloalkoxy, or phenyl;

wherein the cyclic groups of R1 are unsubstituted or substituted by Ra; R2 is d-Ce-alkyl, Ci-C6-haloalkyl, C2-C6-alkenyl, C2-C6-haloalkenyl, Ci-C6-alkoxy-C2-C6 alkenyl, Ci-C6-alkoxy-C2-C6-haloalkenyl, Ci-C6-haloalkoxy-C2-C6-alkenyl, C1-C6- haloalkoxy-C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, Ci-C6-alkoxy-C2-C6- alkynyl, Ci-C6-alkoxy-C3-C6-haloalkynyl, Ci-C6-haloalkoxy-C2-C6-alkynyl, C1-C6- haloalkoxy-C3-C6-haloalkynyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, Cs-Ce-cycloalkenyl, C3-C6-halocycloalkenyl, C3-C6-cycloalkyl- Ci-C6-alkyl, C3-C6-cycloalkyl- C1-C6- haloalkyl, C3-C6-halocycloalkyl- Ci-C6-alkyl, C3-C6-halocycloalkyl-Ci-C6-haloalkyl, C3-C6-cycloalkenyl- Ci-C6-alkyl, C3-C6-cycloalkenyl-Ci-C6-haloalkyl, C3-C6-halocyclo alkenyl- Ci-C6-alkyl, C3-C6-halocycloalkenyl- Ci-C6-haloalkyl, C3-C6-cycloalkyl- C2- C6-alkenyl, C3-C6-cycloalkyl- C2-C6-haloalkenyl, C3-C6-halocycloalkyl- C2-C6-alkenyl, C3-C6-halocycloalkyl- C2-C6-haloalkenyl, C3-C6-cycloalkenyl- C2-C6-alkenyl, Cs-Ce- cycloalkenyl- C2-C6-haloalkenyl, C3-C6-halocycloalkenyl- C2-C6-alkenyl, Cs-Ce-halocycloalkenyl- C2-C6-haloalkenyl, C3-C6-cycloalkyl- C2-C6-alkynyl, C3-C6-cycloalkyl-C3 C6-haloalkynyl, C3-C6-halocycloalkyl-C2-C6-alkynyl, C3-C6-halocycloalkyl-C3-C6- haloalkynyl, C3-C6-cycloalkenyl-C2-C6-alkynyl, C3-C6-cycloalkenyl-C3-C6-haloalkynyl, C3-C6-halocycloalkenyl-C2-C6-alkynyl, C3-C6-halocycloalkenyl-C3-C6-haloalkynyl, C3- C6-cycloalkyl-Ci-C6-alkylidenyl, C3-C6-cycloalkyl-C2-C6-haloalkylidenyl, C3-C6-halocy cloalkyl-Ci-Ce-alkylidenyl, C3-C6-halocycloalkyl-C2-C6-haloalkylidenyl, C3-C6-cycloal- kenyl-Ci-C6-alkylidenyl, C3-C6-cycloalkenyl-C2-C6-haloalkylidenyl, C3-C6-halocycloal- kenyl-Ci-C6-alkylidenyl, C3-C6-halocycloalkenyl-C2-C6-haloalkylidenyl, heterocyclyl- CrC6-alkylidenyl, heterocyclyl-Ci-C6-haloalkylidenyl, C3-C6-hydroxycycloalkyl-Ci-C6- alkyl, C3-C6- ydroxycycloalkyl-Ci-C6- aloalkyl, C3-C6-hydroxycycloalkenyl-Ci-C6-al- kyl, C3-C6- ydroxycycloalkenyl-Ci-C6- aloalkyl, Ci-C6- ydroxyalkyl, C2-C6-hydroxy- haloalkyl, C3-C6- ydroxyalkenyl, C3-C6- ydroxyhaloalkenyl, C3-C6- ydroxyalkynyl, C4-C6- ydroxyhaloalkynyl, C3-C6- ydroxycycloalkyl, C3-C6- ydroxyhalocycloalkyl, C3-C6- ydroxycycloalkenyl, C3-C6-hydroxyhalocycloalkenyl, C3-C6-cycloalkyl-Ci-C6- hydroxyalkyl, C3-C6-cycloalkyl-C2-C6- ydroxyhaloalkyl, C3-C6-halocycloalkyl-Ci-C6- hydroxyalkyl, C3-C6- alocycloalkyl-C2-C6- ydroxyhaloalkyl, C3-C6-cycloalkenyl-Cr C6- ydroxyalkyl, C3-C6-cycloalkenyl-C2-C6- ydroxyhaloalkyl, C3-C6-halocycloalkenyl- Ci-C6- ydroxyalkylC3-C6- alocycloalkenyl-C2-C6- ydroxyhaloalkyl, C3-C6-cycloalkyl- C3-C6- ydroxyalkenyl, C3-C6-cycloalkyl-C3-C6- ydroxyhaloalkenyl, C3-C6-halocyclo- alkyl-C3-C6-hydroxyalkenyl, C3-C6- alocycloalkyl-C3-C6- ydroxyhaloalkenyl, C3-C6- cycloalkenyl-C3-C6-hydroxyalkenyl, C3-C6-cycloalkenyl-C3-C6- ydroxyhaloalkenyl, C3-C6- alocycloalkenyl-C3-C6-hydroxyalkenyl, C3-C6-halocycloalkenyl-C3-C6-hydrox- yhaloalkenyl, C3-C6-cycloalkyl-C3-C6- ydroxyalkynyl, C3-C6-halocycloalkyl-C3-C6-hy- droxyalkynyl, C3-C6-cycloalkenyl-C3-C6- ydroxyalkynyl, C3-C6-halocycloalkenyl-C3- C6- ydroxyalkynyl, C3-C6-cycloalkyl-C2-C6-hydroxyalkylidenyl, C3-C6-halocycloalkyl- C2-C6- ydroxyalkylidenyl, C3-C6-cycloalkenyl-C2-C6- ydroxyalkylidenyl, C3-C6-halo- cycloalkyl-C2-C6- ydroxyalkylidenyl, heterocyclyl-C2-C6-hydroxyalkylidenyl, hy- droxycarbonyl-Ci-C6- ydroxyalkyl, hydroxycarbonyl-Ci-C6-alkyl, hydroxycarbonyl- Ci-C6- aloalkyl, Ci-C6-alkoxycarbonyl-Ci-C6- ydroxyalkyl, Ci-C6-haloalkoxycar- bonyl-Ci-C6- ydroxyalkyl, Ci-C6-alkoxycarbonyl-Ci-C6-haloalkyl, Ci-C6-haloal- koxycarbonyl-CrC6- aloalkyl, Ci-C6-alkoxycarbonyl-CrC6-alkyl, Ci-C6- aloal- koxycarbonyl-CrC6-alkyl, C3-C6- ydroxycycloalkyl-Ci-C6- ydroxyalkyl, C3-C6- y- droxycycloalkenyl-Ci-C6- ydroxyalkyl, C3-C6- ydroxycycloalkyl-C3-C6- ydroxy- alkenyl, C3-C6- ydroxycycloalkenyl-C3-C6-hydroxyalkenyl, C3-C6- ydroxycycloalkyl- C3-C6- ydroxyalkynyl, C3-C6-hydroxycycloalkenyl-C3-C6- ydroxyalkenyl, C2-C6-dihy- droxyalkyl, C3-C6-dihydroxyhaloalkyl, C4-C6-dihydroxyalkenyl, C4-C6-dihydroxy- haloalkenyl, C4-C6-dihydroxyalkynyl, Cs-Ce-dihydroxyhaloalkynyl, C4-C6-dihydroxycy- cloalkyl, C4-C6-dihydroxyhalocycloalkyl, C4-C6-dihydroxycycloalkenyl, C4-C6-dihy- droxyhalocycloalkenyl, C3-C6-cycloalkyl-C2-C6-dihydroxyalkyl, C3-C6-halocycloalkyl- C2-C6-dihydroxyalkyl, C3-C6-cycloalkenyl-C2-C6-dihydroxyalkyl, C3-C6-halocycloal- kenyl-C2-C6-dihydroxyalkyl, C3-C6-cycloalkyl-C3-C6-dihydroxyalkenyl, C3-C6-halocy- cloalkyl-C3-C6-dihydroxyalkenyl, C3-C6-cycloalkenyl-C3-C6-dihydroxyalkenyl, C3-C6- halocycloalkenyl-C3-C6-dihydroxyalkenyl, C3-C6-cycloalkyl-C4-C6-dihydroxyalkynyl, C3-C6-halocycloalkyl-C4-C6-dihydroxyalkynyl, C3-C6-cycloalkenyl-C4-C6-dihydroxy- alkynyl, C3-C6-halocycloalkyl-C4-C6-dihydroxyalkynyl, C3-C6-cycloalkyl-C3-C6-dihy- droxyalkylidenyl, C3-C6-halocycloalkyl-C3-C6-dihydroxyalkylidenyl, heterocyclyl-C3- C6-dihydroxyalkylidenyl, hydroxycarbonyl-C2-C6-dihydroxyalkyl, hydroxycarbonyl-C3- C6-dihydroxyhaloalkyl, Ci-C6-alkoxycarbonyl-C2-C6-dihydroxyalkyl, Ci-C6-haloal- koxycarbonyl-C2-C6-dihydroxyalkyl, Ci-C6-haloalkoxycarbonyl-C3-C6-dihydroxy- haloalkyl, C3-C6-dihydroxycycloalkyl- Ci-C6-alkyl, C3-C6-dihydroxycycloalkyl- C1-C6- haloalkylC3-C6-dihydroxycycloalkyl- C2-C6-alkenyl, C3-C6-dihydroxycycloalkyl- C2-C6- haloalkenyl, C3-C6-dihydroxycycloalkyl- C2-C6-alkynyl, C3-C6-dihydroxycycloalkyl- C3-C6-haloalkynyl, Ci-C6-alkylcarbonyl-Ci-C6-alkyl, Ci-C6-haloalkylcarbonyl-Ci-C6- alkyl, Ci-C6-alkylcarbonyl-Ci-C6- aloalkyl, Ci-C6- aloalkylcarbonyl-Ci-C6- aloalkyl, hydroxycarbonyl-C2-C6-alkenyl, hydroxycarbonyl-C2-C6-haloalkenyl, Ci-C6-alkoxy- carbonyl-C2-C6-alkenyl, Ci-C6- aloalkoxycarbonyl-C2-C6-alkenyl, Ci-C6-alkoxycar- bonyl-C2-C6- aloalkenyl, Ci-C6- aloalkoxycarbonyl-C2-C6- aloalkenyl, hydroxycar- bonyl-C2-C6-alkynyl, hydroxycarbonyl-C3-C6- aloalkynyl, Ci-C6-alkoxycarbonyl-C2- C6-alkynyl, CrC6-haloalkoxycarbonyl-C2-C6-alkynyl, CrC6-alkoxycarbonyl-C3-C6- haloalkynyl, CrC6-haloalkoxycarbonyl-C3-C6- aloalkynyl, Ci-C6-cyanoalkyl, C2-C6- cyanohaloalkyl, Ci-C6-dicyanoalkyl, C2-C6-dicyanohaloalkyl, di(hydroxycarbonyl)-Ci- C6-alkyl, di(hydroxycarbonyl)-Ci-C6-haloalkyl, di(Ci-C6-alkoxycarbonyl)-Ci-C6-alkyl, di(Ci-C6- aloalkoxycarbonyl)-Ci-C6-alkyl, di(Ci-C6-alkoxycarbonyl)-Ci-C6- aloalkyl, di(Ci-C6- aloalkoxycarbonyl)-Ci-C6- aloalkyl, di(Ci-C6-alkoxyl)phosphoryl-Ci-C6- alkyl, di(Ci-C6-haloalkoxyl)phosphoryl-Ci-C6-alkyl, di(Ci-C6-alkoxyl)phosphoryl-Ci- C6- aloalkyl, di(Ci-C6- aloalkoxyl)phosphoryl-Ci-C6- aloalkyl, phosphoryl-Ci-C6-al- kyl , phosphoryl-Ci-C6- aloalkyl , di[di(Ci-C6-alkoxyl)phosphoryl-)]CrC6-alkyl, di[di(Ci-C6- aloalkoxyl)phosphoryl-)]CrC6-alkyl, di[di(Ci-C6-alkoxyl)phosphoryl-)]Ci- C6- aloalkyl, di[di(Ci-C6- aloalkoxyl)phosphoryl-)]Ci-C6- aloalkyl, diphosphoryl-Ci- C6-alkyl , diphosphoryl-Ci-C6- aloalkyl, Ci-C6-alkylthio-Ci-C6-alkyl, Ci-C6-haloal- kylthio-Ci-Ce-alkyl, Ci-C6-alkylthio-Ci-C6- aloalkyl, Ci-C6-haloalkylthio-Ci-C6-haloal- kyl, Ci-C6-alkylsulfinly-Ci-C6-alkyl, Ci-C6- aloalkylsulfinly-Ci-C6-alkyl, Ci-C6-alkyl- sulfinly-Ci-Ce-haloalkyl, Ci-C6-haloalkylsulfinly-Ci-C6-haloalkyl, Ci-C6-alkylsulfonyl- Ci-C6-alkyl, Ci-C6-haloalkylsulfonyl-Ci-C6-alkyl, Ci-C6-haloalkylsulfonyl-Ci-C6- haloalkyl, phenyl, 5- or 6-membered heteroaryl, 3- to 6-membered heterocyclyl; wherein hydroxy groups of R2 are unsubstituted or substituted by Rb;

cyclic groups of R2 are unsubstituted or substituted by Rc;

acyclic aliphatic groups of R2 are unsubstituted or substituted by Rd;

Rb is Ci-Ce-alkyl, Ci-C6-haloalkyl, C3-C6-alkenyl, C3-C6-haloalkenyl, C3-C6-alkynyl, C3-C6-haloalkynyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, C4-C6-cycloalkenyl, C3- C6-halocycloalkenyl, Ci-C6-alkoxycarbonyl-Ci-C6-alkyl, Ci-C6-haloalkoxycarbonyl- Ci-C6-alkyl, Ci-C6-alkoxycarbonyl-Ci-C6-haloalkyl, Ci-C6-haloalkoxycarbonyl-Ci- C6-haloalkyl, CrC6-alkylcarbonyl, CrC6-haloalkylcarbonyl, hydroxycarbonyl-Ci- C6-alkyl, hydroxycarbonyl-CrC6-haloalkyl, Ci-C6-alkyloxycarbonyl, Ci-C6-haloal- kyloxycarbonyl, Ci-C6-alkylthiocarbonyl, Ci-C6-haloalkylthiocarbonyl, Ci-C6-alkyl- aminocarbonyl, Ci-C6-haloalkylaminocarbonyl, Ci-C6-dialkylaminocarbonyl, Ci- C6-dihaloalkylaminocarbonyl, Ci-C6-alkylsulfonyl, Ci-C6-haloalkylsulfonyl, C1-C6- alkoxy-Ci-C6-alkyl, Ci-C6-haloalkoxy-Ci-C6-alkyl, Ci-C6-alkoxy-Ci-C6-haloalkyl, Ci-C6-haloalkoxy-Ci-C6-haloalkyl, phenyl-Ci-C6-alkyl, or phenyl-Ci-C6-haloalkyl; Rc is halogen, CN, NO2, Ci-Ce-alkyl, d-Ce-haloalkyl, hydroxy, d-Ce-alkoxy or Ci-

C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, or Ci-C6-alkylsulfonyl;

Rd is phenyl, 5- or 6-membered heteroaryl, or 3- to 6-membered heterocyclyl;

wherein the substituent Rd is unsubstituted or substituted by Re;

Re is halogen, CN, NO2, Ci-Ce-alkyl, Ci-Ce-haloalkyl, hydroxy, Ci-Ce-alkoxy or Ci- C6-haloalkoxy, Ci-C6-alkylsulfonyl;

A is CR3 or NR3A;

Z is a 5 or 6 membered heteroaryl ring comprising A; R3 is halogen, CN, N02, CHO, Ci-C6-alkyl, Ci-C6-haloalkyl, d-Ce-alkylcarbonyl, C3-C6- alkenyl, C3-C6-haloalkenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, Ci-C6-alkoxy, C1-C6- haloalkoxy, C3-C6-alkenyloxy, C3-C6-haloalkenyloxy, C3-C6-alkynyloxy, C3-C6-haloal- kynyloxy, Ci-C6-alkoxy-Ci-C6-alkoxy, hydroxycarbonyl, Ci-C6-alkoxycarbonyl, C1-C6- alkylthio, Ci-C6-haloalkylthio, NH2, (Ci-C6-alkyl)amino, di(Ci-C6-alkyl)amino, (C1-C6- alkyl)sulfinyl, (CrC6-alkyl)sulfonyl, C3-C6-cycloalkyl, (C3-C6-cycloalkyl)oxy, or phenyl; wherein the cyclic groups of R3 are unsubstituted or substituted by substituents Ra; R3A is H, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-Ce-alkylcarbonyl, C3-C6-alkenyl, C3-C6-haloal- kenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy, C3-C6- alkenyloxy, C3-C6-haloalkenyloxy, C3-C6-alkynyloxy, C3-C6-haloalkynyloxy, C1-C6- alkoxy-Ci-C6-alkoxy, Ci-C6-alkoxycarbonyl, Ci-C6-alkylthio, Ci-C6-haloalkylthio, NH2, (Ci-C6-alkyl)amino, di(Ci-C6-alkyl)amino, (Ci-C6-alkyl)sulfinyl, (Ci-C6-alkyl)sulfonyl, C3-C6-cycloalkyl, (C3-C6-cycloalkyl)oxy, or phenyl;

wherein the cyclic groups of R3A are unsubstituted or substituted by Ra;

R4 is halogen, CN, N02, CHO, C C6-alkyl, Ci-C6-haloalkyl, C C6-alkylcarbonyl, C3-C6- alkenyl, C3-C6-haloalkenyl, C3-C6-alkenyl, C3-C6-haloalkenyl, Ci-C6-alkoxy, C1-C6- haloalkoxy, C3-C6-alkenyloxy, C3-C6-haloalkenyloxy, C3-C6-alkenyloxy, C3-C6-haloal- kenyloxy, Ci-C6-alkoxy-Ci-C6-alkoxy, hydroxycarbonyl, Ci-C6-alkoxycarbonyl, C1-C6- alkylthio, Ci-C6-haloalkylthio, NH2, (Ci-C6-alkyl)amino, di(Ci-C6-alkyl)amino, (C1-C6- alkyl)sulfinyl, (Ci-C6-alkyl)sulfonyl, C3-C6-cycloalkyl, (C3-C6-cycloalkyl)oxy, or phenyl; wherein the cyclic groups of R4 are unsubstituted or substituted by Ra;

Ra is halogen, CN , N02, CrC6-alkyl, CrC6-haloalkyl, CrC6-alkoxy, or Ci-C6-haloal- koxy;

m is 0, 1 , 2, or 3;

including agriculturally acceptable salts or derivatives of compounds of formula (I) having an acidic functionality.

The pyridine compounds of formula (I) according to claim 1 , wherein the heteroaryl ring Z is selected from rings A to G,

wherein

R3 is halogen, CHO, CN, C C6-alkyl, C C6-haloalkyl, or Ci-C6-alkoxy;

m is O or l ;

R4 is halogen, CHO, CN, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

X is O, S, or NR3A; R3A is H, d-Ce-alkyl, d-Ce-haloalkyl, Ci-C6-alkylcarbonyl, C3-C6-alkenyl, C3-C6- haloalkenyl, C3-C6-alkenyl, C3-C6-haloalkenyl, or C3-C6-cycloalkyl;

and

# denotes the point of attachment to the pyridine ring.

The pyridine compounds of formula (I) according to claim 1 or 2, wherein

R1 is Ci-C6-alkyl, Ci-C6-alkoxy, CrC6-haloalkoxy, C3-C6-alkenyloxy, d-drhaloal- kenyloxy C3-C6-alkynyloxy, C3-C6-haloalkynyloxy, Ci-C6-alkylthio, or Cs- rcycloal- kyl, wherein the cycloalkyl substituent is unsubstituted.

The pyridine compounds of formula (I) according to any of claims 1 to 3, wherein

R2 is C2-C6-alkenyl, C2-C6-haloalkenyl, Ci-C6-alkoxy-C2-C6-alkenyl, C2-C6-alkynyl, C3- C6-cycloalkenyl, C3-C6-cycloalkenyl-Ci-C6-alkyl, C3-C6-cycloalkyl-Ci-C6-alkylidenyl, C3-C6-halocycloalkyl-Ci-C6-alkylidenyl, C3-C6-cycloalkenyl-CrC6-alkylidenyl, C3-C6- hydroxycycloalkyl-CrC6-alkyl, C3-C6-hydroxycycloalkenyl-Ci-C6-alkyl, d-drhydrox- yalkyl, C3-C6-cycloalkyl-C2-C6-hydroxyalkylidenyl, hydroxycarbonyl-Ci-C6-alkyl, hy- droxycarbonyl-Ci-C6-haloalkyl, Ci-C6-alkoxycarbonyl-Ci-C6-alkyl, Cs-d-hydroxycy- cloalkyl-Ci-C6-hydroxyalkyl, C2-C6-dihydroxyalkyl, C3-C6-cycloalkyl-C3-C6-dihydroxy- alkylidenyl, hydroxycarbonyl-C2-C6-dihydroxyalkyl, Ci-Ce-alkoxycarbonyl-d-d-dihy- droxyalkyl, Ci-C6-dicyanoalkyl, or 5- or 6-membered heteroaryl;

wherein hydroxy groups of R2 are unsubstituted or substituted by Rb;

cyclic groups of R2 are unsubstituted or substituted by Rc; and

acyclic aliphatic groups of R2 are unsubstituted or substituted by Rd;

Rb is Ci-Ce-alkyl, Ci-Ce-haloalkyl, d-d-alkenyl, d-d-haloalkenyl, d-d-alkynyl, C3-C6-haloalkynyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, C4-C6-cycloalkenyl, C3- C6-halocycloalkenyl, Ci-C6-alkoxycarbonyl-Ci-C6-alkyl, Ci-d-haloalkoxycarbonyl- Ci-C6-alkyl, Ci-C6-alkoxycarbonyl-Ci-C6-haloalkyl, Ci-C6-haloalkoxycarbonyl-Ci- C6-haloalkyl, Ci-C6-alkylcarbonyl, Ci-C6-haloalkylcarbonyl, hydroxycarbonyl-Ci- C6-alkyl, hydroxycarbonyl-Ci-C6-haloalkyl, Ci-C6-alkyloxycarbonyl, Ci-d-haloal- kyloxycarbonyl, Ci-C6-alkylthiocarbonyl, CrC6-haloalkylthiocarbonyl, d-d-alkyl- aminocarbonyl, CrC6-haloalkylaminocarbonyl, CrC6-dialkylaminocarbonyl, Ci- C6-dihaloalkylaminocarbonyl, Ci-C6-alkylsulfonyl, Ci-C6-haloalkylsulfonyl, Ci-d- alkoxy-Ci-C6-alkyl, Ci-C6-haloalkoxy-Ci-C6-alkyl, Ci-C6-alkoxy-Ci-C6-haloalkyl, Ci-C6-haloalkoxy-Ci-C6-haloalkyl, phenyl-Ci-C6-alkyl, or phenyl-Ci-C6-haloalkyl; Rc is halogen, CN, NO2, Ci-Ce-alkyl, Ci-Ce-haloalkyl, hydroxy, d-Ce-alkoxy or d-

C6-haloalkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, or d-Gralkylsulfonyl;

Rd is phenyl, 5- or 6- membered heteroaryl, or 3- to 6-membered heterocyclyl;

wherein the substituent Rd is unsubstituted or substituted by Re;

Re is halogen, CN, N02, Ci-Ce-alkyl, Ci-Ce-haloalkyl, hydroxy, Ci-Ce-alkoxy or Ci- C6-haloalkoxy, Ci-di-alkylsulfonyl.

The pyridine compounds of formula (I) according to claim 1 , wherein R1 is Ci-C6-alkyl, Ci-C6-alkoxy, Ci-C6- aloalkoxy, C3-C6-alkenyloxy, d-drhaloal- kenyloxy C3-C6-alkynyloxy, C3-C6-haloalkynyloxy, Ci-C6-alkylthio, or Cs- rcycloal- kyl, wherein the cycloalkyl substituent is unsubstituted;

R2 is C2-C6-alkenyl, C2-C6-haloalkenyl, Ci-C6-alkoxy-C2-C6-alkenyl, C2-C6-alkynyl, C3- C6-cycloalkenyl, C3-C6-cycloalkenyl-Ci-C6-alkyl, C3-C6-cycloalkyl-Ci-C6-alkylidenyl, C3-C6-halocycloalkyl-Ci-C6-alkylidenyl, C3-C6-cycloalkenyl-CrC6-alkylidenyl, d-d- hydroxycycloalkyl-CrC6-alkyl, C3-C6-hydroxycycloalkenyl-Ci-C6-alkyl, d-d-hydrox- yalkyl, C3-C6-cycloalkyl-C2-C6-hydroxyalkylidenyl, hydroxycarbonyl-Ci-C6-alkyl, hy- droxycarbonyl-Ci-C6-haloalkyl, Ci-C6-alkoxycarbonyl-Ci-C6-alkyl, d-d-hydroxycy- cloalkyl-Ci-C6-hydroxyalkyl, C2-C6-dihydroxyalkyl, d-d-cycloalkyl-d-d-dihydroxy- alkylidenyl, hydroxycarbonyl-C2-C6-dihydroxyalkyl, Ci-d-alkoxycarbonyl-d-d-dihy- droxyalkyl, Ci-C6-dicyanoalkyl, or 5- or 6-membered heteroaryl;

wherein hydroxy groups of R2 are unsubstituted or substituted by Rb;

cyclic groups of R2 are unsubstituted or substituted by Rc;

acyclic aliphatic groups of R2 are unsubstituted or substituted by Rd;

Rb is d-Ce-alkyl, Ci-d-haloalkyl, d-d-alkenyl, d-d-haloalkenyl, d-d-alkynyl, C3-C6-haloalkynyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, C4-C6-cycloalkenyl, d- C6-halocycloalkenyl, Ci-C6-alkoxycarbonyl-Ci-C6-alkyl, Ci-d-haloalkoxycarbonyl- Ci-C6-alkyl, Ci-C6-alkoxycarbonyl-Ci-C6-haloalkyl, Ci-d-haloalkoxycarbonyl-Ci- C6-haloalkyl, Ci-C6-alkylcarbonyl, Ci-C6-haloalkylcarbonyl, hydroxycarbonyl-Ci- C6-alkyl, hydroxycarbonyl-Ci-C6-haloalkyl, Ci-C6-alkyloxycarbonyl, Ci-d-haloal- kyloxycarbonyl, Ci-C6-alkylthiocarbonyl, CrC6-haloalkylthiocarbonyl, d-d-alkyl- aminocarbonyl, Ci-C6-haloalkylaminocarbonyl, CrC6-dialkylaminocarbonyl, Ci- C6-dihaloalkylaminocarbonyl, Ci-C6-alkylsulfonyl, Ci-C6-haloalkylsulfonyl, Ci-d- alkoxy-Ci-C6-alkyl, Ci-C6-haloalkoxy-Ci-C6-alkyl, Ci-C6-alkoxy-Ci-C6-haloalkyl, Ci-C6-haloalkoxy-Ci-C6-haloalkyl, phenyl-Ci-C6-alkyl, or phenyl-Ci-C6-haloalkyl; Rc is halogen, CN, NO2, Ci-d-alkyl, Ci-d-haloalkyl, hydroxy, d-Ce-alkoxy or Ci-

C6-haloalkoxy, Ci-C6-alkylthio, d-dralkylsulfinyl, or Ci-C6-alkylsulfonyl;

Rd is phenyl, 5- or 6- membered heteroaryl, or 3- to 6-membered heterocyclyl;

wherein the substituent Rd is unsubstituted or substituted by Re;

Re is halogen, CN, N02, d-d-alkyl, Ci-Ce-haloalkyl, hydroxy, Ci-Ce-alkoxy Ci-C6- haloalkoxy, or Ci-C6-alkylsulfonyl;

Z is selected from rings A to G

wherein

R3 is halogen, CHO, CN, Ci-Ce-alkyl, Ci-Ce-haloalkyl, or Ci-Ce-alkoxy; 124

m is O oM ;

R4 is halogen, CHO, CN, d-Ce-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

X is O, S, or NR3A;

R3A is H, Ci-Ce-alkyl, d-Ce-haloalkyl, Ci-C6-alkylcarbonyl, C3-C6-alkenyl, C3-C6- haloalkenyl, C3-C6-alkenyl, C3-C6-haloalkenyl, or C3-C6-cycloalkyl;

and

# denotes the point of attachment to the pyridine ring.

A use of pyridine compounds of formula (I), including agriculturally acceptable salts or derivatives of compounds of formula (I) having an acidic functionality, according to any of claims 1 to 5, as herbicide.

A herbicidal compositions comprising:

A) at least one pyridine compound of formula I, including agriculturally acceptable salts or derivatives of compounds of formula (I) having an acidic functionality, according to any of claims 1 to 5;

and

B) herbicides of class b1 ) to b15):

b1 ) lipid biosynthesis inhibitors;

b2) acetolactate synthase inhibitors (ALS inhibitors);

b3) photosynthesis inhibitors;

b4) protoporphyrinogen-IX oxidase inhibitors,

b5) bleacher herbicides;

b6) enolpyruvyl shikimate 3-phosphate synthase inhibitors (EPSP inhibitors); b7) glutamine synthetase inhibitors;

b8) 7,8-dihydropteroate synthase inhibitors (DHP inhibitors);

b9) mitosis inhibitors;

b10) inhibitors of the synthesis of very long chain fatty acids (VLCFA inhibitors);

b1 1 ) cellulose biosynthesis inhibitors;

b12) decoupler herbicides;

b13) auxinic herbicides;

b14) auxin transport inhibitors; and

b15) other herbicides selected from the group consisting of bromobutide, chlorflurenol, chlorflurenol-methyl, cinmethylin, cumyluron, dalapon, daz- omet, difenzoquat, difenzoquat-metilsulfate, dimethipin, DSMA, dymron, endothal and its salts, etobenzanid, flamprop, flamprop-isopropyl, flam- prop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flurenol, flurenol- butyl, flurprimidol, fosamine, fosamine-ammonium, indanofan, indazi- flam, maleic hydrazide, mefluidide, metam, methiozolin (CAS 403640- 27-7), methyl azide, methyl bromide, methyl-dymron, methyl iodide, MSMA, oleic acid, oxaziclomefone, pelargonic acid, pyributicarb, quinoc- lamine, triaziflam, tridiphane and 6-chloro-3-(2-cyclopropyl-6-methylphe- noxy)-4-pyridazinol, and its salts and esters; 125

including their agriculturally acceptable salts or derivatives.

8. A herbicidal composition comprising the herbicidal composition according to claim 7, and safeners.

9. The herbicidal composition according to claim 7 or 8, wherein the composition

comprises at least one herbicide B selected from herbicides of class b1 , b2, b3, b4, b5, b6, b9, b10, b13 and b14.

10. The herbicidal composition according to any of claims 7 to 9, wherein the composition comprises at least one herbicide B selected from herbicides of class b1 , b2, b4, b5, b9, b10, b13 and b14.

1 1. The herbicidal composition according to any of claims 7 to 10, wherein the weight ratio of component A to component B is in the range of from 1 :500 to 500:1.

12. A herbicidal composition comprising a herbicidal active amount of at least one pyridine compound of formula (I), including agriculturally acceptable salts or derivatives of compounds of formula (I) having an acidic functionality, according to any of claims 1 to 5, and at least one inert liquid and/or solid carrier and, if appropriate, at least one surface-active substance.

13. A herbicidal composition comprising the herbicidal composition according to any of claims 7 to 1 1 , and at least one inert liquid and/or solid carrier and, if appropriate, at least one surface-active substance.

14. A method of controlling undesired vegetation, which comprises allowing a herbicidal active amount of at least one pyridine compound of formula (I), including agriculturally acceptable salts or derivatives of compounds of formula (I) having an acidic functionality, according to any of claims 1 to 5 or a herbicidal composition according to any of claims claim 7 to 13 to act on plants, their environment or on seed.

15. A use of the herbicidal compositions according to any of claims 7 to 13 as herbicides.

Description:
Herbicidal pyridine compounds

The present invention relates to pyridine compounds of the general formula (I) defined below and to their use as herbicides. Moreover, the invention relates to compositions for crop protection and to a method for controlling unwanted vegetation.

Description:

In agriculture, there is a constant demand to develop novel active ingredients, which complement or outperform present methods of treatment regarding activity, selectivity and environmental safety.

These and further objects are achieved by pyridine compounds of formula (I), defined below, and by their agriculturally suitable salts.

Accordingly, the present invention provides the pyridine compounds of formula (I)

wherein

the dotted line ( ) is a single bond or a double bond;

R 1 is Ci-C6-alkyl, Ci-C6-haloalkyl, hydroxy-Ci-C6-alkyl, C3-C6-alkenyl, C3-C6-haloalkenyl, C2- C6-alkynyl, C3-C6-haloalkynyl, Ci-C6-alkoxy-Ci-C6-alkyl, Ci-C6-alkoxy, C3-C6-alkenyloxy, C3-C6-haloalkenyloxy, C3-C6-alkynyloxy, C3-C6-haloalkynyloxy, Ci-C6-haloalkoxy, C3-C6- cycloalkoxy, C3-C6-halocycloalkoxy, C3-C6-cycloalkenyloxy, C3-C6-halocycloalkenyloxy, Ci-C6-alkylthio, Ci-C6-haloalkylthio, (Ci-C6-alkyl)amino, di(Ci-C6-alkyl)amino, Ci-C6-alkyl- sulfinyl, Ci-C6-alkylsulfonyl, C3-C6-cycloalkyl, C3-C6-cycloalkenyl, C3-C6-halocycloalkyl, C3- Ce-halocycloalkenyl, [1-(Ci-C6-alkyl)]-C3-C6-cycloalkyl, [1-(C3-C6-alkenyl)]-C3-C6-cycloalkyl,

[1-(C2-C 6 -alkynyl)]-C 3 -C 6 -cycloalkyl, [1-(Ci-C 6 -haloalkyl)]-C 3 -C 6 -cycloalkyl, [1-(C 3 -C 6 -halo- alkenyl)]-C3-C6-cycloalkyl, [1-(C3-C6-haloalkynyl)]-C3-C6-cycloalkyl, C3-C6-cycloalkyl-Ci-C6- alkyl, C3-C6-cycloalkyl-Ci-C6-haloalkyl, C3-C6-cycloalkyl-Ci-C6-alkoxy, C3-C6-cycloalkyl-Ci- C6-haloalkoxy, or phenyl;

wherein the cyclic groups of R 1 are unsubstituted or substituted by R a ;

R 2 is d-Ce-alkyl, C C 6 -haloalkyl, C 2 -C 6 -alkenyl, C 2 -C 6 -haloalkenyl, Ci-C 6 -alkoxy-C 2 -C 6 - alkenyl, Ci-C6-alkoxy-C2-C6-haloalkenyl, Ci-C6-haloalkoxy-C2-C6-alkenyl, Ci-C6-haloal- koxy-C2-C6-haloalkenyl, C2-C6-alkynyl, C2-C6-haloalkynyl, Ci-C6-alkoxy-C2-C6-alkynyl, Ci- C6-alkoxy-C3-C6-haloalkynyl, Ci-C6-haloalkoxy-C2-C6-alkynyl, Ci-C6-haloalkoxy-C3-C6- haloalkynyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, C3-C6-cycloalkenyl, C3-C6-halocycloal- kenyl, C3-C6-cycloalkyl- Ci-C6-alkyl, C3-C6-cycloalkyl- Ci-C6-haloalkyl, C3-C6-halocycloal- kyl- Ci-C6-alkyl, C3-C6-halocycloalkyl-Ci-C6-haloalkyl, C3-C6-cycloalkenyl- Ci-C6-alkyl, C3- C6-cycloalkenyl-Ci-C6-haloalkyl, C3-C6-halocycloalkenyl- Ci-C6-alkyl, C3-C6-halocycloal- kenyl- Ci-C6-haloalkyl, C3-C6-cycloalkyl- C2-C6-alkenyl, C3-C6-cycloalkyl- C2-C6-haloal- kenyl, C3-C6-halocycloalkyl- C2-C6-alkenyl, C3-C6-halocycloalkyl- C2-C6-haloalkenyl, C3-C6- cycloalkenyl- C2-C6-alkenyl, C3-C6-cycloalkenyl- C2-C6-haloalkenyl, C3-C6-halocycloal- kenyl- C2-C6-alkenyl, C3-C6-halocycloalkenyl- C2-C6-haloalkenyl, C3-C6-cycloalkyl- C2-C6- alkynyl, C3-C6-cycloalkyl-C3-C6-haloalkynyl, C3-C6- alocycloalkyl-C2-C6-alkynyl, C3-C6- al- ocycloalkyl-C3-C6- aloalkynyl, C3-C6-cycloalkenyl-C2-C6-alkynyl, C3-C6-cycloalkenyl-C3-C6- haloalkynyl, C3-C6-halocycloalkenyl-C2-C6-alkynyl, C3-C6- alocycloalkenyl-C3-C6- aloal- kynyl, C3-C6-cycloalkyl-Ci-C6-alkylidenyl, C3-C6-cycloalkyl-C2-C6-haloalkylidenyl, C3-C6- halocycloalkyl-Ci-C6-alkylidenyl, C3-C6-halocycloalkyl-C2-C6- aloalkylidenyl, C3-C6-cycloal- kenyl-Ci-C6-alkylidenyl, C3-C6-cycloalkenyl-C2-C6- aloalkylidenyl, C3-C6- alocycloalkenyl- Ci-C6-alkylidenyl, C3-C6-halocycloalkenyl-C2-C6- aloalkylidenyl, heterocyclyl-Ci-C6-alkyli- denyl, heterocyclyl-C2-C6- aloalkylidenyl, C3-C6-hydroxycycloalkyl-Ci-C6-alkyl, C3-C6- y- droxycycloalkyl-CrC 6 - aloalkyl, C3-C6- ydroxycycloalkenyl-Ci-C6-alkyl, C3-C6-hydroxycy- cloalkenyl-Ci-C6- aloalkyl, Ci-C6- ydroxyalkyl, C2-C6-hydroxyhaloalkyl, C3-C6-hydroxy- alkenyl, C3-C6- ydroxyhaloalkenyl, C3-C6- ydroxyalkynyl, C4-C6- ydroxyhaloalkynyl, C3- C6- ydroxycycloalkyl, C3-C6- ydroxyhalocycloalkyl, C3-C6- ydroxycycloalkenyl, C3-C6-hy- droxyhalocycloalkenyl, C3-C6-cycloalkyl-Ci-C6- ydroxyalkyl, C3-C6-cycloalkyl-C2-C6-hy- droxyhaloalkyl, C3-C6-halocycloalkyl-Ci-C6-hydroxyalkyl, C3-C6- alocycloalkyl-C2-C6- y- droxyhaloalkyl, C3-C6-cycloalkenyl-Ci-C6- ydroxyalkyl, C3-C6-cycloalkenyl-C2-C6-hydroxy- haloalkyl, C3-C6- alocycloalkenyl-Ci-C6- ydroxyalkylC3-C6- alocycloalkenyl-C2-C6- ydrox- yhaloalkyl, C3-C6-cycloalkyl-C3-C6- ydroxyalkenyl, C3-C6-cycloalkyl-C3-C6-hydroxyhaloal- kenyl, C3-C6- alocycloalkyl-C3-C6- ydroxyalkenyl, C3-C6-halocycloalkyl-C3-C6-hydroxy- haloalkenyl, C3-C6-cycloalkenyl-C3-C6- ydroxyalkenyl, C3-C6-cycloalkenyl-C3-C6-hydroxy- haloalkenyl, C3-C6- alocycloalkenyl-C3-C6- ydroxyalkenyl, C3-C6- alocycloalkenyl-C3-C6- hydroxyhaloalkenyl, C3-C6-cycloalkyl-C3-C6- ydroxyalkynyl, C3-C6-halocycloalkyl-C3-C6- hydroxyalkynyl, C3-C6-cycloalkenyl-C3-C6- ydroxyalkynyl, C3-C6- alocycloalkenyl-C3-C6- hydroxyalkynyl, C3-C6-cycloalkyl-C2-C6- ydroxyalkylidenyl, C3-C6-halocycloalkyl-C2-C6- y- droxyalkylidenyl, C3-C6-cycloalkenyl-C2-C6- ydroxyalkylidenyl, C3-C6-halocycloalkyl-C2-C6- hydroxyalkylidenyl, heterocyclyl-C2-C6- ydroxyalkylidenyl, hydroxycarbonyl-Ci-C6- ydrox- yalkyl, hydroxycarbonyl-Ci-C6-alkyl, hydroxycarbonyl-Ci-C6- aloalkyl, Ci-C6-alkoxycar- bonyl-Ci-C6- ydroxyalkyl, Ci-C6- aloalkoxycarbonyl-Ci-C6- ydroxyalkyl, Ci-C6-alkoxycar- bonyl-Ci-C6- aloalkyl, Ci-C6- aloalkoxycarbonyl-Ci-C6- aloalkyl, Ci-C6-alkoxycarbonyl- Ci-C6-alkyl, Ci-C6-haloalkoxycarbonyl-Ci-C6-alkyl, C3-C6- ydroxycycloalkyl-Ci-C6- ydrox- yalkyl, C3-C6- ydroxycycloalkenyl-Ci-C6- ydroxyalkyl, C3-C6- ydroxycycloalkyl-C3-C6- y- droxyalkenyl, C3-C6-hydroxycycloalkenyl-C3-C6-hydroxyalkenyl, C3-C6- ydroxycycloalkyl- C3-C6- ydroxyalkynyl, C3-C6-hydroxycycloalkenyl-C3-C6- ydroxyalkenyl, C2-C6-dihydroxy- alkyl, C3-C6-dihydroxyhaloalkyl, C4-C6-dihydroxyalkenyl, C4-C6-dihydroxyhaloalkenyl, C 4 - C6-dihydroxyalkynyl, Cs-Ce-dihydroxyhaloalkynyl, C 4 -C6-dihydroxycycloalkyl, C 4 -C6-dihy- droxyhalocycloalkyl, C 4 -C6-dihydroxycycloalkenyl, C 4 -C6-dihydroxyhalocycloalkenyl, C3-

C6-cycloalkyl-C2-C6-dihydroxyalkyl, C3-C6- alocycloalkyl-C2-C6-dihydroxyalkyl, C3-C6-cy- cloalkenyl-C2-C6-dihydroxyalkyl, C3-C6- alocycloalkenyl-C2-C6-dihydroxyalkyl, C3-C6-cyclo- alkyl-C3-C6-dihydroxyalkenyl, C3-C6- alocycloalkyl-C3-C6-dihydroxyalkenyl, C3-C6-cycloal- kenyl-C3-C6-dihydroxyalkenyl, C3-C6- alocycloalkenyl-C3-C6-dihydroxyalkenyl, C3-C6-cy- cloalkyl-C 4 -C6-dihydroxyalkynyl, C3-C6- alocycloalkyl-C 4 -C6-dihydroxyalkynyl, C3-C6-cyclo- alkenyl-C 4 -C6-dihydroxyalkynyl, C3-C6- alocycloalkyl-C 4 -C6-dihydroxyalkynyl, C3-C6-cyclo- alkyl-C3-C6-dihydroxyalkylidenyl, C3-C6-halocycloalkyl-C3-C6-dihydroxyalkylidenyl, hetero- cyclyl-C3-C6-dihydroxyalkylidenyl, hydroxycarbonyl-C2-C6-dihydroxyalkyl, hydroxycarbonyl- C3-C6-dihydroxyhaloalkyl, CrC 6 -alkoxycarbonyl-C2-C6-dihydroxyalkyl, d-drhaloal- koxycarbonyl-C2-C6-dihydroxyalkyl, Ci-C6-haloalkoxycarbonyl-C3-C6-dihydroxyhaloalkyl, C3-C6-dihydroxycycloalkyl- Ci-C6-alkyl, C3-C6-dihydroxycycloalkyl- d-C6-haloalkylC3-C6- dihydroxycycloalkyl- C2-C6-alkenyl, C3-C6-dihydroxycycloalkyl- C2-C6- aloalkenyl, C3-C6- dihydroxycycloalkyl- C2-C6-alkynyl, C3-C6-dihydroxycycloalkyl- C3-C6- aloalkynyl, d-Gr alkylcarbonyl-Ci-C6-alkyl, Ci-C6- aloalkylcarbonyl-Ci-C6-alkyl, d-Ce-alkylcarbonyl-d-Gr haloalkyl, Ci-C6- aloalkylcarbonyl-Ci-C6- aloalkyl, hydroxycarbonyl-C2-C6-alkenyl, hy- droxycarbonyl-C2-C6- aloalkenyl, CrC 6 -alkoxycarbonyl-C2-C6-alkenyl, d-drhaloalkoxy- carbonyl-C2-C6-alkenyl, CrC 6 -alkoxycarbonyl-C2-C6- aloalkenyl, d-drhaloalkoxycar- bonyl-C2-C6- aloalkenyl, hydroxycarbonyl-C2-C6-alkynyl, hydroxycarbonyl-d-C6-haloal- kynyl, Ci-C6-alkoxycarbonyl-C2-C6-alkynyl, Ci-C6-haloalkoxycarbonyl-C2-C6-alkynyl, d-d alkoxycarbonyl-C3-C6- aloalkynyl, Ci-C6- aloalkoxycarbonyl-C3-C6- aloalkynyl, d-d-cy- anoalkyl, C2-C6-cyanohaloalkyl, Ci-C6-dicyanoalkyl, C2-C6-dicyanohaloalkyl, di(hy- droxycarbonyl)-Ci-C6-alkyl, di(hydroxycarbonyl)-Ci-C6-haloalkyl, di(Ci-C6-alkoxycarbonyl) Ci-C6-alkyl, di(Ci-C6-haloalkoxycarbonyl)-Ci-C6-alkyl, di(d-d-alkoxycarbonyl)-d-d- haloalkyl, di(Ci-C6- aloalkoxycarbonyl)-CrC6-haloalkyl, di(d-d-alkoxyl)phosphoryl-d- C6-alkyl, di(CrC6- aloalkoxyl)phosphoryl-Ci-C6-alkyl, di(d-d-alkoxyl)phosphoryl-d-d- haloalkyl, di(Ci-C6- aloalkoxyl)phosphoryl-Ci-C6- aloalkyl, phosphoryl-Ci-C6-alkyl , phos- phoryl-Ci-C6-haloalkyl , di[di(Ci-C6-alkoxyl)phosphoryl-)]Ci-C6-alkyl, di[di(d-d-haloal- koxyl)phosphoryl-)]Ci-C6-alkyl, di[di(Ci-C6-alkoxyl)phosphoryl-)]Ci-C6- aloalkyl, di[di(d- C6- aloalkoxyl)phosphoryl-)]Ci-C6-haloalkyl, diphosphoryl-Ci-C6-alkyl , diphosphoryl-d- Ce-haloalkyl, Ci-C 6 -alkylthio-Ci-C 6 -alkyl, Ci-C 6 - aloalkylthio-Ci-C 6 -alkyl, d-d-alkylthio- d-Ce-haloalkyl, Ci-C 6 -haloalkylthio-Ci-C 6 - aloalkyl, Ci-C 6 -alkylsulfinly-Ci-C 6 -alkyl, d-C 6 - haloalkylsulfinly-CrC6-alkyl, Ci-C6-alkylsulfinly-CrC6-haloalkyl, d-d-haloalkylsulfinly-d- C6- aloalkyl, Ci-C6-alkylsulfonyl-Ci-C6-alkyl, Ci-C6- aloalkylsulfonyl-Ci-C6-alkyl, d-d- haloalkylsulfonyl-Ci-C6-haloalkyl, phenyl, 5- or 6-membered heteroaryl, or 3- to 6-mem- bered heterocyclyl;

wherein hydroxy groups of R 2 are unsubstituted or substituted by R b ;

cyclic groups of R 2 are unsubstituted or substituted by R c ; and

acyclic aliphatic groups of R 2 are unsubstituted or substituted by R d .

R b is d-Ce-alkyl, Ci-C 6 -haloalkyl, C 3 -C 6 -alkenyl, C 3 -C 6 -haloalkenyl, C 3 -C 6 -alkynyl, C 3 -C 6 - haloalkynyl, C3-C6-cycloalkyl, C3-C6-halocycloalkyl, C4-C6-cycloalkenyl, C3-C6-halocy- cloalkenyl, Ci-C6-alkoxycarbonyl-Ci-C6-alkyl, Ci-C6-haloalkoxycarbonyl-Ci-C6-alkyl, Ci C6-alkoxycarbonyl-Ci-C6-haloalkyl, Ci-C6-haloalkoxycarbonyl-Ci-C6-haloalkyl, C1-C6- alkylcarbonyl, Ci-C6-haloalkylcarbonyl, hydroxycarbonyl-Ci-C6-alkyl, hydroxycarbonyl- Ci-C6-haloalkyl, Ci-C6-alkyloxycarbonyl, Ci-C6-haloalkyloxycarbonyl, Ci-C6-alkylthio- carbonyl, Ci-C6-haloalkylthiocarbonyl, Ci-C6-alkylaminocarbonyl, Ci-C6-haloalkyla- minocarbonyl, Ci-C6-dialkylaminocarbonyl, Ci-C6-dihaloalkylaminocarbonyl, Ci-C6-al- kylsulfonyl, CrC6-haloalkylsulfonyl, Ci-C6-alkoxy-CrC6-alkyl, Ci-C6-haloalkoxy-Ci-C6- alkyl, Ci-C6-alkoxy-CrC 6 -haloalkyl, CrC 6 -haloalkoxy-Ci-C6-haloalkyl, phenyl-Ci-C6- alkyl, or phenyl-Ci-C6-haloalkyl;

R c is halogen, CN, NO2, Ci-Ce-alkyl, d-Ce-haloalkyl, hydroxy, d-Ce-alkoxy or d-Ce- haloalkoxy, Ci-C6-alkylthio, Ci-C6-alkylsulfinyl, or d-Gralkylsulfonyl;

R d is phenyl, 5- or 6-membered heteroaryl, or 3- to 6-membered heterocyclyl; Λ

4

wherein the substituent R d is unsubstituted or substituted by R e ;

R e is halogen, CN, NO2, Ci-Ce-alkyl, d-Ce-haloalkyl, hydroxy, d-Ce-alkoxy or Ci-Ce- haloalkoxy, Ci-C6-alkylsulfonyl;

A is CR 3 or NR 3A ;

Z is a 5 or 6 membered heteroaryl ring comprising A;

R 3 is halogen, CN, N0 2 , CHO, Ci-C 6 -alkyl, Ci-Ce-haloalkyl, d-Ce-alkylcarbonyl, C 3 -C 6 - alkenyl, C3-C6-haloalkenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, Ci-C6-alkoxy, Ci-drhaloal- koxy, C3-C6-alkenyloxy, C3-C6-haloalkenyloxy, C3-C6-alkynyloxy, C3-C6-haloalkynyloxy, Ci- C6-alkoxy-Ci-C6-alkoxy, hydroxycarbonyl, Ci-C6-alkoxycarbonyl, Ci-C6-alkylthio, d-dr haloalkylthio, NH 2 , (Ci-C 6 -alkyl)amino, di(Ci-C 6 -alkyl)amino, (Ci-C 6 -alkyl)sulfinyl, (Ci-C 6 - alkyl)sulfonyl, C3-C6-cycloalkyl, (C3-C6-cycloalkyl)oxy, or phenyl;

wherein the cyclic groups of R 3 are unsubstituted or substituted by substituents R a ;

R 3A is H, Ci-Ce-alkyl, Ci-Ce-haloalkyl, Ci-d-alkylcarbonyl, C 3 -C 6 -alkenyl, C 3 -C 6 -haloalkenyl, C2-C6-alkynyl, C3-C6-haloalkynyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy, C3-C6-alkenyloxy, d-d- haloalkenyloxy, C3-C6-alkynyloxy, C3-C6-haloalkynyloxy, Ci-C6-alkoxy-Ci-C6-alkoxy, Ci-

C6-alkoxycarbonyl, Ci-C6-alkylthio, Ci-C6-haloalkylthio, NH 2 , (Ci-C6-alkyl)amino, di(d-d- alkyl)amino, (Ci-C6-alkyl)sulfinyl, (Ci-C6-alkyl)sulfonyl, C 3 -C6-cycloalkyl, (d-d-cycloal- kyl)oxy, or phenyl;

wherein the cyclic groups of R 3A are unsubstituted or substituted by R a ;

R 4 is halogen, CN, N0 2 , CHO, Ci-Ce-alkyl, Ci-Ce-haloalkyl, Ci-Ce-alkylcarbonyl, d-d- alkenyl, C3-C6-haloalkenyl, C3-C6-alkenyl, C3-C6-haloalkenyl, Ci-C6-alkoxy, Ci-d-haloal- koxy, C3-C6-alkenyloxy, C3-C6-haloalkenyloxy, C3-C6-alkenyloxy, C3-C6-haloalkenyloxy, Ci-C6-alkoxy-Ci-C6-alkoxy, hydroxycarbonyl, Ci-C6-alkoxycarbonyl, Ci-C6-alkylthio, Ci-d- haloalkylthio, NH 2 , (Ci-C6-alkyl)amino, di(Ci-C6-alkyl)amino, (Ci-C6-alkyl)sulfinyl, (d-d- alkyl)sulfonyl, C3-C6-cycloalkyl, (C3-C6-cycloalkyl)oxy, or phenyl;

wherein the cyclic groups of R 4 are unsubstituted or substituted by R a ;

R a is halogen, CN, NO2, Ci-d-alkyl, Ci-d-haloalkyl, Ci-d-alkoxy, or d-Ce-haloalkoxy; m is 0, 1 , 2, or 3;

including agriculturally acceptable salts or derivatives of compounds of formula (I) having an acidic functionality.

The present invention also provides use of the pyridine compounds of formula (I) as described herein including agriculturally acceptable salts or derivatives of compounds of formula (I) having an acidic functionality, as herbicide.

The pyridine compounds of formula (I) according to the invention can be prepared by standard processes of organic chemistry, e.g. by the following processes:

Process A:

The pyridines of formula (II) can be obtained by reacting respective pyridines of formula (I; R2 = CH3) (prepared analogous to known procedures like e.g. in WO2003066623) with base and an electrophile, e.g. a carbonyl compound (III) (analogous procedures e.g. Journal of the Chemical Society, Perkin Transactions 1 : Organic and Bio-Organic Chemistry (1972-1999), (10), 2141-5; 1980; Journal of Heterocyclic Chemistry, 41 (3), 443-447; 2004): _.

The reaction of the pyridine (I) with the electrophile (I I I), with R independent of each other equals hydrogen, alkyl, cycloalkyl, halocycloalkyl, haloalkyl, cycloalkenyl, halocycloalkenyl, alkenyl, haloalkenyl, alkynyl, phenyl, heterocyclyl, heteroaryl or both R form together a carbocy- cle or a heterocycle, is usually carried out at temperatures of from -100 °C to the boiling point of the reaction mixture, preferably from -80 °C to 20 °C, particularly preferably from -80 °C to -20 °C, in an inert organic solvent in the presence of a base.

Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of Cs-Cs-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, ethers, such as diethyl ether, diisopropyl ether, tert-butyl methyl ether (TBME), dioxane, anisole and tet- rahydrofuran (THF), and also dimethyl sulfoxide (DMSO), dimethylformamide (DMF) and dime- thylacetamide (DMAC), particularly preferably diethyl ether, dioxane and THF.

It is also possible to use mixtures of the solvents mentioned.

Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal anhydrides, such as lithium hydride (LiH), sodium hydride (NaH), potassium hydride (KH) and calcium hydride (CaH), alkali metal amides, such as lithium hexamethyidisilazide (LHMDS) and lithium diisopropylamide (LDA), organometallic compounds, in particular alkali metal alkyls, such as methyllithium (MeLi), butyllithium (BuLi) and phenyllithium (PhLi), and also alkali metal and alkaline earth metal alkoxides, such as sodium methoxide (NaOCHs), sodium ethoxide (NaOC2H5), potassium ethoxide (KOC2H5), potassium tert-butoxide ( BuOK), potassium tert- pentoxide and dimethoxymagnesium, moreover organic bases, e.g. tertiary amines, such as tri- methylamine (TMA), triethylamine (TEA), diisopropylethylamine (DI PEA) and N-methylpiperi- dine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminpyridine, and also bicyclic amines. Particular preference is given to NaH, LHMDS and lithium diisopropyla- mide (LDA).

The bases are generally employed in equimolar amounts; however, they can also be employed in catalytic amounts, in excess or, if appropriate, as solvents.

The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of base and/or the electrophile, based on the pyridine com- pounds (I).

The olefin IV can be obtained by elimination of the alcohol (analogous procedures e.g. Synlett, (5), 561-562; 1997; Journal of Organic Chemistry, 48(15), 2622-5; 1983):

The elimination of the alcohol of the pyridine (II) is usually carried out at temperatures from -100 °C to the boiling point of the reaction mixture, preferably from 0 °C to 120 °C, particularly preferably from 20 °C to 100 °C, in an inert solvent optionally in the presence of an acid.

Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mix- tures of Cs-Cs-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, ethers, such as diethyl ether, diisopropyl ether, TBME, dioxane, anisole and THF, and also DMSO, DMF and DMAC, particularly preferably toluene and o-xylene.

It is also possible to use mixtures of the solvents mentioned.

Suitable acids are inorganic acids, such as HCI, HBr, sulfuric acid; organic acids p-toluenesul- fonic acid, benzene sulfonic acid, pyridinium p-toluol sulfonic acid, methanesulfonic acid, acetic acid; preferably p-toluenesulfonic acid and HCI.

The acids are generally employed in equimolar amounts; however, they can also be employed in catalytic amounts, in excess or, if appropriate, as solvents.

The diol (V) can be obtained e.g. by dihydroxylation of the olefin (IV) (analogous procedures e.g. Journal of Inorganic Biochemistry, 105(4), 509-517; 201 1 ):

The oxidation of the olefin (IV) to the diol (V) is usually carried out at temperatures of from -100 °C to the boiling point of the reaction mixture, preferably from 0 °C to 120 °C, particularly preferably from 20 °C to 100 °C, in an inert solvent.

The reaction may in principle be carried out in substance. However, preference is given to reacting the pyridines (IV) with the oxidant in an organic solvent.

Suitable in principle are all solvents which are capable of dissolving the pyridines (IV) and the oxidant at least partly and preferably fully under the reaction conditions.

Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of Cs-Cs-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, ethers, such as diethyl ether, diisopropyl ether, TBME, dioxane, anisole and THF, and also DMSO, DMF and DMAC, particularly preferably TBME, THF It is also possible to use mixtures of the solvents mentioned.

Suitable oxidants are e.g. potassium permanganate, potassium perruthenate, osmium tetrox- ide and other osmium salts, like potassium osmate. The oxidant can be used in equimolar amounts or in catalytic amounts together with a reoxidant like N-methylmorpholine-N-oxide or potassium hexacyanoferrate in stochiometric amounts or in excess.

Process B:

Pyridine compounds (VI), with R equals alkyl, haloalkyl, alkoxy, haloalkoxy, can be obtained by reacting respective pyridine compounds of formula (VII) with base and an electrophile (VIII) (analogous procedures e.g. Journal of the American Chemical Society, 132(31 ), 10706-10716; 2010).

Electrophile (VIII) can be an alkyl-, alkenyl- or alkynyl-halide, e.g. methyl iodide, allyl bromide or propargyl bromide, or a halogenating agent, e.g. C , Br2, , NCS (/V-Chlorosuccinimide), NBS (/V-Bromosuccinimide), NIS (/V-lodosuccinimide), NFSI (N-Fluorobenzenesulfonimide), Se- lectfluor (1 -Chloromethyl-4-fluoro-1 ,4-diazoniabicyclo[2.2.2]octane bis(tetrafluoroborate)).

The reaction of the pyridine (VII) with the electrophile is usually carried out at temperatures of from -100 °C to the boiling point of the reaction mixture, preferably from -80 °C to 80 °C, particularly preferably from -80 °C to 30 °C, in an inert organic solvent in the presence of a base.

Suitable in principle are all solvents which are capable of dissolving the pyridine (VII) and the electrophile (VIII) at least partly and preferably fully under the reaction conditions.

Examples of suitable solvents are aromatic hydrocarbons such as benzene, chlorobenzene, toluene, cresols, o-, m- and p-xylene, ethers such as diethyl ether, diisopropyl ether, tert. -butyl methylether (TBME), dioxane, anisole and THF, nitriles such as acetonitrile and propionitrile, as well as dipolar aprotic solvents such as sulfolane, DMSO, DMF, DMAC, 1 ,3-dimethyl-2-imidaz- olidinone (DMI), Ν,Ν'-dimethylpropylene urea (DMPU), DMSO and NMP.

It is also possible to use mixtures of the solvents mentioned.

Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal anhydrides, such as LiH, NaH, KH and CaH, alkali metal amides, such as LDA, LHMDS, lithium 2,2,6,6-tetramethylpiperidide (LTMP), organometallic compounds, in particular alkali metal alkyls, such as MeLi, BuLi and PhLi, and also alkali metal and alkaline earth metal alkox- ides, such as NaOCH 3 , NaOC2H 5 , KOC2H5, tBuOK, potassium tert-pentoxide and dimethox- ymagnesium, moreover organic bases, e.g. tertiary amines, such as TMA, TEA, DIPEA and N- methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethyla- minpyridine, and also bicyclic amines. Particular preference is given to NaH, LTMP and LDA.

The bases are generally employed in equimolar amounts; however, they can also be employed in catalytic amounts, in excess or, if appropriate, as solvents.

The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of base and/or the electrophile (VIII), based on the pyridine (VII).

The pyridine compounds of formula (VII) can be obtained by reacting respective pyridines of formula (I, R 2 = CH3) (prepared analogous to known procedures like e.g. in Angewandte Chemie, International Edition, 49(1 1 ), 2014-2017, S2014/1 -S2014/76; 2010; WO 2014142273; WO 2008124610) with base and an electrophile (IX), e.g. a dialkylcarbonate (X = R = alkoxy), an alkyl chloroformiate (X = halogene, R = alkoxy) or an acid halide (X = halogene, R = alkyl or haloalkyl) (analogous procedures e.g. Tetrahedron, 44(14), 4351 -5; 1988; Bioorganic & Medicinal Chemistry Letters, 12(20), 3009-3013; 2002):

The reaction of the pyridine (I) with the electrophile is usually carried out at temperatures of from -100 °C to the boiling point of the reaction mixture, preferably from -80 °C to 80 °C, particularly preferably from -80 °C to 30 °C, in an inert organic solvent in the presence of a base. Suitable in principle are all solvents which are capable of dissolving the pyridine (I) and the electrophile (IX) at least partly and preferably fully under the reaction conditions.

Examples of suitable solvents are aromatic hydrocarbons such as benzene, chlorobenzene, toluene, cresols, o-, m- and p-xylene, ethers such as diethyl ether, diisopropyl ether, TBME, di- oxane, anisole and THF, as well as dipolar aprotic solvents such as sulfolane, DMSO, DMF, DMAC, DMI, DMPU, DMSO and NMP.

It is also possible to use mixtures of the solvents mentioned.

Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal anhydrides, such as LiH, NaH, KH and CaH, alkali metal amides, such as LHMDS and LDA, organometallic compounds, in particular alkali metal alkyls, such as MeLi, BuLi and PhLi, and also alkali metal and alkaline earth metal alkoxides, such as NaOCH3, NaOC2Hs, KOC2H5, tBuOK, potassium tert-pentoxide and dimethoxymagnesium, moreover organic bases, e.g. tertiary amines, such as TMA, TEA, DIPEA and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminpyridine, and also bicyclic amines. Particular preference is given to NaH, lithium hexamethyldisilazide and LDA.

The bases are generally employed in equimolar amounts; however, they can also be employed in catalytic amounts, in excess or, if appropriate, as solvents.

The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of base and/or the electrophile (IX), based on the pyridine

(I)-

Process C:

The pyridines of formula (X) can be obtained by reacting respective pyridines of formula (XI) with boronic acids/esters of formula (XII):

The reaction of pyridines (XI) with boronic acids/esters (XII) is usually carried out from 0 °C to the boiling point of the reaction mixture, preferably from 15 °C to 1 10 °C, particularly preferably from 40 °C to 100 °C, in an inert organic solvent in the presence of a base and a catalyst.

The reaction may in principle be carried out in substance. However, preference is given to reacting the pyridines (XI) with the boronic acids/esters (XII) in an organic solvent with or without water as co-solvent. Suitable in principle are all solvents which are capable of dissolving the pyridines (XI) and the boronic acids (XII) at least partly and preferably fully under the reaction conditions.

Examples of suitable solvents are aromatic hydrocarbons such as benzene, chlorobenzene, toluene, cresols, o-, m- and p-xylene, ethers such as diethyl ether, diisopropyl ether, TBME, di- oxane, anisole and THF, as well as dipolar aprotic solvents such as sulfolane, DMSO, DMF, DMAC, DMI, DMPU, DMSO and NMP.

It is also possible to use mixtures of the solvents mentioned.

Examples of suitable metal-containing bases are inorganic compounds including metal-containing bases such as alkali metal and alkaline earth metal hydroxides, and other metal hydrox- ides, such as LiOH, NaOH, KOH, Mg(OH) 2 , Ca(OH) 2 and AI(OH) 3 ; alkali metal and alkaline earth metal oxide, and other metal oxides, such as U2O, Na20, K2O, MgO, and CaO, Fe2C>3, Ag2<D; alkali metal and alkaline earth metal carbonates such as U2CO3, Na2CC>3, K2CO3, CS2CO3, MgCC>3, and CaCC , as well as alkali metal bicarbonates such as LiHCC>3, NaHCC , KHCO3; alkali metal and alkaline earth metal phosphates such as K3PO4, Ca3(P0 4 )2; alkali metal and alkaline earth metal acetates such as sodium acetate or potassium acetate.

The term base as used herein also includes mixtures of two or more, preferably two of the above compounds. Particular preference is given to the use of one base.

The bases are used preferably from 1 to 10 equivalents based on the pyridine (XI), more preferably from 1.0 to 5.0 equivalents based on the pyridine (XI), most preferably from 1.2 to 2.5 equivalents based on the pyridine (XI).

It may be advantageous to add the base offset over a period of time.

The reaction of the pyridines (XI) with the boronic acids/esters (XII) is carried out in the presence of a catalyst. Examples of suitable catalysts include e.g., palladium based catalysts like, e.g., palladium(ll)acetate, tetrakis(triphenylphosphine)- palladium(O), bis(triphenylphosphine)pal- ladium(ll)chloride or (1 ,1 ,-bis(diphenylphosphino)- ferrocene)-dichloropalladium(ll), and optionally suitable additives such as, e.g., phosphines like, e.g., P(o-tolyl)3, triphenylphosphine or BINAP (2,2'-Bis(diphenylphospino)-1 ,1 '-binaphthyl).

The amount of catalyst is usually 0.01 to 20 mol % (0.0001 to 0.2 equivalents) based on the pyridine (XI).

The halopyridines (XI) are known from the literature (e.g. WO2015181747; WO2014055548) are commercially available or can be prepared by known procedures.

The boronic acids/esters (XII) required for the preparation of pyridines of formula (X) are commercially available, known from literature or can easily prepared analogously to published procedures (e.g. Kamei et al. Tetrahedron Lett. 2014, 55, 4245 - 4247).

The pyridines of formula (XIII) can be obtained by reacting respective pyridines of formula (X) with a reducing agent such as LAH or DIBAIH.

The reduction of pyridines (X) is usually carried out from - 80 °C to the boiling point of the reaction mixture, preferably from -20 °C to 60 °C, particularly preferably from 0 °C to 25 °C, in an inert organic solvent.

Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mix- tures of Cs-Cs-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, ethers, such as diethyl ether, diisopropyl ether, TBME, dioxane, anisole and THF, and also DMSO, DMF and DMAC, particularly preferably diethyl ether, dioxane and THF.

It is also possible to use mixtures of the solvents mentioned.

Examples of reducing agents for pyridines (X) include LAH, DIBALH, LiBH 4 or Lithium triethyl- borohydride.

Preferred agents include LAH and DIBALH.

The hydride-source is used preferably from 1 to 10 equivalents based on the pyridine (X), more preferably from 1.0 to 5.0 equivalents based on the pyridine (X), most preferably from 1 .2 to 2.5 equivalents based on the pyridine (X).

Process D:

The pyridines of formula (XIV) can be obtained by reacting respective pyridines of formula (X) with a metal organic species like a Grignard reagent (R'MgX, X = CI, Br, I; R' = alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, phenyl, heterocyclyl, or heteroaryl).

The reaction of pyridines (X) with a metal organic species is usually carried out from - 80 °C to the boiling point of the reaction mixture, preferably from -20 °C to 60 °C, particularly preferably from -20 °C to 25 °C, in an inert organic solvent.

Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of Cs-Cs-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, ethers, such as diethyl ether, diisopropyl ether, TBME, dioxane, anisole and THF, and also DMSO, DMF and DMAC, particularly preferably diethyl ether, dioxane and THF.

It is also possible to use mixtures of the solvents mentioned.

Examples of metal organic species for the synthesis of pyridines (XIV) are Grignard reagents like R'MgCI, R'MgBr or R'Mgl, lithium organic species, aluminum organic species like R'sAI, R' 2 AIX and R'AIX 2 , titanium organic species like R' 4 Ti, R' 3 TiX, R' 2 TiX 2 and RTiX 3 ,

Preferred agents include Grignard reagents and lithium organic species.

The metal organic species is used preferably from 2 to 10 equivalents based on the pyridine (X), more preferably from 2.0 to 5.0 equivalents based on the pyridine (X), most preferably from 2.0 to 3.0 equivalents based on the pyridine (X).

Process E:

The pyridines of formula (XV) can be obtained by reacting respective pyridines of formula (XVI) with a metal organic species like a Grignard reagent (R'MgX, X = CI, Br, I; R' = alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, phenyl, heterocyclyl, or heteroaryl).

The reaction of pyridines (XVI) with a metal organic species is usually carried out from - 80 °C to the boiling point of the reaction mixture, preferably from -20 °C to 60 °C, particularly preferably from -20 °C to 25 °C, in an inert organic solvent.

Suitable solvents are aliphatic hydrocarbons, such as pentane, hexane, cyclohexane and mixtures of Cs-Ce-alkanes, aromatic hydrocarbons, such as toluene, o-, m- and p-xylene, ethers, such as diethyl ether, diisopropyl ether, TBME, dioxane, anisole and THF, and also DMSO, DMF and DMAC, particularly preferably diethyl ether, dioxane and THF.

It is also possible to use mixtures of the solvents mentioned.

Examples of metal organic species for the synthesis of pyridines (XV) are Grignard reagents like R'MgCI, R'MgBr or R'Mgl, lithium organic species, aluminum organic species like R'sAI, R' 2 AIX and R'AIX 2 , titanium organic species like R' 4 Ti, R' 3 TiX, R' 2 TiX 2 and RTiX 3 ,

Preferred agents include Grignard reagents and lithium organic species.

The metal organic species is used preferably from 2 to 10 equivalents based on the pyridine (XVI), more preferably from 2.0 to 5.0 equivalents based on the pyridine (XVI), most preferably from 2.0 to 3.0 equivalents based on the pyridine (XVI).

Process F:

The pyridines of formula (XVI) can be obtained by oxidizing respective pyridines of formula (XIII).

The oxidation of pyridines (XIII) is usually carried out from - 80 °C to the boiling point of the reaction mixture, preferably from -20 °C to 100 °C, particularly preferably from 0 °C to 75 °C, in an inert organic solvent.

The reaction may in principle be carried out in substance. However, preference is given to reacting the pyridines (XIII) in an organic solvent.

Suitable in principle are all solvents which are capable of dissolving the pyridines (XIII) at least partly and preferably fully under the reaction conditions.

Examples of suitable solvents are aromatic hydrocarbons such as benzene, chlorobenzene, toluene, cresols, o-, m- and p-xylene, halogenated hydrocarbons such as CH 2 CI 2 , CHC , CCH 2 CICH 2 CI or CCI 4 , ethers such as diethyl ether, diisopropyl ether, TBME, dioxane, anisole and THF, as well as dipolar aprotic solvents such as sulfolane, DMSO, DMF, DMAC, DMI, DMPU, DMSO and NMP. It is also possible to use mixtures of the solvents mentioned.

Examples of oxidizing agents for the synthesis of pyridines (XVI) are metal oxides such as Μηθ2, ΚΜηθ4, CrC or PCC, and non-metal oxides such as NaCIO, Nal0 4 or pyridine/SC>3 - complex. In addition methods like the Swern oxidation or the TEMPO oxidation known to a per- son skilled in the art can be used to obtain pyridines of formula (XVI).

Preferred agents include Μηθ2, KMn0 4 and PCC, more preferred MnC>2.

The oxidizing agent is used preferably from 1 to 50 equivalents based on the pyridine (XIII), more preferably from 1.0 to 20.0 equivalents based on the pyridine (XIII), most preferably from 1.0 to 10.0 equivalents based on the pyridine (XIII).

Process G:

The pyridines of formula (XVII) (Q = cycloalkyl, halocycloalkyl, alkyl, haloalkyl, alkenyl, alkynyl, phenyl, heteroaryl, heterocyclyl, alkylidenyl or halo alkylidenyl and R' = alkyl, haloalkyl, alkenyl, alkynyl, cycloalkyl, heterocyclyl, alkoxycarbonylalkyl) can be obtained reacting respective pyridines of formula (XVIII) with base and an electrophile.

Electrophiles can be an alkyl-, alkenyl- or alkynyl-halide, e.g. methyl iodide, allyl bromide pro- pargyl bromide, ethyl iodide, propyl bromide, or ethyl 2-bromoacetate.

The reaction of the pyridine (XVIII) with the electrophile is usually carried out at temperatures of from -100 °C to the boiling point of the reaction mixture, preferably from -20 °C to 100 °C, particularly preferably from -0 °C to 30 °C, in an inert organic solvent in the presence of a base.

Suitable in principle are all solvents which are capable of dissolving the pyridine (XVIII) and the electrophile at least partly and preferably fully under the reaction conditions.

Examples of suitable solvents are aromatic hydrocarbons such as benzene, chlorobenzene, toluene, cresols, o-, m- and p-xylene, ethers such as diethyl ether, diisopropyl ether, TBME, di- oxane, anisole and THF, nitriles such as acetonitrile and propionitrile, as well as dipolar aprotic solvents such as sulfolane, DMSO, DMF, DMAC, DMI, DMPU, DMSO and NMP.

It is also possible to use mixtures of the solvents mentioned.

Suitable bases are, in general, inorganic compounds, such as alkali metal and alkaline earth metal anhydrides, such as LiH, NaH, KH and CaH, alkali metal amides, such as LHMDS and LDA, organometallic compounds, in particular alkali metal alkyls, such as MeLi, BuLi and PhLi, and also alkali metal and alkaline earth metal alkoxides, such as NaOCH3, NaOC2Hs, KOC2H5, tBuOK, potassium tert-pentoxide and dimethoxymagnesium, moreover organic bases, e.g. tertiary amines, such as TMA, TEA, DIPEA and N-methylpiperidine, pyridine, substituted pyridines, such as collidine, lutidine and 4-dimethylaminpyridine, and also bicyclic amines. Particular pref- erence is given to NaH, lithium hexamethyldisilazide and LDA.

The bases are generally employed in equimolar amounts; however, they can also be employed in catalytic amounts, in excess or, if appropriate, as solvents.

The starting materials are generally reacted with one another in equimolar amounts. It may be advantageous to employ an excess of base and/or the electrophile, based on the pyridine (XVIII). Process H:

The pyridines of formula (I) can be obtained by reacting respective pyridines of formula (XIX), obtained e.g. in analogy to Synlett, (5), 808-810, 2002, with boronic acids/esters of formula (X

The reaction of pyridines (XIX) with boronic acids/esters (XX) is usually carried out from 0 °C to the boiling point of the reaction mixture, preferably from 15 °C to 1 10 °C, particularly preferably from 40 °C to 100 °C, in an inert organic solvent in the presence of a base and a catalyst.

The reaction may in principle be carried out in substance. However, preference is given to re- acting the pyridines (XIX) with the boronic acids/esters (XX) in an organic solvent with or without water as co-solvent.

Suitable in principle are all solvents which are capable of dissolving the pyridines (XIX) and the boronic acids (XX) at least partly and preferably fully under the reaction conditions.

Examples of suitable solvents are aromatic hydrocarbons such as benzene, chlorobenzene, toluene, cresols, o-, m- and p-xylene, ethers such as diethyl ether, diisopropyl ether, TBME, di- oxane, anisole and THF, as well as dipolar aprotic solvents such as sulfolane, DMSO, DMF, DMAC, DMI, DMPU, DMSO and NMP.

It is also possible to use mixtures of the solvents mentioned.

Examples of suitable metal-containing bases are inorganic compounds including metal-con- taining bases such as alkali metal and alkaline earth metal hydroxides, and other metal hydroxides, such as LiOH, NaOH, KOH, Mg(OH) 2 , Ca(OH) 2 and AI(OH) 3 ; alkali metal and alkaline earth metal oxide, and other metal oxides, such as U2O, Na20, K2O, MgO, and CaO, Fe2C>3, Ag2<D; alkali metal and alkaline earth metal carbonates such as U2CO3, Na2CC>3, K2CO3, CS2CO3, MgCC>3, and CaCC , as well as alkali metal bicarbonates such as LiHCC>3, NaHCC , KHCO3; alkali metal and alkaline earth metal phosphates such as K3PO4, Ca3(P0 4 )2; alkali metal and alkaline earth metal acetates such as sodium acetate or potassium acetate.

The term base as used herein also includes mixtures of two or more, preferably two of the above compounds. Particular preference is given to the use of one base.

The bases are used preferably from 1 to 10 equivalents based on the pyridine (XIX), more preferably from 1 .0 to 5.0 equivalents based on the pyridine (XIX), most preferably from 1.2 to 2.5 equivalents based on the pyridine (XIX).

It may be advantageous to add the base offset over a period of time.

The reaction of the pyridines (XIX) with the boronic acids/esters (XX) is carried out in the presence of a catalyst. Examples of suitable catalysts include e.g., palladium based catalysts like, e.g., palladium(ll)acetate, tetrakis(triphenylphosphine)- palladium(O), bis(triphenylphosphine)pal- ladium(ll)chloride or (1 ,1 ,-bis(diphenylphosphino)- ferrocene)-dichloropalladium(ll), and optionally suitable additives such as, e.g., phosphines like, e.g., P(o-tolyl)3, triphenylphosphine or BINAP (2,2'-Bis(diphenylphospino)-1 ,1 '-binaphthyl).

The amount of catalyst is usually 0.01 to 20 mol % (0.0001 to 0.2 equivalents) based on the pyridine (XIX). Λ Λ

14

The end of the reactions can easily be determined by the skilled worker by means of routine methods.

The reaction mixtures are worked up in a customary manner, e.g. by mixing with water, separation of the phases and, if appropriate, chromatographic purification of the crude product.

Some of the intermediates and end products are obtained in the form of viscous oils, which can be purified or freed from volatile components under reduced pressure and at moderately elevated temperature.

If the intermediates and the end products are obtained as solid, purification can also be carried out by recrystallization or digestion.

The boronic acids/esters (XX) required for the preparation of pyridines of formula (I) are commercially available, known from literature or can easily prepared analogously to published procedures (e.g. Kamei et al. Tetrahedron Lett. 2014, 55, 4245 - 4247).

The present invention also provides agrochemical compositions comprising at least one pyridine compounds of formula (I) and auxiliaries customary for formulating crop protection agents.

The present invention furthermore provides a method for controlling unwanted vegetation where a herbicidal effective amount of at least one pyridine compounds of formula (I) is allowed to act on plants, their seeds and/or their habitat. Application can be done before, during and/or after, preferably during and/or after, the emergence of the undesirable plants.

Further embodiments of the present invention are evident from the claims, the description and the examples. It is to be understood that the features mentioned above and still to be illustrated below of the subject matter of the invention can be applied not only in the combination given in each particular case but also in other combinations, without leaving the scope of the invention.

As used herein, the terms "controlling" and "combating" are synonyms.

As used herein, the terms "undesirable vegetation" and "harmful plants" are synonyms.

If the pyridine compounds of formula (I) as described herein are capable of forming geometrical isomers, e.g. E/Z isomers, it is possible to use both, the pure isomers and mixtures thereof, in the compositions according to the invention.

If the pyridine compounds of formula (I) as described herein have one or more centres of chi- rality and, as a consequence, are present as enantiomers or diastereomers, it is possible to use both, the pure enantiomers and diastereomers and their mixtures, in the compositions according to the invention.

If the pyridine compounds of formula (I) as described herein have ionisable functional groups, they can also be employed in the form of their agriculturally acceptable salts. Suitable are, in general, the salts of those cations and the acid addition salts of those acids whose cations and anions, respectively, have no adverse effect on the activity of the active compounds.

Preferred cations are the ions of the alkali metals, preferably of lithium, sodium and potassium, of the alkaline earth metals, preferably of calcium and magnesium, and of the transition metals, preferably of manganese, copper, zinc and iron, further ammonium and substituted ammonium in which one to four H atoms are replaced by Ci-C4-alkyl, hydroxy-Ci-C4-alkyl, Ci-C4-alkoxy-Ci- C4-alkyl, hydroxy-Ci-C4-alkoxy-Ci-C4-alkyl, phenyl or benzyl, preferably ammonium, methyl-ammonium, isopropylammonium, dimethylammonium, diisopropylammonium, trimethylammonium, Λ _.

15

heptylammonium, dodecylammonium, tetradecylammonium, tetramethylammonium, tetrae- thylamm-onium, tetrabutylammonium, 2-hydroxyethylammonium (olamine salt), 2-(2-hydroxy- eth-1 -oxy)eth-1-ylammonium (diglycolamine salt), di(2-hydroxyeth-1-yl)ammonium (diolamine salt), tris(2-hydroxy-ethyl)ammonium (trolamine salt), tris(2-hydroxypropyl)ammonium, benzyltri- methylammonium, benzyltriethylammonium, Ν,Ν,Ν-trimethylethanolammonium (choline salt), furthermore phosphon-ium ions, sulfonium ions, preferably tri(Ci-C4-alkyl)sulfonium, such as tri- methylsulfonium, and sulfoxonium ions, preferably tri(Ci-C4-alkyl)sulfoxonium, and finally the salts of polybasic amines such as N,N-bis-(3-aminopropyl)methylamine and diethylenetriamine. Anions of useful acid addition salts are primarily chloride, bromide, fluoride, iodide, hydrogen- sulfate, methylsulfate, sulfate, dihydrogenphosphate, hydrogenphosphate, nitrate, bicarbonate, carbonate, hexafluorosilicate, hexafluorophosphate, benzoate and also the anions of Ci-C4-al- kanoic acids, preferably formate, acetate, propionate and butyrate.

Pyridine compounds of formula (I) as described herein having a carboxyl group can be employed, if applicable, in the form of the acid, in the form of an agriculturally suitable salt as men- tioned above or else in the form of an agriculturally acceptable derivative, e.g. as amides, such as mono- and di-Ci-C6-alkylamides or arylamides, as esters, e.g. as allyl esters, propargyl esters, Ci-Cio-alkyl esters, alkoxyalkyl esters, tefuryl ((THF-2-yl)methyl) esters and also as thioe- sters, e.g. as Ci-Cio-alkylthio esters. Preferred mono- and di-Ci-C6-alkylamides are the CH3 and the dimethylamides. Preferred arylamides are, e.g., the anilides and the 2-chloroanilides. Pre- ferred alkyl esters are, e.g., the methyl, ethyl, propyl, isopropyl, butyl, isobutyl, pentyl, mexyl

(1-methylhexyl), meptyl (1 -methylheptyl), heptyl, octyl or isooctyl (2-ethylhexyl) esters. Preferred Ci-C4-alkoxy-Ci-C4-alkyl esters are the straight-chain or branched Ci-C4-alkoxy ethyl esters, e.g. the 2-methoxyethyl, 2-ethoxyethyl, 2-butoxyethyl (butotyl), 2-butoxypropyl or 3-butoxypropyl ester. An example of a straight-chain or branched Ci-Cio-alkylthio ester is the ethylthio ester. The organic moieties mentioned in the definition of the variables R 1 , R 2 , A, Z, R 3 , R 3A , and R 4 are - like the term halogen - collective terms for individual enumerations of the individual group members. The term halogen denotes in each case F, CI, Br, or I. All hydrocarbon chains, e.g. all alkyl, alkenyl, alkynyl, alkoxy chains can be straight-chain or branched, the prefix C n -C m denoting in each case the possible number of carbon atoms in the group.

Examples of such meanings are:

- CrC 4 -alkyl: e.g. CH 3 , C 2 H 5 , n-propyl, CH(CH 3 ) 2 , n-butyl, CH(CH 3 )-C 2 H 5 , CH 2 -CH(CH 3 ) 2 , and C(CH 3 ) 3 ;

Ci-C6-alkyl: Ci-C4-alkyl as mentioned above, and also, e.g., n-pentyl, 1-methylbutyl, 2- methylbutyl, 3-methylbutyl, 2,2-dimethylpropyl, 1 -ethylpropyl, n-hexyl, 1 ,1 -dimethylpropyl, 1 ,2- dimethylpropyl, 1 -methylpentyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 1 ,1-dimethyl- butyl, 1 ,2-dimethylbutyl, 1 ,3-dimethylbutyl, 2,2-dimethylbutyl, 2,3-dimethylbutyl, 3,3-dimethyl- butyl, 1-ethylbutyl, 2-ethylbutyl, 1 ,1 ,2-tri methyl propyl, 1 ,2,2-trimethylpropyl, 1 -ethyl-1 -methylpro- pyl or 1 -ethyl-2-methylpropyl, preferably methyl, ethyl, n-propyl, 1-methylethyl, n-butyl, 1 ,1-di- methylethyl, n-pentyl, or n-hexyl;

- Ci-C4-haloalkyl: Ci-C4-alkyl as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, e.g., chloromethyl, dichloromethyl, trichloromethyl, flu- oromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluo- romethyl, bromomethyl, iodomethyl, 2-fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2,2- difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro- 2-fluoroethyl, 2,2,2-trichloroethyl, pentafluoroethyl, 2-fluoropropyl, 3-fluoropropyl, 2,2-difluoro- propyl, 2,3-difluoropropyl, 2-chloropropyl, 3-chloropropyl, 2,3-dichloropropyl, 2-bromopropyl, 3- bromopropyl, 3,3,3-trifluoropropyl, 3,3,3-trichloropropyl, 2,2,3,3,3-pentafluoropropyl, hep- tafluoro-propyl, 1-(fluoromethyl)-2-fluoroethyl, 1-(chloromethyl)-2-chloroethyl, l-(bromomethyl)- 2-bromo-ethyl, 4-fluorobutyl, 4-chlorobutyl, 4-bromobutyl, nonafluorobutyl, 1 ,1 ,2,2,-tetrafluoro- ethyl, and 1 -trifluoromethyl-1 ,2,2,2-tetrafluoroethyl;

Ci-C6- aloalkyl: Ci-C4- aloalkyl as mentioned above, and also, e.g., 5-fluoropentyl, 5- chloropentyl, 5-bromopentyl, 5-iodopentyl, undecafluoropentyl, 6-fluorohexyl, 6-chlorohexyl, 6-bromohexyl, 6-iodohexyl, and dodecafluorohexyl;

- C3-C6-cycloalkyl: monocyclic saturated hydrocarbons having 3 to 6 ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl;

C3-C6-alkenyl: e.g. 1-propenyl, 2-propenyl, 1-methylethenyl, 1-butenyl, 2-butenyl, 3-bu- tenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1 -methyl-2-propenyl, 2-methyl-2-propenyl, 1- pentenyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 1-methyl-1 -butenyl, 2-methyl-1 -butenyl, 3-methyl- 1-butenyl, 1-methyl-2-butenyl, 2-methyl-2-butenyl, 3-methyl-2-butenyl, 1-methyl-3-butenyl,

2-methyl-3-butenyl, 3-methyl-3-butenyl, 1 ,1-dimethyl-2-propenyl, 1 ,2-dimethyl-1-propenyl, 1 ,2- dimethyl-2-propenyl, 1-ethyl-1 -propenyl, 1 -ethyl-2-propenyl, 1-hexenyl, 2-hexenyl, 3-hexenyl, 4- hexenyl, 5-hexenyl, 1-methyl-1 -pentenyl, 2-methyl-1 -pentenyl, 3-methyl-1-pentenyl, 4-methyl-1- pentenyl, 1 -methyl-2-pentenyl, 2-methyl-2-pentenyl, 3-methyl-2-pentenyl, 4-methyl-2-pentenyl, 1-methyl-3-pentenyl, 2-methyl-3-pentenyl, 3-methyl-3-pentenyl, 4-methyl-3-pentenyl, 1 -methyl- 4-pentenyl, 2-methyl-4-pentenyl, 3-methyl-4-pentenyl, 4-methyl-4-pentenyl, 1 ,1-dimethyl-2-bu- tenyl, 1 ,1-dimethyl-3-butenyl, 1 ,2-dimethyl-1 -butenyl, 1 ,2-dimethyl-2-butenyl, 1 ,2-dimethyl-3-bu- tenyl, 1 ,3-dimethyl-1-butenyl, 1 ,3-dimethyl-2-butenyl, 1 ,3-dimethyl-3-butenyl, 2,2-dimethyl-3-bu- tenyl, 2,3-dimethyl-1-butenyl, 2,3-dimethyl-2-butenyl, 2,3-dimethyl-3-butenyl, 3,3-dimethyl-1-bu- tenyl, 3,3-dimethyl-2-butenyl, 1-ethyl-1-butenyl, 1-ethyl-2-butenyl, 1 -ethyl-3-butenyl, 2-ethyl-1- butenyl, 2-ethyl-2-butenyl, 2-ethyl-3-butenyl, 1 ,1 ,2-trimethyl-2-propenyl, 1 -ethyl-1-methyl-2-pro- penyl, 1-ethyl-2-methyl-1-propenyl, and 1 -ethyl-2-methyl-2-propenyl;

C3-C6-haloalkenyl: a C3-C6-alkenyl substituent as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, e.g. 2-chloroprop-2-en-1-yl, 3-chlo- roprop-2-en-1 -yl, 2,3-dichloroprop-2-en-1 -yl, 3,3-dichloroprop-2-en-1-yl, 2,3,3-trichloro-2-en-1-yl, 2,3-dichlorobut-2-en-1-yl, 2-bromoprop-2-en-1-yl, 3-bromoprop-2-en-1-yl, 2,3-dibromoprop-2- en-1-yl, 3,3-dibromoprop-2-en-1 -yl, 2,3,3-tribromo-2-en-1-yl, or 2,3-dibromobut-2-en-1 -yl;

C3-C6-alkynyl: e.g. 1-propynyl, 2-propynyl, 1 -butynyl, 2-butynyl, 3-butynyl, 1-methyl-2- propynyl, 1 -pentynyl, 2-pentynyl, 3-pentynyl, 4-pentynyl, 1-methyl-2-butynyl, 1-methyl-3-butynyl, 2-methyl-3-butynyl, 3-methyl-1-butynyl, 1 ,1 -dimethyl-2-propynyl, 1-ethyl-2-propynyl, 1-hexynyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 5-hexynyl, 1 -methyl-2-pentynyl, 1-methyl-3-pentynyl, 1-methyl- 4-pentynyl, 2-methyl-3-pentynyl, 2-methyl-4-pentynyl, 3-methyl-1-pentynyl, 3-methyl-4-pentynyl, 4-methyl-1-pentynyl, 4-methyl-2-pentynyl, 1 ,1-dimethyl-2-butynyl, 1 ,1 -dimethyl-3-butynyl, 1 ,2- dimethyl-3-butynyl, 2,2-dimethyl-3-butynyl, 3,3-dimethyl-1-butynyl, 1-ethyl-2-butynyl, 1-ethyl-3- butynyl, 2-ethyl-3-butynyl, and 1-ethyl-1 -methyl-2-propynyl;

C2-C6-alkynyl: C3-C6-alkynyl as mentioned above and also ethynyl;

C3-C6-haloalkynyl: a C3-C6-alkynyl group as mentioned above which is partially or fully substituted by F, CI, Br and/or I, e.g. 1 ,1 -difluoroprop-2-yn-1 -yl, 3-chloroprop-2-yn-1-yl, 3-bromo- prop-2-yn-1-yl, 3-iodoprop-2-yn-1-yl, 4-fluorobut-2-yn-1-yl, 4-chlorobut-2-yn-1 -yl, 1 ,1 -difluorobut- „_

17

2-yn-1-yl, 4-iodobut-3-yn-1-yl, 5-fluoropent-3-yn-1 -yl, 5-iodopent-4-yn-1 -yl, 6-fluorohex-4-yn-1 -yl, or 6-iodohex-5-yn-1 -yl;

Ci-C4-alkoxy: e.g. methoxy, ethoxy, propoxy, 1 -methylethoxy butoxy, 1 -methylpropoxy, 2-methylpropoxy, and 1 ,1 -dimethylethoxy;

- Ci-C6-alkoxy: Ci-C4-alkoxy as mentioned above, and also, e.g., pentoxy, 1-methylbut- oxy, 2-methylbutoxy, 3-methoxyl butoxy, 1 ,1 -dimethylpropoxy, 1 ,2-dimethylpropoxy, 2,2-dime- thylpropoxy, 1 -ethylpropoxy, hexoxy, 1-methylpentoxy, 2-methylpentoxy, 3-methylpentoxy, 4-methylpentoxy, 1 ,1 -dimethylbutoxy, 1 ,2-dimethylbutoxy, 1 ,3-dimethylbutoxy, 2,2-dimethylbut- oxy, 2,3-dimethylbutoxy, 3,3-dimethylbutoxy, 1-ethylbutoxy, 2-ethylbutoxy, 1 ,1 ,2-trime- thylpropoxy, 1 ,2, 2-tri methyl propoxy, 1-ethyl-1-methylpropoxy, and 1 -ethyl-2-methylpropoxy.

Ci-C4-haloalkoxy: a Ci-C4-alkoxy group as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., e.g., fluoromethoxy, difluorometh- oxy, trifluoromethoxy, chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloro- ethoxy, 2-bromomethoxy, 2-iodoethoxy, 2,2-difluoroethoxy, 2,2,2-trifluoroethoxy, 2-chloro-2-fluo- roethoxy, 2-chloro-2,2-difluoroethoxy, 2,2-dichloro-2-fluoroethoxy, 2,2,2-trichloroethoxy, pen- tafluoroethoxy, 2-fluoropropoxy, 3-fluoropropoxy, 2-chloropropoxy, 3-chloropropoxy, 2-bromo- propoxy, 3-bromopropoxy, 2,2-difluoropropoxy, 2,3-difluoropropoxy, 2,3-dichloropropoxy, 3,3,3- trifluoropropoxy, 3,3,3-trichloropropoxy, 2,2,3,3,3-pentafluoropropoxy, heptafluoropropoxy, 1- (fluoromethyl)-2-fluoroethoxy, 1 -(chloromethyl)-2-chloroethoxy, 1 -(bromomethyl)-2-bromoeth- oxy, 4-fluorobutoxy, 4-chlorobutoxy, 4-bromobutoxy, and nonafluorobutoxy;

Ci-C6-haloalkoxy: a Ci-C4-haloalkoxy as mentioned above, and also, e.g., 5-fluoro- pentoxy, 5-chloropentoxy, 5-bromopentoxy, 5-iodopentoxy, undecafluoropentoxy, 6-fluoro- hexoxy, 6-chlorohexoxy, 6-bromohexoxy, 6-iodohexoxy and dodecafluorohexoxy;

Ci-C4-alkylthio: e.g. methylthio, ethylthio, propylthio, 1 -methylethylthio, butylthio, 1- methylpropylthio, 2-methylpropylthio, and 1 ,1-dimethylethylthio;

Ci-C6-alkylthio: Ci-C4-alkylthio as mentioned above, and also, e.g., pentylthio, 1 -methyl- butylthio, 2-methylbutylthio, 3-methylbutylthio, 2,2-dimethylpropylthio, 1-ethylpropylthio, hex- ylthio, 1 ,1 -dimethylpropylthio, 1 ,2-dimethylpropylthio, 1 -methylpentylthio, 2-methylpentylthio, 3- methylpentylthio, 4-methylpentylthio, 1 ,1-dimethylbutylthio, 1 ,2-dimethylbutylthio, 1 ,3-dimethyl- butylthio, 2,2-dimethylbutylthio, 2,3-dimethylbutylthio, 3,3-dimethylbutylthio, 1 -ethylbutylthio, 2- ethylbutylthio, 1 , 1 ,2-trimethylpropylthio, 1 ,2,2-trimethylpropylthio, 1 -ethyl-1 -methylpropylthio, and 1- ethyl-2-methylpropylthio;

(Ci-C4-alkyl)amino: e.g. methylamino, ethylamino, propylamino, 1 -methylethylamino, bu- tylamino, 1-methylpropylamino, 2-methylpropylamino, or 1 ,1-dimethylethylamino;

- (Ci-C6-alkyl)amino: (Ci-C4-alkylamino) as mentioned above, and also, e.g., pentylamino, 1-methylbutylamino, 2-methylbutylamino, 3-methylbutylamino, 2,2-dimethylpropylamino, 1-ethyl- propylamino, hexylamino, 1 ,1-dimethylpropylamino, 1 ,2-dimethylpropylamino, 1 -methylpentyla- mino, 2-methylpentylamino, 3-methylpentylamino, 4-methylpentylamino, 1 ,1-dimethylbutyla- mino, 1 ,2-dimethylbutylamino, 1 ,3-dimethylbutylamino, 2,2-dimethylbutylamino, 2,3-dimethyl- butyl-amino 3,3-dimethylbutylamino, 1-ethylbutylamino, 2-ethylbutylamino, 1 ,1 ,2-tri methyl propyl- amino, 1 ,2,2-trimethyl-propylamino, 1 -ethyl-1 -methylpropylamino, or 1-ethyl-2-methylpropyla- mino;

di(Ci-C4-alkyl)amino: e.g. N,N-dimethylamino, Ν,Ν-diethylamino, N,N-di(1-meth- ylethyl)amino, N,N-dipropylamino, Ν,Ν-dibutylamino, N,N-di(1 -methylpropyl)amino, N,N-di(2- Λ

18

methylpropyl)amino, N,N-di(1 ,1 -dimethylethyl)amino, N-ethyl-N-methylamino, N-methyl-N-prop- ylamino, N-methyl-N-(1-methylethyl)amino, N-butyl-N-methylamino, N-methyl-N-(1 -methylpro- pyl)amino, N-methyl-N-(2-methylpropyl)amino, N-(1 ,1-dimethylethyl)-N-methylamino, N-ethyl-N- propylamino, N-ethyl-N-(1-methylethyl)amino, N-butyl-N-ethylamino, N-ethyl-N-(1-methylpro- pyl)amino, N-ethyl-N-(2-methylpropyl)amino, N-ethyl-N-(1 ,1-dimethylethyl)amino, N-(1 -meth- ylethyl)-N-propylamino, N-butyl-N-propylamino, N-(1 -methylpropyl)-N-propylamino, N-(2- methylpropyl)-N-propylamino, N-(1 ,1 -dimethylethyl)-N-propylamino, N-butyl-N-(1-meth- ylethyl)amino, N-(1 -methylethyl)-N-(1-methylpropyl)amino, N-(1-methylethyl)-N-(2-methylpro- pyl)amino, N-(1 ,1 -dimethylethyl)-N-(1-methylethyl)amino, N-butyl-N-(1 -methylpropyl)amino, N- butyl-N-(2-methylpropyl)amino, N-butyl-N-(1 ,1 -dimethylethyl)amino, N-(1-methylpropyl)-N-(2- methylpropyl)amino, N-(1 ,1-dimethylethyl)-N-(1-methylpropyl)amino, or N-(1 ,1-dimethylethyl)-N- (2-methylpropyl)amino;

di(Ci-C6-alkyl)amino: di(Ci-C4-alkyl)amino as mentioned above, and also, e.g., N-me- thyl-N-pentylamino, N-methyl-N-(1-methylbutyl)amino, N-methyl-N-(2-methylbutyl)amino, N-me- thyl-N-(3-methylbutyl)amino, N-methyl-N-(2,2-dimethylpropyl)amino, N-methyl-N-(1 -ethylpro- pyl)amino, N-methyl-N-hexylamino, N-methyl-N-(1 ,1-dimethylpropyl)amino, N-methyl-N-(1 ,2-di- methylpropyl)amino, N-methyl-N-(1-methylpentyl)amino, N-methyl-N-(2-methylpentyl)amino, N- methyl-N-(3-methylpentyl)amino, N-methyl-N-(4-methylpentyl)amino, N-methyl-N-(1 ,1-dimethyl- butyl)amino, N-methyl-N-(1 ,2-dimethylbutyl)amino, N-methyl-N-(1 ,3-dimethylbutyl)amino, N-me- thyl-N-(2,2-dimethylbutyl)amino, N-methyl-N-(2,3-dimethylbutyl)amino, N-methyl-N-(3,3-dime- thylbutyl)amino, N-methyl-N- (l-ethylbutyl)amino, N-methyl-N-(2-ethylbutyl)amino, N-methyl-N- (1 ,1 ,2-trimethylpropyl)amino, N-methyl-N- (1 ,2,2-trimethylpropyl)amino, N-methyl-N-(1-ethyl-1- methylpropyl)amino, N-methyl-N- (1-ethyl-2-methylpropyl)amino, N-ethyl-N-pentylamino, N- ethyl-N-(1 -methylbutyl)amino, N-ethyl-N-(2-methylbutyl)amino, N-ethyl-N-(3-methylbutyl)amino, N-ethyl-N-(2,2-dimethylpropyl)amino, N-ethyl-N-(1-ethylpropyl)amino, N-ethyl-N-hexylamino, N- ethyl-N-(1 ,1 -dimethylpropyl)amino, N-ethyl-N-(1 ,2-dimethylpropyl)amino, N-ethyl-N-(1- methylpentyl)amino, N-ethyl-N-(2-methylpentyl)amino, N-ethyl-N-(3-methylpentyl)amino, N- ethyl-N-(4-methylpentyl)amino, N-ethyl-N-(1 ,1-dimethylbutyl)amino, N-ethyl-N-(1 ,2-dimethyl- butyl)amino, N-ethyl-N-(1 ,3-dimethylbutyl)amino, N-ethyl-N-(2,2-dimethylbutyl)amino, N-ethyl-N- (2,3-dimethylbutyl)amino, N-ethyl-N-(3,3-dimethylbutyl)amino, N-ethyl-N-(1-ethylbutyl)amino, N- ethyl-N-(2-ethylbutyl)amino, N-ethyl-N-(1 ,1 ,2-trimethylpropyl)amino, N-ethyl-N-(1 ,2,2-trime- thylpropyl)amino, N-ethyl-N-(1 -ethyl-1-methylpropyl)amino, N-ethyl-N-(1-ethyl-2-methylpro- pyl)amino, N-propyl-N-pentylamino, N-butyl-N-pentylamino, Ν,Ν-dipentylamino, N-propyl-N-hex- ylamino, N-butyl-N-hexylamino, N-pentyl-N-hexylamino, or N,N-dihexylamino;

- Ci-C6-alkylsulfinyl (Ci-C6-Alkyl-S(=0)-): e.g. methylsulfinyl, ethylsulfinyl, propylsulfinyl, 1- methylethylsulfinyl, butylsulfinyl, 1 -methylpropylsulfinyl, 2-methylpropylsulfinyl, 1 ,1-di- methylethylsulfinyl, pentylsulfinyl, 1 -methylbutylsulfinyl, 2-methylbutylsulfinyl, 3-methylbutylsulfi- nyl, 2,2-dimethylpropylsulfinyl, 1-ethylpropylsulfinyl, 1 ,1-dimethylpropylsulfinyl, 1 ,2-dimethylpro- pyl-sulfinyl, hexylsulfinyl, 1 -methylpentylsulfinyl, 2-methylpentylsulfinyl, 3-methylpentylsulfinyl, 4- methylpentyl-sulfinyl, 1 ,1-dimethylbutylsulfinyl, 1 ,2-dimethylbutylsulfinyl, 1 ,3-dimethylbutyl-sulfi- nyl, 2,2-dimethylbutylsulfinyl, 2,3-dimethylbutylsulfinyl, 3,3-dimethylbutyl-sulfinyl, 1-ethylbutyl- sulfinyl, 2-ethylbutylsulfinyl, 1 ,1 ,2-trimethylpropylsulfinyl, 1 ,2,2-trimethylpropylsulfinyl, 1 -ethyl-1 - methylpropyl-sulfinyl, and 1 -ethyl-2-methylpropylsulfinyl;

Ci-C6-alkylsulfonyl (Ci-C6-alkyl-S(0)2-) : e.g. methylsulfonyl, ethylsulfonyl, propylsulfonyl, 1- methylethylsulfonyl, butylsulfonyl, 1 -methylpropylsulfonyl, 2-methyl-propylsulfonyl, 1 ,1 -di- methylethylsulfonyl, pentylsulfonyl, 1 -methylbutylsulfonyl, 2-methylbutylsulfonyl, 3-methylbutyl- sulfonyl, 1 ,1-dimethylpropylsulfonyl, 1 ,2-dimethylpropylsulfonyl, 2,2-dimethylpropyl-sulfonyl, 1- ethylpropylsulfonyl, hexylsulfonyl, 1-methylpentylsulfonyl, 2-methylpentylsulfonyl, 3-methylpen- tylsulfonyl, 4-methylpentylsulfonyl, 1 ,1 -dimethylbutylsulfonyl, 1 ,2-dimethylbutylsulfonyl, 1 ,3-di- methylbutylsulfonyl, 2,2-dimethylbutylsulfonyl, 2,3-dimethylbutylsulfonyl, 3,3-dimethylbutyl-sul- fonyl, 1-ethylbutylsulfonyl, 2-ethylbutylsulfonyl, 1 ,1 ,2-trimethyl-propylsulfonyl, 1 ,2,2-trimethyl- propylsulfonyl, 1 -ethyl-1 -methylpropylsulfonyl, and 1-ethyl-2-methylpropylsulfonyl;

C3-C6-cycloalkyl: a monocyclic saturated hydrocarbon having 3 to 6 ring members, such as cyclopropyl, cyclobutyl, cyclopentyl, and cyclohexyl;

C3-C6-cycloalkenyl: 1-cyclopropenyl, 2-cyclopropenyl, 1 -cyclobutenyl, 2-cyclobutenyl, 1 - cyclopentenyl, 2-cyclopentenyl, 1 ,3-cyclopentadienyl, 1 ,4-cyclopentadienyl, 2,4-cyclopentadi- enyl, 1 -cyclohexenyl, 2-cyclohexenyl, 3-cyclohexenyl, 1 ,3-cyclohexadienyl, 1 ,4-cyclohexadienyl, or 2,5-cyclohexadienyl;

- heterocyclyl: a 3- to 6-membered heterocyclyl: a saturated or partial unsaturated cycle having three to six ring members which comprises apart from carbon atoms one to four nitrogen atoms, or one or two oxygen atoms, or one or two sulfur atoms, or one to three nitrogen atoms and an oxygen atom, or one to three nitrogen atoms and a sulfur atom, or one sulfur and one oxygen atom, e.g.

3- or 4-membered heterocycles like 2-oxiranyl, 2-aziridinyl, 2-thiiranyl, 2-oxetanyl, 3-oxetanyl,

2- thietanyl, 3-thietanyl, 1 -azetidinyl, 2-azetidinyl, 1-azetinyl, or 2-azetinyl;

5-membered saturated heterocycles like2-THFyl, 3-THFyl, 2-tetrahydrothienyl, 3-tetrahy- drothienyl, 1-pyrrolidinyl,2-pyrrolidinyl, 3-pyrrolidinyl, 3-isoxazolidinyl, 4-isoxazolidinyl, 5-isoxa- zolidinyl, 2-isothiazolidinyl, 3-isothiazolidinyl, 4-isothiazolidinyl, 5-isothiazolidinyl, 1 -pyrazolidinyl, 3-pyrazolidinyl, 4-pyrazolidinyl, 5-pyrazolidinyl, 2-oxazolidinyl, 4-oxazolidinyl, 5-oxazolidinyl, 2- thiazolidinyl, 4-thiazolidinyl, 5-thiazolidinyl, 1-imidazolidinyl, 2-imidazolidinyl, 4-imidazolidinyl, 3- oxazolidinyl, 1 ,2,4-oxadiazolidin-3-yl, 1 ,2,4-oxadiazolidin-5-yl, 3-thiazolidinyl, 1 ,2,4-thiadiazoli- din-3-yl, 1 ,2,4-thiadiazolidin-5-yl, 1 ,2,4-triazolidin-3-yl, 1 ,2,4-oxadiazolidin-2-yl, 1 ,2,4-oxadiazoli- din-4-yl, 1 ,3,4-oxadiazolidin-2-yl, 1 ,2,4-thiadiazolidin-2-yl, 1 ,2,4-thiadiazolidin-4-yl, 1 ,3,4-thiadia- zolidin-2-yl, 1 ,2,4-triazolidin-1 -yl, or 1 ,3,4-triazolidin-2-yl;

5-membered partial unsaturated heterocycles like 2,3-dihydrofur-2-yl, 2,3-dihydrofur-3-yl, 2,4- dihydrofur-2-yl, 2,4-dihydrofur-3-yl, dioxolan-2-yl, 1 ,3-dioxol-2-yl, 2,3-dihydrothien-2-yl, 2,3-dihy- drothien-3-yl, 2,4-dihydrothien-2-yl, 2,4-dihydrothien-3-yl, 4,5-dihydropyrrol-1 -yl, 4,5-dihydro- pyrrol-2-yl, 4,5-dihydropyrrol-3-yl, 2,5-dihydropyrrol-1 -yl, 2,5-dihydropyrrol-2-yl, 2,5-dihydro- pyrrol-3-yl, 2,3-dihydroisoxazol-1-yl, 2,3-dihydroisoxazol-3-yl, 2,3-dihydroisoxazol-4-yl, 2,3-dihy- droisoxazol-5-yl, 2,5-dihydroisoxazol-3-yl, 2,5-dihydroisoxazol-4-yl, 2,5-dihydroisoxazol-5-yl, 4,5-dihydroisoxazol-2-yl, 4,5-dihydroisoxazol-3-yl, 4,5-dihydroisoxazol-4-yl, 4,5-dihydroisoxazol- 5-yl, 2,3-dihydroisothiazol-1 -yl, 2,3-dihydroisothiazol-3-yl, 2,3-dihydroisothiazol-4-yl, 2,3-dihy- droisothiazol-5-yl, 2,5-dihydroisothiazol-3-yl, 2,5-dihydroisothiazol-4-yl, 2,5-dihydroisothiazol-5- yl, 4,5-dihydroisothiazol-1 -yl, 4,5-dihydroisothiazol-3-yl, 4,5-dihydroisothiazol-4-yl, 4,5-dihydroi- sothiazol-5-yl, 2,3-dihydropyrazol-1 -yl, 2,3-dihydropyrazol-2-yl, 2,3-dihydropyrazol-3-yl, 2,3-dihy- dropyrazol-4-yl, 2,3-dihydropyrazol-5-yl, 3,4-dihydropyrazol-1-yl, 3,4-dihydropyrazol-3-yl, 3,4- dihydropyrazol-4-yl, 3,4-dihydropyrazol-5-yl, 4,5-dihydropyrazol-1-yl, 4,5-dihydropyrazol-3-yl, 4,5-dihydropyrazol-4-yl, 4,5-dihydropyrazol-5-yl, 2,3-dihydroimidazol-1-yl, 2,3-dihydroimidazol-2- yl, 2,3-dihydroimidazol-3-yl ,2,3-dihydroimidazol-4-yl, 2,3-dihydroimidazol-5-yl, 4,5-dihydroimid- azol-1-yl, 4,5-dihydroimidazol-2-yl, 4,5-dihydroimidazol-4-yl, 4,5-dihydroimidazol-5-yl, 2,5-dihy- droimidazol-1-yl, 2,5-dihydroimidazol-2-yl, 2,5-dihydroimidazol-4-yl, 2,5-dihydroimidazol-5-yl, 2,3-dihydrooxazol-2-yl, 2,3-dihydrooxazol-3-yl, 2,3-dihydrooxazol-4-yl, 2,3-dihydrooxazol-5-yl, 3,4-dihydrooxazol-2-yl, 3,4-dihydrooxazol-3-yl, 3,4-dihydrooxazol-4-yl, 3,4-dihydrooxazol-5-yl,

2.3- dihydrothiazol-2-yl, 2,3-dihydrothiazol-3-yl, 2,3-dihydrothiazol-4-yl, 2,3-dihydrothiazol-5-yl,

3.4- dihydrothiazol-2-yl, 3,4-dihydrothiazol-3-yl, 3,4-dihydrothiazol-4-yl, 3,4-dihydrothiazol-5-yl, 3,4-dihydrothiazol-2-yl, 3,4-dihydrothiazol-3-yl, or 3,4-dihydrothiazol-4-yl;

6-membered saturated heterocycles like 1 -piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1 ,3-dioxan-5-yl, 1 ,4-dioxanyl, 1 , 3-d ith ia n-5-y 1 , 1 ,3-dithianyl, 1 ,3-oxathian-5-yl, 1 ,4-oxathianyl, 2-tetrahydropyranyl, 3-tetrahydopyranyl, 4-tetrahydropyranyl, 2-tetrahydrothiopyranyl, 3-tetra- hydrothiopyranyl,4-tetrahydrothiopyranyl, 1 -hexahydropyridazinyl, 3-hexahydropyridazinyl, 4- hexahydropyridazinyl, 1 -hexahydropyrimidinyl, 2-hexahydropyrimidinyl, 4-hexahydropyrimidinyl, 5-hexahydropyrimidinyl, 1-piperazinyl, 2-piperazinyl, 1 ,3,5-hexahydrotriazin-1-yl, 1 ,3,5-hexahy- drotriazin-2-yl, 1 ,2,4-hexahydrotriazin-1 -yl, 1 ,2,4-hexahydrotriazin-3-yl, tetrahydro-1 ,3-oxazin-1- yl, tetrahydro-1 ,3-oxazin-2-yl, tetrahydro-1 ,3-oxazin-6-yl, 1 -morpholinyl, or 2-morpholinyl, 3-mor- pholinyl;

6-membered partial unsaturated heterocycles like 2H-pyran-2-yl, 2H-pyran-3-yl, 2H-pyran-4-yl, 2H-pyran-5-yl, 2H-pyran-6-yl, 2H-thiopyran-2-yl, 2H-thiopyran-3-yl, 2H-thiopyran-4-yl, 2H-thiopy- ran-5-yl, 2H-thiopyran-6-yl, or 5,6-dihydro-4H-1 ,3-oxazin-2-yl.

heteroaryl: a 5- or 6-membered heteroaryl: monocyclic aromatic heteroaryl having 5 to 6 ring members which, in addition to carbon atoms and independent of their position in the ring, contains 1 to 4 nitrogen atoms, or 1 to 3 nitrogen atoms and an oxygen or sulfur atom, or an oxygen or a sulfur atom, e.g. 5-membered aromatic rings like furyl (e.g. 2-furyl, 3-furyl), thienyl (e.g. 2-thienyl, 3-thienyl), pyrrolyl (e.g. pyrrol-2-yl, pyrrol-3-yl), pyrazolyl (e.g. pyrazol-3-yl, pyra- zol-4-yl), isoxazolyl (e.g. isoxazol-3-yl, isoxazol-4-yl, isoxazol-5-yl), isothiazolyl (e.g. isothiazol-3- yl, isothiazol-4-yl, isothiazol-5-yl), imidazolyl (e.g. imidazole-2-yl, imidazole-4-yl), oxazolyl (e.g. oxazol-2-yl, oxazol-4-yl, oxazol-5-yl), thiazolyl (e.g. thiazol-2-yl, thiazol-4-yl, thiazol-5-yl), oxadia- zolyl (e.g. 1 ,2,3-oxadiazol-4-yl, 1 ,2,3-oxadiazol-5-yl, 1 ,2,4-oxadiazol-3-yl, 1 ,2,4-oxadiazol-5-yl, 1 ,3,4-oxadiazol-2-yl), thiadiazolyl (e.g. 1 ,2,3-thiadiazol-4-yl, 1 ,2,3-thiadiazol-5-yl, 1 ,2,4-thiadia- zol-3-yl, 1 ,2,4-thiadiazol-5-yl, 1 ,3,4-thiadiazolyl-2-yl), triazolyl (e.g. 1 ,2,3-triazol-4-yl, 1 ,2,4-tria- zol-3-yl); 1 -tetrazolyl; 6-membered aromatic rings like pyridyl (e.g. pyridine-2-yl, pyridine-3-yl, pyridine-4-yl), pyrazinyl (e.g. pyridazin-3-yl, pyridazin-4-yl), pyrimidinyl (e.g. pyrimidin-2-yl, py- rimidin-4-yl, pyrimidin-5-yl), pyrazin-2-yl, triazinyl (e.g. 1 ,3,5-triazin-2-yl, or 1 ,2,4— triazin-3-yl, 1 ,2,4-triazin-5-yl, 1 ,2,4-triazin-6-yl);

The term "substituted" if not specified otherwise refers to substituted by 1 , 2 or maximum possible number of substituents. If substituents as defined in compounds of formula I are more than one then they are independently from each other are same or different if not mentioned otherwise.

The term "acidic functionality" if not specified otherwise refers to a functionality capable of donating a hydrogen (proton or hydrogen ion H + ), such as a carboxylic group or sulphonic group, or, alternatively, capable of forming a covalent bond with an electron pair.

The terms "compounds of formula (I)", "Pyridine compounds of formula (I)", "Compounds I" and "compounds of invention" are synonyms. The preferred embodiments of the invention mentioned herein below have to be understood as being preferred either independently from each other or in combination with one another.

In general, pyridine compounds of formula (I) are suitable as herbicides.

According to a preferred embodiment of the invention preference is given pyridine compounds of formula (I), and their use as herbicides, wherein the variables, either independently of one another or in combination with one another, have the following meanings:

Preferred R 1 is Ci-C6-alkyl, Ci-C6-alkoxy, Ci-C6-haloalkoxy, C3-C6-alkenyloxy, C3-C6-haloal- kenyloxy C3-C6-alkynyloxy, C4-C6-haloalkynyloxy, Ci-C6-alkylthio, C3-C6-cycloalkyl, wherein the cycloalkyi substituent is unsubstituted;

particularly preferred R 1 is Ci-C6-alkyl, Ci-C6-alkoxy, or C3-C6-cycloalkyl, wherein the cycloalkyi substituent is unsubstituted;

especially preferred R 1 is C3-C6-cycloalkyl, wherein the cycloalkyi substituent is unsubstituted; also especially preferred R 1 is C2H5, 1-C3H7, 1-C4H9, OCH3, C-C3H5, or C-C4H9;

more preferred R 1 is C2H5, OCH3, or C-C3H5;

most preferred R 1 is C-C3H5.

Preferred R 2 is C2-C6-alkenyl, C2-C6-haloalkenyl, CrC 6 -alkoxy-C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkenyl, C3-C6-cycloalkenyl-Ci-C6-alkyl, C3-C6-cycloalkyl-CrC 6 -alkylidenyl, C3-C6- halocycloalkyl-Ci-C6-alkylidenyl, C3-C6-cycloalkenyl-Ci-C6-alkylidenyl, C3-C6-hydroxycycloalkyl- Ci-C6-alkyl, C3-C6-hydroxycycloalkenyl-Ci-C6-alkyl, Ci-C6-hydroxyalkyl, C3-C6-cycloalkyl-C2-C6- hydroxyalkylidenyl, hydroxycarbonyl-Ci-C6-alkyl, hydroxycarbonyl-Ci-C6-haloalkyl, C1-C6- alkoxycarbonyl-Ci-C6-alkyl, C3-C6-hydroxycycloalkyl-Ci-C6-hydroxyalkyl, C2-C6-dihydroxyalkyl, C3-C6-cycloalkyl-C3-C6-dihydroxyalkylidenyl, hydroxycarbonyl-C2-C6-dihydroxyalkyl, C1-C6- alkoxycarbonyl-C2-C6-dihydroxyalkyl, Ci-C6-dicyanoalkyl, or 5- or 6-membered heteroaryl;

wherein hydroxy groups of R 2 are unsubstituted or substituted by R b ,

cyclic groups of R 2 are unsubstituted or substituted by R c , and

and acyclic aliphatic groups of R 2 are unsubstituted or substituted by R d .

particularly preferred R 2 is C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkenyl, C3-C6-cycloalkyl- Ci-C6-alkylidenyl, C3-C6-halocycloalkyl-Ci-C6-alkylidenyl, C3-C6-hydroxycycloalkyl-Ci-C6-alkyl, C3-C6-hydroxycycloalkyl-Ci-C6-hydroxyalkyl, C2-C6-dihydroxyalkyl, or 5- or 6-membered het- eroaryl;

also particularly preferred R 2 is C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkenyl-Ci-C6-alkyl, C3-C6-cycloalkyl-Ci-C6-alkylidenyl, Ci-C6-hydroxyalkyl, Ci-C6-alkoxycarbonyl-CrC 6 -alkyl, C2-C6- dihydroxyalkyl, Ci-C6-dicyanoalkyl, or 5- or 6-membered heteroaryl;

wherein hydroxy groups of R 2 are unsubstituted or substituted by R b ,

cyclic groups of R 2 are unsubstituted or substituted by R c , and

and acyclic aliphatic groups of R 2 are unsubstituted or substituted by R d .

especially preferred R 2 is R 2 is C2-C6-alkenyl, C2-C6-alkynyl, C3-C6-cycloalkyl-Ci-C6-alkylidenyl, C3-C6-hydroxycycloalkyl-Ci-C6-alkyl, and 5- or 6-membered heteroaryl;

also especially preferred R 2 is C2-C6-alkenyl, Ci-C6-hydroxyalkyl, C3-C6-cycloalkyl-Ci-C6-alkyli- denyl, C2-C6-dihydroxyalkyl, Ci-C6-dicyanoalkyl and 5- or 6-membered heteroaryl;

also especially preferred R 2 is C2-C6-alkenyl, C3-C6-cycloalkyl-Ci-C6-alkylidenyl, Ci-C6-hydrox- yalkyl, C2-C6-dihydroxyalkyl, or 5- or 6-membered heteroaryl;

wherein hydroxy groups of R 2 are unsubstituted or substituted by R b ,

cyclic groups of R 2 are unsubstituted or substituted by R c , and _

22

and acyclic aliphatic groups of R 2 are unsubstituted or substituted by R d .

more preferred R 2 is C2-C6-alkenyl, C3-C6-cycloalkyl-Ci-C6-alkylidenyl, or 5- or 6-membered heteroaryl;

also more preferred R 2 is Ci-C6-hydroxyalkyl, C2-C6-dihydroxyalkyl, C3-C6-cycloalkyl-Ci-C6-al- kylidenyl, or 5- or 6-membered heteroaryl;

wherein hydroxy groups of R 2 are unsubstituted or substituted by R b ,

cyclic groups of R 2 are unsubstituted or substituted by R c , and

and acyclic aliphatic groups of R 2 are unsubstituted or substituted by R d .

most preferred R 2 is C2-C6-alkenyl;

also most preferred R 2 is C3-C6-cycloalkyl-Ci-C6-alkylidenyl;

also most preferred R 2 is 5- or 6-membered heteroaryl;

also most preferred R 2 is 5-membered heteroaryl;

also most preferred R 2 is Ci-C6-hydroxyalkyl

also most preferred R 2 is C2-C6-dihydroxyalkyl;

wherein hydroxy groups of R 2 are unsubstituted or substituted by R b ,

cyclic groups of R 2 are unsubstituted or substituted by R c , and

and acyclic aliphatic groups of R 2 are unsubstituted or substituted by R d .

also more preferred R 2 is CH=CH-CH 3 , CH=C(CH 2 ) 3 , or CH=C(CH 2 ) 4 ;

also more preferred R 2 is 2-furyl, 3-furyl, 2-methyl-3-furyl, 3-methyl-2-furyl or 4-methyloxazol-5- yl.;

also most preferred R 2 is CH=CH-CH 3 , CH=C(CH 2 )3, 2-furyl, 3-furyl or 4-methyloxazol-5-yl. also most preferred R 2 is CHOH-CHOH-C 6 H 5 , CHOH-CHOH-2-furyl, CHOH-CHOH-CH 3 , or 4- methyloxazol-5-yl.

also most preferred R 2 is selected from R 2 -1 to R 2 -16 as shown below,

wherein # denotes attachment to the pyrimidine ring, X and Y denotes R c which independently of each other are identical or different;

preferred R 2 is R 2 -1 , R 2 -2, R 2 -3, R 2 -4, R 2 -5, R 2 -6, R 2 -7, or R 2 -8;

also preferred R 2 is R 2 -9, R 2 -10, R 2 -1 1 , R 2 -13, R 2 -14, or R 2 -15;

more preferred R 2 is R 2 -9, R 2 -10, or R 2 -15;

most preferred R 2 is R 2 -9; preferred X is H, halogen, CN, Ci-C6-alkyl, Ci-C6-haloalkyl, OH, Ci-C6-alkoxy, Ci-C6-haloal- koxy, or Ci-C6-alkylthio;

particularrly preferred X is H, halogen, CN, Ci-C6-alkyl, OH, Ci-C6-alkoxy, or Ci-C6-alkylthio; also particularrly preferred X is H, halogen, CN, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, or Ci-C6-haloalkoxy;

especially preferred X is H, halogen, CN, Ci-C4-alkyl, OH, Ci-C4-alkoxy, or Ci-C4-alkylthio; more preferred X is H, CH3, C2H5, n-propyl, iso-propyl, iso-butyl, n-butyl, OH , OCH3, SCH3, F, CI, Br, or I ;

most preferred X is H, CH 3 , C 2 H 5 , OH, or OCH 3 ;

also most preferred X is H, CH 3 , C2H5, or SCH 3 ;

also most preferred X is H, CH 3 , C2H5, F, CI, Br, or I .

Preferred Y is H, halogen, CN, Ci-C 6 -alkyl, Ci-C 6 -haloalkyl, OH, Ci-C 6 -alkoxy, Ci-C 6 -haloal- koxy, or Ci-C6-alkylthio;

particularrly preferred Y is H, halogen, CN, Ci-C6-alkyl, OH, Ci-C6-alkoxy, or Ci-C6-alkylthio; also particularrly preferred Y is H, halogen, CN, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, or Ci-C6-haloalkoxy;

especially preferred Y is H, halogen, CN, Ci-C4-alkyl, Ci-C2-fluoroalkyl, OH, Ci-C4-alkoxy, or Ci-C 4 -alkylthio;

more preferred Y is H, CH 3 , C2H5, n- propyl, iso-propyl, iso-butyl, n-butyl, 2-butyl, t-butyl, OH, OCH 3 , SCH 3 , F, CI, Br, or I;

most preferred Y is H, CH 3 , C2H5, n- propyl, iso-propyl, iso-butyl, n-butyl, 2-butyl, OH, or OCH 3 ; also most preferred Y is H, CH 3 , C2H5, n-propyl, iso-propyl, OH, OCH 3 , or SCH 3 ;

also most preferred Y is H, CH 3 , C2H5, n-propyl, iso-propyl, F, CI, Br, or I .

Particularly preferred R 2 is 4-methyl-5-oxazolyl, 4-ethyl-5-oxazolyl, 2,4-dimethyl-5-oxazolyl, 2- ethyl-4-methyl-5-oxazolyl, 2-methyl-4-ethyl-5-oxazolyl, or 2,4-diethyl-5-oxazolyl.

Examples of particularly preferred R 2 are provided in Table R 2 -9, Table R 2 -10, and Table R 2 - 15.

Table R 2 -9: examples of particularly preferred R 2 are R 2 -9.1 to R 2 -9.676 wherein R 2 is R 2 -9 and combinitions of variables X and Y are as defined in each row of table R2, numbering of each compound e.g. R 2 -9.1 means R 2 is R 2 -9 wherein X and Y are as defined in row 1 of table R2;

Table R 2 -10: examples of particularly preferred R 2 are R 2 -10.1 to R 2 -10.676 wherein R 2 is R 2 - 10 and combinitions of variables X and Y are as defined in each row of table R2, numbering of each compound e.g. R 2 -10.1 means R 2 is R 2 -10 wherein X and Y are as defined in row 1 of ta- ble R2;

Table R 2 -15: examples of particularly preferred R 2 are R 2 -15.1 to R 2 -15.676 wherein R 2 is R 2 - 15 and combinitions of variables X and Y are as defined in each row of table R2, numbering of each compound e.g. R 2 -15.1 means R 2 is R 2 -15 wherein X and Y are as defined in row 1 of table R2.

Table R2:

Preferred A is CR 3 or NR 3A ;

most preferred A is CR 3;

also most preferred A is NR 3A .

Preferred Z is 6-membered heteroaryl ring, preferably triazine, pyrimidine, or pyridine;

particularly preferred Z is pyrimidine or pyridine;

especially preferred Z is pyridine.

Also preferred Z is 5-membered heteroaryl ring, preferably thiadiazole, oxadiazole, triazole, thiazole, isothiazole, oxazole, isoxazole, pyrazole, imidazole, thiophene, furan, or pyrrole;

particularly preferred Z is thiazole, isothiazole, oxazole, isoxazole, pyrazole, imidazole, thiophene, furan, or pyrrole;

especially preferred Z is thiophene, furan, or pyrrole.

Particularly preferred Z is selected from below groups A to G,

wherein

R 3 is halogen, CHO, CN, Ci-C 6 -alkyl, d-Ce-haloalkyl, or Ci-C 6 -alkoxy;

m is 0 or 1 ;

R 4 is halogen, CHO, CN, Ci-C 6 -alkyl, C C 6 -haloalkyl, or C C 6 -alkoxy;

X is O, S, or NR 3A ; and

# denotes the point of attachment to the pyridine ring.

Preferred R 3 is halogen, CN, NO2, Ci-C6-alkyl, Ci-C6-haloalkyl, Ci-C6-alkoxy, or C3-C6-cycloal- kyl;

also preferred R 3 is halogen, CN, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy,

particularly preferred R 3 is halogen, CN, Ci-C6-alkyl, or Ci-C6-alkoxy;

especially preferred halogen, or CH3;

also especially preferred R 3 is halogen;

more preferred R 3 is CI, Br, or I ;

most preferred R 3 is CI or Br.

Preferred R 3A is H, Ci-C 6 -alkyl, Ci-C 6 -haloalkyl, Ci-C 6 -alkylcarbonyl, C 3 -C 6 -alkenyl, C 3 -C 6 - haloalkenyl, C3-C6-alkenyl, C3-C6-haloalkenyl, or C3-C6-cycloalkyl;

also preferred R 3A is H, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkylcarbonyl;

particularly preferred R 3A is H, Ci-C6-alkyl, or Ci-C6-alkylcarbonyl;

especially preferred R 3A is H, or Ci-C6-alkyl;

most preferred R 3A is H, or CH 3 .

Preferred R 4 is halogen, CN, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

particularly preferred R 4 is halogen, Ci-C6-haloalkyl, or Ci-C6-alkyl; especially preferred R 4 is halogen;

also especially preferred R 4 is Ci-C6-haloalkyl, or Ci-C6-alkyl;

more preferred R 4 is F, CI, CHF 2 , CF 3 , CH 3 , or C 2 H 5 ;

most preferred R 4 is F;

also most preferred R 4 is CH3;

also most preferred R 4 is CI.

also most preferred R 4 is CF3.

Preferred m is 0, 1 , or 2;

more preferred m is 0 or 1 ;

most preferred m is 0.

also most preferred m is 1 .

Also preferred is the pyridine compounds of formula (I), and their use as herbicide, wherein R 1 is preferably Ci-C6-alkyl, Ci-C6-alkoxy, or C3-C6-cycloalkyl, wherein the cycloalkyi substituent is unsubstituted;

particularly preferred R 1 is C3-C6-cycloalkyl, wherein the cycloalkyi substituent is unsubstituted;

R 2 is preferably C2-C6-alkenyl, C3-C6-cycloalkylCrC 6 -alkylidenyl, 5- or 6-membered heteroaryl, Ci-C6-hydroxyalkyl, or C2-C6-dihydroxyalkyl;

particularly preferred R 2 is C2-C6-alkenyl, 5- or 6-membered heteroaryl, or Ci-C6-hydroxyalkyl; also particularly preferred R 2 is C3-C6-cycloalkylCi-C6-alkylidenyl, 5- or 6-membered het- eroaryl, or C2-C6-dihydroxyalkyl,

more preferred R 2 is CH=CH-CH 3 , CH=C(CH 2 ) 3 , or CH=C(CH 2 ) 4 ;

also more preferred R 2 is 2-furyl, 3-furyl, 2-methyl-3-furyl, 3-methyl-2-furyl ;

most preferred R 2 is CH=CH-CH 3 , CH=C(CH 2 ) 3 , 2-furyl, 3-furyl, CHOH-CHOH-C 6 H 5 , or CHOH- CHOH-2-furyl or 4-methyloxazol-5-yl.

wherein acyclic aliphatic groups of R 2 are unsubstituted or substituted by R d .

A is preferably CR 3 or NR 3A ;

particularly preferred A is CR 3 ;

also particularly preferred A is NR 3A ;

Z is preferably pyridine, pyrrole, furan, or thiophene;

particularly preferred Z is pyridine;

also particularly preferred Z is pyrrole, furan, or thiophene;

more preferred Z is pyridine, furan, or thiophene;

most preferred Z is selected from groups A to G, as defined above;

R 3 is preferably halogen, CN, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

particularly preferred R 3 is halogen or CH3;

most preferred R 3 is Br or CI;

R 3A is preferably H or Ci-C 6 -alkyl;

particularly preferred R 3A is H or CH3;

m is preferably 0 or 1 ;

R 4 is preferably halogen or CF 3 .

Also preferred is the pyridine compounds of formula (1.1 ) (corresponds to pyridine compounds of formula (I) wherein R 2 is CH=CH-CH3), and their use as herbicide, _

wherein the dotted line ( ) is a single bond or a double bond;

R 1 is C3-C6-cycloalkyl, Ci-C6-alkyl, or Ci-C6-alkoxy;

A is CR 3 or NR 3A ;

R 3 is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

R 3A is H or Ci-Ce-alkyl;

Z is pyridine, thiophene, furan, or pyrrol;

m is 0 or 1 ;

R 4 is F, CI, CHF 2 , CF 3 , CH 3 , or C 2 H 5 .

Also preferred is the pyridine compounds of formula (1.2) (corresponds to pyridine compounds of formula (I) wh and their use as herbicide,

wherein the dotted line ( ) is a single bond or a double bond;

R 1 is C3-C6-cycloalkyl, Ci-C6-alkyl, or Ci-C6-alkoxy;

A is CR 3 ;

R 3 is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

Z is pyridine, thiophene, furan, or pyrrol;

m is 0 or 1 ;

R 4 is F, CI, CHF 2 , CH 3 , CF 3 , or C 2 H 5 .

Also preferred is the pyridine compounds of formula (1.3) (corresponds to pyridine compounds of formula (I) wh nd their use as herbicide,

wherein the dotted line ( ) is a single bond or a double bond;

R 1 is C3-C6-cycloalkyl, Ci-C6-alkyl, or Ci-C6-alkoxy;

A is CR 3 ;

R 3 is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

Z is pyridine, thiophene, furan, or pyrrol;

m is 0 or 1 ;

R 4 is F, CI, CHF 2 , CH 3 , CF 3 , or C 2 H 5 .

Also preferred is the pyridine compounds of formula (1.4) (corresponds to pyridine compounds of formula (I) wherein R 2 is 2-furyl), and their use as herbicide,

wherein the dotted line ( ) is a single bond or a double bond;

R 1 is C3-C6-cycloalkyl, Ci-C6-alkyl, or Ci-C6-alkoxy;

A is CR 3 ;

R 3 is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

Z is pyridine, thiophene, furan, or pyrrol;

m is 0 or 1 ;

R 4 is F, CI, CHF 2 , CH 3 , CF 3 , or C 2 H 5 .

Also preferred is the pyridine compounds of formula (1.5) (corresponds to pyridine compounds of formula (I) w their use as herbicide,

wherein the dotted line ( ) is a single bond or a double bond;

R 1 is C 3 -C6-cycloalkyl, Ci-C6-alkyl, or Ci-C6-alkoxy;

A is CR 3 ;

R 3 is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

Z is pyridine, thiophene, furan, or pyrrol;

m is 0 or 1 ;

R 4 is F, CI, CHF 2 , CH 3 , CF 3 , or C 2 H 5 .

Also preferred is the pyridine compounds of formula (1.6) (corresponds to pyridine compounds of formula (I) wherein R 2 is 3-methyl-2-furyl), and their use as herbicide,

wherein the dotted line ( ) is a single bond or a double bond;

R 1 is C3-C6-cycloalkyl, Ci-C6-alkyl, or Ci-C6-alkoxy;

A is CR 3 ;

R 3 is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

Z is pyridine, thiophene, furan, or pyrrol;

m is 0 or 1 ;

R 4 is F, CI, CHF 2 , CH 3 , CF 3 , or C 2 H 5 .

Also preferred is the pyridine compounds of formula (1.7) (corresponds to pyridine compounds of formula (I) wherein R 2 is 2-methyl-3-furyl), and their use as herbicide, „ .

34

wherein the dotted line ( ) is a single bond or a double bond;

R 1 is C3-C6-cycloalkyl, Ci-C6-alkyl, or Ci-C6-alkoxy;

A is CR 3 ;

R 3 is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

Z is pyridine, thiophene, furan, or pyrrol;

m is 0 or 1 ;

R 4 is F, CI, CHF 2 , CH 3 , CF 3 , or C 2 H 5 .

Also preferred is the pyridine compounds of formula (1.8) (corresponds to pyridine compounds of formula (I) wh H5), and their use as herbicide,

wherein the dotted line ( ) is a single bond or a double bond;

R 1 is C3-C6-cycloalkyl, Ci-C6-alkyl, or Ci-C6-alkoxy;

A is CR 3 ;

R 3 is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

Z is pyridine, thiophene, furan, or pyrrol;

m is 0 or 1 ;

R 4 is F, CI, CHF 2 , CH 3 , CF 3 , or C2H5.

Also preferred is the pyridine compounds of formula (1.9) (corresponds to pyridine compounds of formula (I) wh uryl), and their use as herbicide,

wherein the dotted line ( ) is a single bond or a double bond;

R 1 is C3-C6-cycloalkyl, Ci-C6-alkyl, or Ci-C6-alkoxy;

A is CR 3 ;

R 3 is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

Z is pyridine, thiophene, furan, or pyrrol;

m is 0 or 1 ;

R 4 is F, CI, CHF 2 , CH 3 , CF 3 , or C2H5. Also preferred is the pyridine compounds of formula (1.10) (corresponds to pyridine compounds of formula (I) wherein R 2 is oxazolyl), and their use as herbicide,

wherein the dotted line ( ) is a single bond or a double bond;

X and Y independently are selected from H, CH 3 , C2H5, n-propyl, iso-propyl, iso-butyl, n-butyl, 2-butyl, t-butyl, OH, OCH 3 , SCH 3 , S(0)CH 3 , S(0) 2 CH 3 , CN, F, CI, Br, I, CH 2 CF 3 , CF 2 CF 3 , CF 2 CH 3 , CF 3 , CF 2 H, OCF 2 H, and OCF 3 ;

R 1 is C 3 -C6-cycloalkyl, Ci-C6-alkyl, or Ci-C6-alkoxy;

A is CR 3 ;

R 3 is halogen, Ci-C6-alkyl, Ci-C6-haloalkyl, or Ci-C6-alkoxy;

Z is pyridine, thiophene, furan, or pyrrol;

m is 0 or 1 ;

R 4 is F, CI, CHF 2 , CH 3 , CF 3 , or C 2 H 5 . Particular preference is given to the pyridine compounds of formula I.A to I.G (corresponds to pyridine compounds of formula (I)), and their use as herbicide, wherein X is O, NR 3A , or S.

Preferred compounds of formula I, and their use as herbicide, are the compounds of the formulae I.A to I.G wherein

R 1 is C 2 H 5 , c-C 3 H 5 , C-C4H7, or OCH 3 ;

R 2 is CH=CH-CH 3 , CH=C(CH 2 ) 3 , CH=C(CH 2 ) 4 , 2-furyl, 3-furyl, 4-methyl-2-fury, 2-methyl-3-furyl CHOH-CHOH-CeHs, CHOH-CHOH-2-furyl, 4-methyloxazol-5-yl, R 2 -9.1 to R 2 -9.676 from Table R 2 -9, R 2 -10.1 to R 2 -10.676 from Table R 2 -10, or R 2 -15.1 to R 2 -15.676 from Table R 2 -15;

R 3 is CH 3 , OCH 3 , CI, Br, CHF 2 , F, or I; „„

36

X is O, S, or NR 3A ;

m is 0 or 1 ;

R 4 is F or CF 3 .

Each of the groups mentioned for a substituent in the tables is furthermore per se, inde- pendently of the combination in which it is mentioned, a particularly preferred aspect of the substituent in question.

According to particularly preferred embodiment of the compound of formula I, and their use as herbicide, compounds of the invention are the compounds of the formulae l-A to l-G that are compiled in the Tables 1 to 26.

Table 1 . Compounds of formula I. A, wherein m is 0 (=compounds of formula 1.1 ), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 2. Compounds of formula I. A, wherein m is 1 , R 4 is 4"-F (=compounds of formula 1.2), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corre- sponds in each case to one line of Table A.

Table 3. Compounds of formula I.B, wherein m is 0 (=compounds of formula 1.3), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 4. Compounds of formula I.B, wherein m is 1 , R 4 is 4"-F (=compounds of formula 1.4), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 5. Compounds of formula I.C, wherein m is 0 (=compounds of formula 1.5), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 6. Compounds of formula I.C, wherein m is 1 , R 4 is 2"-F (=compounds of formula 1.6), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 7. Compounds of formula I.D, wherein m is 0 (=compounds of formula 1.7), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 8. Compounds of formula I.D, wherein m is 1 , R 4 is 4"-F (=compounds of formula 1.8), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 9. Compounds of formula I.E, wherein m is 0, X is O (=compounds of formula 1 .9), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 10. Compounds of formula I.E, wherein m is 1 , X is O, R 4 is 3"-F (=compounds of formula 1.10), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 1 1. Compounds of formula I.E, wherein m is 0, X is S (=compounds of formula 1 .1 1 ), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 12. Compounds of formula I.E, wherein m is 1 , X is S, R 4 is 3"-F (=compounds of formula 1.12), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound ^

corresponds in each case to one line of Table A.

Table 13. Compounds of formula I.E, wherein m is 0, X is NCH3 (=compounds of formula 1.13), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 14. Compounds of formula I.E, wherein m is 1 , X is NCH3, R 4 is 3"-F (=compounds of formula 1.14), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 15. Compounds of formula I.F, wherein m is 0, X is O (=compounds of formula 1.15), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corre- sponds in each case to one line of Table A.

Table 16. Compounds of formula I.F, wherein m is 1 , X is O, R 4 is 5"-F (=compounds of formula 1.16), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 17. Compounds of formula I.F, wherein m is 0, X is S (=compounds of formula 1.17), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 18. Compounds of formula I.F, wherein m is 1 , X is S, R 4 is 5"-F (=compounds of formula 1.18), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 19. Compounds of formula I.F, wherein m is 0, X is NH (=compounds of formula

1.19), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 20. Compounds of formula I.F, wherein m is 1 , X is NH, R 4 is 5"-F (=compounds of formula 1.20), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual com- pound corresponds in each case to one line of Table A.

Table 21. Compounds of formula I.G, wherein m is 0, X is O (=compounds of formula 1 .21 ), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 22. Compounds of formula I.G, wherein m is 1 , X is O, R 4 is 5"-F (=compounds of formula 1.22), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 23. Compounds of formula I.G, wherein m is 0, X is S (=compounds of formula 1 .23), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 24. Compounds of formula I.G, wherein m is 1 , X is S, R 4 is 5"-F (=compounds of formula 1.24), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table 25. Compounds of formula I.G, wherein m is 0, X is NH (=compounds of formula 1.25), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound cor- responds in each case to one line of Table A.

Table 26. Compounds of formula I.G, wherein m is 1 , X is NH, R 4 is 5"-F (=compounds of formula 1.26), and the meaning for the combination of R 1 , R 2 , and R 3 for each individual compound corresponds in each case to one line of Table A.

Table A: Line R 1 R2 R3 Line R 1 R2 R3

1-1 c-CsHs CH=CH-CH 3 CH 3 -36 C-CsHs 3-methyl-2-furyl CH 3

I-2 C-C3H5 CH=CH-CH 3 OCH3 -37 C-C3H5 3-methyl-2-furyl OCH3

I-3 C-C3H5 CH=CH-CH 3 CI -38 C-C3H5 3-methyl-2-furyl CI

I-4 C-C3H5 CH=CH-CH 3 Br -39 C-C3H5 3-methyl-2-furyl Br

I-5 C-C3H5 CH=CH-CH 3 CHF 2 -40 C-CsHs 3-methyl-2-furyl CHF 2

I-6 C-C3H5 CH=CH-CH 3 F -41 C-C3H5 3-methyl-2-furyl F

I -7 C-C3H5 CH=CH-CH 3 I -42 C-C3H5 3-methyl-2-furyl I

I-8 C-C3H5 CH=C(CH 2 ) 3 CH 3 -43 C-CsHs 2-methyl-3-furyl CH 3

I-9 C-C3H5 CH=C(CH 2 ) 3 OCH3 -44 C-C3H5 2-methyl-3-furyl OCH3

1-10 C-C3H5 CH=C(CH 2 ) 3 CI -45 C-C3H5 2-methyl-3-furyl CI

1-1 1 C-C3H5 CH=C(CH 2 ) 3 Br -46 C-C3H5 2-methyl-3-furyl Br

1-12 C-C3H5 CH=C(CH 2 ) 3 CHF 2 -47 C-C3H5 2-methyl-3-furyl CHF 2

1-13 C-C3H5 CH=C(CH 2 ) 3 F -48 C-C3H5 2-methyl-3-furyl F

1-14 C-C3H5 CH=C(CH 2 ) 3 I -49 C-C3H5 2-methyl-3-furyl I

1-15 C-C3H5 CH=C(CH 2 ) 4 CH 3 -50 C-C3H5 CHOH-CHOH-CeHs CH 3

1-16 C-C3H5 CH=C(CH 2 ) 4 OCH3 -51 C-C3H5 CHOH-CHOH-C 6 H 5 OCH3

1-17 C-C3H5 CH=C(CH 2 ) 4 CI -52 C-CsHs CHOH-CHOH-CeHs CI

1-18 C-C3H5 CH=C(CH 2 ) 4 Br -53 C-C3H5 CHOH-CHOH-CeHs Br

1-19 C-C3H5 CH=C(CH 2 ) 4 CHF 2 -54 C-C3H5 CHOH-CHOH-CeHs CHF 2

I-20 C-C3H5 CH=C(CH 2 ) 4 F -55 C-C3H5 CHOH-CHOH-CeHs F

1-21 C-C3H5 CH=C(CH 2 ) 4 I -56 C-CsHs CHOH-CHOH-CeHs I

I-22 C-C3H5 2-furyl CH 3 -57 C-C3H5 CHOH-CHOH-2-furyl CH 3

I-23 C-C3H5 2-furyl OCH3 -58 C-C3H5 CHOH-CHOH-2-furyl OCH3

I-24 C-C3H5 2-furyl CI -59 C-CsHs CHOH-CHOH-2-furyl CI

I-25 C-C3H5 2-furyl Br -60 C-C3H5 CHOH-CHOH-2-furyl Br

I-26 C-C3H5 2-furyl CHF 2 -61 C-C3H5 CHOH-CHOH-2-furyl CHF 2

I-27 C-C3H5 2-furyl F -62 C-C3H5 CHOH-CHOH-2-furyl F

I-28 C-C3H5 2-furyl I -63 C-C3H5 CHOH-CHOH-2-furyl I

I-29 C-C3H5 3-furyl CH 3 -64 C-C3H5 4-methyl-5-oxazolyl CH 3

I-30 C-C3H5 3-furyl OCH3 -65 C-C3H5 4-methyl-5-oxazolyl OCH3

1-31 C-C3H5 3-furyl CI -66 C-CsHs 4-methyl-5-oxazolyl CI

I-32 C-C3H5 3-furyl Br -67 C-C3H5 4-methyl-5-oxazolyl Br

I-33 C-C3H5 3-furyl CHF 2 -68 C-C3H5 4-methyl-5-oxazolyl CHF 2

I-34 C-C3H5 3-furyl F -69 C-CsHs 4-methyl-5-oxazolyl F

I-35 C-C3H5 3-furyl I -70 C-C3H5 4-methyl-5-oxazolyl I Line R 1 R2 R3 Line R 1 R2 R3

1-141 C2H5 CH=CH-CH 3 CH 3 1-176 C2H5 3-methyl-2-furyl CH 3

1-142 C2H5 CH=CH-CH 3 OCH 3 1-177 C2H5 3-methyl-2-furyl OCH 3

1-143 C2H5 CH=CH-CH 3 CI 1-178 C2H5 3-methyl-2-furyl CI

1-144 C2H5 CH=CH-CH 3 Br 1-179 C2H5 3-methyl-2-furyl Br

1-145 C2H5 CH=CH-CH 3 CHF2 1-180 C2H5 3-methyl-2-furyl CHF 2

1-146 C2H5 CH=CH-CH 3 F 1-181 C2H5 3-methyl-2-furyl F

1-147 C2H5 CH=CH-CH 3 I 1-182 C2H5 3-methyl-2-furyl I

1-148 C2H5 CH=C(CH 2 ) 3 CH 3 1-183 C2H5 2-methyl-3-furyl CH 3

1-149 C2H5 CH=C(CH 2 ) 3 OCH 3 1-184 C2H5 2-methyl-3-furyl OCH 3

1-150 C2H5 CH=C(CH 2 ) 3 CI 1-185 C2H5 2-methyl-3-furyl CI

1-151 C2H5 CH=C(CH 2 ) 3 Br 1-186 C2H5 2-methyl-3-furyl Br

1-152 C2H5 CH=C(CH 2 ) 3 CHF 2 1-187 C2H5 2-methyl-3-furyl CHF 2

1-153 C2H5 CH=C(CH 2 ) 3 F 1-188 C2H5 2-methyl-3-furyl F

1-154 C2H5 CH=C(CH 2 ) 3 I 1-189 C2H5 2-methyl-3-furyl I

1-155 C2H5 CH=C(CH 2 ) 4 CH 3 1-190 C2H5 CHOH-CHOH-C 6 H 5 CH 3

1-156 C2H5 CH=C(CH 2 ) 4 OCH 3 1-191 C2H5 CHOH-CHOH-CeHs OCH 3

1-157 C2H5 CH=C(CH 2 ) 4 CI 1-192 C2H5 CHOH-CHOH-C 6 H 5 CI

1-158 C2H5 CH=C(CH 2 ) 4 Br 1-193 C2H5 CHOH-CHOH-CeHs Br

1-159 C2H5 CH=C(CH 2 ) 4 CHF 2 1-194 C2H5 CHOH-CHOH-CeHs CHF 2

1-160 C2H5 CH=C(CH 2 ) 4 F 1-195 C2H5 CHOH-CHOH-CeHs F

1-161 C2H5 CH=C(CH 2 ) 4 I 1-196 C2H5 CHOH-CHOH-CeHs I

1-162 C2H5 2-furyl CH 3 1-197 C2H5 CHOH-CHOH-2-furyl CH 3

1-163 C2H5 2-furyl OCH 3 1-198 C2H5 CHOH-CHOH-2-furyl OCH 3

1-164 C2H5 2-furyl CI 1-199 C2H5 CHOH-CHOH-2-furyl CI

1-165 C2H5 2-furyl Br I-200 C2H5 CHOH-CHOH-2-furyl Br

1-166 C2H5 2-furyl CHF 2 1-201 C2H5 CHOH-CHOH-2-furyl CHF 2

1-167 C2H5 2-furyl F I-202 C2H5 CHOH-CHOH-2-furyl F

1-168 C2H5 2-furyl I I-203 C2H5 CHOH-CHOH-2-furyl I

1-169 C2H5 3-furyl CH 3 I-204 C2H5 4-methyl-5-oxazolyl CH 3

1-170 C2H5 3-furyl OCH 3 I-205 C2H5 4-methyl-5-oxazolyl OCH 3

1-171 C2H5 3-furyl CI I-206 C2H5 4-methyl-5-oxazolyl CI

1-172 C2H5 3-furyl Br I-207 C2H5 4-methyl-5-oxazolyl Br

1-173 C2H5 3-furyl CHF 2 I-208 C2H5 4-methyl-5-oxazolyl CHF 2

1-174 C2H5 3-furyl F I-209 C2H5 4-methyl-5-oxazolyl F

1-175 C2H5 3-furyl I 1-210 C2H5 4-methyl-5-oxazolyl I Line R 1 R2 R3 Line R 1 R2 R3

1-21 1 OCHs CH=CH-CHs CHs I-246 OCHs 3-methyl-2-furyl CHs

1-212 OCHs CH=CH-CHs OCHs I-247 OCHs 3-methyl-2-furyl OCHs

1-213 OCHs CH=CH-CHs CI I-248 OCHs 3-methyl-2-furyl CI

1-214 OCHs CH=CH-CHs Br I-249 OCHs 3-methyl-2-furyl Br

1-215 OCHs CH=CH-CHs CHF 2 I-250 OCHs 3-methyl-2-furyl CHF 2

1-216 OCHs CH=CH-CHs F 1-251 OCHs 3-methyl-2-furyl F

1-217 OCHs CH=CH-CHs I I-252 OCHs 3-methyl-2-furyl I

1-218 OCHs CH=C(CH 2 )s CHs I-253 OCHs 2-methyl-3-furyl CHs

1-219 OCHs CH=C(CH 2 )s OCHs I-254 OCHs 2-methyl-3-furyl OCHs

I-220 OCHs CH=C(CH 2 )s CI I-255 OCHs 2-methyl-3-furyl CI

1-221 OCHs CH=C(CH 2 )s Br I-256 OCHs 2-methyl-3-furyl Br

I-222 OCHs CH=C(CH 2 )s CHF 2 I-257 OCHs 2-methyl-3-furyl CHF 2

I-223 OCHs CH=C(CH 2 )s F I-258 OCHs 2-methyl-3-furyl F

I-224 OCHs CH=C(CH 2 )s I I-259 OCHs 2-methyl-3-furyl I

I-225 OCHs CH=C(CH 2 ) 4 CHs I-260 OCHs CHOH-CHOH-C 6 H 5 CHs

I-226 OCHs CH=C(CH 2 ) 4 OCHs 1-261 OCHs CHOH-CHOH-C 6 H 5 OCHs

I-227 OCHs CH=C(CH 2 ) 4 CI I-262 OCHs CHOH-CHOH-C 6 H 5 CI

I-228 OCHs CH=C(CH 2 ) 4 Br I-263 OCHs CHOH-CHOH-C 6 H 5 Br

I-229 OCHs CH=C(CH 2 ) 4 CHF 2 I-264 OCHs CHOH-CHOH-C 6 H 5 CHF 2

I-230 OCHs CH=C(CH 2 ) 4 F I-265 OCHs CHOH-CHOH-C 6 H 5 F

1-231 OCHs CH=C(CH 2 ) 4 I I-266 OCHs CHOH-CHOH-C 6 H 5 I

I-232 OCHs 2-furyl CHs I-267 OCHs CHOH-CHOH-2-furyl CHs

I-233 OCHs 2-furyl OCHs I-268 OCHs CHOH-CHOH-2-furyl OCHs

I-234 OCHs 2-furyl CI I-269 OCHs CHOH-CHOH-2-furyl CI

I-235 OCHs 2-furyl Br I-270 OCHs CHOH-CHOH-2-furyl Br

I-236 OCHs 2-furyl CHF 2 1-271 OCHs CHOH-CHOH-2-furyl CHF 2

I-237 OCHs 2-furyl F I-272 OCHs CHOH-CHOH-2-furyl F

I-238 OCHs 2-furyl I I-273 OCHs CHOH-CHOH-2-furyl I

I-239 OCHs 3-furyl CHs I-274 OCHs 4-methyl-5-oxazolyl CHs

I-240 OCHs 3-furyl OCHs I-275 OCHs 4-methyl-5-oxazolyl OCHs

1-241 OCHs 3-furyl CI I-276 OCHs 4-methyl-5-oxazolyl CI

I-242 OCHs 3-furyl Br I-277 OCHs 4-methyl-5-oxazolyl Br

I-243 OCHs 3-furyl CHF 2 I-278 OCHs 4-methyl-5-oxazolyl CHF 2

I-244 OCHs 3-furyl F I-279 OCHs 4-methyl-5-oxazolyl F

I-245 OCHs 3-furyl I I-280 OCHs 4-methyl-5-oxazolyl I The specific number for each single compound is deductible as follows:

Compound 1.1 .1-3 e.g. comprises the compound of formula 1.1 from Table 1 and line I-3 from Table A; To widen the spectrum of action and to achieve synergistic effects, the pyridine compounds of formula (I) may be mixed with a large number of representatives of other herbicidal or growth- regulating active ingredient groups and then applied concomitantly. Suitable components for mixtures are, e.g., herbicides from the classes of the acetamides, amides,

aryloxyphenoxypropionat.es, benzamides, benzofuran, benzoic acids, benzothiadiazinones, bipyridylium, carbamates, chloroacetamides, chlorocarboxylic acids, cyclohexanediones, dinitroanilines, dinitrophenol, diphenyl ether, glycines, imidazolinones, isoxazoles,

isoxazolidinones, nitriles, N-phenylphthalimides, oxadiazoles, oxazolidinediones,

oxyacetamides, phenoxycarboxylic acids, phenylcarbamates, phenylpyrazoles,

phenylpyrazolines, phenylpyridazines, phosphinic acids, phosphoroamidates,

phosphorodithioates, phthalamates, pyrazoles, pyridazinones, pyridines, pyridinecarboxylic acids, pyridinecarboxamides, pyrimidinediones, pyrimidinyl(thio)benzoates, quinolinecarboxylic acids, semicarbazones, sulfonylaminocarbonyltriazolinones, sulfonylureas, tetrazolinones, thiadiazoles, thiocarbamates, triazines, triazinones, triazoles, triazolinones,

triazolocarboxamides, triazolopyrimidines, triketones, uracils, or ureas.

It may furthermore be beneficial to apply the pyridine compounds of formula (I) alone or in combination with other herbicides, or else in the form of a mixture with other crop protection agents, e.g. together with agents for controlling pests or phytopathogenic fungi or bacteria. Also of interest is the miscibility with mineral salt solutions, which are employed for treating nutritional and trace element deficiencies. Other additives such as non-phytotoxic oils and oil concentrates may also be added.

In one embodiment of the present invention the compositions according to the present invention comprise at least one pyridine compound of formula (I) (compound A) and at least one further active compound selected from herbicides B, preferably herbicides B of class b1 ) to b15), and safeners C (compound C).

In a preferred embodiment of the invention, the composition comprises as active compound A or component A at least one, preferably exactly one, pyridine compound of formula (1.1 ) (corresponds to pyridine compound of formula (I)), as defined herein;

In another preferred embodiment of the invention, the composition comprises as active com- pound A or component A at least one, preferably exactly one, pyridine compound of formula (I.2) (corresponds to pyridine compound of formula (I)), as defined herein;

In another preferred embodiment of the invention, the composition comprises as active compound A or component A at least one, preferably exactly one, pyridine compound of formula (1.3) (corresponds to pyridine compound of formula (I)), as defined herein;

In another preferred embodiment of the invention, the composition comprises as active compound A or component A at least one, preferably exactly one, pyridine compound of formula (I.4) (corresponds to pyridine compound of formula (I)), as defined herein;

In another preferred embodiment of the invention, the composition comprises as active com- pound A or component A at least one, preferably exactly one, pyridine compound of formula (1.5) (corresponds to pyridine compound of formula (I)), as defined herein;

In another preferred embodiment of the invention, the composition comprises as active compound A or component A at least one, preferably exactly one, pyridine compound of for- mula (1.6) (corresponds to pyridine compound of formula (I)), as defined herein;

In another preferred embodiment of the invention, the composition comprises as active compound A or component A at least one, preferably exactly one, pyridine compound of formula (1.7) (corresponds to pyridine compound of formula (I)), as defined herein;

In another preferred embodiment of the invention, the composition comprises as active com- pound A or component A at least one, preferably exactly one, pyridine compound of formula (1.8) (corresponds to pyridine compound of formula (I)), as defined herein;

In another preferred embodiment of the invention, the composition comprises as active compound A or component A at least one, preferably exactly one, pyridine compound of formula (1.9) (corresponds to pyridine compound of formula (I)), as defined herein;

In another preferred embodiment of the invention, the composition comprises as active compound A or component A at least one, preferably exactly one, pyridine compound of formula (1.10) (corresponds to pyridine compound of formula (I)), as defined herein;

Preferred compounds of the formula (I) which, as component A, are constituent of the composition according to the invention are the compounds 1.1 to 1.10, as defined above;

In another embodiment of the present invention the compositions according to the present invention comprise at least one pyridine compound of formula (I) and at least one further active compound B (herbicide B).

The further herbicidal compound B (component B) is preferably selected from the herbicides of class b1 ) to b15):

Mixing partners for the composition can be selected from below herbicides B as defined below:

B) herbicides of class b1 ) to b15):

b1 ) lipid biosynthesis inhibitors;

b2) acetolactate synthase inhibitors (ALS inhibitors);

b3) photosynthesis inhibitors;

b4) protoporphyrinogen-IX oxidase inhibitors (PPO inhibitors);

b5) bleacher herbicides;

b6) enolpyruvyl shikimate 3-phosphate synthase inhibitors (EPSP inhibitors);

b7) glutamine synthetase inhibitors;

b8) 7,8-dihydropteroate synthase inhibitors (DHP inhibitors);

b9) mitosis inhibitors;

b10) inhibitors of the synthesis of very long chain fatty acids (VLCFA inhibitors);

b1 1 ) cellulose biosynthesis inhibitors;

b12) decoupler herbicides;

b13) auxinic herbicides;

b14) auxin transport inhibitors; and

b15) other herbicides selected from the group consisting of bromobutide, chlorflurenol, chlorflurenol-methyl, cinmethylin, cumyluron, dalapon, dazomet, difenzoquat, difenzoquat- metilsulfate, dimethipin, DSMA, dymron, endothal and its salts, etobenzanid, flamprop, flam- prop-isopropyl, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl, flurenol, flurenol- Λ Λ

44

butyl, flurprimidol, fosamine, fosamine-ammonium, indanofan, indaziflam, maleic hydrazide, mefluidide, metam, methiozolin (CAS 403640-27-7), methyl azide, methyl bromide, methyl-dym- ron, methyl iodide, MSMA, oleic acid, oxaziclomefone, pelargonic acid, pyributicarb, quinocla- mine, triaziflam, tridiphane and 6-chloro-3-(2-cyclopropyl-6-methylphenoxy)-4-pyridazinol (CAS 499223-49-3) and its salts and esters;

including their agriculturally acceptable salts or derivatives;

In one embodiment of the invention, the compositions contain at least one inhibitor of the lipid biosynthesis (herbicide b1 ). These compounds inhibit lipid biosynthesis. Inhibition of the lipid biosynthesis can be affected either through inhibition of acetylCoA carboxylase (hereinafter- termed ACCase herbicides) or through a different mode of action (hereinafter termed non-AC- Case herbicides). The ACCase herbicides belong to the group A of the HRAC classification system whereas the non-ACCase herbicides belong to the group N of the HRAC classification.

In another embodiment of the invention, the compositions contain at least one ALS inhibitor (herbicide b2). The herbicidal activity of these compounds is based on the inhibition of acetolac- tate synthase and thus on the inhibition of the branched chain amino acid biosynthesis. These inhibitors belong to the group B of the HRAC classification system.

In another embodiment of the invention, the compositions contain at least one inhibitor of photosynthesis (herbicide b3). The herbicidal activity of these compounds is based either on the inhibition of the photosystem II in plants (so-called PSIl inhibitors, groups C1 , C2 and C3 of HRAC classification) or on diverting the electron transfer in photosystem I in plants (so-called PSI inhibitors, group D of HRAC classification) and thus on an inhibition of photosynthesis. Amongst these, PSIl inhibitors are preferred.

In another embodiment of the invention, the compositions contain at least one inhibitor of pro- toporphyrinogen-IX-oxidase (herbicide b4). The herbicidal activity of these compounds is based on the inhibition of the protoporphyrinogen-IX-oxidase. These inhibitors belong to the group E of the HRAC classification system.

In another embodiment of the invention, the compositions contain at least one bleacher-herbicide (herbicide b5). The herbicidal activity of these compounds is based on the inhibition of the carotenoid biosynthesis. These include compounds which inhibit carotenoid biosynthesis by in- hibition of phytoene desaturase (so-called PDS inhibitors, group F1 of HRAC classification), compounds that inhibit the 4-hydroxyphenylpyruvate-dioxygenase (HPPD inhibitors, group F2 of HRAC classification), compounds that inhibit DOXsynthase (group F4 of HRAC class) and compounds which inhibit carotenoid biosynthesis by an unknown mode of action (bleacher - unknown target, group F3 of HRAC classification).

In another embodiment of the invention, the compositions contain at least one EPSP synthase inhibitor (herbicide b6). The herbicidal activity of these compounds is based on the inhibition of enolpyruvyl shikimate 3-phosphate synthase, and thus on the inhibition of the amino acid biosynthesis in plants. These inhibitors belong to the group G of the HRAC classification system. In another embodiment of the invention, the compositions contain at least one glutamine syn- thetase inhibitor (herbicide b7). The herbicidal activity of these compounds is based on the inhibition of glutamine synthetase, and thus on the inhibition of the aminoacid biosynthesis in plants. These inhibitors belong to the group H of the HRAC classification system.

In another embodiment of the invention, the compositions contain at least one DHP synthase inhibitor (herbicide b8). The herbicidal activity of these compounds is based on the inhibition of Λ _.

45

7,8-dihydropteroate synthase. These inhibitors belong to the group I of the HRAC classification system.

In another embodiment of the invention, the compositions contain at least one mitosis inhibitor (herbicide b9). The herbicidal activity of these compounds is based on the disturbance or inhibi- tion of microtubule formation or organization, and thus on the inhibition of mitosis. These inhibitors belong to the groups K1 and K2 of the HRAC classification system. Among these, compounds of the group K1 , in particular dinitroanilines, are preferred.

In another embodiment of the invention, the compositions contain at least one VLCFA inhibitor (herbicide b10). The herbicidal activity of these compounds is based on the inhibition of the syn- thesis of very long chain fatty acids and thus on the disturbance or inhibition of cell division in plants. These inhibitors belong to the group K3 of the HRAC classification system.

In another embodiment of the invention, the compositions contain at least one cellulose biosynthesis inhibitor (herbicide b1 1 ). The herbicidal activity of these compounds is based on the inhibition of the biosynthesis of cellulose and thus on the inhibition of the synthesis of cell walls in plants. These inhibitors belong to the group L of the HRAC classification system.

In another embodiment of the invention, the compositions contain at least one decoupler herbicide (herbicide b12). The herbicidal activity of these compounds is based on the disruption of the cell membrane. These inhibitors belong to the group M of the HRAC classification system.

In another embodiment of the invention, the compositions contain at least one auxinic herbi- cide (herbicide b13). These include compounds that mimic auxins, i.e. plant hormones, and affect the growth of the plants. These compounds belong to the group O of the HRAC classification system.

In another embodiment of the invention, the compositions contain at least one auxin transport inhibitor (herbicide b14). The herbicidal activity of these compounds is based on the inhibition of the auxin transport in plants. These compounds belong to the group P of the HRAC classification system.

As to the given mechanisms of action and classification of the active substances, see e.g. "HRAC, Classification of Herbicides According to Mode of Action", http://www.plantprot.ec- tion.org/hrac/MOA.html).

Preference is given to those compositions according to the present invention comprising at least one herbicide B selected from herbicides of class b1 , b2, b3, b4, b5, b6, b9, b10, b13, and b14.

Specific preference is given to those compositions according to the present invention which comprise at least one herbicide B selected from the herbicides of class b1 , b2, b4, b5, b9, b10, b13, and b14.

Particular preference is given to those compositions according to the present invention which comprise at least one herbicide B selected from the herbicides of class b1 , b2, b4, b5, b9, b10, and b13

Examples of herbicides B which can be used in combination with the compound of formula (I) according to the present invention are:

b1 ) from the group of the lipid biosynthesis inhibitors:

ACC-herbicides such as alloxydim, alloxydim-sodium, butroxydim, clethodim, clodinafop, clodinafop-propargyl, cycloxydim, cyhalofop, cyhalofop-butyl, diclofop, diclofop-methyl, fenoxa- prop, fenoxaprop-ethyl, fenoxaprop-P, fenoxaprop-P-ethyl, fluazifop, fluazifop-butyl, fluazifop-P, Λ η

46

fluazifop-P-butyl, haloxyfop, haloxyfop-methyl, haloxyfop-P, haloxyfop-P-methyl, metamifop, pi- noxaden, profoxydim, propaquizafop, quizalofop, quizalofop-ethyl, quizalofop-tefuryl, quizalofop- P, quizalofop-P-ethyl, quizalofop-P-tefuryl, sethoxydim, tepraloxydim, tralkoxydim,

4-(4'-Chloro-4-cyclopropyl-2'-fluoro[1 ,1 '-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-py- ran-3(6H)-one (CAS 1312337-72-6); 4-(2 , ,4 , -Dichloro-4-cyclopropyl[1 ,1 , -biphenyl]-3-yl)-5-hy- droxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1312337-45-3); 4-(4'-Chloro-4-ethyl-2'-flu- oro[1 ,1 '-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6 H)-one (CAS 1033757-93-5); 4-(2',4'-Dichloro-4-ethyl[1 ,1 '-biphenyl]-3-yl)-2,2,6,6-tetramethyl-2H-pyran-3,5(4H,6H)-di one (CAS 1312340-84-3); 5-(Acetyloxy)-4-(4'-chloro-4-cyclopropyl-2'-fluoro[1 ,1 '-biphenyl]-3-yl)-3,6- dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1312337-48-6); 5-(Acetyloxy)-4-(2 ' ,4'-di- chloro-4-cyclopropyl- [1 ,1 '-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3 -one; 5- (Acetyloxy)-4-(4'-chloro-4-ethyl-2'-fluoro[1 ,1 '-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H- pyran-3-one (CAS 1312340-82-1 ); 5-(Acetyloxy)-4-(2',4'-dichloro-4-ethyl[1 ,1 '-biphenyl]-3-yl)-3,6- dihydro-2,2,6,6-tetramethyl-2H-pyran-3-one (CAS 1033760-55-2); 4-(4'-Chloro-4-cyclopropyl-2'- fluoro[1 ,1 '-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-p yran-3-yl carbonic acid methyl ester (CAS 1312337-51 -1 ); 4-(2 ' ,4'-Dichloro -4-cyclopropyl- [1 ,1 '-biphenyl]-3-yl)-5,6-dihydro- 2,2,6,6-tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester; 4-(4'-Chloro-4-ethyl-2'-flu- oro[1 ,1 '-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-p yran-3-yl carbonic acid methyl ester (CAS 1312340-83-2); 4-(2',4'-Dichloro-4-ethyl[1 ,1 '-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6- tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1033760-58-5); and non ACC herbicides such as benfuresate, butylate, cycloate, dalapon, dimepiperate, EPTC, esprocarb, ethofumesate, flupropanate, molinate, orbencarb, pebulate, prosulfocarb, TCA, thiobencarb, tio- carbazil, triallate and vernolate;

b2) from the group of the ALS inhibitors:

sulfonylureas such as amidosulfuron, azimsulfuron, bensulfuron, bensulfuron-methyl, chlo- rimuron, chlorimuron-ethyl, chlorsulfuron, cinosulfuron, cyclosulfamuron, ethametsulfuron, ethametsulfuron-methyl, ethoxysulfuron, flazasulfuron, flucetosulfuron, flupyrsulfuron, flupyrsul- furon-methyl-sodium, foramsulfuron, halosulfuron, halosulfuron-methyl, imazosulfuron, iodosul- furon, iodosulfuron-methyl-sodium, iofensulfuron, iofensulfuron-sodium, mesosulfuron, met- azosulfuron, metsulfuron, metsulfuron-methyl, nicosulfuron, orthosulfamuron, oxasulfuron, primi- sulfuron, primisulfuron-methyl, propyrisulfuron, prosulfuron, pyrazosulfuron, pyrazosulfuron- ethyl, rimsulfuron, sulfometuron, sulfometuron-methyl, sulfosulfuron, thifensulfuron, thifensulfu- ron-methyl, triasulfuron, tribenuron, tribenuron-methyl, trifloxysulfuron, triflusulfuron, triflusulfu- ron-methyl and tritosulfuron,

imidazolinones such as imazamethabenz, imazamethabenz-methyl, imazamox, imazapic, ima- zapyr, imazaquin and imazethapyr, triazolopyrimidine herbicides and sulfonanilides such as cloransulam, cloransulam-methyl, diclosulam, flumetsulam, florasulam, metosulam, penoxsu- lam, pyrimisulfan and pyroxsulam,

pyrimidinylbenzoates such as bispyribac, bispyribac-sodium, pyribenzoxim, pyriftalid, pyrimino- bac, pyriminobac-methyl, pyrithiobac, pyrithiobac-sodium, 4-[[[2-[(4,6-dimethoxy-2-pyrimidi- nyl)oxy]phenyl]methyl]amino]-benzoic acid-1 -methylethyl ester (CAS 420138-41 -6), 4-[[[2-[(4,6- dimethoxy-2-pyrimidinyl)oxy]phenyl]methyl]amino]-benzoic acid propyl ester (CAS 420138-40- 5), N-(4-bromophenyl)-2-[(4,6-dimethoxy-2-pyrimidinyl)oxy]benzen emethanamine (CAS

420138-01 -8), sulfonylaminocarbonyl-triazolinone herbicides such as flucarbazone, flucarbazone-sodium, propoxycarbazone, propoxycarbazone-sodium, thiencarbazone and thiencarbazone-methyl; and triafamone;

among these, a preferred embodiment of the invention relates to those compositions compris- ing at least one imidazolinone herbicide;

b3) from the group of the photosynthesis inhibitors:

amicarbazone, inhibitors of the photosystem II, e.g. 1 -(6-tert-butylpyrimidin-4-yl)-2-hydroxy-4- methoxy-3-methyl-2H-pyrrol-5-one (CAS 1654744-66-7), 1-(5-tert-butylisoxazol-3-yl)-2-hydroxy- 4-methoxy-3-methyl-2H-pyrrol-5-one (CAS 1637455-12-9), 1 -(5-tert-butylisoxazol-3-yl)-4-chloro- 2-hydroxy-3-methyl-2H-pyrrol-5-one (CAS 1637453-94-1 ), 1-(5-tert-butyl-1 -methyl-pyrazol-3-yl)- 4-chloro-2-hydroxy-3-methyl-2H-pyrrol-5-one (CAS 1654057-29-0), 1-(5-tert-butyl-1 -methyl-py- razol-3-yl)-3-chloro-2-hydroxy-4-methyl-2H-pyrrol-5-one (CAS 1654747-80-4), 4-hydroxy-1-me- thoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin -2-one; (CAS 2023785-78-4), 4-hy- droxy-1 ,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2- one (CAS 2023785-79-5), 5- ethoxy-4-hydroxy-1 -methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (CAS 1701416-69- 4), 4-hydroxy-1 -methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (CAS 1708087-22-2), 4-hydroxy-1 ,5-dimethyl-3-[1 -methyl-5-(trifluoromethyl)pyrazol-3-yl]imidazolidin-2-one (CAS 2023785-80-8), 1-(5-tert-butylisoxazol-3-yl)-4-ethoxy-5-hydroxy-3-methyl-im idazolidin-2-one (CAS 1844836-64-1 ), triazine herbicides, including of chlorotriazine, triazinones, triazindiones, methylthiotriazines and pyridazinones such as ametryn, atrazine, chloridazone, cyanazine, des- metryn, dimethametryn,hexazinone, metribuzin, prometon, prometryn, propazine, simazine, sim- etryn, terbumeton, terbuthylazin, terbutryn and trietazin, aryl urea such as chlorobromuron, chlo- rotoluron, chloroxuron, dimefuron, diuron, fluometuron, isoproturon, isouron, linuron, metam- itron, methabenzthiazuron, metobenzuron, metoxuron, monolinuron, neburon, siduron, tebuthi- uron and thiadiazuron, phenyl carbamates such as desmedipham, karbutilat, phenmedipham, phenmedipham-ethyl, nitrile herbicides such as bromofenoxim, bromoxynil and its salts and esters, ioxynil and its salts and esters, uraciles such as bromacil, lenacil and terbacil, and benta- zon and bentazon-sodium, pyridate, pyridafol, pentanochlor and propanil and inhibitors of the photosystem I such as diquat, diquat-dibromide, paraquat, paraquat-dichloride and paraquat- dimetilsulfate. Among these, a preferred embodiment of the invention relates to those compositions comprising at least one aryl urea herbicide. Among these, likewise a preferred embodiment of the invention relates to those compositions comprising at least one triazine herbicide. Among these, likewise a preferred embodiment of the invention relates to those compositions comprising at least one nitrile herbicide;

b4) from the group of the protoporphyrinogen-IX oxidase inhibitors:

acifluorfen, acifluorfen-sodium, azafenidin, bencarbazone, benzfendizone, bifenox, butafenacil, carfentrazone, carfentrazone-ethyl, chlomethoxyfen, chlorphthalim, cinidon-ethyl, fluazolate, flufenpyr, flufenpyr-ethyl, flumiclorac, flumiclorac-pentyl, flumioxazin, fluoroglycofen, fluorogly- cofen-ethyl, fluthiacet, fluthiacet-methyl, fomesafen, halosafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, profluazol, pyraclonil, pyraflufen, pyraflufen-ethyl, saflufenacil, sulfen- trazone, thidiazimin, tiafenacil, trifludimoxazin, ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoro- methyl-2,4-dioxo-1 ,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetat e (CAS 353292- 31-6; S-3100), N-ethyl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1 A -pyrazole-1 -car- boxamide (CAS 452098-92-9), N-tetrahydrofurfuryl-3-(2,6-dichloro-4-trifluoromethylphenox y)-5- A n

48

methyl-1 pyrazole-1-carboxamide (CAS 915396-43-9), N-ethyl-3-(2-chloro-6-fluoro-4-trifluoro- methylphenoxy)-5-methyl-1 A -pyrazole-1-carboxamide (CAS 452099-05-7), N-tetrahydrofurfuryl- 3-(2-chloro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1 A -pyrazole-1-carboxamide (CAS 452100-03-7), 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1 ,4]oxazin-6-yl]-1 ,5-dime- thyl-6-thioxo-[1 ,3,5]triazinan-2,4-dione (CAS 451484-50-7), 2-(2,2,7-trifluoro-3-oxo-4-prop-2- ynyl-3,4-dihydro-2H-benzo[1 ,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1 ,3-dione (CAS

13001 18-96-0), 1-methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2 -ynyl-3,4-dihydro-2H- benzo[1 ,4]oxazin-6-yl)-1 H-pyrimidine-2,4-dione (CAS 13041 13-05-0), methyl (£)-4-[2-chloro-5- [4-chloro-5-(difluoromethoxy)-1 A -methyl-pyrazol-3-yl]-4-fluoro-phenoxy]-3-methoxy-but-2-eno- ate (CAS 948893-00-3), and 3-[7-chloro-5-fluoro-2-(trifluoromethyl)-1 H-benzimidazol-4-yl]-1-me- thyl-6-(trifluoromethyl)-1 H-pyrimidine-2,4-dione (CAS 212754-02-4);

b5) from the group of the bleacher herbicides:

PDS inhibitors: beflubutamid, diflufenican, fluridone, flurochloridone, flurtamone, norflurazon, picolinafen, and 4-(3-trifluoromethylphenoxy)-2-(4-trifluoromethylphenyl)pyri midine (CAS 180608-33-7), HPPD inhibitors: benzobicyclon, benzofenap, bicyclopyrone, clomazone, fenquinotrione, isoxaflutole, mesotrione, oxotrione (CAS 1486617-21 -3), pyrasulfotole, pyrazol- ynate, pyrazoxyfen, sulcotrione, tefuryltrione, tembotrione, tolpyralate, topramezone , bleacher, unknown target: aclonifen, amitrole flumeturon,2-chloro-3-methylsulfanyl-N-(1-methyltetrazol-5- yl)-4-(trifluoromethyl)benzamide (CAS 1361 139-71 -0), 2-(2,4-dichlorophenyl)methyl-4,4-dime- thyl-3-isoxazolidone (CAS 81777-95-9) and 2-(2,5-dichlorophenyl)methyl-4,4-dimethyl-3-isoxa- zolidinone (CAS 81778-66-7);

b6) from the group of the EPSP synthase inhibitors: glyphosate, glyphosate-isopropylammo- nium, glyposate-potassium and glyphosate-trimesium (sulfosate);

b7) from the group of the glutamine synthase inhibitors: bilanaphos (bialaphos), bilanaphos- sodium, glufosinate, glufosinate-P and glufosinate-ammonium;

b8) from the group of the DHP synthase inhibitors: asulam;

b9) from the group of the mitosis inhibitors:

compounds of group K1 : dinitroanilines such as benfluralin, butralin, dinitramine, ethalfluralin, fluchloralin, oryzalin, pendimethalin, prodiamine and trifluralin, phosphoramidates such as ami- prophos, amiprophos-methyl, and butamiphos, benzoic acid herbicides such as chlorthal, chlor- thal-dimethyl, pyridines such as dithiopyr and thiazopyr, benzamides such as propyzamide and tebutam; compounds of group K2: carbetamide, chlorpropham, flamprop, flamprop-isopropyl, flamprop-methyl, flamprop-M-isopropyl, flamprop-M-methyl and propham ; among these, compounds of group K1 , in particular dinitroanilines are preferred;

b10) from the group of the VLCFA inhibitors:

chloroacetamides such as acetochlor, alachlor, amidochlor, butachlor, dimethachlor, dimethe- namid, dimethenamid-P, metazachlor, metolachlor, metolachlor-S, pethoxamid, pretilachlor, propachlor, propisochlor and thenylchlor, oxyacetanilides such as flufenacet and mefenacet, ac- etanilides such as diphenamid, naproanilide, napropamide and napropamide-M, tetrazolinones such fentrazamide, and other herbicides such as anilofos, cafenstrole, fenoxasulfone, ipfen- carbazone, piperophos, pyroxasulfone and isoxazoline compounds of the formulae 11.1 , II.2, II.3, II.4, II.5, II.6, II.7, II.8 and II.9

the isoxazoline compounds of the formula (II) are known in the art, e.g. from WO

2006/024820, WO 2006/037945, WO 2007/071900 and WO 2007/096576;

among the VLCFA inhibitors, preference is given to chloroacetamides and oxyacetamides; b1 1 ) from the group of the cellulose biosynthesis inhibitors: chlorthiamid, dichlobenil, flupoxam, indaziflam, isoxaben, triaziflam and 1 -cyclohexyl-5-pentafluorphenyloxy-1 4 - [1 ,2,4,6]thiatriazin-3-ylamine (CAS 175899-01 -1 );

b12) from the group of the decoupler herbicides: dinoseb, dinoterb and DNOC and its salts; b13) from the group of the auxinic herbicides:

2,4-D and its salts and esters such as clacyfos, 2,4-DB and its salts and esters, aminocyclopy- rachlor and its salts and esters, aminopyralid and its salts such as aminopyralid-dimethylammo- nium, aminopyralid-tris(2-hydroxypropyl)ammonium and its esters, benazolin, benazolin-ethyl, chloramben and its salts and esters, clomeprop, clopyralid and its salts and esters, dicamba and its salts and esters, dichlorprop and its salts and esters, dichlorprop-P and its salts and esters, flopyrauxifen, fluroxypyr, fluroxypyr-butometyl, fluroxypyr-meptyl, halauxifen and its salts and esters (CAS 943832-60-8); MCPA and its salts and esters, MCPA-thioethyl, MCPB and its salts and esters, mecoprop and its salts and esters, mecoprop-P and its salts and esters, picloram and its salts and esters, quinclorac, quinmerac, TBA (2,3,6) and its salts and esters, triclopyr and its salts and esters, florpyrauxifen, florpyrauxifen-benzyl (CAS 1390661-72-9) and 4-amino- 3-chloro-5-fluoro-6-(7-fluoro-1 H-indol-6-yl)picolinic acid (CAS 1629965-65-6);

b14) from the group of the auxin transport inhibitors: diflufenzopyr, diflufenzopyr-sodium, nap- talam and naptalam-sodium;

b15) from the group of the other herbicides: bromobutide, chlorflurenol, chlorflurenol-methyl, cinmethylin, cumyluron, cyclopyrimorate (CAS 499223-49-3 and its salts and esters, dalapon, dazomet, difenzoquat, difenzoquat-metilsulfate, dimethipin, DSMA, dymron, endothal and its salts, etobenzanid, flurenol, flurenol-butyl, flurprimidol, fosamine, fosamine-ammonium, inda- _„

50

nofan, maleic hydrazide, mefluidide, metam, methiozolin (CAS 403640-27-7), methyl azide, methyl bromide, methyl-dymron, methyl iodide, MSMA, oleic acid, oxaziclomefone, pelargonic acid, pyributicarb, quinoclamine and tridiphane.

Preferred herbicides B that can be used in combination with the pyrimidine compounds of the formula (I) according to the present invention are:

b1 ) from the group of the lipid biosynthesis inhibitors:

clethodim, clodinafop-propargyl, cycloxydim, cyhalofop-butyl, diclofop-methyl, fenoxaprop-P- ethyl, fluazifop-P-butyl, haloxyfop-P-methyl, metamifop, pinoxaden, profoxydim, propaquizafop, quizalofop-P-ethyl, quizalofop-P-tefuryl, sethoxydim, tepraloxydim, tralkoxydim, 4-(4'-Chloro-4- cyclopropyl-2'-fluoro[1 ,1 '-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6 H)-one

(CAS 1312337-72-6); 4-(2',4'-Dichloro-4-cyclopropyl[1 ,1 '-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetra- methyl-2H-pyran-3(6H)-one (CAS 1312337-45-3); 4-(4'-Chloro-4-ethyl-2'-fluoro[1 ,1 '-biphenyl]-3- yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1033757-93-5); 4-(2',4'-Dichloro-4- ethyl[1 ,1 '-biphenyl]-3-yl)-2,2,6,6-tetramethyl-2H-pyran-3,5(4H,6H)-di one (CAS 1312340-84-3); 5-(Acetyloxy)-4-(4'-chloro-4-cyclopropyl-2'-fluoro[1 ,1 '-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetra- methyl-2H-pyran-3-one (CAS 1312337-48-6); 5-(Acetyloxy)-4-(2 ' ,4'-dichloro-4-cyclopropyl- [1 ,1 '- biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-o ne; 5-(Acetyloxy)-4-(4'-chloro-4- ethyl-2'-fluoro[1 ,1 '-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3 -one (CAS

1312340-82-1 ); 5-(Acetyloxy)-4-(2',4'-dichloro-4-ethyl[1 ,1 '-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6- tetramethyl-2H-pyran-3-one (CAS 1033760-55-2); 4-(4'-Chloro-4-cyclopropyl-2'-fluoro[1 ,1 '-bi- phenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran -3-yl carbonic acid methyl ester (CAS 1312337-51-1 ); 4-(2 ' ,4'-Dichloro -4-cyclopropyl- [1 ,1 '-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6- tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester; 4-(4'-Chloro-4-ethyl-2'-fluoro[1 ,1 '- biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyr an-3-yl carbonic acid methyl ester (CAS 1312340-83-2); 4-(2',4'-Dichloro-4-ethyl[1 ,1 '-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetrame- thyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1033760-58-5); benfuresate, dimepiperate, EPTC, esprocarb, ethofumesate, molinate, orbencarb, prosulfocarb, thiobencarb and triallate;

b2) from the group of the ALS inhibitors:

amidosulfuron, azimsulfuron, bensulfuron-methyl, bispyribac-sodium, chlorimuron-ethyl, chlor- sulfuron, cloransulam-methyl, cyclosulfamuron, diclosulam, ethametsulfuron-methyl, ethoxysul- furon, flazasulfuron, florasulam, flucarbazone-sodium, flucetosulfuron, flumetsulam, flupyrsulfu- ron-methyl-sodium, foramsulfuron, halosulfuron-methyl, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron, iodosulfuron-methyl- sodium, iofensulfuron, iofensulfuron-sodium, mesosulfuron, metazosulfuron, metosulam, met- sulfuron-methyl, nicosulfuron, orthosulfamuron, oxasulfuron, penoxsulam, primisulfuron-methyl, propoxycarbazon-sodium, propyrisulfuron, prosulfuron, pyrazosulfuron-ethyl, pyribenzoxim, py- rimisulfan, pyriftalid, pyriminobac-methyl, pyrithiobac-sodium, pyroxsulam, rimsulfuron, sulfome- turon-methyl, sulfosulfuron, thiencarbazone-methyl, thifensulfuron-methyl, triasulfuron, tribenu- ron-methyl, trifloxysulfuron, triflusulfuron-methyl, tritosulfuron and triafamone;

b3) from the group of the photosynthesis inhibitors:

ametryn, amicarbazone, atrazine, bentazone, bentazone-sodium, bromoxynil and its salts and esters, chloridazone, chlorotoluron, cyanazine, desmedipham, diquat-dibromide, diuron, fluome- turon, hexazinone, ioxynil and its salts and esters, isoproturon, lenacil, linuron, metamitron, _„

51

methabenzthiazuron, metribuzin, paraquat, paraquat-dichloride, phenmedipham, propanil, pyri- date, simazine, terbutryn, terbuthylazine, thidiazuron, 1-(6-tert-butylpyrimidin-4-yl)-2-hydroxy-4- methoxy-3-methyl-2H-pyrrol-5-one (CAS 1654744-66-7), 1-(5-tert-butylisoxazol-3-yl)-2-hydroxy- 4-methoxy-3-methyl-2H-pyrrol-5-one (CAS 1637455-12-9), 1 -(5-tert-butylisoxazol-3-yl)-4-chloro- 2-hydroxy-3-methyl-2H-pyrrol-5-one (CAS 1637453-94-1 ), 1-(5-tert-butyl-1 -methyl-pyrazol-3-yl)- 4-chloro-2-hydroxy-3-methyl-2H-pyrrol-5-one (CAS 1654057-29-0), 1-(5-tert-butyl-1 -methyl-py- razol-3-yl)-3-chloro-2-hydroxy-4-methyl-2H-pyrrol-5-one (CAS 1654747-80-4), 4-hydroxy-1 - methoxy-5-methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolid in-2-one; (CAS 2023785-78-4), 4- hydroxy-1 ,5-dimethyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2- one (CAS 2023785-79-5), 5- ethoxy-4-hydroxy-1 -methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (CAS 1701416-69- 4), 4-hydroxy-1 -methyl-3-[4-(trifluoromethyl)-2-pyridyl]imidazolidin-2-one (CAS 1708087-22-2), 4-hydroxy-1 ,5-dimethyl-3-[1 -methyl-5-(trifluoromethyl)pyrazol-3-yl]imidazolidin-2-one (CAS 2023785-80-8) and 1 -(5-tert-butylisoxazol-3-yl)-4-ethoxy-5-hydroxy-3-methyl-imi dazolidin-2-one (CAS 1844836-64-1 );

b4) from the group of the protoporphyrinogen-IX oxidase inhibitors:

acifluorfen-sodium, bencarbazone, benzfendizone, butafenacil, carfentrazone-ethyl, cinidon- ethyl, flufenpyr-ethyl, flumiclorac-pentyl, flumioxazin, fluoroglycofen-ethyl, fomesafen, lactofen, oxadiargyl, oxadiazon, oxyfluorfen, pentoxazone, pyraflufen, pyraflufen-ethyl, saflufenacil, sul- fentrazone, tiafenacil, trifludimoxazin, ethyl [3-[2-chloro-4-fluoro-5-(1 -methyl-6-trifluoromethyl- 2,4-dioxo-1 ,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetat e (CAS 353292-31 -6; S- 3100), N-ethyl-3-(2,6-dichloro-4-trifluoromethylphenoxy)-5-methyl-1 A -pyrazole-1 -carboxamide (CAS 452098-92-9), N-tetrahydrofurfuryl-3-(2,6-dichloro-4-trifluoromethylphenox y)-5-methyl-1 H- pyrazole-1-carboxamide (CAS 915396-43-9), N-ethyl-3-(2-chloro-6-fluoro-4-trifluoromethylphe- noxy)-5-methyl-1 A -pyrazole-1 -carboxamide (CAS 452099-05-7), N-tetrahydrofurfuryl-3-(2-chlo- ro-6-fluoro-4-trifluoromethylphenoxy)-5-methyl-1 A -pyrazole-1-carboxamide (CAS 452100-03-7), 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-benzo[1 ,4]oxazin-6-yl]-1 ,5-dimethyl-6-thioxo- [1 ,3,5]triazinan-2,4-dione (CAS 451484-50-7), 2-(2,2,7-trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihy- dro-2H-benzo[1 ,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole-1 ,3-dione (CAS 13001 18-96-0); 1 - methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2-y nyl-3,4-dihydro-2H-benzo[1 ,4]oxazin- 6-yl)-1 H-pyrimidine-2,4-dione (CAS 13041 13-05-0), and 3-[7-chloro-5-fluoro-2-(trifluoromethyl)- 1 H-benzimidazol-4-yl]-1-methyl-6-(trifluoromethyl)-1 H-pyrimidine-2,4-dione (CAS 212754-02-4); b5) from the group of the bleacher herbicides:

aclonifen, amitrole, beflubutamid, benzobicyclon, bicyclopyrone, clomazone, diflufenican, fenquinotrione, flumeturon, flurochloridone, flurtamone, isoxaflutole, mesotrione, oxotrione (CAS 1486617-21-3), norflurazon, picolinafen, pyrasulfotole, pyrazolynate, sulcotrione, tefuryltrione, tembotrione, tolpyralate, topramezone, 4-(3-trifluoromethylphenoxy)-2-(4-trifluoromethylphenyl)- pyrimidine (CAS 180608-33-7), 2-chloro-3-methylsulfanyl-N-(1 -methyltetrazol-5-yl)-4-(trifluoro- methyl)benzamide (CAS 1361 139-71-0, 2-(2,4-dichlorophenyl)methyl-4,4-dimethyl-3-isoxazoli- done (CAS 81777-95-9) and 2-(2,5-dichlorophenyl)methyl-4,4-dimethyl-3-isoxazolidinone (CAS 81778-66-7);

b6) from the group of the EPSP synthase inhibitors:

glyphosate, glyphosate-isopropylammonium, glyphosate-potassium and glyphosate-trimesium (sulfosate);

b7) from the group of the glutamine synthase inhibitors: glufosinate, glufosinate-P, glufosinate-ammonium;

b8) from the group of the DHP synthase inhibitors: asulam;

b9) from the group of the mitosis inhibitors:

benfluralin, dithiopyr, ethalfluralin, flamprop, flamprop-isopropyl, flamprop-methyl, flamprop-M- isopropyl, flamprop-M-methyl, oryzalin, pendimethalin, thiazopyr and trifluralin;

b10) from the group of the VLCFA inhibitors: acetochlor, alachlor, amidochlor, anilofos, buta- chlor, cafenstrole, dimethenamid, dimethenamid-P, fentrazamide, flufenacet, mefenacet, meta- zachlor, metolachlor, S-metolachlor, naproanilide, napropamide, napropamide-M, pretilachlor, fenoxasulfone, ipfencarbazone, pyroxasulfone thenylchlor and isoxazoline-compounds of the formulae 11.1 , II.2, 11.3 , II.4, II.5, II.6, II.7, II.8 and II.9 as mentioned above;

b1 1 ) from the group of the cellulose biosynthesis inhibitors: dichlobenil, flupoxam, indaziflam, isoxaben, triaziflam and 1-cyclohexyl-5-pentafluorphenyloxy-1 4 -[1 ,2,4,6]thiatriazin-3-ylamine (CAS 175899-01 -1 );

b13) from the group of the auxinic herbicides:

2,4-D and its salts and esters, aminocyclopyrachlor and its salts and esters, aminopyralid and its salts such as aminopyralid-dimethylammonium, aminopyralid-tris(2-hydroxypropyl)ammoni- um and its esters, clopyralid and its salts and esters, dicamba and its salts and esters, dichlor- prop-P and its salts and esters, flopyrauxifen, fluroxypyr-meptyl, halauxifen and its salts and esters (CAS 943832-60-8), MCPA and its salts and esters, MCPB and its salts and esters, mecoprop-P and its salts and esters, picloram and its salts and esters, quinclorac, quinmerac, triclopyr and its salts and esters, florpyrauxifen, florpyrauxifen-benzyl (CAS 1390661 -72-9) and 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1 H-indol-6-yl)picolinic acid (CAS 1629965-65-6);

b14) from the group of the auxin transport inhibitors: diflufenzopyr and diflufenzopyr-sodium; b15) from the group of the other herbicides: bromobutide, cinmethylin, cumyluron, cyclopy- rimorate (CAS 499223-49-3) and its salts and esters, dalapon, difenzoquat, difenzoquat- metilsulfate, DSMA, dymron (= daimuron), indanofan, metam, methylbromide, MSMA, oxazi- clomefone, pyributicarb and tridiphane.

Particularly preferred herbicides B that can be used in combination with the pyrimidine compounds of the formula (I) according to the present invention are:

b1 ) from the group of the lipid biosynthesis inhibitors: clodinafop-propargyl, cycloxydim, cyha- lofop-butyl, fenoxaprop-P-ethyl, pinoxaden, profoxydim, tepraloxydim, tralkoxydim, 4-(4'-Chloro-

4- cyclopropyl-2'-fluoro[1 ,1 '-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6 H)-one (CAS 1312337-72-6); 4-(2',4'-Dichloro-4-cyclopropyl[1 ,1 '-biphenyl]-3-yl)-5-hydroxy-2,2,6,6-tetra- methyl-2H-pyran-3(6H)-one (CAS 1312337-45-3); 4-(4'-Chloro-4-ethyl-2'-fluoro[1 ,1 '-biphenyl]-3- yl)-5-hydroxy-2,2,6,6-tetramethyl-2H-pyran-3(6H)-one (CAS 1033757-93-5); 4-(2',4'-Dichloro-4- ethyl[1 ,1 '-biphenyl]-3-yl)-2,2,6,6-tetramethyl-2H-pyran-3,5(4H,6H)-di one (CAS 1312340-84-3);

5- (Acetyloxy)-4-(4'-chloro-4-cyclopropyl-2'-fluoro[1 ,1 '-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetra- methyl-2H-pyran-3-one (CAS 1312337-48-6); 5-(Acetyloxy)-4-(2 ' ,4'-dichloro-4-cyclopropyl- [1 ,1 '- biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3-o ne; 5-(Acetyloxy)-4-(4'-chloro-4- ethyl-2'-fluoro[1 ,1 '-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6-tetramethyl-2H-pyran-3 -one (CAS

1312340-82-1 ); 5-(Acetyloxy)-4-(2',4'-dichloro-4-ethyl[1 ,1 '-biphenyl]-3-yl)-3,6-dihydro-2,2,6,6- tetramethyl-2H-pyran-3-one (CAS 1033760-55-2); 4-(4'-Chloro-4-cyclopropyl-2'-fluoro[1 ,1 '-bi- phenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyran -3-yl carbonic acid methyl ester (CAS 1312337-51-1 ); 4-(2 ' ,4'-Dichloro -4-cyclopropyl- [1 ,1 '-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6- _„

53

tetramethyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester; 4-(4'-Chloro-4-ethyl-2'-fluoro[1 ,1 '- biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetramethyl-5-oxo-2H-pyr an-3-yl carbonic acid methyl ester (CAS 1312340-83-2); 4-(2',4'-Dichloro-4-ethyl[1 ,1 '-biphenyl]-3-yl)-5,6-dihydro-2,2,6,6-tetrame- thyl-5-oxo-2H-pyran-3-yl carbonic acid methyl ester (CAS 1033760-58-5); esprocarb, prosul- focarb, thiobencarb and triallate;

b2) from the group of the ALS inhibitors: bensulfuron-methyl, bispyribac-sodium, cyclosulfamu- ron, diclosulam, flumetsulam, flupyrsulfuron-methyl-sodium, foramsulfuron, imazamox, imaza- pic, imazapyr, imazaquin, imazethapyr, imazosulfuron, iodosulfuron, iodosulfuron-methyl-sodi- um, iofensulfuron, iofensulfuron-sodium, mesosulfuron, metazosulfuron, nicosulfuron, penoxsu- lam, propoxycarbazon-sodium, propyrisulfuron, pyrazosulfuron-ethyl, pyroxsulam, rimsulfuron, sulfosulfuron, thiencarbazon-methyl, tritosulfuron and triafamone;

b3) from the group of the photosynthesis inhibitors: ametryn, atrazine, diuron, fluometuron, hexazinone, isoproturon, linuron, metribuzin, paraquat, paraquat-dichloride, propanil, terbutryn, terbuthylazine, 1 -(5-tert-butylisoxazol-3-yl)-2-hydroxy-4-methoxy-3-methyl-2H -pyrrol-5-one (CAS 1637455-12-9), 1-(5-tert-butylisoxazol-3-yl)-4-chloro-2-hydroxy-3-methyl-2H -pyrrol-5-one (CAS 1637453-94-1 ), 1-(5-tert-butylisoxazol-3-yl)-4-ethoxy-5-hydroxy-3-methyl-im idazolidin-2- one (CAS 1844836-64-1 );

b4) from the group of the protoporphyrinogen-IX oxidase inhibitors: flumioxazin, oxyfluorfen, pyraflufen, pyraflufen-ethyl, saflufenacil, sulfentrazone, trifludimoxazin, ethyl [3-[2-chloro-4-flu- oro-5-(1 -methyl-6-trifluoromethyl-2,4-dioxo-1 ,2,3,4-tetrahydropyrimidin-3-yl)phenoxy]-2-pyridyl- oxy]acetate (CAS 353292-31 -6; S-3100, 3-[7-fluoro-3-oxo-4-(prop-2-ynyl)-3,4-dihydro-2H-ben- zo[1 ,4]oxazin-6-yl]-1 ,5-dimethyl-6-thioxo-[1 ,3,5]triazinan-2,4-dione (CAS 451484-50-7), 2-(2,2,7- trifluoro-3-oxo-4-prop-2-ynyl-3,4-dihydro-2H-benzo[1 ,4]oxazin-6-yl)-4,5,6,7-tetrahydro-isoindole- 1 ,3-dione (CAS 13001 18-96-0), and 1-methyl-6-trifluoromethyl-3-(2,2,7-trifluoro-3-oxo-4-prop-2 - ynyl-3,4-dihydro-2H-benzo[1 ,4]oxazin-6-yl)-1 H-pyrimidine-2,4-dione (CAS 13041 13-05-0);

b5) from the group of the bleacher herbicides: amitrole, bicyclopyrone, clomazone, diflufeni- can, fenquinotrione, flumeturon, flurochloridone, isoxaflutole, mesotrione, oxotrione (CAS 1486617-21-3), picolinafen, sulcotrione, tefuryltrione, tembotrione, tolpyralate, topramezone, 2- chloro-3-methylsulfanyl-N-(1 -methyltetrazol-5-yl)-4-(trifluoromethyl)benzamide (CAS 1361 139- 71-0), 2-(2,4-dichlorophenyl)methyl-4,4-dimethyl-3-isoxazolidone (CAS 81777-95-9); and 2-(2,5- dichlorophenyl)methyl-4,4-dimethyl-3-isoxazolidinone (CAS 81778-66-7);

b6) from the group of the EPSP synthase inhibitors: glyphosate, glyphosate-isopropylammo- nium and glyphosate-trimesium (sulfosate);

b7) from the group of the glutamine synthase inhibitors: glufosinate, glufosinate-P and glufosinate-ammonium;

b9) from the group of the mitosis inhibitors: pendimethalin and trifluralin;

b10) from the group of the VLCFA inhibitors: acetochlor, cafenstrole, dimethenamid-P, fentra- zamide, flufenacet, mefenacet, metazachlor, metolachlor, S-metolachlor, fenoxasulfone, ipfen- carbazone and pyroxasulfone; likewise, preference is given to isoxazoline compounds of the formulae 11.1 , II.2, 11.3 , II.4, II.5, II.6, II.7, II.8 and II.9 as mentioned above;

b1 1 ) from the group of the cellulose biosynthesis inhibitors: indaziflam, isoxaben and tria- ziflam;

b13) from the group of the auxinic herbicides: 2,4-D and its salts and esters such as clacyfos, and aminocyclopyrachlor and its salts and esters, aminopyralid and its salts and its esters, clopyralid and its salts and esters, dicamba and its salts and esters, flopyrauxifen, fluroxypyr- meptyl, halauxifen, halauxifen-methyl, quinclorac, quinmerac, florpyrauxifen, florpyrauxifen-ben- zyl (CAS 1390661 -72-9) and 4-amino-3-chloro-5-fluoro-6-(7-fluoro-1 H-indol-6-yl)picolinic acid (CAS 1629965-65-6);

b14) from the group of the auxin transport inhibitors: diflufenzopyr and diflufenzopyr-sodium, b15) from the group of the other herbicides: cinmethylin, dymon (= daimuron), indanofan, oxa- ziclomefone.

Particularly preferred herbicides B are the herbicides B as defined above; in particular, the herbicides B.1 - B.202 listed below in table B:

Table B

B Herbicide B B Herbicide B

B.1 clethodim B.33 imazapic-ammonium

B.2 clodinafop-propargyl B.34 imazapic-isopropylammonium

B.3 cycloxydim B.35 imazapyr

B.4 cyhalofop-butyl B.36 imazapyr-ammonium

B.5 fenoxaprop-ethyl B.37 imazapyr-isopropylammonium

B.6 fenoxaprop-P-ethyl B.38 imazaquin

B.7 metamifop B.39 imazaquin-ammonium

B.8 pinoxaden B.40 imazethapyr

B.9 profoxydim B.41 imazethapyr-ammonium

B.10 sethoxydim B.42 imazethapyr-isopropylammonium

B.1 1 tepraloxydim B.43 imazosulfuron

B.12 tralkoxydim B.44 iodosulfuron-methyl-sodium

B.13 esprocarb B.45 iofensulfuron

B.14 ethofumesate B.46 iofensulfuron-sodium

B.15 molinate B.47 mesosulfuron-methyl

B.16 prosulfocarb B.48 metazosulfuron

B.17 thiobencarb B.49 metsulfuron-methyl

B.18 triallate B.50 metosulam

B.19 bensulfuron-methyl B.51 nicosulfuron

B.20 bispyribac-sodium B.52 penoxsulam

B.21 cloransulam-methyl B.53 propoxycarbazon-sodium

B.22 chlorsulfuron B.54 pyrazosulfuron-ethyl

B.23 clorimuron B.55 pyribenzoxim

B.24 cyclosulfamuron B.56 pyriftalid

B.25 diclosulam B.57 pyroxsulam

B.26 florasulam B.58 propyrisulfuron

B.27 flumetsulam B.59 rimsulfuron

B.28 flupyrsulfuron-methyl-sodium B.60 sulfosulfuron

B.29 foramsulfuron B.61 thiencarbazone-methyl

B.30 imazamox B.62 thifensulfuron-methyl

B.31 imazamox-ammonium B.63 tribenuron-methyl

B.32 imazapic B.64 tritosulfuron B Herbicide B B Herbicide B

B.65 triafamone B.103 isoxaflutole

B.66 ametryne B.104 mesotrione

B.67 atrazine B.105 norflurazone

B.68 bentazon B.106 picolinafen

B.69 bromoxynil B.107 sulcotrione

B.70 bromoxynil-octanoate B.108 tefuryltrione

B.71 bromoxynil-heptanoate B.109 tembotrione

B.72 bromoxynil-potassium B.1 10 tolpyralate

B.73 diuron B.1 1 1 topramezone

B.74 fluometuron B.1 12 topramezone-sodium

B.75 hexazinone B.1 13 amitrole

B.76 isoproturon B.1 14 fluometuron

B.77 linuron B.1 15 fenquinotrione

B.78 metamitron B.1 16 glyphosate

B.79 metribuzin B.1 17 glyphosate-ammonium

B.80 propanil B.1 18 glyphosate-dimethylammonium

B.81 simazin B.1 19 glyphosate-isopropylammonium

B.82 terbuthylazine B.120 glyphosate-trimesium (sulfosate)

B.83 terbutryn B.121 glyphosate-potassium

B.84 paraquat-dichloride B.122 glufosinate

B.85 acifluorfen B.123 glufosinate-ammonium

B.86 butafenacil B.124 glufosinate-P

B.87 carfentrazone-ethyl B.125 glufosinate-P-ammonium

B.88 flumioxazin B.126 pendimethalin

B.89 fomesafen B.127 trifluralin

B.90 oxadiargyl B.128 acetochlor

B.91 oxyfluorfen B.129 butachlor

B.92 pyraflufen B.130 cafenstrole

B.93 pyraflufen-ethyl B.131 dimethenamid-P

B.94 saflufenacil B.132 fentrazamide

B.95 sulfentrazone B.133 flufenacet

B.96 trifludimoxazin B.134 mefenacet

B.97 ethyl [3-[2-chloro-4-fluoro-5-(1 - B.135 metazachlor

methyl-6-trifluoromethyl-2,4-di- B.136 metolachlor

oxo- 1 ,2 , 3 , 4-tetra h yd ro py ri m i d i n- B.137 S-metolachlor

3-yl)phenoxy]-2-pyridyloxy]ace- B.138 pretilachlor

tate B.139 fenoxasulfone

B.98 benzobicyclon B.140 indaziflam

B.99 bicyclopyrone B.141 isoxaben

B.100 clomazone B.142 triaziflam

B.101 diflufenican B.143 ipfencarbazone

B.102 flurochloridone B.144 pyroxasulfone B Herbicide B B Herbicide B

B.145 2,4-D B.183 diflufenzopyr

B.146 2,4-D-isobutyl B.184 diflufenzopyr-sodium

B.147 2,4-D-dimethylammonium B.185 dymron

B.148 2,4-D-N,N,N- B.186 indanofan

trimethylethanolammonium B.187 oxaziclomefone

B.149 aminopyralid B.188 11.1

B.150 aminopyralid-methyl B.189 W .2

B.151 aminopyralid-dimethylammonium B.190 11.3

B.152 aminopyralid-tris(2-hydroxypro- B.191 I I.4

pyl)ammonium B.192 I I.5

B.153 clopyralid B.193 I I.6

B.154 clopyralid-methyl B.194 I I.7

B.155 clopyralid-olamine B.195 11.8

B.156 dicamba B.196 i i.g

B.157 dicamba-butotyl B.197 4-amino-3-chloro-5-fluoro-6-(7-

B.158 dicamba-diglycolamine fluoro-1 H-indol-6-yl)picolinic acid

B.159 dicamba-dimethylammonium B.198 flopyrauxifen

B.160 dicamba-diolamine B.199 oxotrione

B.161 dicamba-isopropylammonium B.200 cinmethylin

B.162 dicamba-potassium B.201 2-chloro-3-methylsulfanyl-N-(1 -

B.163 dicamba-sodium methyltetrazol-5-yl)-4-(trifluoro-

B.164 dicamba-trolamine methyl)benzamide

B.165 dicamba-N,N-bis-(3- B.202 2-(2,4-dichlorophenyl)methyl-4,4- aminopropyl)methylamine dimethyl-3-isoxazolidone

B.166 dicamba-diethylenetriamine

B.167 fluroxypyr

B.168 fluroxypyr-meptyl

B.169 halauxifen

B.170 halauxifen-methyl

B.171 MCPA

B.172 MCPA-2-ethylhexyl

B.173 MCPA-dimethylammonium

B.174 quinclorac

B.175 quinclorac-dimethylammonium

B.176 quinmerac

B.177 quinmerac-dimethylammonium

B.178 florpyrauxifen

B.179 florpyrauxifen-benzyl (CAS

1390661 -72-9)

B.180 aminocyclopyrachlor

B.181 aminocyclopyrachlor-potassium

B.182 aminocyclopyrachlor-methyl __

57

In another embodiment of the present invention the compositions according to the present invention comprise at least one pyrimidine compound of formula (I) and at least one safener C.

Safeners are chemical compounds which prevent or reduce damage on useful plants without having a major impact on the herbicidal action of the herbicidal active components of the pre- sent compositions towards unwanted plants. They can be applied either before sowings (e.g. on seed treatments, shoots or seedlings) or in the pre-emergence application or post-emergence application of the useful plant. The safeners and the pyrimidine compounds of formula (I) and/or the herbicides B can be applied simultaneously or in succession.

Suitable safeners are e.g. (quinolin-8-oxy)acetic acids, 1 -phenyl-5-haloalkyl-1 H-1 ,2,4-triazol-3- carboxylic acids, 1 -phenyl-4,5-dihydro-5-alkyl-1 H-pyrazol-3,5-dicarboxylic acids, 4,5-dihydro- 5,5-diaryl-3-isoxazol carboxylic acids, dichloroacetamides, alpha-oximinophenylacetonitriles, acetophenonoximes, 4,6-dihalo-2-phenylpyrimidines, N-[[4-(aminocarbonyl)phenyl]sulfonyl]-2- benzoic amides, 1 ,8-naphthalic anhydride, 2-halo-4-(haloalkyl)-5-thiazol carboxylic acids, phosphorthiolates and N-alkyl-O-phenylcarbamates and their agriculturally acceptable salts and their agriculturally acceptable derivatives such amides, esters, and thioesters, provided they have an acid group.

Examples of preferred safeners C are benoxacor, cloquintocet, cyometrinil, cyprosulfamide, dichlormid, dicyclonon, dietholate, fenchlorazole, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen, mefenpyr, mephenate, naphthalic anhydride, oxabetrinil, 4-(dichloroacetyl)-1 -oxa-4- azaspiro[4.5]decane (MON4660, CAS 71526-07-3), 2,2,5-trimethyl-3-(dichloroacetyl)-1 ,3-oxa- zolidine (R-29148, CAS 52836-31-4), metcamifen and BPCMS (CAS 54091 -06-4).

Especially preferred safeners C are benoxacor, cloquintocet, cyprosulfamide, dichlormid, fenchlorazole, fenclorim, flurazole, fluxofenim, furilazole, isoxadifen, mefenpyr, naphthalic anhydride, oxabetrinil, 4-(dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane (MON4660, CAS 71526-07-3), 2,2,5-trimethyl-3-(dichloroacetyl)-1 ,3-oxazolidine (R-29148, CAS 52836-31 -4) and metcamifen. Particularly preferred safeners C are benoxacor, cloquintocet, cyprosulfamide, dichlormid, fenchlorazole, fenclorim, furilazole, isoxadifen, mefenpyr, naphtalic anhydride, 4-(dichloroace- tyl)-1-oxa-4-azaspiro[4.5]decane (MON4660, CAS 71526-07-3), 2,2,5-trimethyl-3-(dichloroace- tyl)-1 ,3-oxazolidine (R-29148, CAS 52836-31 -4) and metcamifen.

Particularly preferred safeners C, which, as component C, are constituent of the composition according to the invention are the safeners C as defined above; in particular the safeners C.1 - C.17 listed below in table C:

Table C:

c Safener C

C.1 benoxacor

C.2 cloquintocet

C.3 cloquintocet-mexyl

C.4 cyprosulfamide

C.5 dichlormid

C.6 fenchlorazole

C.7 fenchlorazole-ethyl

C.8 fenclorim

C.9 furilazole

C.10 isoxadifen

C.1 1 isoxadifen-ethyl

C.12 mefenpyr

C.13 mefenpyr-diethyl

C.14 naphtalic acid anhydride

C.15 4-(dichloroacetyl)-1 -oxa-4- azaspiro[4.5]decane

(MON4660, CAS 71526-07-3)

C.16 2,2,5-trimethyl-3-(dichloroace- tyl)-1 ,3-oxazolidine (R-29148,

CAS 52836-31 -4)

C.17 metcamifen

The active compounds B of groups b1 ) to b15) and the active compounds C are known herbicides and safeners, see, e.g., The Compendium of Pesticide Common Names (http://www.alan- wood.net/pesticides/); Farm Chemicals Handbook 2000 volume 86, Meister Publishing Com- pany, 2000; B. Hock, C. Fedtke, R. R. Schmidt, Herbizide [Herbicides], Georg Thieme Verlag, Stuttgart 1995; W. H. Ahrens, Herbicide Handbook, 7th edition, Weed Science Society of America, 1994; and K. K. Hatzios, Herbicide Handbook, Supplement for the 7th edition, Weed Science Society of America, 1998. 2,2,5-Trimethyl-3-(dichloroacetyl)-1 ,3-oxazolidine [CAS No. 52836-31-4] is also referred to as R-29148. 4-(Dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane [CAS No. 71526-07-3] is also referred to as AD-67 and MON 4660.

The assignment of the active compounds to the respective mechanisms of action is based on current knowledge. If several mechanisms of action apply to one active compound, this substance was only assigned to one mechanism of action.

Active compounds B and C having a carboxyl group can be employed in the form of the acid, in the form of an agriculturally suitable salt as mentioned above or else in the form of an agriculturally acceptable derivative in the compositions according to the invention.

In the case of dicamba, suitable salts include those, where the counterion is an agriculturally acceptable cation. E.g., suitable salts of dicamba are dicamba-sodium, dicamba-potassium, dicamba-methylammonium, dicamba-dimethylammonium, dicamba-isopropylammonium, dicamba-diglycolamine, dicamba-olamine, dicamba-diolamine, dicamba-trolamine, dicamba- N,N-bis-(3-aminopropyl)methylamine and dicamba-diethylenetriamine. Examples of a suitable ester are dicamba-methyl and dicamba-butotyl. Suitable salts of 2,4-D are 2,4-D-ammonium, 2,4-D-dimethylammonium, 2,4-D-diethylammoni- um, 2,4-D-diethanolammonium (2,4-D-diolamine), 2,4-D-triethanolammonium, 2,4-D-isoprop- ylammonium, 2,4-D-triisopropanolammonium, 2,4-D-heptylammonium, 2,4-D-dodecylammo- nium, 2,4-D-tetradecylammonium, 2,4-D-triethylammonium, 2,4-D-tris(2-hydroxypropyl)ammo- nium, 2,4-D-tris(isopropyl)ammonium, 2,4-D-trolamine, 2,4-D-lithium, 2,4-D-sodium. Examples of suitable esters of 2,4-D are 2,4-D-butotyl, 2,4-D-2-butoxypropyl, 2,4-D-3-butoxypropyl, 2,4-D- butyl, 2,4-D-ethyl, 2,4-D-ethylhexyl, 2,4-D-isobutyl, 2,4-D-isooctyl, 2,4-D-isopropyl, 2,4-D-mep- tyl, 2,4-D-methyl, 2,4-D-octyl, 2,4-D-pentyl, 2,4-D-propyl, 2,4-D-tefuryl and clacyfos.

Suitable salts of 2,4-DB are e.g. 2,4-DB-sodium, 2,4-DB-potassium and 2,4-DB-dimethyl- ammonium. Suitable esters of 2,4-DB are e.g. 2,4-DB-butyl and 2,4-DB-isoctyl.

Suitable salts of dichlorprop are e.g. dichlorprop-sodium, dichlorprop-potassium and dichlor- prop-dimethylammonium. Examples of suitable esters of dichlorprop are dichlorprop-butotyl and dichlorprop-isoctyl.

Suitable salts and esters of MCPA include MCPA-butotyl, MCPA-butyl, MCPA-dimethylammo- nium, MCPA-diolamine, MCPA-ethyl, MCPA-thioethyl, MCPA-2-ethylhexyl, MCPA-isobutyl, MCPA-isoctyl, MCPA-isopropyl, MCPA-isopropylammonium, MCPA-methyl, MCPA-olamine, MCPA-potassium, MCPA-sodium and MCPA-trolamine.

A suitable salt of MCPB is MCPB sodium. A suitable ester of MCPB is MCPB-ethyl.

Suitable salts of clopyralid are clopyralid-potassium, clopyralid-olamine and clopyralid-tris-(2- hydroxypropyl)ammonium. Example of suitable esters of clopyralid is clopyralid-methyl.

Examples of a suitable ester of fluroxypyr are fluroxypyr-meptyl and fluroxypyr-2-butoxy-1- methylethyl, wherein fluroxypyr-meptyl is preferred.

Suitable salts of picloram are picloram-dimethylammonium, picloram-potassium, picloram- triisopropanolammonium, picloram-triisopropylammonium and picloram-trolamine. A suitable es- ter of picloram is picloram-isoctyl.

A suitable salt of triclopyr is triclopyr-triethylammonium. Suitable esters of triclopyr are e.g. triclopyr-ethyl and triclopyr-butotyl.

Suitable salts and esters of chloramben include chloramben-ammonium, chloramben-diola- mine, chloramben-methyl, chloramben-methylammonium and chloramben-sodium. Suitable salts and esters of 2,3,6-TBA include 2,3,6-TBA-dimethylammonium, 2,3,6-TBA-lithium, 2,3,6- TBA-potassium and 2,3,6-TBA-sodium.

Suitable salts and esters of aminopyralid include aminopyralid-potassium, aminopyralid-dime- thylammonium, and aminopyralid-tris(2-hydroxypropyl)ammonium.

Suitable salts of glyphosate are e.g. glyphosate-ammonium, glyphosate-diammonium, glyphoste-dimethylammonium, glyphosate-isopropylammonium, glyphosate-potassium, glypho- sate-sodium, glyphosate-trimesium as well as the ethanolamine and diethanolamine salts, preferably glyphosate-diammonium, glyphosate-isopropylammonium and glyphosate-trimesium (sul- fosate).

A suitable salt of glufosinate is e.g. glufosinate-ammonium.

A suitable salt of glufosinate-P is e.g. glufosinate-P-ammonium.

Suitable salts and esters of bromoxynil are e.g. bromoxynil-butyrate, bromoxynil-heptanoate, bromoxynil-octanoate, bromoxynil-potassium and bromoxynil-sodium.

Suitable salts and esters of ioxonil are e.g. ioxonil-octanoate, ioxonil-potassium and ioxonil- sodium. Λ

60

Suitable salts and esters of mecoprop include mecoprop-butotyl, mecoprop-dimethylammo- nium, mecoprop-diolamine, mecoprop-ethadyl, mecoprop-2-ethylhexyl, mecoprop-isoctyl, mecoprop-methyl, mecoprop-potassium, mecoprop-sodium and mecoprop-trolamine.

Suitable salts of mecoprop-P are e.g. mecoprop-P-butotyl, mecoprop-P-dimethylammonium, mecoprop-P-2-ethylhexyl, mecoprop-P-isobutyl, mecoprop-P-potassium and mecoprop-P-so- dium.

A suitable salt of diflufenzopyr is e.g. diflufenzopyr-sodium.

A suitable salt of naptalam is e.g. naptalam-sodium.

Suitable salts and esters of aminocyclopyrachlor are e.g. aminocyclopyrachlor-dimethylammo- nium, aminocyclopyrachlor-methyl, aminocyclopyrachlor-triisopropanolammonium, aminocyclo- pyrachlor-sodium and aminocyclopyrachlor-potassium.

A suitable salt of quinclorac is e.g. quinclorac-dimethylammonium.

A suitable salt of quinmerac is e.g. quinmerac-dimethylammonium.

A suitable salt of imazamox is e.g. imazamox-ammonium.

Suitable salts of imazapic are e.g. imazapic-ammonium and imazapic-isopropylammonium.

Suitable salts of imazapyr are e.g. imazapyr-ammonium and imazapyr-isopropylammonium.

A suitable salt of imazaquin is e.g. imazaquin-ammonium.

Suitable salts of imazethapyr are e.g. imazethapyr-ammonium and imazethapyr-isoprop- ylammonium.

A suitable salt of topramezone is e.g. topramezone-sodium.

According to a preferred embodiment of the invention, the composition comprises as herbicidal active compound B or component B at least one, preferably exactly one herbicide B.

According to another preferred embodiment of the invention, the composition comprises as herbicidal active compounds B or component B at least two, preferably exactly two herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises as herbicidal active compounds B or component B at least three, preferably exactly three herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises as safening component C or component C at least one, preferably exactly one safener C.

According to another preferred embodiment of the invention, the composition comprises as component B at least one, preferably exactly one herbicide B, and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises at least two, preferably exactly two, herbicides B different from each other, and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises at least three, preferably exactly three, herbicides B different from each other, and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .1 ), especially preferred the compound (1.1.1-3), (1.1 .1-4), (1.1 .1-10), (1.1.1-1 1 ), (1.1 .1- 17), (1 .1.1-18), (1.1 .1-24), (1 .1.1-25), (1.1 .1-31 ), (1 .1.1-32), (1.1 .1-38), (1.1.1-39), (1.1 .1-45), (1 .1.1- 46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), or (1.1.1-67), and as component B at least one, preferably exactly one, herbicide B.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1.1), especially preferred the compound (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1- 17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1- 46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), or (1.1.1-67), and at least two, preferably exactly two, herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1.1), especially preferred the compound (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1- 17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1- 46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), or (1.1.1-67), and at least three, preferably exactly three, herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1.1), especially preferred the compound (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1- 17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1- 46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), or (1.1.1-67), and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1.1), especially preferred the compound (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1- 17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1- 46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), or (1.1.1-67), as component B at least one, preferably exactly one, herbicide B, and as component C at least one, preferably exactly one safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly pyridine compound of formula (I), preferably of for- mula (1.1), especially preferred the compound (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), or (1.1.1-67), at least two, preferably exactly two herbicides B different from each other, and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1.1), especially preferred the compound (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1- 17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1- 46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), or (1.1.1-67), at least three, preferably exactly three herbicides B different from each other, and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1.2), especially preferred the compound (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1- 17), (1.2.1-18), (1.2.1-24), (1 .2.1-25), (1.2.1-31 ), (1 .2.1-32), (1 .2.1-38), (1.2.1-39), (1.2.1-45), (1 .2.1- 46), (1.2.1-52), (1.2.1-53), (1 .2.1-59), (1.2.1-60), (1 .2.1-66), or (1.2.1-67), and as component B at least one, preferably exactly one, herbicide B.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .2), especially preferred the compound (1.2.1-3), (1.2.1-4), (1 .2.1-10), (1.2.1-1 1 ), (1.2.1- 17), (1.2.1-18), (1.2.1-24), (1 .2.1-25), (1.2.1-31 ), (1 .2.1-32), (1 .2.1-38), (1.2.1-39), (1.2.1-45), (1 .2.1- 46), (1.2.1-52), (1.2.1-53), (1 .2.1-59), (1.2.1-60), (1 .2.1-66), or (1.2.1-67), and at least two, preferably exactly two, herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .2), especially preferred the compound (1.2.1-3), (1.2.1-4), (1 .2.1-10), (1.2.1-1 1 ), (1.2.1- 17), (1.2.1-18), (1.2.1-24), (1 .2.1-25), (1.2.1-31 ), (1 .2.1-32), (1 .2.1-38), (1.2.1-39), (1.2.1-45), (1 .2.1- 46), (1.2.1-52), (1.2.1-53), (1 .2.1-59), (1.2.1-60), (1 .2.1-66), or (1.2.1-67), and at least three, prefer- ably exactly three, herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .2), especially preferred the compound (1.2.1-3), (1.2.1-4), (1 .2.1-10), (1.2.1-1 1 ), (1.2.1- 17), (1.2.1-18), (1.2.1-24), (1 .2.1-25), (1.2.1-31 ), (1 .2.1-32), (1 .2.1-38), (1.2.1-39), (1.2.1-45), (1 .2.1- 46), (1.2.1-52), (1.2.1-53), (1 .2.1-59), (1.2.1-60), (1 .2.1-66), or (1.2.1-67), and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .2), especially preferred the compound (1.2.1-3), (1.2.1-4), (1 .2.1-10), (1.2.1-1 1 ), (1.2.1- 17), (1.2.1-18), (1.2.1-24), (1 .2.1-25), (1.2.1-31 ), (1 .2.1-32), (1 .2.1-38), (1.2.1-39), (1.2.1-45), (1 .2.1- 46), (1.2.1-52), (1.2.1-53), (1 .2.1-59), (1.2.1-60), (1 .2.1-66), or (1.2.1-67), as component B at least one, preferably exactly one, herbicide B, and as component C at least one, preferably exactly one safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly pyridine compound of formula (I), preferably of formula (1.2), especially preferred the compound (1 .2.1-3), (1 .2.1-4), (1.2.1-10), (1.2.1-1 1 ), (1 .2.1-17), (1.2.1-18), (1 .2.1-24), (1.2.1-25), (1 .2.1-31 ), (1.2.1-32), (1 .2.1-38), (1.2.1-39), (1 .2.1-45), (1.2.1-46), (1.2.1-52), (1 .2.1-53), (1.2.1-59), (1 .2.1-60), (1.2.1-66), or (1.2.1-67), at least two, preferably exactly two herbicides B different from each other, and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .2), especially preferred the compound (1.2.1-3), (1.2.1-4), (1 .2.1-10), (1.2.1-1 1 ), (1.2.1- 17), (1.2.1-18), (1.2.1-24), (1 .2.1-25), (1.2.1-31 ), (1 .2.1-32), (1 .2.1-38), (1.2.1-39), (1.2.1-45), (1 .2.1- 46), (1.2.1-52), (1.2.1-53), (1 .2.1-59), (1.2.1-60), (1 .2.1-66), or (1.2.1-67), at least three, preferably exactly three herbicides B different from each other, and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .5), especially preferred the compound (1.5.1-3), (1.5.1-4), (1 .5.1-10), (1.5.1-1 1 ), (1.5.1- 17), (1.5.1-18), (1.5.1-24), (1 .5.1-25), (1.5.1-31 ), (1 .5.1-32), (1 .5.1-38), (1.5.1-39), (1.5.1-45), (1 .5.1- 46), (1.5.1-52), (1.5.1-53), (1 .5.1-59), (1.5.1-60), (1 .5.1-66), or (1.5.1-67), and as component B at least one, preferably exactly one, herbicide B.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .5), especially preferred the compound (1.5.1-3), (1.5.1-4), (1 .5.1-10), (1.5.1-1 1 ), (1.5.1- 17), (1.5.1-18), (1.5.1-24), (1 .5.1-25), (1.5.1-31 ), (1 .5.1-32), (1 .5.1-38), (1.5.1-39), (1.5.1-45), (1 .5.1- 46), (1.5.1-52), (1.5.1-53), (1 .5.1-59), (1.5.1-60), (1 .5.1-66), or (1.5.1-67), and at least two, prefera- bly exactly two, herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .5), especially preferred the compound (1.5.1-3), (1.5.1-4), (1 .5.1-10), (1.5.1-1 1 ), (1.5.1- 17), (1.5.1-18), (1.5.1-24), (1 .5.1-25), (1.5.1-31 ), (1 .5.1-32), (1 .5.1-38), (1.5.1-39), (1.5.1-45), (1 .5.1- 46), (1.5.1-52), (1.5.1-53), (1 .5.1-59), (1.5.1-60), (1 .5.1-66), or (1.5.1-67), and at least three, preferably exactly three, herbicides B different from each other.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .5), especially preferred the compound (1.5.1-3), (1.5.1-4), (1 .5.1-10), (1.5.1-1 1 ), (1.5.1- 17), (1.5.1-18), (1.5.1-24), (1 .5.1-25), (1.5.1-31 ), (1 .5.1-32), (1 .5.1-38), (1.5.1-39), (1.5.1-45), (1 .5.1- 46), (1.5.1-52), (1.5.1-53), (1 .5.1-59), (1.5.1-60), (1 .5.1-66), or (1.5.1-67), and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .5), especially preferred the compound (1.5.1-3), (1.5.1-4), (1 .5.1-10), (1.5.1-1 1 ), (1.5.1- 17), (1.5.1-18), (1.5.1-24), (1 .5.1-25), (1.5.1-31 ), (1 .5.1-32), (1 .5.1-38), (1.5.1-39), (1.5.1-45), (1 .5.1- 46), (1.5.1-52), (1.5.1-53), (1 .5.1-59), (1.5.1-60), (1 .5.1-66), or (1.5.1-67), as component B at least one, preferably exactly one, herbicide B, and as component C at least one, preferably exactly one safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly pyridine compound of formula (I), preferably of formula (1.5), especially preferred the compound (1 .5.1-3), (1 .5.1-4), (1.5.1-10), (1.5.1-1 1 ), (1 .5.1-17), (1.5.1-18), (1 .5.1-24), (1.5.1-25), (1 .5.1-31 ), (1.5.1-32), (1 .5.1-38), (1.5.1-39), (1 .5.1-45), (1.5.1-46), (1.5.1-52), (1 .5.1-53), (1.5.1-59), (1 .5.1-60), (1.5.1-66), or (1.5.1-67), at least two, preferably exactly two herbicides B different from each other, and as component C at least one, preferably exactly one, safener C.

According to another preferred embodiment of the invention, the composition comprises as component A at least one, preferably exactly one pyridine compound of formula (I), preferably of formula (1 .5), especially preferred the compound (1.5.1-3), (1.5.1-4), (1 .5.1-10), (1.5.1-1 1 ), (1.5.1- 17), (1.5.1-18), (1.5.1-24), (1 .5.1-25), (1.5.1-31 ), (1 .5.1-32), (1 .5.1-38), (1.5.1-39), (1.5.1-45), (1 .5.1- 46), (1.5.1-52), (1.5.1-53), (1 .5.1-59), (1.5.1-60), (1 .5.1-66), or (1.5.1-67), at least three, preferably exactly three herbicides B different from each other, and as component C at least one, preferably exactly one, safener C. According to another preferred embodiment of the invention, the composition comprises, in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b1), in particular selected from the group consisting of clethodim, clodinafop-propargyl, cycloxydim, cyhalofop-butyl, fenoxa- prop-ethyl, fenoxaprop-P-ethyl, metamifop, pinoxaden, profoxydim, sethoxydim, tepraloxydim, tralkoxydim, esprocarb, ethofumesate, molinate, prosulfocarb, thiobencarb and triallate.

According to another preferred embodiment of the invention, the composition comprises, in ad- dition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b2), in particular selected from the group consisting of bensulfuron-methyl, bispyribac-sodium, cloransulam-methyl, chlorsulfu- ron, clorimuron, cyclosulfamuron, diclosulam, florasulam, flumetsulam, flupyrsulfuron-methyl- sodium, foramsulfuron, imazamox, imazamox-ammonium, imazapic, imazapic-ammonium, ima- zapic-isopropylammonium, imazapyr, imazapyr-ammonium, imazethapyr-isopropylammonium, imazaquin, imazaquin-ammonium, imazethapyr, imazethapyr-ammonium, imazethapyr-isopropylammonium, imazosulfuron, iodosulfuron-methyl-sodium, iofensulfuron, iofensulfuron-sodium, mesosulfuron-methyl, metazosulfuron, metsulfuron-methyl, metosulam, nicosulfuron, penoxsu- lam, propoxycarbazon-sodium, pyrazosulfuron-ethyl, pyribenzoxim, pyriftalid, pyroxsulam, pro- pyrisulfuron, rimsulfuron, sulfosulfuron, thiencarbazon-methyl, thifensulfuron-methyl, tribenuron- methyl, tritosulfuron and triafamone.

According to another preferred embodiment of the invention, the composition comprises, in ad- dition to a pyridine compounds of formula (I), especially an active compound from the group consisting (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b3), in particular selected from the group consisting of ametryn, atrazine, bentazon, bromoxynil, bromoxynil-octanoate, bro- moxynil-heptanoate, bromoxynil-potassium, diuron, fluometuron, hexazinone, isoproturon, linu- ron, metamitron, metribuzin, paraquat-dichloride, propanil, simazin, terbutryn and ter- buthylazine.

According to another preferred embodiment of the invention, the composition comprises, in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b4), in particular selected from the group consisting of acifluorfen, butafencil, carfenetrazone-ethyl, flumioxazin, fomesafen, oxadiargyl, oxyfluorfen, pyraflufen, pyraflufen-ethyl, saflufenacil, sulfentrazone, trifludimoxazin , ethyl [3-[2-chloro-4-fluoro-5-(1-methyl-6-trifluoromethyl-2,4-diox o-1,2,3,4-tetrahydropyrimidin-3- yl)phenoxy]-2-pyridyloxy]acetate (CAS 353292-31-6; S-3100).

According to another preferred embodiment of the invention, the composition comprises, in ad- dition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b5), in particular selected from the group consisting of amitrole, benzobicyclon, bicyclopyrone, clomazone, diflufenican, fenquintrone, fluometuron, flurochloridone, isoxaflutole, mesotrione, norflurazone, oxotrione (CAS 1486617-21-3), picolinafen, sulcotrione, tefuryltrione, tembotrione, tolpyralate, toprame- zone, topramezone-sodium and 2-chloro-3-methylsulfanyl-N-(1-methyltetrazol-5-yl)-4-(trifl uoro- methyl)benzamide (CAS 1361139-71-0) .

According to another preferred embodiment of the invention, the composition comprises, in ad- dition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b6), in particular selected from the group consisting of glyphosate, glyphosate-ammonium, glyphosate-dimethylammonium , glyphosate-isopropylammonium and glyphosate-trimesium (sulfosate) and glyphosate-potas- sium.

According to another preferred embodiment of the invention, the composition comprises, in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b7), in particular selected from the group consisting of glufosinate, glufosinate-ammonium, glufosinate-P and glufosinate-P-am- monium.

According to another preferred embodiment of the invention, the composition comprises, in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b9), in particular selected from the group consisting of pendimethalin and trifluralin.

According to another preferred embodiment of the invention, the composition comprises, in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b10), in particular selected from the group consisting of acetochlor, butachlor, cafenstrole, dimethenamid-P, fentrazamide, flufe- nacet, mefenacet, metazachlor, metolachlor, S-metolachlor, fenoxasulfone, ipfencarbazone and pyroxasulfone. Likewise, preference is given to compositions comprising in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b10), in particular selected from the group consisting of isoxazoline compounds of the formulae 11.1, II.2, II.3, II.4, II.5, II.6, II.7, II.8 and II.9, as de- fined above.

According to another preferred embodiment of the invention, the composition comprises, in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b11), in particular indaziflam, isoxaben and triaziflam.

According to another preferred embodiment of the invention, the composition comprises, in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b13), in particular selected from the group consisting of 2,4-D, 2,4-D-isobutyl, 2,4-D-dimethylammonium, 2,4-D-N,N,N-tri- methylethanolammonium, aminocyclopyrachlor, aminocyclopyrachlor-potassium, aminocyclopy- rachlor-methyl, aminopyralid, aminopyralid-methyl, aminopyralid-dimethylammonium, amino- pyralid-tris(2-hydroxypropyl)ammonium, clopyralid, clopyralid-methyl, clopyralid-olamine, dicamba, dicamba-butotyl, dicamba-diglycolamine, dicamba-dimethylammonium, dicamba-di- olamine, dicamba-isopropylammonium, dicamba-potassium, dicamba-sodium, dicamba-trola- mine, dicamba-N,N-bis-(3-aminopropyl)methylamine, dicamba-diethylenetriamine, flopyrauxifen, fluroxypyr, fluroxypyr-meptyl, halauxifen, halauxifen-methyl, MCPA, MCPA-2-ethylhexyl, MCPA- dimethylammonium, quinclorac, quinclorac-dimethylammonium, quinmerac, quinmerac-dime- thylammonium, florpyrauxifen , florpyrauxifen-benzyl (CAS 1390661-72-9), and 4-amino-3- chloro-5-fluoro-6-(7-fluoro-1H-indol-6-yl)picolinic acid (CAS 1629965-65-6) .

According to another preferred embodiment of the invention, the composition comprises, in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b14), in particular selected from the group consisting of diflufenzopyr, diflufenzopyr-sodium, dymron, indanofan and diflufen- zopyr-sodium.

According to another preferred embodiment of the invention, the composition comprises, in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one herbicidally active compound from group b15), in particular selected from the group consisting of cinmethylin, dymron (= daimuron), indanofan and oxaziclomefone.

According to another preferred embodiment of the invention, the composition comprises, in addition to a pyridine compounds of formula (I), especially an active compound from the group consisting of (1.1.1-3), (1.1.1-4), (1.1.1-10), (1.1.1-11), (1.1.1-17), (1.1.1-18), (1.1.1-24), (1.1.1-25), (1.1.1-31), (1.1.1-32), (1.1.1-38), (1.1.1-39), (1.1.1-45), (1.1.1-46), (1.1.1-52), (1.1.1-53), (1.1.1-59), (1.1.1-60), (1.1.1-66), (1.1.1-67), (1.2.1-3), (1.2.1-4), (1.2.1-10), (1.2.1-11), (1.2.1-17), (1.2.1-18), (1.2.1-24), (1.2.1-25), (1.2.1-31), (1.2.1-32), (1.2.1-38), (1.2.1-39), (1.2.1-45), (1.2.1-46), (1.2.1-52), (1.2.1-53), (1.2.1-59), (1.2.1-60), (1.2.1-66), (1.2.1-67), (1.5.1-3), (1.5.1-4), (1.5.1-10), (1.5.1-11), (1.5.1-17), (1.5.1-18), (1.5.1-24), (1.5.1-25), (1.5.1-31), (1.5.1-32), (1.5.1-38), (1.5.1-39), (1.5.1-45), (1.5.1-46), (1.5.1-52), (1.5.1-53), (1.5.1-59), (1.5.1-60), (1.5.1-66), and (1.5.1-67), at least one and especially exactly one safener C, in particular selected from the group consisting of benoxacor, cloquintocet, cyprosulfamide, dichlormid, fenchlorazole, fenclorim, furilazole, isoxadifen, mefenpyr, 4-(dichloroacetyl)-1-oxa-4-azaspiro[4.5]decane (MON4660, CAS 71526-07-3) and 2,2,5-trimethyl-3-(dichloroacetyl)-1,3-oxazolidine (R-29148, CAS 52836-31-4).

Here and below, the term "binary compositions" includes compositions comprising one or more, e.g.1 , 2 or 3, active compounds of the formula (I) and either one or more, e.g.1 , 2 or 3, herbicides B or one or more safeners C.

Correspondingly, the term "ternary compositions" includes compositions comprising one or more, e.g.1 , 2 or 3, active compounds of the formula (I), one or more, e.g.1 , 2 or 3, herbicides B and one or more, e.g.1 , 2 or 3, safeners C.

In binary compositions comprising at least one pyridine compound of formula (I) as component A and at least one herbicide B, the weight ratio of the active compounds A:B is generally in the range of from 1:1000 to 1000:1, preferably in the range of from 1:500 to 500:1, in particular in the range of from 1:250 to 250:1 and particularly preferably in the range of from 1:75 to 75:1. In binary compositions comprising at least one pyridine compound of formula (I) as component A and at least one safener C, the weight ratio of the active compounds A:C is generally in the range of from 1:1000 to 1000:1, preferably in the range of from 1:500 to 500:1, in particular in the range of from 1:250 to 250:1 and particularly preferably in the range of from 1:75 to 75:1. In ternary compositions comprising at least one pyridine compound of formula (I) as component A, at least one herbicide B and at least one safener C, the relative proportions by weight of the components A:B are generally in the range of from 1 :1000 to 1000:1 , preferably in the range of from 1 :500 to 500:1 , in particular in the range of from 1 :250 to 250:1 and particularly prefera- bly in the range of from 1 :75 to 75:1 , the weight ratio of the components A:C is generally in the range of from 1 :1000 to 1000:1 , preferably in the range of from 1 :500 to 500:1 , in particular in the range of from 1 :250 to 250:1 and particularly preferably in the range of from 1 :75 to 75:1 , and the weight ratio of the components B:C is generally in the range of from 1 :1000 to 1000:1 , preferably in the range of from 1 :500 to 500:1 , in particular in the range of from 1 :250 to 250:1 and particularly preferably in the range of from 1 :75 to 75:1 . The weight ratio of components A + B to component C is preferably in the range of from 1 :500 to 500:1 , in particular in the range of from 1 :250 to 250:1 and particularly preferably in the range of from 1 :75 to 75:1 .

The weight ratios of the individual components in the preferred mixtures mentioned below are within the limits given above, in particular within the preferred limits.

Particularly preferred are the compositions mentioned below comprising the pyridine compound s of formula I as defined and the substance(s) as defined in the respective row of table T; especially preferred comprising as only herbicidal active compounds the pyridine compound s of formula I as defined and the substance(s) as defined in the respective row of table T;

most preferably comprising as only active compounds the pyridine compound s of formula I as defined and the substance(s) as defined in the respective row of table T.

Particularly preferred are compositions 1 .1 to 1.3653, comprising the compound 1.3.1-3 and the substance(s) as defined in the respective row of table T: Table T (compositions 1.1 to 1.3653):

comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.1 B.1 — 1.18 B.18 — 1 .35 B.35 —

1.2 B.2 — 1.19 B.19 — 1 .36 B.36 —

1.3 B.3 — 1.20 B.20 — 1 .37 B.37 —

1.4 B.4 — 1.21 B.21 — 1 .38 B.38 —

1.5 B.5 — 1.22 B.22 — 1 .39 B.39 —

1.6 B.6 — 1.23 B.23 — 1 .40 B.40 —

1.7 B.7 — 1.24 B.24 — 1 .41 B.41 —

1.8 B.8 — 1.25 B.25 — 1 .42 B.42 —

1.9 B.9 — 1.26 B.26 — 1 .43 B.43 —

1.10 B.10 — 1.27 B.27 — 1 .44 B.44 —

1.1 1 B.1 1 — 1.28 B.28 — 1 .45 B.45 —

1.12 B.12 — 1.29 B.29 — 1 .46 B.46 —

1.13 B.13 — 1.30 B.30 — 1 .47 B.47 —

1.14 B.14 — 1.31 B.31 — 1 .48 B.48 —

1.15 B.15 — 1.32 B.32 — 1 .49 B.49 —

1.16 B.16 — 1.33 B.33 — 1 .50 B.50 —

1.17 B.17 — 1.34 B.34 — 1 .51 B.51 — comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.52 B.52 — 1.93 B.93 — 1.134 B.134 —

1.53 B.53 — 1.94 B.94 — 1.135 B.135 —

1.54 B.54 — 1.95 B.95 — 1.136 B.136 —

1.55 B.55 — 1.96 B.96 — 1.137 B.137 —

1.56 B.56 — 1.97 B.97 — 1.138 B.138 —

1.57 B.57 — 1.98 B.98 — 1.139 B.139 —

1.58 B.58 — 1.99 B.99 — 1.140 B.140 —

1.59 B.59 — 1.100 B.100 — 1.141 B.141 —

1.60 B.60 — 1.101 B.101 — 1.142 B.142 —

1.61 B.61 — 1.102 B.102 — 1.143 B.143 —

1.62 B.62 — 1.103 B.103 — 1.144 B.144 —

1.63 B.63 — 1.104 B.104 — 1.145 B.145 —

1.64 B.64 — 1.105 B.105 — 1.146 B.146 —

1.65 B.65 — 1.106 B.106 — 1.147 B.147 —

1.66 B.66 — 1.107 B.107 — 1.148 B.148 —

1.67 B.67 — 1.108 B.108 — 1.149 B.149 —

1.68 B.68 — 1.109 B.109 — 1.150 B.150 —

1.69 B.69 — 1.110 B.110 — 1.151 B.151 —

1.70 B.70 — 1.111 B.111 — 1.152 B.152 —

1.71 B.71 — 1.112 B.112 — 1.153 B.153 —

1.72 B.72 — 1.113 B.113 — 1.154 B.154 —

1.73 B.73 — 1.114 B.114 — 1.155 B.155 —

1.74 B.74 — 1.115 B.115 — 1.156 B.156 —

1.75 B.75 — 1.116 B.116 — 1.157 B.157 —

1.76 B.76 — 1.117 B.117 — 1.158 B.158 —

1.77 B.77 — 1.118 B.118 — 1.159 B.159 —

1.78 B.78 — 1.119 B.119 — 1.160 B.160 —

1.79 B.79 — 1.120 B.120 — 1.161 B.161 —

1.80 B.80 — 1.121 B.121 — 1.162 B.162 —

1.81 B.81 — 1.122 B.122 — 1.163 B.163 —

1.82 B.82 — 1.123 B.123 — 1.164 B.164 —

1.83 B.83 — 1.124 B.124 — 1.165 B.165 —

1.84 B.84 — 1.125 B.125 — 1.166 B.166 —

1.85 B.85 — 1.126 B.126 — 1.167 B.167 —

1.86 B.86 — 1.127 B.127 — 1.168 B.168 —

1.87 B.87 — 1.128 B.128 — 1.169 B.169 —

1.88 B.88 — 1.129 B.129 — 1.170 B.170 —

1.89 B.89 — 1.130 B.130 — 1.171 B.171 —

1.90 B.90 — 1.131 B.131 — 1.172 B.172 —

1.91 B.91 — 1.132 B.132 — 1.173 B.173 —

1.92 B.92 — 1.133 B.133 — 1.174 B.174 — comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.175 B.175 — 1.216 B.14 C.1 1.257 B.55 C.1

1.176 B.176 — 1.217 B.15 C.1 1.258 B.56 C.1

1.177 B.177 — 1.218 B.16 C.1 1.259 B.57 C.1

1.178 B.178 — 1.219 B.17 C.1 1.260 B.58 C.1

1.179 B.179 — 1.220 B.18 C.1 1.261 B.59 C.1

1.180 B.180 — 1.221 B.19 C.1 1.262 B.60 C.1

1.181 B.181 — 1.222 B.20 C.1 1.263 B.61 C.1

1.182 B.182 — 1.223 B.21 C.1 1.264 B.62 C.1

1.183 B.183 — 1.224 B.22 C.1 1.265 B.63 C.1

1.184 B.184 — 1.225 B.23 C.1 1.266 B.64 C.1

1.185 B.185 — 1.226 B.24 C.1 1.267 B.65 C.1

1.186 B.186 — 1.227 B.25 C.1 1.268 B.66 C.1

1.187 B.187 — 1.228 B.26 C.1 1.269 B.67 C.1

1.188 B.188 — 1.229 B.27 C.1 1.270 B.68 C.1

1.189 B.189 — 1.230 B.28 C.1 1.271 B.69 C.1

1.190 B.190 — 1.231 B.29 C.1 1.272 B.70 C.1

1.191 B.191 — 1.232 B.30 C.1 1.273 B.71 C.1

1.192 B.192 — 1.233 B.31 C.1 1.274 B.72 C.1

1.193 B.193 — 1.234 B.32 C.1 1.275 B.73 C.1

1.194 B.194 — 1.235 B.33 C.1 1.276 B.74 C.1

1.195 B.195 — 1.236 B.34 C.1 1.277 B.75 C.1

1.196 B.196 — 1.237 B.35 C.1 1.278 B.76 C.1

1.197 B.197 — 1.238 B.36 C.1 1.279 B.77 C.1

1.198 B.198 — 1.239 B.37 C.1 1.280 B.78 C.1

1.199 B.199 — 1.240 B.38 C.1 1.281 B.79 C.1

1.200 B.200 — 1.241 B.39 C.1 1.282 B.80 C.1

1.201 B.201 — 1.242 B.40 C.1 1.283 B.81 C.1

1.202 B.202 — 1.243 B.41 C.1 1.284 B.82 C.1

1.203 B.1 C.1 1.244 B.42 C.1 1.285 B.83 C.1

1.204 B.2 C.1 1.245 B.43 C.1 1.286 B.84 C.1

1.205 B.3 C.1 1.246 B.44 C.1 1.287 B.85 C.1

1.206 B.4 C.1 1.247 B.45 C.1 1.288 B.86 C.1

1.207 B.5 C.1 1.248 B.46 C.1 1.289 B.87 C.1

1.208 B.6 C.1 1.249 B.47 C.1 1.290 B.88 C.1

1.209 B.7 C.1 1.250 B.48 C.1 1.291 B.89 C.1

1.210 B.8 C.1 1.251 B.49 C.1 1.292 B.90 C.1

1.211 B.9 C.1 1.252 B.50 C.1 1.293 B.91 C.1

1.212 B.10 C.1 1.253 B.51 C.1 1.294 B.92 C.1

1.213 B.11 C.1 1.254 B.52 C.1 1.295 B.93 C.1

1.214 B.12 C.1 1.255 B.53 C.1 1.296 B.94 C.1

1.215 B.13 C.1 1.256 B.54 C.1 1.297 B.95 C.1 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.298 B.96 C.1 1.339 B.137 C.1 1.380 B.178 C.1

1.299 B.97 C.1 1.340 B.138 C.1 1.381 B.179 C.1

1.300 B.98 C.1 1.341 B.139 C.1 1.382 B.180 C.1

1.301 B.99 C.1 1.342 B.140 C.1 1.383 B.181 C.1

1.302 B.100 C.1 1.343 B.141 C.1 1.384 B.182 C.1

1.303 B.101 C.1 1.344 B.142 C.1 1.385 B.183 C.1

1.304 B.102 C.1 1.345 B.143 C.1 1.386 B.184 C.1

1.305 B.103 C.1 1.346 B.144 C.1 1.387 B.185 C.1

1.306 B.104 C.1 1.347 B.145 C.1 1.388 B.186 C.1

1.307 B.105 C.1 1.348 B.146 C.1 1.389 B.187 C.1

1.308 B.106 C.1 1.349 B.147 C.1 1.390 B.188 C.1

1.309 B.107 C.1 1.350 B.148 C.1 1.391 B.189 C.1

1.310 B.108 C.1 1.351 B.149 C.1 1.392 B.190 C.1

1.311 B.109 C.1 1.352 B.150 C.1 1.393 B.191 C.1

1.312 B.110 C.1 1.353 B.151 C.1 1.394 B.192 C.1

1.313 B.111 C.1 1.354 B.152 C.1 1.395 B.193 C.1

1.314 B.112 C.1 1.355 B.153 C.1 1.396 B.194 C.1

1.315 B.113 C.1 1.356 B.154 C.1 1.397 B.195 C.1

1.316 B.114 C.1 1.357 B.155 C.1 1.398 B.196 C.1

1.317 B.115 C.1 1.358 B.156 C.1 1.399 B.197 C.1

1.318 B.116 C.1 1.359 B.157 C.1 1.400 B.198 C.1

1.319 B.117 C.1 1.360 B.158 C.1 1.401 B.199 C.1

1.320 B.118 C.1 1.361 B.159 C.1 1.402 B.200 C.1

1.321 B.119 C.1 1.362 B.160 C.1 1.403 B.201 C.1

1.322 B.120 C.1 1.363 B.161 C.1 1.404 B.202 C.1

1.323 B.121 C.1 1.364 B.162 C.1 1.405 B.1 C.2

1.324 B.122 C.1 1.365 B.163 C.1 1.406 B.2 C.2

1.325 B.123 C.1 1.366 B.164 C.1 1.407 B.3 C.2

1.326 B.124 C.1 1.367 B.165 C.1 1.408 B.4 C.2

1.327 B.125 C.1 1.368 B.166 C.1 1.409 B.5 C.2

1.328 B.126 C.1 1.369 B.167 C.1 1.410 B.6 C.2

1.329 B.127 C.1 1.370 B.168 C.1 1.411 B.7 C.2

1.330 B.128 C.1 1.371 B.169 C.1 1.412 B.8 C.2

1.331 B.129 C.1 1.372 B.170 C.1 1.413 B.9 C.2

1.332 B.130 C.1 1.373 B.171 C.1 1.414 B.10 C.2

1.333 B.131 C.1 1.374 B.172 C.1 1.415 B.11 C.2

1.334 B.132 C.1 1.375 B.173 C.1 1.416 B.12 C.2

1.335 B.133 C.1 1.376 B.174 C.1 1.417 B.13 C.2

1.336 B.134 C.1 1.377 B.175 C.1 1.418 B.14 C.2

1.337 B.135 C.1 1.378 B.176 C.1 1.419 B.15 C.2

1.338 B.136 C.1 1.379 B.177 C.1 1.420 B.16 C.2 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.421 B.17 C.2 1.462 B.58 C.2 1.503 B.99 C.2

1.422 B.18 C.2 1.463 B.59 C.2 1.504 B.100 C.2

1.423 B.19 C.2 1.464 B.60 C.2 1.505 B.101 C.2

1.424 B.20 C.2 1.465 B.61 C.2 1.506 B.102 C.2

1.425 B.21 C.2 1.466 B.62 C.2 1.507 B.103 C.2

1.426 B.22 C.2 1.467 B.63 C.2 1.508 B.104 C.2

1.427 B.23 C.2 1.468 B.64 C.2 1.509 B.105 C.2

1.428 B.24 C.2 1.469 B.65 C.2 1.510 B.106 C.2

1.429 B.25 C.2 1.470 B.66 C.2 1.511 B.107 C.2

1.430 B.26 C.2 1.471 B.67 C.2 1.512 B.108 C.2

1.431 B.27 C.2 1.472 B.68 C.2 1.513 B.109 C.2

1.432 B.28 C.2 1.473 B.69 C.2 1.514 B.110 C.2

1.433 B.29 C.2 1.474 B.70 C.2 1.515 B.111 C.2

1.434 B.30 C.2 1.475 B.71 C.2 1.516 B.112 C.2

1.435 B.31 C.2 1.476 B.72 C.2 1.517 B.113 C.2

1.436 B.32 C.2 1.477 B.73 C.2 1.518 B.114 C.2

1.437 B.33 C.2 1.478 B.74 C.2 1.519 B.115 C.2

1.438 B.34 C.2 1.479 B.75 C.2 1.520 B.116 C.2

1.439 B.35 C.2 1.480 B.76 C.2 1.521 B.117 C.2

1.440 B.36 C.2 1.481 B.77 C.2 1.522 B.118 C.2

1.441 B.37 C.2 1.482 B.78 C.2 1.523 B.119 C.2

1.442 B.38 C.2 1.483 B.79 C.2 1.524 B.120 C.2

1.443 B.39 C.2 1.484 B.80 C.2 1.525 B.121 C.2

1.444 B.40 C.2 1.485 B.81 C.2 1.526 B.122 C.2

1.445 B.41 C.2 1.486 B.82 C.2 1.527 B.123 C.2

1.446 B.42 C.2 1.487 B.83 C.2 1.528 B.124 C.2

1.447 B.43 C.2 1.488 B.84 C.2 1.529 B.125 C.2

1.448 B.44 C.2 1.489 B.85 C.2 1.530 B.126 C.2

1.449 B.45 C.2 1.490 B.86 C.2 1.531 B.127 C.2

1.450 B.46 C.2 1.491 B.87 C.2 1.532 B.128 C.2

1.451 B.47 C.2 1.492 B.88 C.2 1.533 B.129 C.2

1.452 B.48 C.2 1.493 B.89 C.2 1.534 B.130 C.2

1.453 B.49 C.2 1.494 B.90 C.2 1.535 B.131 C.2

1.454 B.50 C.2 1.495 B.91 C.2 1.536 B.132 C.2

1.455 B.51 C.2 1.496 B.92 C.2 1.537 B.133 C.2

1.456 B.52 C.2 1.497 B.93 C.2 1.538 B.134 C.2

1.457 B.53 C.2 1.498 B.94 C.2 1.539 B.135 C.2

1.458 B.54 C.2 1.499 B.95 C.2 1.540 B.136 C.2

1.459 B.55 C.2 1.500 B.96 C.2 1.541 B.137 C.2

1.460 B.56 C.2 1.501 B.97 C.2 1.542 B.138 C.2

1.461 B.57 C.2 1.502 B.98 C.2 1.543 B.139 C.2 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.544 B.140 C.2 1.585 B.181 C.2 1.626 B.20 C.3

1.545 B.141 C.2 1.586 B.182 C.2 1.627 B.21 C.3

1.546 B.142 C.2 1.587 B.183 C.2 1.628 B.22 C.3

1.547 B.143 C.2 1.588 B.184 C.2 1.629 B.23 C.3

1.548 B.144 C.2 1.589 B.185 C.2 1.630 B.24 C.3

1.549 B.145 C.2 1.590 B.186 C.2 1.631 B.25 C.3

1.550 B.146 C.2 1.591 B.187 C.2 1.632 B.26 C.3

1.551 B.147 C.2 1.592 B.188 C.2 1.633 B.27 C.3

1.552 B.148 C.2 1.593 B.189 C.2 1.634 B.28 C.3

1.553 B.149 C.2 1.594 B.190 C.2 1.635 B.29 C.3

1.554 B.150 C.2 1.595 B.191 C.2 1.636 B.30 C.3

1.555 B.151 C.2 1.596 B.192 C.2 1.637 B.31 C.3

1.556 B.152 C.2 1.597 B.193 C.2 1.638 B.32 C.3

1.557 B.153 C.2 1.598 B.194 C.2 1.639 B.33 C.3

1.558 B.154 C.2 1.599 B.195 C.2 1.640 B.34 C.3

1.559 B.155 C.2 1.600 B.196 C.2 1.641 B.35 C.3

1.560 B.156 C.2 1.601 B.197 C.2 1.642 B.36 C.3

1.561 B.157 C.2 1.602 B.198 C.2 1.643 B.37 C.3

1.562 B.158 C.2 1.603 B.199 C.2 1.644 B.38 C.3

1.563 B.159 C.2 1.604 B.200 C.2 1.645 B.39 C.3

1.564 B.160 C.2 1.605 B.201 C.2 1.646 B.40 C.3

1.565 B.161 C.2 1.606 B.202 C.2 1.647 B.41 C.3

1.566 B.162 C.2 1.607 B.1 C.3 1.648 B.42 C.3

1.567 B.163 C.2 1.608 B.2 C.3 1.649 B.43 C.3

1.568 B.164 C.2 1.609 B.3 C.3 1.650 B.44 C.3

1.569 B.165 C.2 1.610 B.4 C.3 1.651 B.45 C.3

1.570 B.166 C.2 1.611 B.5 C.3 1.652 B.46 C.3

1.571 B.167 C.2 1.612 B.6 C.3 1.653 B.47 C.3

1.572 B.168 C.2 1.613 B.7 C.3 1.654 B.48 C.3

1.573 B.169 C.2 1.614 B.8 C.3 1.655 B.49 C.3

1.574 B.170 C.2 1.615 B.9 C.3 1.656 B.50 C.3

1.575 B.171 C.2 1.616 B.10 C.3 1.657 B.51 C.3

1.576 B.172 C.2 1.617 B.11 C.3 1.658 B.52 C.3

1.577 B.173 C.2 1.618 B.12 C.3 1.659 B.53 C.3

1.578 B.174 C.2 1.619 B.13 C.3 1.660 B.54 C.3

1.579 B.175 C.2 1.620 B.14 C.3 1.661 B.55 C.3

1.580 B.176 C.2 1.621 B.15 C.3 1.662 B.56 C.3

1.581 B.177 C.2 1.622 B.16 C.3 1.663 B.57 C.3

1.582 B.178 C.2 1.623 B.17 C.3 1.664 B.58 C.3

1.583 B.179 C.2 1.624 B.18 C.3 1.665 B.59 C.3

1.584 B.180 C.2 1.625 B.19 C.3 1.666 B.60 C.3 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.667 B.61 C.3 1.708 B.102 C.3 1.749 B.143 C.3

1.668 B.62 C.3 1.709 B.103 C.3 1.750 B.144 C.3

1.669 B.63 C.3 1.710 B.104 C.3 1.751 B.145 C.3

1.670 B.64 C.3 1.711 B.105 C.3 1.752 B.146 C.3

1.671 B.65 C.3 1.712 B.106 C.3 1.753 B.147 C.3

1.672 B.66 C.3 1.713 B.107 C.3 1.754 B.148 C.3

1.673 B.67 C.3 1.714 B.108 C.3 1.755 B.149 C.3

1.674 B.68 C.3 1.715 B.109 C.3 1.756 B.150 C.3

1.675 B.69 C.3 1.716 B.110 C.3 1.757 B.151 C.3

1.676 B.70 C.3 1.717 B.111 C.3 1.758 B.152 C.3

1.677 B.71 C.3 1.718 B.112 C.3 1.759 B.153 C.3

1.678 B.72 C.3 1.719 B.113 C.3 1.760 B.154 C.3

1.679 B.73 C.3 1.720 B.114 C.3 1.761 B.155 C.3

1.680 B.74 C.3 1.721 B.115 C.3 1.762 B.156 C.3

1.681 B.75 C.3 1.722 B.116 C.3 1.763 B.157 C.3

1.682 B.76 C.3 1.723 B.117 C.3 1.764 B.158 C.3

1.683 B.77 C.3 1.724 B.118 C.3 1.765 B.159 C.3

1.684 B.78 C.3 1.725 B.119 C.3 1.766 B.160 C.3

1.685 B.79 C.3 1.726 B.120 C.3 1.767 B.161 C.3

1.686 B.80 C.3 1.727 B.121 C.3 1.768 B.162 C.3

1.687 B.81 C.3 1.728 B.122 C.3 1.769 B.163 C.3

1.688 B.82 C.3 1.729 B.123 C.3 1.770 B.164 C.3

1.689 B.83 C.3 1.730 B.124 C.3 1.771 B.165 C.3

1.690 B.84 C.3 1.731 B.125 C.3 1.772 B.166 C.3

1.691 B.85 C.3 1.732 B.126 C.3 1.773 B.167 C.3

1.692 B.86 C.3 1.733 B.127 C.3 1.774 B.168 C.3

1.693 B.87 C.3 1.734 B.128 C.3 1.775 B.169 C.3

1.694 B.88 C.3 1.735 B.129 C.3 1.776 B.170 C.3

1.695 B.89 C.3 1.736 B.130 C.3 1.777 B.171 C.3

1.696 B.90 C.3 1.737 B.131 C.3 1.778 B.172 C.3

1.697 B.91 C.3 1.738 B.132 C.3 1.779 B.173 C.3

1.698 B.92 C.3 1.739 B.133 C.3 1.780 B.174 C.3

1.699 B.93 C.3 1.740 B.134 C.3 1.781 B.175 C.3

1.700 B.94 C.3 1.741 B.135 C.3 1.782 B.176 C.3

1.701 B.95 C.3 1.742 B.136 C.3 1.783 B.177 C.3

1.702 B.96 C.3 1.743 B.137 C.3 1.784 B.178 C.3

1.703 B.97 C.3 1.744 B.138 C.3 1.785 B.179 C.3

1.704 B.98 C.3 1.745 B.139 C.3 1.786 B.180 C.3

1.705 B.99 C.3 1.746 B.140 C.3 1.787 B.181 C.3

1.706 B.100 C.3 1.747 B.141 C.3 1.788 B.182 C.3

1.707 B.101 C.3 1.748 B.142 C.3 1.789 B.183 C.3 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.790 B.184 C.3 1.831 B.23 C.4 1.872 B.64 C.4

1.791 B.185 C.3 1.832 B.24 C.4 1.873 B.65 C.4

1.792 B.186 C.3 1.833 B.25 C.4 1.874 B.66 C.4

1.793 B.187 C.3 1.834 B.26 C.4 1.875 B.67 C.4

1.794 B.188 C.3 1.835 B.27 C.4 1.876 B.68 C.4

1.795 B.189 C.3 1.836 B.28 C.4 1.877 B.69 C.4

1.796 B.190 C.3 1.837 B.29 C.4 1.878 B.70 C.4

1.797 B.191 C.3 1.838 B.30 C.4 1.879 B.71 C.4

1.798 B.192 C.3 1.839 B.31 C.4 1.880 B.72 C.4

1.799 B.193 C.3 1.840 B.32 C.4 1.881 B.73 C.4

1.800 B.194 C.3 1.841 B.33 C.4 1.882 B.74 C.4

1.801 B.195 C.3 1.842 B.34 C.4 1.883 B.75 C.4

1.802 B.196 C.3 1.843 B.35 C.4 1.884 B.76 C.4

1.803 B.197 C.3 1.844 B.36 C.4 1.885 B.77 C.4

1.804 B.198 C.3 1.845 B.37 C.4 1.886 B.78 C.4

1.805 B.199 C.3 1.846 B.38 C.4 1.887 B.79 C.4

1.806 B.200 C.3 1.847 B.39 C.4 1.888 B.80 C.4

1.807 B.201 C.3 1.848 B.40 C.4 1.889 B.81 C.4

1.808 B.202 C.3 1.849 B.41 C.4 1.890 B.82 C.4

1.809 B.1 C.4 1.850 B.42 C.4 1.891 B.83 C.4

1.810 B.2 C.4 1.851 B.43 C.4 1.892 B.84 C.4

1.811 B.3 C.4 1.852 B.44 C.4 1.893 B.85 C.4

1.812 B.4 C.4 1.853 B.45 C.4 1.894 B.86 C.4

1.813 B.5 C.4 1.854 B.46 C.4 1.895 B.87 C.4

1.814 B.6 C.4 1.855 B.47 C.4 1.896 B.88 C.4

1.815 B.7 C.4 1.856 B.48 C.4 1.897 B.89 C.4

1.816 B.8 C.4 1.857 B.49 C.4 1.898 B.90 C.4

1.817 B.9 C.4 1.858 B.50 C.4 1.899 B.91 C.4

1.818 B.10 C.4 1.859 B.51 C.4 1.900 B.92 C.4

1.819 B.11 C.4 1.860 B.52 C.4 1.901 B.93 C.4

1.820 B.12 C.4 1.861 B.53 C.4 1.902 B.94 C.4

1.821 B.13 C.4 1.862 B.54 C.4 1.903 B.95 C.4

1.822 B.14 C.4 1.863 B.55 C.4 1.904 B.96 C.4

1.823 B.15 C.4 1.864 B.56 C.4 1.905 B.97 C.4

1.824 B.16 C.4 1.865 B.57 C.4 1.906 B.98 C.4

1.825 B.17 C.4 1.866 B.58 C.4 1.907 B.99 C.4

1.826 B.18 C.4 1.867 B.59 C.4 1.908 B.100 C.4

1.827 B.19 C.4 1.868 B.60 C.4 1.909 B.101 C.4

1.828 B.20 C.4 1.869 B.61 C.4 1.910 B.102 C.4

1.829 B.21 C.4 1.870 B.62 C.4 1.911 B.103 C.4

1.830 B.22 C.4 1.871 B.63 C.4 1.912 B.104 C.4 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.913 B.105 C.4 1.954 B.146 C.4 1.995 B.187 C.4

1.914 B.106 C.4 1.955 B.147 C.4 1.996 B.188 C.4

1.915 B.107 C.4 1.956 B.148 C.4 1.997 B.189 C.4

1.916 B.108 C.4 1.957 B.149 C.4 1.998 B.190 C.4

1.917 B.109 C.4 1.958 B.150 C.4 1.999 B.191 C.4

1.918 B.110 C.4 1.959 B.151 C.4 1.1000 B.192 C.4

1.919 B.111 C.4 1.960 B.152 C.4 1.1001 B.193 C.4

1.920 B.112 C.4 1.961 B.153 C.4 1.1002 B.194 C.4

1.921 B.113 C.4 1.962 B.154 C.4 1.1003 B.195 C.4

1.922 B.114 C.4 1.963 B.155 C.4 1.1004 B.196 C.4

1.923 B.115 C.4 1.964 B.156 C.4 1.1005 B.197 C.4

1.924 B.116 C.4 1.965 B.157 C.4 1.1006 B.198 C.4

1.925 B.117 C.4 1.966 B.158 C.4 1.1007 B.199 C.4

1.926 B.118 C.4 1.967 B.159 C.4 1.1008 B.200 C.4

1.927 B.119 C.4 1.968 B.160 C.4 1.1009 B.201 C.4

1.928 B.120 C.4 1.969 B.161 C.4 1.1010 B.202 C.4

1.929 B.121 C.4 1.970 B.162 C.4 1.1011 B.1 C.5

1.930 B.122 C.4 1.971 B.163 C.4 1.1012 B.2 C.5

1.931 B.123 C.4 1.972 B.164 C.4 1.1013 B.3 C.5

1.932 B.124 C.4 1.973 B.165 C.4 1.1014 B.4 C.5

1.933 B.125 C.4 1.974 B.166 C.4 1.1015 B.5 C.5

1.934 B.126 C.4 1.975 B.167 C.4 1.1016 B.6 C.5

1.935 B.127 C.4 1.976 B.168 C.4 1.1017 B.7 C.5

1.936 B.128 C.4 1.977 B.169 C.4 1.1018 B.8 C.5

1.937 B.129 C.4 1.978 B.170 C.4 1.1019 B.9 C.5

1.938 B.130 C.4 1.979 B.171 C.4 1.1020 B.10 C.5

1.939 B.131 C.4 1.980 B.172 C.4 1.1021 B.11 C.5

1.940 B.132 C.4 1.981 B.173 C.4 1.1022 B.12 C.5

1.941 B.133 C.4 1.982 B.174 C.4 1.1023 B.13 C.5

1.942 B.134 C.4 1.983 B.175 C.4 1.1024 B.14 C.5

1.943 B.135 C.4 1.984 B.176 C.4 1.1025 B.15 C.5

1.944 B.136 C.4 1.985 B.177 C.4 1.1026 B.16 C.5

1.945 B.137 C.4 1.986 B.178 C.4 1.1027 B.17 C.5

1.946 B.138 C.4 1.987 B.179 C.4 1.1028 B.18 C.5

1.947 B.139 C.4 1.988 B.180 C.4 1.1029 B.19 C.5

1.948 B.140 C.4 1.989 B.181 C.4 1.1030 B.20 C.5

1.949 B.141 C.4 1.990 B.182 C.4 1.1031 B.21 C.5

1.950 B.142 C.4 1.991 B.183 C.4 1.1032 B.22 C.5

1.951 B.143 C.4 1.992 B.184 C.4 1.1033 B.23 C.5

1.952 B.144 C.4 1.993 B.185 C.4 1.1034 B.24 C.5

1.953 B.145 C.4 1.994 B.186 C.4 1.1035 B.25 C.5 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.1036 B.26 C.5 1.1077 B.67 C.5 1.1118 B.108 C.5

1.1037 B.27 C.5 1.1078 B.68 C.5 1.1119 B.109 C.5

1.1038 B.28 C.5 1.1079 B.69 C.5 1.1120 B.110 C.5

1.1039 B.29 C.5 1.1080 B.70 C.5 1.1121 B.111 C.5

1.1040 B.30 C.5 1.1081 B.71 C.5 1.1122 B.112 C.5

1.1041 B.31 C.5 1.1082 B.72 C.5 1.1123 B.113 C.5

1.1042 B.32 C.5 1.1083 B.73 C.5 1.1124 B.114 C.5

1.1043 B.33 C.5 1.1084 B.74 C.5 1.1125 B.115 C.5

1.1044 B.34 C.5 1.1085 B.75 C.5 1.1126 B.116 C.5

1.1045 B.35 C.5 1.1086 B.76 C.5 1.1127 B.117 C.5

1.1046 B.36 C.5 1.1087 B.77 C.5 1.1128 B.118 C.5

1.1047 B.37 C.5 1.1088 B.78 C.5 1.1129 B.119 C.5

1.1048 B.38 C.5 1.1089 B.79 C.5 1.1130 B.120 C.5

1.1049 B.39 C.5 1.1090 B.80 C.5 1.1131 B.121 C.5

1.1050 B.40 C.5 1.1091 B.81 C.5 1.1132 B.122 C.5

1.1051 B.41 C.5 1.1092 B.82 C.5 1.1133 B.123 C.5

1.1052 B.42 C.5 1.1093 B.83 C.5 1.1134 B.124 C.5

1.1053 B.43 C.5 1.1094 B.84 C.5 1.1135 B.125 C.5

1.1054 B.44 C.5 1.1095 B.85 C.5 1.1136 B.126 C.5

1.1055 B.45 C.5 1.1096 B.86 C.5 1.1137 B.127 C.5

1.1056 B.46 C.5 1.1097 B.87 C.5 1.1138 B.128 C.5

1.1057 B.47 C.5 1.1098 B.88 C.5 1.1139 B.129 C.5

1.1058 B.48 C.5 1.1099 B.89 C.5 1.1140 B.130 C.5

1.1059 B.49 C.5 1.1100 B.90 C.5 1.1141 B.131 C.5

1.1060 B.50 C.5 1.1101 B.91 C.5 1.1142 B.132 C.5

1.1061 B.51 C.5 1.1102 B.92 C.5 1.1143 B.133 C.5

1.1062 B.52 C.5 1.1103 B.93 C.5 1.1144 B.134 C.5

1.1063 B.53 C.5 1.1104 B.94 C.5 1.1145 B.135 C.5

1.1064 B.54 C.5 1.1105 B.95 C.5 1.1146 B.136 C.5

1.1065 B.55 C.5 1.1106 B.96 C.5 1.1147 B.137 C.5

1.1066 B.56 C.5 1.1107 B.97 C.5 1.1148 B.138 C.5

1.1067 B.57 C.5 1.1108 B.98 C.5 1.1149 B.139 C.5

1.1068 B.58 C.5 1.1109 B.99 C.5 1.1150 B.140 C.5

1.1069 B.59 C.5 1.1110 B.100 C.5 1.1151 B.141 C.5

1.1070 B.60 C.5 1.1111 B.101 C.5 1.1152 B.142 C.5

1.1071 B.61 C.5 1.1112 B.102 C.5 1.1153 B.143 C.5

1.1072 B.62 C.5 1.1113 B.103 C.5 1.1154 B.144 C.5

1.1073 B.63 C.5 1.1114 B.104 C.5 1.1155 B.145 C.5

1.1074 B.64 C.5 1.1115 B.105 C.5 1.1156 B.146 C.5

1.1075 B.65 C.5 1.1116 B.106 C.5 1.1157 B.147 C.5

1.1076 B.66 C.5 1.1117 B.107 C.5 1.1158 B.148 C.5 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.1159 B.149 C.5 1.1200 B.190 C.5 1.1241 B.29 C.6

1.1160 B.150 C.5 1.1201 B.191 C.5 1.1242 B.30 C.6

1.1161 B.151 C.5 1.1202 B.192 C.5 1.1243 B.31 C.6

1.1162 B.152 C.5 1.1203 B.193 C.5 1.1244 B.32 C.6

1.1163 B.153 C.5 1.1204 B.194 C.5 1.1245 B.33 C.6

1.1164 B.154 C.5 1.1205 B.195 C.5 1.1246 B.34 C.6

1.1165 B.155 C.5 1.1206 B.196 C.5 1.1247 B.35 C.6

1.1166 B.156 C.5 1.1207 B.197 C.5 1.1248 B.36 C.6

1.1167 B.157 C.5 1.1208 B.198 C.5 1.1249 B.37 C.6

1.1168 B.158 C.5 1.1209 B.199 C.5 1.1250 B.38 C.6

1.1169 B.159 C.5 1.1210 B.200 C.5 1.1251 B.39 C.6

1.1170 B.160 C.5 1.1211 B.201 C.5 1.1252 B.40 C.6

1.1171 B.161 C.5 1.1212 B.202 C.5 1.1253 B.41 C.6

1.1172 B.162 C.5 1.1213 B.1 C.6 1.1254 B.42 C.6

1.1173 B.163 C.5 1.1214 B.2 C.6 1.1255 B.43 C.6

1.1174 B.164 C.5 1.1215 B.3 C.6 1.1256 B.44 C.6

1.1175 B.165 C.5 1.1216 B.4 C.6 1.1257 B.45 C.6

1.1176 B.166 C.5 1.1217 B.5 C.6 1.1258 B.46 C.6

1.1177 B.167 C.5 1.1218 B.6 C.6 1.1259 B.47 C.6

1.1178 B.168 C.5 1.1219 B.7 C.6 1.1260 B.48 C.6

1.1179 B.169 C.5 1.1220 B.8 C.6 1.1261 B.49 C.6

1.1180 B.170 C.5 1.1221 B.9 C.6 1.1262 B.50 C.6

1.1181 B.171 C.5 1.1222 B.10 C.6 1.1263 B.51 C.6

1.1182 B.172 C.5 1.1223 B.11 C.6 1.1264 B.52 C.6

1.1183 B.173 C.5 1.1224 B.12 C.6 1.1265 B.53 C.6

1.1184 B.174 C.5 1.1225 B.13 C.6 1.1266 B.54 C.6

1.1185 B.175 C.5 1.1226 B.14 C.6 1.1267 B.55 C.6

1.1186 B.176 C.5 1.1227 B.15 C.6 1.1268 B.56 C.6

1.1187 B.177 C.5 1.1228 B.16 C.6 1.1269 B.57 C.6

1.1188 B.178 C.5 1.1229 B.17 C.6 1.1270 B.58 C.6

1.1189 B.179 C.5 1.1230 B.18 C.6 1.1271 B.59 C.6

1.1190 B.180 C.5 1.1231 B.19 C.6 1.1272 B.60 C.6

1.1191 B.181 C.5 1.1232 B.20 C.6 1.1273 B.61 C.6

1.1192 B.182 C.5 1.1233 B.21 C.6 1.1274 B.62 C.6

1.1193 B.183 C.5 1.1234 B.22 C.6 1.1275 B.63 C.6

1.1194 B.184 C.5 1.1235 B.23 C.6 1.1276 B.64 C.6

1.1195 B.185 C.5 1.1236 B.24 C.6 1.1277 B.65 C.6

1.1196 B.186 C.5 1.1237 B.25 C.6 1.1278 B.66 C.6

1.1197 B.187 C.5 1.1238 B.26 C.6 1.1279 B.67 C.6

1.1198 B.188 C.5 1.1239 B.27 C.6 1.1280 B.68 C.6

1.1199 B.189 C.5 1.1240 B.28 C.6 1.1281 B.69 C.6 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.1282 B.70 C.6 1.1323 B.111 C.6 1.1364 B.152 C.6

1.1283 B.71 C.6 1.1324 B.112 C.6 1.1365 B.153 C.6

1.1284 B.72 C.6 1.1325 B.113 C.6 1.1366 B.154 C.6

1.1285 B.73 C.6 1.1326 B.114 C.6 1.1367 B.155 C.6

1.1286 B.74 C.6 1.1327 B.115 C.6 1.1368 B.156 C.6

1.1287 B.75 C.6 1.1328 B.116 C.6 1.1369 B.157 C.6

1.1288 B.76 C.6 1.1329 B.117 C.6 1.1370 B.158 C.6

1.1289 B.77 C.6 1.1330 B.118 C.6 1.1371 B.159 C.6

1.1290 B.78 C.6 1.1331 B.119 C.6 1.1372 B.160 C.6

1.1291 B.79 C.6 1.1332 B.120 C.6 1.1373 B.161 C.6

1.1292 B.80 C.6 1.1333 B.121 C.6 1.1374 B.162 C.6

1.1293 B.81 C.6 1.1334 B.122 C.6 1.1375 B.163 C.6

1.1294 B.82 C.6 1.1335 B.123 C.6 1.1376 B.164 C.6

1.1295 B.83 C.6 1.1336 B.124 C.6 1.1377 B.165 C.6

1.1296 B.84 C.6 1.1337 B.125 C.6 1.1378 B.166 C.6

1.1297 B.85 C.6 1.1338 B.126 C.6 1.1379 B.167 C.6

1.1298 B.86 C.6 1.1339 B.127 C.6 1.1380 B.168 C.6

1.1299 B.87 C.6 1.1340 B.128 C.6 1.1381 B.169 C.6

1.1300 B.88 C.6 1.1341 B.129 C.6 1.1382 B.170 C.6

1.1301 B.89 C.6 1.1342 B.130 C.6 1.1383 B.171 C.6

1.1302 B.90 C.6 1.1343 B.131 C.6 1.1384 B.172 C.6

1.1303 B.91 C.6 1.1344 B.132 C.6 1.1385 B.173 C.6

1.1304 B.92 C.6 1.1345 B.133 C.6 1.1386 B.174 C.6

1.1305 B.93 C.6 1.1346 B.134 C.6 1.1387 B.175 C.6

1.1306 B.94 C.6 1.1347 B.135 C.6 1.1388 B.176 C.6

1.1307 B.95 C.6 1.1348 B.136 C.6 1.1389 B.177 C.6

1.1308 B.96 C.6 1.1349 B.137 C.6 1.1390 B.178 C.6

1.1309 B.97 C.6 1.1350 B.138 C.6 1.1391 B.179 C.6

1.1310 B.98 C.6 1.1351 B.139 C.6 1.1392 B.180 C.6

1.1311 B.99 C.6 1.1352 B.140 C.6 1.1393 B.181 C.6

1.1312 B.100 C.6 1.1353 B.141 C.6 1.1394 B.182 C.6

1.1313 B.101 C.6 1.1354 B.142 C.6 1.1395 B.183 C.6

1.1314 B.102 C.6 1.1355 B.143 C.6 1.1396 B.184 C.6

1.1315 B.103 C.6 1.1356 B.144 C.6 1.1397 B.185 C.6

1.1316 B.104 C.6 1.1357 B.145 C.6 1.1398 B.186 C.6

1.1317 B.105 C.6 1.1358 B.146 C.6 1.1399 B.187 C.6

1.1318 B.106 C.6 1.1359 B.147 C.6 1.1400 B.188 C.6

1.1319 B.107 C.6 1.1360 B.148 C.6 1.1401 B.189 C.6

1.1320 B.108 C.6 1.1361 B.149 C.6 1.1402 B.190 C.6

1.1321 B.109 C.6 1.1362 B.150 C.6 1.1403 B.191 C.6

1.1322 B.110 C.6 1.1363 B.151 C.6 1.1404 B.192 C.6 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.1405 B.193 C.6 1.1446 B.32 C.7 1.1487 B.73 C.7

1.1406 B.194 C.6 1.1447 B.33 C.7 1.1488 B.74 C.7

1.1407 B.195 C.6 1.1448 B.34 C.7 1.1489 B.75 C.7

1.1408 B.196 C.6 1.1449 B.35 C.7 1.1490 B.76 C.7

1.1409 B.197 C.6 1.1450 B.36 C.7 1.1491 B.77 C.7

1.1410 B.198 C.6 1.1451 B.37 C.7 1.1492 B.78 C.7

1.1411 B.199 C.6 1.1452 B.38 C.7 1.1493 B.79 C.7

1.1412 B.200 C.6 1.1453 B.39 C.7 1.1494 B.80 C.7

1.1413 B.201 C.6 1.1454 B.40 C.7 1.1495 B.81 C.7

1.1414 B.202 C.6 1.1455 B.41 C.7 1.1496 B.82 C.7

1.1415 B.1 C.7 1.1456 B.42 C.7 1.1497 B.83 C.7

1.1416 B.2 C.7 1.1457 B.43 C.7 1.1498 B.84 C.7

1.1417 B.3 C.7 1.1458 B.44 C.7 1.1499 B.85 C.7

1.1418 B.4 C.7 1.1459 B.45 C.7 1.1500 B.86 C.7

1.1419 B.5 C.7 1.1460 B.46 C.7 1.1501 B.87 C.7

1.1420 B.6 C.7 1.1461 B.47 C.7 1.1502 B.88 C.7

1.1421 B.7 C.7 1.1462 B.48 C.7 1.1503 B.89 C.7

1.1422 B.8 C.7 1.1463 B.49 C.7 1.1504 B.90 C.7

1.1423 B.9 C.7 1.1464 B.50 C.7 1.1505 B.91 C.7

1.1424 B.10 C.7 1.1465 B.51 C.7 1.1506 B.92 C.7

1.1425 B.11 C.7 1.1466 B.52 C.7 1.1507 B.93 C.7

1.1426 B.12 C.7 1.1467 B.53 C.7 1.1508 B.94 C.7

1.1427 B.13 C.7 1.1468 B.54 C.7 1.1509 B.95 C.7

1.1428 B.14 C.7 1.1469 B.55 C.7 1.1510 B.96 C.7

1.1429 B.15 C.7 1.1470 B.56 C.7 1.1511 B.97 C.7

1.1430 B.16 C.7 1.1471 B.57 C.7 1.1512 B.98 C.7

1.1431 B.17 C.7 1.1472 B.58 C.7 1.1513 B.99 C.7

1.1432 B.18 C.7 1.1473 B.59 C.7 1.1514 B.100 C.7

1.1433 B.19 C.7 1.1474 B.60 C.7 1.1515 B.101 C.7

1.1434 B.20 C.7 1.1475 B.61 C.7 1.1516 B.102 C.7

1.1435 B.21 C.7 1.1476 B.62 C.7 1.1517 B.103 C.7

1.1436 B.22 C.7 1.1477 B.63 C.7 1.1518 B.104 C.7

1.1437 B.23 C.7 1.1478 B.64 C.7 1.1519 B.105 C.7

1.1438 B.24 C.7 1.1479 B.65 C.7 1.1520 B.106 C.7

1.1439 B.25 C.7 1.1480 B.66 C.7 1.1521 B.107 C.7

1.1440 B.26 C.7 1.1481 B.67 C.7 1.1522 B.108 C.7

1.1441 B.27 C.7 1.1482 B.68 C.7 1.1523 B.109 C.7

1.1442 B.28 C.7 1.1483 B.69 C.7 1.1524 B.110 C.7

1.1443 B.29 C.7 1.1484 B.70 C.7 1.1525 B.111 C.7

1.1444 B.30 C.7 1.1485 B.71 C.7 1.1526 B.112 C.7

1.1445 B.31 C.7 1.1486 B.72 C.7 1.1527 B.113 C.7 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.1528 B.114 C.7 1.1569 B.155 C.7 1.1610 B.196 C.7

1.1529 B.115 C.7 1.1570 B.156 C.7 1.1611 B.197 C.7

1.1530 B.116 C.7 1.1571 B.157 C.7 1.1612 B.198 C.7

1.1531 B.117 C.7 1.1572 B.158 C.7 1.1613 B.199 C.7

1.1532 B.118 C.7 1.1573 B.159 C.7 1.1614 B.200 C.7

1.1533 B.119 C.7 1.1574 B.160 C.7 1.1615 B.201 C.7

1.1534 B.120 C.7 1.1575 B.161 C.7 1.1616 B.202 C.7

1.1535 B.121 C.7 1.1576 B.162 C.7 1.1617 B.1 C.8

1.1536 B.122 C.7 1.1577 B.163 C.7 1.1618 B.2 C.8

1.1537 B.123 C.7 1.1578 B.164 C.7 1.1619 B.3 C.8

1.1538 B.124 C.7 1.1579 B.165 C.7 1.1620 B.4 C.8

1.1539 B.125 C.7 1.1580 B.166 C.7 1.1621 B.5 C.8

1.1540 B.126 C.7 1.1581 B.167 C.7 1.1622 B.6 C.8

1.1541 B.127 C.7 1.1582 B.168 C.7 1.1623 B.7 C.8

1.1542 B.128 C.7 1.1583 B.169 C.7 1.1624 B.8 C.8

1.1543 B.129 C.7 1.1584 B.170 C.7 1.1625 B.9 C.8

1.1544 B.130 C.7 1.1585 B.171 C.7 1.1626 B.10 C.8

1.1545 B.131 C.7 1.1586 B.172 C.7 1.1627 B.11 C.8

1.1546 B.132 C.7 1.1587 B.173 C.7 1.1628 B.12 C.8

1.1547 B.133 C.7 1.1588 B.174 C.7 1.1629 B.13 C.8

1.1548 B.134 C.7 1.1589 B.175 C.7 1.1630 B.14 C.8

1.1549 B.135 C.7 1.1590 B.176 C.7 1.1631 B.15 C.8

1.1550 B.136 C.7 1.1591 B.177 C.7 1.1632 B.16 C.8

1.1551 B.137 C.7 1.1592 B.178 C.7 1.1633 B.17 C.8

1.1552 B.138 C.7 1.1593 B.179 C.7 1.1634 B.18 C.8

1.1553 B.139 C.7 1.1594 B.180 C.7 1.1635 B.19 C.8

1.1554 B.140 C.7 1.1595 B.181 C.7 1.1636 B.20 C.8

1.1555 B.141 C.7 1.1596 B.182 C.7 1.1637 B.21 C.8

1.1556 B.142 C.7 1.1597 B.183 C.7 1.1638 B.22 C.8

1.1557 B.143 C.7 1.1598 B.184 C.7 1.1639 B.23 C.8

1.1558 B.144 C.7 1.1599 B.185 C.7 1.1640 B.24 C.8

1.1559 B.145 C.7 1.1600 B.186 C.7 1.1641 B.25 C.8

1.1560 B.146 C.7 1.1601 B.187 C.7 1.1642 B.26 C.8

1.1561 B.147 C.7 1.1602 B.188 C.7 1.1643 B.27 C.8

1.1562 B.148 C.7 1.1603 B.189 C.7 1.1644 B.28 C.8

1.1563 B.149 C.7 1.1604 B.190 C.7 1.1645 B.29 C.8

1.1564 B.150 C.7 1.1605 B.191 C.7 1.1646 B.30 C.8

1.1565 B.151 C.7 1.1606 B.192 C.7 1.1647 B.31 C.8

1.1566 B.152 C.7 1.1607 B.193 C.7 1.1648 B.32 C.8

1.1567 B.153 C.7 1.1608 B.194 C.7 1.1649 B.33 C.8

1.1568 B.154 C.7 1.1609 B.195 C.7 1.1650 B.34 C.8 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.1651 B.35 C.8 1.1692 B.76 C.8 1.1733 B.117 C.8

1.1652 B.36 C.8 1.1693 B.77 C.8 1.1734 B.118 C.8

1.1653 B.37 C.8 1.1694 B.78 C.8 1.1735 B.119 C.8

1.1654 B.38 C.8 1.1695 B.79 C.8 1.1736 B.120 C.8

1.1655 B.39 C.8 1.1696 B.80 C.8 1.1737 B.121 C.8

1.1656 B.40 C.8 1.1697 B.81 C.8 1.1738 B.122 C.8

1.1657 B.41 C.8 1.1698 B.82 C.8 1.1739 B.123 C.8

1.1658 B.42 C.8 1.1699 B.83 C.8 1.1740 B.124 C.8

1.1659 B.43 C.8 1.1700 B.84 C.8 1.1741 B.125 C.8

1.1660 B.44 C.8 1.1701 B.85 C.8 1.1742 B.126 C.8

1.1661 B.45 C.8 1.1702 B.86 C.8 1.1743 B.127 C.8

1.1662 B.46 C.8 1.1703 B.87 C.8 1.1744 B.128 C.8

1.1663 B.47 C.8 1.1704 B.88 C.8 1.1745 B.129 C.8

1.1664 B.48 C.8 1.1705 B.89 C.8 1.1746 B.130 C.8

1.1665 B.49 C.8 1.1706 B.90 C.8 1.1747 B.131 C.8

1.1666 B.50 C.8 1.1707 B.91 C.8 1.1748 B.132 C.8

1.1667 B.51 C.8 1.1708 B.92 C.8 1.1749 B.133 C.8

1.1668 B.52 C.8 1.1709 B.93 C.8 1.1750 B.134 C.8

1.1669 B.53 C.8 1.1710 B.94 C.8 1.1751 B.135 C.8

1.1670 B.54 C.8 1.1711 B.95 C.8 1.1752 B.136 C.8

1.1671 B.55 C.8 1.1712 B.96 C.8 1.1753 B.137 C.8

1.1672 B.56 C.8 1.1713 B.97 C.8 1.1754 B.138 C.8

1.1673 B.57 C.8 1.1714 B.98 C.8 1.1755 B.139 C.8

1.1674 B.58 C.8 1.1715 B.99 C.8 1.1756 B.140 C.8

1.1675 B.59 C.8 1.1716 B.100 C.8 1.1757 B.141 C.8

1.1676 B.60 C.8 1.1717 B.101 C.8 1.1758 B.142 C.8

1.1677 B.61 C.8 1.1718 B.102 C.8 1.1759 B.143 C.8

1.1678 B.62 C.8 1.1719 B.103 C.8 1.1760 B.144 C.8

1.1679 B.63 C.8 1.1720 B.104 C.8 1.1761 B.145 C.8

1.1680 B.64 C.8 1.1721 B.105 C.8 1.1762 B.146 C.8

1.1681 B.65 C.8 1.1722 B.106 C.8 1.1763 B.147 C.8

1.1682 B.66 C.8 1.1723 B.107 C.8 1.1764 B.148 C.8

1.1683 B.67 C.8 1.1724 B.108 C.8 1.1765 B.149 C.8

1.1684 B.68 C.8 1.1725 B.109 C.8 1.1766 B.150 C.8

1.1685 B.69 C.8 1.1726 B.110 C.8 1.1767 B.151 C.8

1.1686 B.70 C.8 1.1727 B.111 C.8 1.1768 B.152 C.8

1.1687 B.71 C.8 1.1728 B.112 C.8 1.1769 B.153 C.8

1.1688 B.72 C.8 1.1729 B.113 C.8 1.1770 B.154 C.8

1.1689 B.73 C.8 1.1730 B.114 C.8 1.1771 B.155 C.8

1.1690 B.74 C.8 1.1731 B.115 C.8 1.1772 B.156 C.8

1.1691 B.75 C.8 1.1732 B.116 C.8 1.1773 B.157 C.8 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.1774 B.158 C.8 1.1815 B.199 C.8 1.1856 B.38 C.9

1.1775 B.159 C.8 1.1816 B.200 C.8 1.1857 B.39 C.9

1.1776 B.160 C.8 1.1817 B.201 C.8 1.1858 B.40 C.9

1.1777 B.161 C.8 1.1818 B.202 C.8 1.1859 B.41 C.9

1.1778 B.162 C.8 1.1819 B.1 C.9 1.1860 B.42 C.9

1.1779 B.163 C.8 1.1820 B.2 C.9 1.1861 B.43 C.9

1.1780 B.164 C.8 1.1821 B.3 C.9 1.1862 B.44 C.9

1.1781 B.165 C.8 1.1822 B.4 C.9 1.1863 B.45 C.9

1.1782 B.166 C.8 1.1823 B.5 C.9 1.1864 B.46 C.9

1.1783 B.167 C.8 1.1824 B.6 C.9 1.1865 B.47 C.9

1.1784 B.168 C.8 1.1825 B.7 C.9 1.1866 B.48 C.9

1.1785 B.169 C.8 1.1826 B.8 C.9 1.1867 B.49 C.9

1.1786 B.170 C.8 1.1827 B.9 C.9 1.1868 B.50 C.9

1.1787 B.171 C.8 1.1828 B.10 C.9 1.1869 B.51 C.9

1.1788 B.172 C.8 1.1829 B.11 C.9 1.1870 B.52 C.9

1.1789 B.173 C.8 1.1830 B.12 C.9 1.1871 B.53 C.9

1.1790 B.174 C.8 1.1831 B.13 C.9 1.1872 B.54 C.9

1.1791 B.175 C.8 1.1832 B.14 C.9 1.1873 B.55 C.9

1.1792 B.176 C.8 1.1833 B.15 C.9 1.1874 B.56 C.9

1.1793 B.177 C.8 1.1834 B.16 C.9 1.1875 B.57 C.9

1.1794 B.178 C.8 1.1835 B.17 C.9 1.1876 B.58 C.9

1.1795 B.179 C.8 1.1836 B.18 C.9 1.1877 B.59 C.9

1.1796 B.180 C.8 1.1837 B.19 C.9 1.1878 B.60 C.9

1.1797 B.181 C.8 1.1838 B.20 C.9 1.1879 B.61 C.9

1.1798 B.182 C.8 1.1839 B.21 C.9 1.1880 B.62 C.9

1.1799 B.183 C.8 1.1840 B.22 C.9 1.1881 B.63 C.9

1.1800 B.184 C.8 1.1841 B.23 C.9 1.1882 B.64 C.9

1.1801 B.185 C.8 1.1842 B.24 C.9 1.1883 B.65 C.9

1.1802 B.186 C.8 1.1843 B.25 C.9 1.1884 B.66 C.9

1.1803 B.187 C.8 1.1844 B.26 C.9 1.1885 B.67 C.9

1.1804 B.188 C.8 1.1845 B.27 C.9 1.1886 B.68 C.9

1.1805 B.189 C.8 1.1846 B.28 C.9 1.1887 B.69 C.9

1.1806 B.190 C.8 1.1847 B.29 C.9 1.1888 B.70 C.9

1.1807 B.191 C.8 1.1848 B.30 C.9 1.1889 B.71 C.9

1.1808 B.192 C.8 1.1849 B.31 C.9 1.1890 B.72 C.9

1.1809 B.193 C.8 1.1850 B.32 C.9 1.1891 B.73 C.9

1.1810 B.194 C.8 1.1851 B.33 C.9 1.1892 B.74 C.9

1.1811 B.195 C.8 1.1852 B.34 C.9 1.1893 B.75 C.9

1.1812 B.196 C.8 1.1853 B.35 C.9 1.1894 B.76 C.9

1.1813 B.197 C.8 1.1854 B.36 C.9 1.1895 B.77 C.9

1.1814 B.198 C.8 1.1855 B.37 C.9 1.1896 B.78 C.9 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.1897 B.79 C.9 1.1938 B.120 C.9 1.1979 B.161 C.9

1.1898 B.80 C.9 1.1939 B.121 C.9 1.1980 B.162 C.9

1.1899 B.81 C.9 1.1940 B.122 C.9 1.1981 B.163 C.9

1.1900 B.82 C.9 1.1941 B.123 C.9 1.1982 B.164 C.9

1.1901 B.83 C.9 1.1942 B.124 C.9 1.1983 B.165 C.9

1.1902 B.84 C.9 1.1943 B.125 C.9 1.1984 B.166 C.9

1.1903 B.85 C.9 1.1944 B.126 C.9 1.1985 B.167 C.9

1.1904 B.86 C.9 1.1945 B.127 C.9 1.1986 B.168 C.9

1.1905 B.87 C.9 1.1946 B.128 C.9 1.1987 B.169 C.9

1.1906 B.88 C.9 1.1947 B.129 C.9 1.1988 B.170 C.9

1.1907 B.89 C.9 1.1948 B.130 C.9 1.1989 B.171 C.9

1.1908 B.90 C.9 1.1949 B.131 C.9 1.1990 B.172 C.9

1.1909 B.91 C.9 1.1950 B.132 C.9 1.1991 B.173 C.9

1.1910 B.92 C.9 1.1951 B.133 C.9 1.1992 B.174 C.9

1.1911 B.93 C.9 1.1952 B.134 C.9 1.1993 B.175 C.9

1.1912 B.94 C.9 1.1953 B.135 C.9 1.1994 B.176 C.9

1.1913 B.95 C.9 1.1954 B.136 C.9 1.1995 B.177 C.9

1.1914 B.96 C.9 1.1955 B.137 C.9 1.1996 B.178 C.9

1.1915 B.97 C.9 1.1956 B.138 C.9 1.1997 B.179 C.9

1.1916 B.98 C.9 1.1957 B.139 C.9 1.1998 B.180 C.9

1.1917 B.99 C.9 1.1958 B.140 C.9 1.1999 B.181 C.9

1.1918 B.100 C.9 1.1959 B.141 C.9 1.2000 B.182 C.9

1.1919 B.101 C.9 1.1960 B.142 C.9 1.2001 B.183 C.9

1.1920 B.102 C.9 1.1961 B.143 C.9 1.2002 B.184 C.9

1.1921 B.103 C.9 1.1962 B.144 C.9 1.2003 B.185 C.9

1.1922 B.104 C.9 1.1963 B.145 C.9 1.2004 B.186 C.9

1.1923 B.105 C.9 1.1964 B.146 C.9 1.2005 B.187 C.9

1.1924 B.106 C.9 1.1965 B.147 C.9 1.2006 B.188 C.9

1.1925 B.107 C.9 1.1966 B.148 C.9 1.2007 B.189 C.9

1.1926 B.108 C.9 1.1967 B.149 C.9 1.2008 B.190 C.9

1.1927 B.109 C.9 1.1968 B.150 C.9 1.2009 B.191 C.9

1.1928 B.110 C.9 1.1969 B.151 C.9 1.2010 B.192 C.9

1.1929 B.111 C.9 1.1970 B.152 C.9 1.2011 B.193 C.9

1.1930 B.112 C.9 1.1971 B.153 C.9 1.2012 B.194 C.9

1.1931 B.113 C.9 1.1972 B.154 C.9 1.2013 B.195 C.9

1.1932 B.114 C.9 1.1973 B.155 C.9 1.2014 B.196 C.9

1.1933 B.115 C.9 1.1974 B.156 C.9 1.2015 B.197 C.9

1.1934 B.116 C.9 1.1975 B.157 C.9 1.2016 B.198 C.9

1.1935 B.117 C.9 1.1976 B.158 C.9 1.2017 B.199 C.9

1.1936 B.118 C.9 1.1977 B.159 C.9 1.2018 B.200 C.9

1.1937 B.119 C.9 1.1978 B.160 C.9 1.2019 B.201 C.9 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.2020 B.202 C.9 1.2061 B.41 C.10 1.2102 B.82 C.10

1.2021 B.1 C.10 1.2062 B.42 C.10 1.2103 B.83 C.10

1.2022 B.2 C.10 1.2063 B.43 C.10 1.2104 B.84 C.10

1.2023 B.3 C.10 1.2064 B.44 C.10 1.2105 B.85 C.10

1.2024 B.4 C.10 1.2065 B.45 C.10 1.2106 B.86 C.10

1.2025 B.5 C.10 1.2066 B.46 C.10 1.2107 B.87 C.10

1.2026 B.6 C.10 1.2067 B.47 C.10 1.2108 B.88 C.10

1.2027 B.7 C.10 1.2068 B.48 C.10 1.2109 B.89 C.10

1.2028 B.8 C.10 1.2069 B.49 C.10 1.2110 B.90 C.10

1.2029 B.9 C.10 1.2070 B.50 C.10 1.2111 B.91 C.10

1.2030 B.10 C.10 1.2071 B.51 C.10 1.2112 B.92 C.10

1.2031 B.11 C.10 1.2072 B.52 C.10 1.2113 B.93 C.10

1.2032 B.12 C.10 1.2073 B.53 C.10 1.2114 B.94 C.10

1.2033 B.13 C.10 1.2074 B.54 C.10 1.2115 B.95 C.10

1.2034 B.14 C.10 1.2075 B.55 C.10 1.2116 B.96 C.10

1.2035 B.15 C.10 1.2076 B.56 C.10 1.2117 B.97 C.10

1.2036 B.16 C.10 1.2077 B.57 C.10 1.2118 B.98 C.10

1.2037 B.17 C.10 1.2078 B.58 C.10 1.2119 B.99 C.10

1.2038 B.18 C.10 1.2079 B.59 C.10 1.2120 B.100 C.10

1.2039 B.19 C.10 1.2080 B.60 C.10 1.2121 B.101 C.10

1.2040 B.20 C.10 1.2081 B.61 C.10 1.2122 B.102 C.10

1.2041 B.21 C.10 1.2082 B.62 C.10 1.2123 B.103 C.10

1.2042 B.22 C.10 1.2083 B.63 C.10 1.2124 B.104 C.10

1.2043 B.23 C.10 1.2084 B.64 C.10 1.2125 B.105 C.10

1.2044 B.24 C.10 1.2085 B.65 C.10 1.2126 B.106 C.10

1.2045 B.25 C.10 1.2086 B.66 C.10 1.2127 B.107 C.10

1.2046 B.26 C.10 1.2087 B.67 C.10 1.2128 B.108 C.10

1.2047 B.27 C.10 1.2088 B.68 C.10 1.2129 B.109 C.10

1.2048 B.28 C.10 1.2089 B.69 C.10 1.2130 B.110 C.10

1.2049 B.29 C.10 1.2090 B.70 C.10 1.2131 B.111 C.10

1.2050 B.30 C.10 1.2091 B.71 C.10 1.2132 B.112 C.10

1.2051 B.31 C.10 1.2092 B.72 C.10 1.2133 B.113 C.10

1.2052 B.32 C.10 1.2093 B.73 C.10 1.2134 B.114 C.10

1.2053 B.33 C.10 1.2094 B.74 C.10 1.2135 B.115 C.10

1.2054 B.34 C.10 1.2095 B.75 C.10 1.2136 B.116 C.10

1.2055 B.35 C.10 1.2096 B.76 C.10 1.2137 B.117 C.10

1.2056 B.36 C.10 1.2097 B.77 C.10 1.2138 B.118 C.10

1.2057 B.37 C.10 1.2098 B.78 C.10 1.2139 B.119 C.10

1.2058 B.38 C.10 1.2099 B.79 C.10 1.2140 B.120 C.10

1.2059 B.39 C.10 1.2100 B.80 C.10 1.2141 B.121 C.10

1.2060 B.40 C.10 1.2101 B.81 C.10 1.2142 B.122 C.10 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.2143 B.123 C.10 1.2184 B.164 C.10 1.2225 B.3 C.11

1.2144 B.124 C.10 1.2185 B.165 C.10 1.2226 B.4 C.11

1.2145 B.125 C.10 1.2186 B.166 C.10 1.2227 B.5 C.11

1.2146 B.126 C.10 1.2187 B.167 C.10 1.2228 B.6 C.11

1.2147 B.127 C.10 1.2188 B.168 C.10 1.2229 B.7 C.11

1.2148 B.128 C.10 1.2189 B.169 C.10 1.2230 B.8 C.11

1.2149 B.129 C.10 1.2190 B.170 C.10 1.2231 B.9 C.11

1.2150 B.130 C.10 1.2191 B.171 C.10 1.2232 B.10 C.11

1.2151 B.131 C.10 1.2192 B.172 C.10 1.2233 B.11 C.11

1.2152 B.132 C.10 1.2193 B.173 C.10 1.2234 B.12 C.11

1.2153 B.133 C.10 1.2194 B.174 C.10 1.2235 B.13 C.11

1.2154 B.134 C.10 1.2195 B.175 C.10 1.2236 B.14 C.11

1.2155 B.135 C.10 1.2196 B.176 C.10 1.2237 B.15 C.11

1.2156 B.136 C.10 1.2197 B.177 C.10 1.2238 B.16 C.11

1.2157 B.137 C.10 1.2198 B.178 C.10 1.2239 B.17 C.11

1.2158 B.138 C.10 1.2199 B.179 C.10 1.2240 B.18 C.11

1.2159 B.139 C.10 1.2200 B.180 C.10 1.2241 B.19 C.11

1.2160 B.140 C.10 1.2201 B.181 C.10 1.2242 B.20 C.11

1.2161 B.141 C.10 1.2202 B.182 C.10 1.2243 B.21 C.11

1.2162 B.142 C.10 1.2203 B.183 C.10 1.2244 B.22 C.11

1.2163 B.143 C.10 1.2204 B.184 C.10 1.2245 B.23 C.11

1.2164 B.144 C.10 1.2205 B.185 C.10 1.2246 B.24 C.11

1.2165 B.145 C.10 1.2206 B.186 C.10 1.2247 B.25 C.11

1.2166 B.146 C.10 1.2207 B.187 C.10 1.2248 B.26 C.11

1.2167 B.147 C.10 1.2208 B.188 C.10 1.2249 B.27 C.11

1.2168 B.148 C.10 1.2209 B.189 C.10 1.2250 B.28 C.11

1.2169 B.149 C.10 1.2210 B.190 C.10 1.2251 B.29 C.11

1.2170 B.150 C.10 1.2211 B.191 C.10 1.2252 B.30 C.11

1.2171 B.151 C.10 1.2212 B.192 C.10 1.2253 B.31 C.11

1.2172 B.152 C.10 1.2213 B.193 C.10 1.2254 B.32 C.11

1.2173 B.153 C.10 1.2214 B.194 C.10 1.2255 B.33 C.11

1.2174 B.154 C.10 1.2215 B.195 C.10 1.2256 B.34 C.11

1.2175 B.155 C.10 1.2216 B.196 C.10 1.2257 B.35 C.11

1.2176 B.156 C.10 1.2217 B.197 C.10 1.2258 B.36 C.11

1.2177 B.157 C.10 1.2218 B.198 C.10 1.2259 B.37 C.11

1.2178 B.158 C.10 1.2219 B.199 C.10 1.2260 B.38 C.11

1.2179 B.159 C.10 1.2220 B.200 C.10 1.2261 B.39 C.11

1.2180 B.160 C.10 1.2221 B.201 C.10 1.2262 B.40 C.11

1.2181 B.161 C.10 1.2222 B.202 C.10 1.2263 B.41 C.11

1.2182 B.162 C.10 1.2223 B.1 C.11 1.2264 B.42 C.11

1.2183 B.163 C.10 1.2224 B.2 C.11 1.2265 B.43 C.11 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.2266 B.44 C.11 1.2307 B.85 C.11 1.2348 B.126 C.11

1.2267 B.45 C.11 1.2308 B.86 C.11 1.2349 B.127 C.11

1.2268 B.46 C.11 1.2309 B.87 C.11 1.2350 B.128 C.11

1.2269 B.47 C.11 1.2310 B.88 C.11 1.2351 B.129 C.11

1.2270 B.48 C.11 1.2311 B.89 C.11 1.2352 B.130 C.11

1.2271 B.49 C.11 1.2312 B.90 C.11 1.2353 B.131 C.11

1.2272 B.50 C.11 1.2313 B.91 C.11 1.2354 B.132 C.11

1.2273 B.51 C.11 1.2314 B.92 C.11 1.2355 B.133 C.11

1.2274 B.52 C.11 1.2315 B.93 C.11 1.2356 B.134 C.11

1.2275 B.53 C.11 1.2316 B.94 C.11 1.2357 B.135 C.11

1.2276 B.54 C.11 1.2317 B.95 C.11 1.2358 B.136 C.11

1.2277 B.55 C.11 1.2318 B.96 C.11 1.2359 B.137 C.11

1.2278 B.56 C.11 1.2319 B.97 C.11 1.2360 B.138 C.11

1.2279 B.57 C.11 1.2320 B.98 C.11 1.2361 B.139 C.11

1.2280 B.58 C.11 1.2321 B.99 C.11 1.2362 B.140 C.11

1.2281 B.59 C.11 1.2322 B.100 C.11 1.2363 B.141 C.11

1.2282 B.60 C.11 1.2323 B.101 C.11 1.2364 B.142 C.11

1.2283 B.61 C.11 1.2324 B.102 C.11 1.2365 B.143 C.11

1.2284 B.62 C.11 1.2325 B.103 C.11 1.2366 B.144 C.11

1.2285 B.63 C.11 1.2326 B.104 C.11 1.2367 B.145 C.11

1.2286 B.64 C.11 1.2327 B.105 C.11 1.2368 B.146 C.11

1.2287 B.65 C.11 1.2328 B.106 C.11 1.2369 B.147 C.11

1.2288 B.66 C.11 1.2329 B.107 C.11 1.2370 B.148 C.11

1.2289 B.67 C.11 1.2330 B.108 C.11 1.2371 B.149 C.11

1.2290 B.68 C.11 1.2331 B.109 C.11 1.2372 B.150 C.11

1.2291 B.69 C.11 1.2332 B.110 C.11 1.2373 B.151 C.11

1.2292 B.70 C.11 1.2333 B.111 C.11 1.2374 B.152 C.11

1.2293 B.71 C.11 1.2334 B.112 C.11 1.2375 B.153 C.11

1.2294 B.72 C.11 1.2335 B.113 C.11 1.2376 B.154 C.11

1.2295 B.73 C.11 1.2336 B.114 C.11 1.2377 B.155 C.11

1.2296 B.74 C.11 1.2337 B.115 C.11 1.2378 B.156 C.11

1.2297 B.75 C.11 1.2338 B.116 C.11 1.2379 B.157 C.11

1.2298 B.76 C.11 1.2339 B.117 C.11 1.2380 B.158 C.11

1.2299 B.77 C.11 1.2340 B.118 C.11 1.2381 B.159 C.11

1.2300 B.78 C.11 1.2341 B.119 C.11 1.2382 B.160 C.11

1.2301 B.79 C.11 1.2342 B.120 C.11 1.2383 B.161 C.11

1.2302 B.80 C.11 1.2343 B.121 C.11 1.2384 B.162 C.11

1.2303 B.81 C.11 1.2344 B.122 C.11 1.2385 B.163 C.11

1.2304 B.82 C.11 1.2345 B.123 C.11 1.2386 B.164 C.11

1.2305 B.83 C.11 1.2346 B.124 C.11 1.2387 B.165 C.11

1.2306 B.84 C.11 1.2347 B.125 C.11 1.2388 B.166 C.11 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.2389 B.167 C.11 1.2430 B.6 C.12 1.2471 B.47 C.12

1.2390 B.168 C.11 1.2431 B.7 C.12 1.2472 B.48 C.12

1.2391 B.169 C.11 1.2432 B.8 C.12 1.2473 B.49 C.12

1.2392 B.170 C.11 1.2433 B.9 C.12 1.2474 B.50 C.12

1.2393 B.171 C.11 1.2434 B.10 C.12 1.2475 B.51 C.12

1.2394 B.172 C.11 1.2435 B.11 C.12 1.2476 B.52 C.12

1.2395 B.173 C.11 1.2436 B.12 C.12 1.2477 B.53 C.12

1.2396 B.174 C.11 1.2437 B.13 C.12 1.2478 B.54 C.12

1.2397 B.175 C.11 1.2438 B.14 C.12 1.2479 B.55 C.12

1.2398 B.176 C.11 1.2439 B.15 C.12 1.2480 B.56 C.12

1.2399 B.177 C.11 1.2440 B.16 C.12 1.2481 B.57 C.12

1.2400 B.178 C.11 1.2441 B.17 C.12 1.2482 B.58 C.12

1.2401 B.179 C.11 1.2442 B.18 C.12 1.2483 B.59 C.12

1.2402 B.180 C.11 1.2443 B.19 C.12 1.2484 B.60 C.12

1.2403 B.181 C.11 1.2444 B.20 C.12 1.2485 B.61 C.12

1.2404 B.182 C.11 1.2445 B.21 C.12 1.2486 B.62 C.12

1.2405 B.183 C.11 1.2446 B.22 C.12 1.2487 B.63 C.12

1.2406 B.184 C.11 1.2447 B.23 C.12 1.2488 B.64 C.12

1.2407 B.185 C.11 1.2448 B.24 C.12 1.2489 B.65 C.12

1.2408 B.186 C.11 1.2449 B.25 C.12 1.2490 B.66 C.12

1.2409 B.187 C.11 1.2450 B.26 C.12 1.2491 B.67 C.12

1.2410 B.188 C.11 1.2451 B.27 C.12 1.2492 B.68 C.12

1.2411 B.189 C.11 1.2452 B.28 C.12 1.2493 B.69 C.12

1.2412 B.190 C.11 1.2453 B.29 C.12 1.2494 B.70 C.12

1.2413 B.191 C.11 1.2454 B.30 C.12 1.2495 B.71 C.12

1.2414 B.192 C.11 1.2455 B.31 C.12 1.2496 B.72 C.12

1.2415 B.193 C.11 1.2456 B.32 C.12 1.2497 B.73 C.12

1.2416 B.194 C.11 1.2457 B.33 C.12 1.2498 B.74 C.12

1.2417 B.195 C.11 1.2458 B.34 C.12 1.2499 B.75 C.12

1.2418 B.196 C.11 1.2459 B.35 C.12 1.2500 B.76 C.12

1.2419 B.197 C.11 1.2460 B.36 C.12 1.2501 B.77 C.12

1.2420 B.198 C.11 1.2461 B.37 C.12 1.2502 B.78 C.12

1.2421 B.199 C.11 1.2462 B.38 C.12 1.2503 B.79 C.12

1.2422 B.200 C.11 1.2463 B.39 C.12 1.2504 B.80 C.12

1.2423 B.201 C.11 1.2464 B.40 C.12 1.2505 B.81 C.12

1.2424 B.202 C.11 1.2465 B.41 C.12 1.2506 B.82 C.12

1.2425 B.1 C.12 1.2466 B.42 C.12 1.2507 B.83 C.12

1.2426 B.2 C.12 1.2467 B.43 C.12 1.2508 B.84 C.12

1.2427 B.3 C.12 1.2468 B.44 C.12 1.2509 B.85 C.12

1.2428 B.4 C.12 1.2469 B.45 C.12 1.2510 B.86 C.12

1.2429 B.5 C.12 1.2470 B.46 C.12 1.2511 B.87 C.12 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.2512 B.88 C.12 1.2553 B.129 C.12 1 .2594 B.170 C.12

1.2513 B.89 C.12 1.2554 B.130 C.12 1 .2595 B.171 C.12

1.2514 B.90 C.12 1.2555 B.131 C.12 1 .2596 B.172 C.12

1.2515 B.91 C.12 1.2556 B.132 C.12 1 .2597 B.173 C.12

1.2516 B.92 C.12 1.2557 B.133 C.12 1 .2598 B.174 C.12

1.2517 B.93 C.12 1.2558 B.134 C.12 1 .2599 B.175 C.12

1.2518 B.94 C.12 1.2559 B.135 C.12 1 .2600 B.176 C.12

1.2519 B.95 C.12 1.2560 B.136 C.12 1 .2601 B.177 C.12

1.2520 B.96 C.12 1.2561 B.137 C.12 1 .2602 B.178 C.12

1.2521 B.97 C.12 1.2562 B.138 C.12 1 .2603 B.179 C.12

1.2522 B.98 C.12 1.2563 B.139 C.12 1 .2604 B.180 C.12

1.2523 B.99 C.12 1.2564 B.140 C.12 1 .2605 B.181 C.12

1.2524 B.100 C.12 1.2565 B.141 C.12 1 .2606 B.182 C.12

1.2525 B.101 C.12 1.2566 B.142 C.12 1 .2607 B.183 C.12

1.2526 B.102 C.12 1.2567 B.143 C.12 1 .2608 B.184 C.12

1.2527 B.103 C.12 1.2568 B.144 C.12 1 .2609 B.185 C.12

1.2528 B.104 C.12 1.2569 B.145 C.12 1 .2610 B.186 C.12

1.2529 B.105 C.12 1.2570 B.146 C.12 1 .261 1 B.187 C.12

1.2530 B.106 C.12 1.2571 B.147 C.12 1 .2612 B.188 C.12

1.2531 B.107 C.12 1.2572 B.148 C.12 1 .2613 B.189 C.12

1.2532 B.108 C.12 1.2573 B.149 C.12 1 .2614 B.190 C.12

1.2533 B.109 C.12 1.2574 B.150 C.12 1 .2615 B.191 C.12

1.2534 B.1 10 C.12 1.2575 B.151 C.12 1 .2616 B.192 C.12

1.2535 B.1 1 1 C.12 1.2576 B.152 C.12 1 .2617 B.193 C.12

1.2536 B.1 12 C.12 1.2577 B.153 C.12 1 .2618 B.194 C.12

1.2537 B.1 13 C.12 1.2578 B.154 C.12 1 .2619 B.195 C.12

1.2538 B.1 14 C.12 1.2579 B.155 C.12 1 .2620 B.196 C.12

1.2539 B.1 15 C.12 1.2580 B.156 C.12 1 .2621 B.197 C.12

1.2540 B.1 16 C.12 1.2581 B.157 C.12 1 .2622 B.198 C.12

1.2541 B.1 17 C.12 1.2582 B.158 C.12 1 .2623 B.199 C.12

1.2542 B.1 18 C.12 1.2583 B.159 C.12 1 .2624 B.200 C.12

1.2543 B.1 19 C.12 1.2584 B.160 C.12 1 .2625 B.201 C.12

1.2544 B.120 C.12 1.2585 B.161 C.12 1 .2626 B.202 C.12

1.2545 B.121 C.12 1.2586 B.162 C.12 1 .2627 B.1 C.13

1.2546 B.122 C.12 1.2587 B.163 C.12 1 .2628 B.2 C.13

1.2547 B.123 C.12 1.2588 B.164 C.12 1 .2629 B.3 C.13

1.2548 B.124 C.12 1.2589 B.165 C.12 1 .2630 B.4 C.13

1.2549 B.125 C.12 1.2590 B.166 C.12 1 .2631 B.5 C.13

1.2550 B.126 C.12 1.2591 B.167 C.12 1 .2632 B.6 C.13

1.2551 B.127 C.12 1.2592 B.168 C.12 1 .2633 B.7 C.13

1.2552 B.128 C.12 1.2593 B.169 C.12 1 .2634 B.8 C.13 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.2635 B.9 C.13 1.2676 B.50 C.13 1 .2717 B.91 C.13

1.2636 B.10 C.13 1.2677 B.51 C.13 1 .2718 B.92 C.13

1.2637 B.1 1 C.13 1.2678 B.52 C.13 1 .2719 B.93 C.13

1.2638 B.12 C.13 1.2679 B.53 C.13 1 .2720 B.94 C.13

1.2639 B.13 C.13 1.2680 B.54 C.13 1 .2721 B.95 C.13

1.2640 B.14 C.13 1.2681 B.55 C.13 1 .2722 B.96 C.13

1.2641 B.15 C.13 1.2682 B.56 C.13 1 .2723 B.97 C.13

1.2642 B.16 C.13 1.2683 B.57 C.13 1 .2724 B.98 C.13

1.2643 B.17 C.13 1.2684 B.58 C.13 1 .2725 B.99 C.13

1.2644 B.18 C.13 1.2685 B.59 C.13 1 .2726 B.100 C.13

1.2645 B.19 C.13 1.2686 B.60 C.13 1 .2727 B.101 C.13

1.2646 B.20 C.13 1.2687 B.61 C.13 1 .2728 B.102 C.13

1.2647 B.21 C.13 1.2688 B.62 C.13 1 .2729 B.103 C.13

1.2648 B.22 C.13 1.2689 B.63 C.13 1 .2730 B.104 C.13

1.2649 B.23 C.13 1.2690 B.64 C.13 1 .2731 B.105 C.13

1.2650 B.24 C.13 1.2691 B.65 C.13 1 .2732 B.106 C.13

1.2651 B.25 C.13 1.2692 B.66 C.13 1 .2733 B.107 C.13

1.2652 B.26 C.13 1.2693 B.67 C.13 1 .2734 B.108 C.13

1.2653 B.27 C.13 1.2694 B.68 C.13 1 .2735 B.109 C.13

1.2654 B.28 C.13 1.2695 B.69 C.13 1 .2736 B.1 10 C.13

1.2655 B.29 C.13 1.2696 B.70 C.13 1 .2737 B.1 1 1 C.13

1.2656 B.30 C.13 1.2697 B.71 C.13 1 .2738 B.1 12 C.13

1.2657 B.31 C.13 1.2698 B.72 C.13 1 .2739 B.1 13 C.13

1.2658 B.32 C.13 1.2699 B.73 C.13 1 .2740 B.1 14 C.13

1.2659 B.33 C.13 1.2700 B.74 C.13 1 .2741 B.1 15 C.13

1.2660 B.34 C.13 1.2701 B.75 C.13 1 .2742 B.1 16 C.13

1.2661 B.35 C.13 1.2702 B.76 C.13 1 .2743 B.1 17 C.13

1.2662 B.36 C.13 1.2703 B.77 C.13 1 .2744 B.1 18 C.13

1.2663 B.37 C.13 1.2704 B.78 C.13 1 .2745 B.1 19 C.13

1.2664 B.38 C.13 1.2705 B.79 C.13 1 .2746 B.120 C.13

1.2665 B.39 C.13 1.2706 B.80 C.13 1 .2747 B.121 C.13

1.2666 B.40 C.13 1.2707 B.81 C.13 1 .2748 B.122 C.13

1.2667 B.41 C.13 1.2708 B.82 C.13 1 .2749 B.123 C.13

1.2668 B.42 C.13 1.2709 B.83 C.13 1 .2750 B.124 C.13

1.2669 B.43 C.13 1.2710 B.84 C.13 1 .2751 B.125 C.13

1.2670 B.44 C.13 1.271 1 B.85 C.13 1 .2752 B.126 C.13

1.2671 B.45 C.13 1.2712 B.86 C.13 1 .2753 B.127 C.13

1.2672 B.46 C.13 1.2713 B.87 C.13 1 .2754 B.128 C.13

1.2673 B.47 C.13 1.2714 B.88 C.13 1 .2755 B.129 C.13

1.2674 B.48 C.13 1.2715 B.89 C.13 1 .2756 B.130 C.13

1.2675 B.49 C.13 1.2716 B.90 C.13 1 .2757 B.131 C.13 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.2758 B.132 C.13 1.2799 B.173 C.13 1 .2840 B.12 C.14

1.2759 B.133 C.13 1.2800 B.174 C.13 1 .2841 B.13 C.14

1.2760 B.134 C.13 1.2801 B.175 C.13 1 .2842 B.14 C.14

1.2761 B.135 C.13 1.2802 B.176 C.13 1 .2843 B.15 C.14

1.2762 B.136 C.13 1.2803 B.177 C.13 1 .2844 B.16 C.14

1.2763 B.137 C.13 1.2804 B.178 C.13 1 .2845 B.17 C.14

1.2764 B.138 C.13 1.2805 B.179 C.13 1 .2846 B.18 C.14

1.2765 B.139 C.13 1.2806 B.180 C.13 1 .2847 B.19 C.14

1.2766 B.140 C.13 1.2807 B.181 C.13 1 .2848 B.20 C.14

1.2767 B.141 C.13 1.2808 B.182 C.13 1 .2849 B.21 C.14

1.2768 B.142 C.13 1.2809 B.183 C.13 1 .2850 B.22 C.14

1.2769 B.143 C.13 1.2810 B.184 C.13 1 .2851 B.23 C.14

1.2770 B.144 C.13 1.281 1 B.185 C.13 1 .2852 B.24 C.14

1.2771 B.145 C.13 1.2812 B.186 C.13 1 .2853 B.25 C.14

1.2772 B.146 C.13 1.2813 B.187 C.13 1 .2854 B.26 C.14

1.2773 B.147 C.13 1.2814 B.188 C.13 1 .2855 B.27 C.14

1.2774 B.148 C.13 1.2815 B.189 C.13 1 .2856 B.28 C.14

1.2775 B.149 C.13 1.2816 B.190 C.13 1 .2857 B.29 C.14

1.2776 B.150 C.13 1.2817 B.191 C.13 1 .2858 B.30 C.14

1.2777 B.151 C.13 1.2818 B.192 C.13 1 .2859 B.31 C.14

1.2778 B.152 C.13 1.2819 B.193 C.13 1 .2860 B.32 C.14

1.2779 B.153 C.13 1.2820 B.194 C.13 1 .2861 B.33 C.14

1.2780 B.154 C.13 1.2821 B.195 C.13 1 .2862 B.34 C.14

1.2781 B.155 C.13 1.2822 B.196 C.13 1 .2863 B.35 C.14

1.2782 B.156 C.13 1.2823 B.197 C.13 1 .2864 B.36 C.14

1.2783 B.157 C.13 1.2824 B.198 C.13 1 .2865 B.37 C.14

1.2784 B.158 C.13 1.2825 B.199 C.13 1 .2866 B.38 C.14

1.2785 B.159 C.13 1.2826 B.200 C.13 1 .2867 B.39 C.14

1.2786 B.160 C.13 1.2827 B.201 C.13 1 .2868 B.40 C.14

1.2787 B.161 C.13 1.2828 B.202 C.13 1 .2869 B.41 C.14

1.2788 B.162 C.13 1.2829 B.1 C.14 1 .2870 B.42 C.14

1.2789 B.163 C.13 1.2830 B.2 C.14 1 .2871 B.43 C.14

1.2790 B.164 C.13 1.2831 B.3 C.14 1 .2872 B.44 C.14

1.2791 B.165 C.13 1.2832 B.4 C.14 1 .2873 B.45 C.14

1.2792 B.166 C.13 1.2833 B.5 C.14 1 .2874 B.46 C.14

1.2793 B.167 C.13 1.2834 B.6 C.14 1 .2875 B.47 C.14

1.2794 B.168 C.13 1.2835 B.7 C.14 1 .2876 B.48 C.14

1.2795 B.169 C.13 1.2836 B.8 C.14 1 .2877 B.49 C.14

1.2796 B.170 C.13 1.2837 B.9 C.14 1 .2878 B.50 C.14

1.2797 B.171 C.13 1.2838 B.10 C.14 1 .2879 B.51 C.14

1.2798 B.172 C.13 1.2839 B.1 1 C.14 1 .2880 B.52 C.14 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.2881 B.53 C.14 1.2922 B.94 C.14 1 .2963 B.135 C.14

1.2882 B.54 C.14 1.2923 B.95 C.14 1 .2964 B.136 C.14

1.2883 B.55 C.14 1.2924 B.96 C.14 1 .2965 B.137 C.14

1.2884 B.56 C.14 1.2925 B.97 C.14 1 .2966 B.138 C.14

1.2885 B.57 C.14 1.2926 B.98 C.14 1 .2967 B.139 C.14

1.2886 B.58 C.14 1.2927 B.99 C.14 1 .2968 B.140 C.14

1.2887 B.59 C.14 1.2928 B.100 C.14 1 .2969 B.141 C.14

1.2888 B.60 C.14 1.2929 B.101 C.14 1 .2970 B.142 C.14

1.2889 B.61 C.14 1.2930 B.102 C.14 1 .2971 B.143 C.14

1.2890 B.62 C.14 1.2931 B.103 C.14 1 .2972 B.144 C.14

1.2891 B.63 C.14 1.2932 B.104 C.14 1 .2973 B.145 C.14

1.2892 B.64 C.14 1.2933 B.105 C.14 1 .2974 B.146 C.14

1.2893 B.65 C.14 1.2934 B.106 C.14 1 .2975 B.147 C.14

1.2894 B.66 C.14 1.2935 B.107 C.14 1 .2976 B.148 C.14

1.2895 B.67 C.14 1.2936 B.108 C.14 1 .2977 B.149 C.14

1.2896 B.68 C.14 1.2937 B.109 C.14 1 .2978 B.150 C.14

1.2897 B.69 C.14 1.2938 B.1 10 C.14 1 .2979 B.151 C.14

1.2898 B.70 C.14 1.2939 B.1 1 1 C.14 1 .2980 B.152 C.14

1.2899 B.71 C.14 1.2940 B.1 12 C.14 1 .2981 B.153 C.14

1.2900 B.72 C.14 1.2941 B.1 13 C.14 1 .2982 B.154 C.14

1.2901 B.73 C.14 1.2942 B.1 14 C.14 1 .2983 B.155 C.14

1.2902 B.74 C.14 1.2943 B.1 15 C.14 1 .2984 B.156 C.14

1.2903 B.75 C.14 1.2944 B.1 16 C.14 1 .2985 B.157 C.14

1.2904 B.76 C.14 1.2945 B.1 17 C.14 1 .2986 B.158 C.14

1.2905 B.77 C.14 1.2946 B.1 18 C.14 1 .2987 B.159 C.14

1.2906 B.78 C.14 1.2947 B.1 19 C.14 1 .2988 B.160 C.14

1.2907 B.79 C.14 1.2948 B.120 C.14 1 .2989 B.161 C.14

1.2908 B.80 C.14 1.2949 B.121 C.14 1 .2990 B.162 C.14

1.2909 B.81 C.14 1.2950 B.122 C.14 1 .2991 B.163 C.14

1.2910 B.82 C.14 1.2951 B.123 C.14 1 .2992 B.164 C.14

1.291 1 B.83 C.14 1.2952 B.124 C.14 1 .2993 B.165 C.14

1.2912 B.84 C.14 1.2953 B.125 C.14 1 .2994 B.166 C.14

1.2913 B.85 C.14 1.2954 B.126 C.14 1 .2995 B.167 C.14

1.2914 B.86 C.14 1.2955 B.127 C.14 1 .2996 B.168 C.14

1.2915 B.87 C.14 1.2956 B.128 C.14 1 .2997 B.169 C.14

1.2916 B.88 C.14 1.2957 B.129 C.14 1 .2998 B.170 C.14

1.2917 B.89 C.14 1.2958 B.130 C.14 1 .2999 B.171 C.14

1.2918 B.90 C.14 1.2959 B.131 C.14 1 .3000 B.172 C.14

1.2919 B.91 C.14 1.2960 B.132 C.14 1 .3001 B.173 C.14

1.2920 B.92 C.14 1.2961 B.133 C.14 1 .3002 B.174 C.14

1.2921 B.93 C.14 1.2962 B.134 C.14 1 .3003 B.175 C.14 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.3004 B.176 C.14 1.3045 B.15 C.15 1.3086 B.56 C.15

1.3005 B.177 C.14 1.3046 B.16 C.15 1.3087 B.57 C.15

1.3006 B.178 C.14 1.3047 B.17 C.15 1.3088 B.58 C.15

1.3007 B.179 C.14 1.3048 B.18 C.15 1.3089 B.59 C.15

1.3008 B.180 C.14 1.3049 B.19 C.15 1.3090 B.60 C.15

1.3009 B.181 C.14 1.3050 B.20 C.15 1.3091 B.61 C.15

1.3010 B.182 C.14 1.3051 B.21 C.15 1.3092 B.62 C.15

1.3011 B.183 C.14 1.3052 B.22 C.15 1.3093 B.63 C.15

1.3012 B.184 C.14 1.3053 B.23 C.15 1.3094 B.64 C.15

1.3013 B.185 C.14 1.3054 B.24 C.15 1.3095 B.65 C.15

1.3014 B.186 C.14 1.3055 B.25 C.15 1.3096 B.66 C.15

1.3015 B.187 C.14 1.3056 B.26 C.15 1.3097 B.67 C.15

1.3016 B.188 C.14 1.3057 B.27 C.15 1.3098 B.68 C.15

1.3017 B.189 C.14 1.3058 B.28 C.15 1.3099 B.69 C.15

1.3018 B.190 C.14 1.3059 B.29 C.15 1.3100 B.70 C.15

1.3019 B.191 C.14 1.3060 B.30 C.15 1.3101 B.71 C.15

1.3020 B.192 C.14 1.3061 B.31 C.15 1.3102 B.72 C.15

1.3021 B.193 C.14 1.3062 B.32 C.15 1.3103 B.73 C.15

1.3022 B.194 C.14 1.3063 B.33 C.15 1.3104 B.74 C.15

1.3023 B.195 C.14 1.3064 B.34 C.15 1.3105 B.75 C.15

1.3024 B.196 C.14 1.3065 B.35 C.15 1.3106 B.76 C.15

1.3025 B.197 C.14 1.3066 B.36 C.15 1.3107 B.77 C.15

1.3026 B.198 C.14 1.3067 B.37 C.15 1.3108 B.78 C.15

1.3027 B.199 C.14 1.3068 B.38 C.15 1.3109 B.79 C.15

1.3028 B.200 C.14 1.3069 B.39 C.15 1.3110 B.80 C.15

1.3029 B.201 C.14 1.3070 B.40 C.15 1.3111 B.81 C.15

1.3030 B.202 C.14 1.3071 B.41 C.15 1.3112 B.82 C.15

1.3031 B.1 C.15 1.3072 B.42 C.15 1.3113 B.83 C.15

1.3032 B.2 C.15 1.3073 B.43 C.15 1.3114 B.84 C.15

1.3033 B.3 C.15 1.3074 B.44 C.15 1.3115 B.85 C.15

1.3034 B.4 C.15 1.3075 B.45 C.15 1.3116 B.86 C.15

1.3035 B.5 C.15 1.3076 B.46 C.15 1.3117 B.87 C.15

1.3036 B.6 C.15 1.3077 B.47 C.15 1.3118 B.88 C.15

1.3037 B.7 C.15 1.3078 B.48 C.15 1.3119 B.89 C.15

1.3038 B.8 C.15 1.3079 B.49 C.15 1.3120 B.90 C.15

1.3039 B.9 C.15 1.3080 B.50 C.15 1.3121 B.91 C.15

1.3040 B.10 C.15 1.3081 B.51 C.15 1.3122 B.92 C.15

1.3041 B.11 C.15 1.3082 B.52 C.15 1.3123 B.93 C.15

1.3042 B.12 C.15 1.3083 B.53 C.15 1.3124 B.94 C.15

1.3043 B.13 C.15 1.3084 B.54 C.15 1.3125 B.95 C.15

1.3044 B.14 C.15 1.3085 B.55 C.15 1.3126 B.96 C.15 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.3127 B.97 C.15 1.3168 B.138 C.15 1 .3209 B.179 C.15

1.3128 B.98 C.15 1.3169 B.139 C.15 1 .3210 B.180 C.15

1.3129 B.99 C.15 1.3170 B.140 C.15 1 .321 1 B.181 C.15

1.3130 B.100 C.15 1.3171 B.141 C.15 1 .3212 B.182 C.15

1.3131 B.101 C.15 1.3172 B.142 C.15 1 .3213 B.183 C.15

1.3132 B.102 C.15 1.3173 B.143 C.15 1 .3214 B.184 C.15

1.3133 B.103 C.15 1.3174 B.144 C.15 1 .3215 B.185 C.15

1.3134 B.104 C.15 1.3175 B.145 C.15 1 .3216 B.186 C.15

1.3135 B.105 C.15 1.3176 B.146 C.15 1 .3217 B.187 C.15

1.3136 B.106 C.15 1.3177 B.147 C.15 1 .3218 B.188 C.15

1.3137 B.107 C.15 1.3178 B.148 C.15 1 .3219 B.189 C.15

1.3138 B.108 C.15 1.3179 B.149 C.15 1 .3220 B.190 C.15

1.3139 B.109 C.15 1.3180 B.150 C.15 1 .3221 B.191 C.15

1.3140 B.1 10 C.15 1.3181 B.151 C.15 1 .3222 B.192 C.15

1.3141 B.1 1 1 C.15 1.3182 B.152 C.15 1 .3223 B.193 C.15

1.3142 B.1 12 C.15 1.3183 B.153 C.15 1 .3224 B.194 C.15

1.3143 B.1 13 C.15 1.3184 B.154 C.15 1 .3225 B.195 C.15

1.3144 B.1 14 C.15 1.3185 B.155 C.15 1 .3226 B.196 C.15

1.3145 B.1 15 C.15 1.3186 B.156 C.15 1 .3227 B.197 C.15

1.3146 B.1 16 C.15 1.3187 B.157 C.15 1 .3228 B.198 C.15

1.3147 B.1 17 C.15 1.3188 B.158 C.15 1 .3229 B.199 C.15

1.3148 B.1 18 C.15 1.3189 B.159 C.15 1 .3230 B.200 C.15

1.3149 B.1 19 C.15 1.3190 B.160 C.15 1 .3231 B.201 C.15

1.3150 B.120 C.15 1.3191 B.161 C.15 1 .3232 B.202 C.15

1.3151 B.121 C.15 1.3192 B.162 C.15 1 .3233 B.1 C.16

1.3152 B.122 C.15 1.3193 B.163 C.15 1 .3234 B.2 C.16

1.3153 B.123 C.15 1.3194 B.164 C.15 1 .3235 B.3 C.16

1.3154 B.124 C.15 1.3195 B.165 C.15 1 .3236 B.4 C.16

1.3155 B.125 C.15 1.3196 B.166 C.15 1 .3237 B.5 C.16

1.3156 B.126 C.15 1.3197 B.167 C.15 1 .3238 B.6 C.16

1.3157 B.127 C.15 1.3198 B.168 C.15 1 .3239 B.7 C.16

1.3158 B.128 C.15 1.3199 B.169 C.15 1 .3240 B.8 C.16

1.3159 B.129 C.15 1.3200 B.170 C.15 1 .3241 B.9 C.16

1.3160 B.130 C.15 1.3201 B.171 C.15 1 .3242 B.10 C.16

1.3161 B.131 C.15 1.3202 B.172 C.15 1 .3243 B.1 1 C.16

1.3162 B.132 C.15 1.3203 B.173 C.15 1 .3244 B.12 C.16

1.3163 B.133 C.15 1.3204 B.174 C.15 1 .3245 B.13 C.16

1.3164 B.134 C.15 1.3205 B.175 C.15 1 .3246 B.14 C.16

1.3165 B.135 C.15 1.3206 B.176 C.15 1 .3247 B.15 C.16

1.3166 B.136 C.15 1.3207 B.177 C.15 1 .3248 B.16 C.16

1.3167 B.137 C.15 1.3208 B.178 C.15 1 .3249 B.17 C.16 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.3250 B.18 C.16 1.3291 B.59 C.16 1.3332 B.100 C.16

1.3251 B.19 C.16 1.3292 B.60 C.16 1.3333 B.101 C.16

1.3252 B.20 C.16 1.3293 B.61 C.16 1.3334 B.102 C.16

1.3253 B.21 C.16 1.3294 B.62 C.16 1.3335 B.103 C.16

1.3254 B.22 C.16 1.3295 B.63 C.16 1.3336 B.104 C.16

1.3255 B.23 C.16 1.3296 B.64 C.16 1.3337 B.105 C.16

1.3256 B.24 C.16 1.3297 B.65 C.16 1.3338 B.106 C.16

1.3257 B.25 C.16 1.3298 B.66 C.16 1.3339 B.107 C.16

1.3258 B.26 C.16 1.3299 B.67 C.16 1.3340 B.108 C.16

1.3259 B.27 C.16 1.3300 B.68 C.16 1.3341 B.109 C.16

1.3260 B.28 C.16 1.3301 B.69 C.16 1.3342 B.110 C.16

1.3261 B.29 C.16 1.3302 B.70 C.16 1.3343 B.111 C.16

1.3262 B.30 C.16 1.3303 B.71 C.16 1.3344 B.112 C.16

1.3263 B.31 C.16 1.3304 B.72 C.16 1.3345 B.113 C.16

1.3264 B.32 C.16 1.3305 B.73 C.16 1.3346 B.114 C.16

1.3265 B.33 C.16 1.3306 B.74 C.16 1.3347 B.115 C.16

1.3266 B.34 C.16 1.3307 B.75 C.16 1.3348 B.116 C.16

1.3267 B.35 C.16 1.3308 B.76 C.16 1.3349 B.117 C.16

1.3268 B.36 C.16 1.3309 B.77 C.16 1.3350 B.118 C.16

1.3269 B.37 C.16 1.3310 B.78 C.16 1.3351 B.119 C.16

1.3270 B.38 C.16 1.3311 B.79 C.16 1.3352 B.120 C.16

1.3271 B.39 C.16 1.3312 B.80 C.16 1.3353 B.121 C.16

1.3272 B.40 C.16 1.3313 B.81 C.16 1.3354 B.122 C.16

1.3273 B.41 C.16 1.3314 B.82 C.16 1.3355 B.123 C.16

1.3274 B.42 C.16 1.3315 B.83 C.16 1.3356 B.124 C.16

1.3275 B.43 C.16 1.3316 B.84 C.16 1.3357 B.125 C.16

1.3276 B.44 C.16 1.3317 B.85 C.16 1.3358 B.126 C.16

1.3277 B.45 C.16 1.3318 B.86 C.16 1.3359 B.127 C.16

1.3278 B.46 C.16 1.3319 B.87 C.16 1.3360 B.128 C.16

1.3279 B.47 C.16 1.3320 B.88 C.16 1.3361 B.129 C.16

1.3280 B.48 C.16 1.3321 B.89 C.16 1.3362 B.130 C.16

1.3281 B.49 C.16 1.3322 B.90 C.16 1.3363 B.131 C.16

1.3282 B.50 C.16 1.3323 B.91 C.16 1.3364 B.132 C.16

1.3283 B.51 C.16 1.3324 B.92 C.16 1.3365 B.133 C.16

1.3284 B.52 C.16 1.3325 B.93 C.16 1.3366 B.134 C.16

1.3285 B.53 C.16 1.3326 B.94 C.16 1.3367 B.135 C.16

1.3286 B.54 C.16 1.3327 B.95 C.16 1.3368 B.136 C.16

1.3287 B.55 C.16 1.3328 B.96 C.16 1.3369 B.137 C.16

1.3288 B.56 C.16 1.3329 B.97 C.16 1.3370 B.138 C.16

1.3289 B.57 C.16 1.3330 B.98 C.16 1.3371 B.139 C.16

1.3290 B.58 C.16 1.3331 B.99 C.16 1.3372 B.140 C.16 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.3373 B.141 C.16 1.3414 B.182 C.16 1 .3455 B.21 C.17

1.3374 B.142 C.16 1.3415 B.183 C.16 1 .3456 B.22 C.17

1.3375 B.143 C.16 1.3416 B.184 C.16 1 .3457 B.23 C.17

1.3376 B.144 C.16 1.3417 B.185 C.16 1 .3458 B.24 C.17

1.3377 B.145 C.16 1.3418 B.186 C.16 1 .3459 B.25 C.17

1.3378 B.146 C.16 1.3419 B.187 C.16 1 .3460 B.26 C.17

1.3379 B.147 C.16 1.3420 B.188 C.16 1 .3461 B.27 C.17

1.3380 B.148 C.16 1.3421 B.189 C.16 1 .3462 B.28 C.17

1.3381 B.149 C.16 1.3422 B.190 C.16 1 .3463 B.29 C.17

1.3382 B.150 C.16 1.3423 B.191 C.16 1 .3464 B.30 C.17

1.3383 B.151 C.16 1.3424 B.192 C.16 1 .3465 B.31 C.17

1.3384 B.152 C.16 1.3425 B.193 C.16 1 .3466 B.32 C.17

1.3385 B.153 C.16 1.3426 B.194 C.16 1 .3467 B.33 C.17

1.3386 B.154 C.16 1.3427 B.195 C.16 1 .3468 B.34 C.17

1.3387 B.155 C.16 1.3428 B.196 C.16 1 .3469 B.35 C.17

1.3388 B.156 C.16 1.3429 B.197 C.16 1 .3470 B.36 C.17

1.3389 B.157 C.16 1.3430 B.198 C.16 1 .3471 B.37 C.17

1.3390 B.158 C.16 1.3431 B.199 C.16 1 .3472 B.38 C.17

1.3391 B.159 C.16 1.3432 B.200 C.16 1 .3473 B.39 C.17

1.3392 B.160 C.16 1.3433 B.201 C.16 1 .3474 B.40 C.17

1.3393 B.161 C.16 1.3434 B.202 C.16 1 .3475 B.41 C.17

1.3394 B.162 C.16 1.3435 B.1 C.17 1 .3476 B.42 C.17

1.3395 B.163 C.16 1.3436 B.2 C.17 1 .3477 B.43 C.17

1.3396 B.164 C.16 1.3437 B.3 C.17 1 .3478 B.44 C.17

1.3397 B.165 C.16 1.3438 B.4 C.17 1 .3479 B.45 C.17

1.3398 B.166 C.16 1.3439 B.5 C.17 1 .3480 B.46 C.17

1.3399 B.167 C.16 1.3440 B.6 C.17 1 .3481 B.47 C.17

1.3400 B.168 C.16 1.3441 B.7 C.17 1 .3482 B.48 C.17

1.3401 B.169 C.16 1.3442 B.8 C.17 1 .3483 B.49 C.17

1.3402 B.170 C.16 1.3443 B.9 C.17 1 .3484 B.50 C.17

1.3403 B.171 C.16 1.3444 B.10 C.17 1 .3485 B.51 C.17

1.3404 B.172 C.16 1.3445 B.1 1 C.17 1 .3486 B.52 C.17

1.3405 B.173 C.16 1.3446 B.12 C.17 1 .3487 B.53 C.17

1.3406 B.174 C.16 1.3447 B.13 C.17 1 .3488 B.54 C.17

1.3407 B.175 C.16 1.3448 B.14 C.17 1 .3489 B.55 C.17

1.3408 B.176 C.16 1.3449 B.15 C.17 1 .3490 B.56 C.17

1.3409 B.177 C.16 1.3450 B.16 C.17 1 .3491 B.57 C.17

1.3410 B.178 C.16 1.3451 B.17 C.17 1 .3492 B.58 C.17

1.341 1 B.179 C.16 1.3452 B.18 C.17 1 .3493 B.59 C.17

1.3412 B.180 C.16 1.3453 B.19 C.17 1 .3494 B.60 C.17

1.3413 B.181 C.16 1.3454 B.20 C.17 1 .3495 B.61 C.17 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.3496 B.62 C.17 1.3537 B.103 C.17 1.3578 B.144 C.17

1.3497 B.63 C.17 1.3538 B.104 C.17 1.3579 B.145 C.17

1.3498 B.64 C.17 1.3539 B.105 C.17 1.3580 B.146 C.17

1.3499 B.65 C.17 1.3540 B.106 C.17 1.3581 B.147 C.17

1.3500 B.66 C.17 1.3541 B.107 C.17 1.3582 B.148 C.17

1.3501 B.67 C.17 1.3542 B.108 C.17 1.3583 B.149 C.17

1.3502 B.68 C.17 1.3543 B.109 C.17 1.3584 B.150 C.17

1.3503 B.69 C.17 1.3544 B.110 C.17 1.3585 B.151 C.17

1.3504 B.70 C.17 1.3545 B.111 C.17 1.3586 B.152 C.17

1.3505 B.71 C.17 1.3546 B.112 C.17 1.3587 B.153 C.17

1.3506 B.72 C.17 1.3547 B.113 C.17 1.3588 B.154 C.17

1.3507 B.73 C.17 1.3548 B.114 C.17 1.3589 B.155 C.17

1.3508 B.74 C.17 1.3549 B.115 C.17 1.3590 B.156 C.17

1.3509 B.75 C.17 1.3550 B.116 C.17 1.3591 B.157 C.17

1.3510 B.76 C.17 1.3551 B.117 C.17 1.3592 B.158 C.17

1.3511 B.77 C.17 1.3552 B.118 C.17 1.3593 B.159 C.17

1.3512 B.78 C.17 1.3553 B.119 C.17 1.3594 B.160 C.17

1.3513 B.79 C.17 1.3554 B.120 C.17 1.3595 B.161 C.17

1.3514 B.80 C.17 1.3555 B.121 C.17 1.3596 B.162 C.17

1.3515 B.81 C.17 1.3556 B.122 C.17 1.3597 B.163 C.17

1.3516 B.82 C.17 1.3557 B.123 C.17 1.3598 B.164 C.17

1.3517 B.83 C.17 1.3558 B.124 C.17 1.3599 B.165 C.17

1.3518 B.84 C.17 1.3559 B.125 C.17 1.3600 B.166 C.17

1.3519 B.85 C.17 1.3560 B.126 C.17 1.3601 B.167 C.17

1.3520 B.86 C.17 1.3561 B.127 C.17 1.3602 B.168 C.17

1.3521 B.87 C.17 1.3562 B.128 C.17 1.3603 B.169 C.17

1.3522 B.88 C.17 1.3563 B.129 C.17 1.3604 B.170 C.17

1.3523 B.89 C.17 1.3564 B.130 C.17 1.3605 B.171 C.17

1.3524 B.90 C.17 1.3565 B.131 C.17 1.3606 B.172 C.17

1.3525 B.91 C.17 1.3566 B.132 C.17 1.3607 B.173 C.17

1.3526 B.92 C.17 1.3567 B.133 C.17 1.3608 B.174 C.17

1.3527 B.93 C.17 1.3568 B.134 C.17 1.3609 B.175 C.17

1.3528 B.94 C.17 1.3569 B.135 C.17 1.3610 B.176 C.17

1.3529 B.95 C.17 1.3570 B.136 C.17 1.3611 B.177 C.17

1.3530 B.96 C.17 1.3571 B.137 C.17 1.3612 B.178 C.17

1.3531 B.97 C.17 1.3572 B.138 C.17 1.3613 B.179 C.17

1.3532 B.98 C.17 1.3573 B.139 C.17 1.3614 B.180 C.17

1.3533 B.99 C.17 1.3574 B.140 C.17 1.3615 B.181 C.17

1.3534 B.100 C.17 1.3575 B.141 C.17 1.3616 B.182 C.17

1.3535 B.101 C.17 1.3576 B.142 C.17 1.3617 B.183 C.17

1.3536 B.102 C.17 1.3577 B.143 C.17 1.3618 B.184 C.17 comp. herbisafener comp. herbisafener comp. herbisafener no. cide B C no. cide B C no. cide B C

1.3619 B.185 C.17 1.3631 B.197 C.17 1 .3643 — C.7

1.3620 B.186 C.17 1.3632 B.198 C.17 1 .3644 — C.8

1.3621 B.187 C.17 1.3633 B.199 C.17 1 .3645 — C.9

1.3622 B.188 C.17 1.3634 B.200 C.17 1 .3646 — C.10

1.3623 B.189 C.17 1.3635 B.201 C.17 1 .3647 — C.1 1

1.3624 B.190 C.17 1.3636 B.202 C.17 1 .3648 — C.12

1.3625 B.191 C.17 1.3637 — C.1 1 .3649 — C.13

1.3626 B.192 C.17 1.3638 — C.2 1 .3650 — C.14

1.3627 B.193 C.17 1.3639 — C.3 1 .3651 — C.15

1.3628 B.194 C.17 1.3640 — C.4 1 .3652 — C.16

1.3629 B.195 C.17 1.3641 — C.5 1 .3653 — C.17

1.3630 B.196 C.17 1.3642 — C.6

The specific number for each single composition is deductible as follows:

Composition 1 .203 e.g. comprises the compound (1.1 .1-25), clethodim (B.1 ) and benoxacor (C.1 ) (see table B, entry B.1 and table C, entry C.1 ).

Also especially preferred are compositions 2.1 to 2.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they comprise the compound (1.1 .1-4) in place of the compound (1 .1.1-3).

Also especially preferred are compositions 3.1 to 3.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.2 as further herbicide B.

Also especially preferred are compositions 4.1 to 4.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.8 as further herbicide B.

Also especially preferred are compositions 5.1 to 5.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.30 as further herbicide B.

Also especially preferred are compositions 6.1 to 6.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.32 as further herbicide B. Also especially preferred are compositions 7.1 to 7.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.35 as further herbicide B.

Also especially preferred are compositions 8.1 to 8.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.38 as further herbicide B.

Also especially preferred are compositions 9.1 to 9.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.40 as further herbicide B.

Also especially preferred are compositions 10.1 to 10.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.51 as further herbicide B.

Also especially preferred are compositions 1 1.1 to 1 1 .3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.55 as further herbicide B.

Also especially preferred are compositions 12.1 to 12.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.56 as further herbicide B.

Also especially preferred are compositions 13.1 to 13.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.64 as further herbicide B.

Also especially preferred are compositions 14.1 to 14.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.66 as further herbicide B.

Also especially preferred are compositions 15.1 to 15.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.67 as further herbicide B.

Also especially preferred are compositions 16.1 to 16.3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.68 as further herbicide B.

Also especially preferred are compositions 17.1 to 17.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.69 as further herbicide B. „ Λ

101

Also especially preferred are compositions 18.1 to 18.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.73 as further herbicide B.

Also especially preferred are compositions 19.1 to 19.3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.76 as further herbicide B.

Also especially preferred are compositions 20.1 to 20.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.81 as further herbicide B.

Also especially preferred are compositions 21.1 to 21 .3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.82 as further herbicide B.

Also especially preferred are compositions 22.1 to 22.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.85 as further herbicide B.

Also especially preferred are compositions 23.1 to 23.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.88 as further herbicide B.

Also especially preferred are compositions 24.1 to 24.3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.89 as further herbicide B.

Also especially preferred are compositions 25.1 to 25.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.94 as further herbicide B.

Also especially preferred are compositions 26.1 to 26.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.95 as further herbicide B.

Also especially preferred are compositions 27.1 to 27.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.98 as further herbicide B.

Also especially preferred are compositions 28.1 to 28.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.100 as further herbicide B.

Also especially preferred are compositions 29.1 to 29.3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.103 as further herbicide B.

Also especially preferred are compositions 30.1 to 30.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.103 and B.67 as further herbicides B.

Also especially preferred are compositions 31.1 to 31 .3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.103 and B.76 as further herbicides B.

Also especially preferred are compositions 32.1 to 32.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.103 and B.82 as further herbicides B.

Also especially preferred are compositions 33.1 to 33.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.104 as further herbicide B.

Also especially preferred are compositions 34.1 to 34.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.104 and B.67 as further herbicides B.

Also especially preferred are compositions 35.1 to 35.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.104 and B.76 as further herbicides B.

Also especially preferred are compositions 36.1 to 36.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.104 and B.82 as further herbicides B.

Also especially preferred are compositions 37.1 to 37.3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.106 as further herbicide B.

Also especially preferred are compositions 38.1 to 38.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.107 as further herbicide B.

Also especially preferred are compositions 39.1 to 39.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B. 107 and B.67 as further herbicides B.

Also especially preferred are compositions 40.1 to 40.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B. 107 and B.76 as further herbicides B.

Also especially preferred are compositions 41.1 to 41 .3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B. 107 and B.82 as further herbicides B.

Also especially preferred are compositions 42.1 to 42.3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.109 as further herbicide B.

Also especially preferred are compositions 43.1 to 43.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 1 1 as further herbicide B.

Also especially preferred are compositions 44.1 to 44.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 1 1 and B.67 as further herbicides B.

Also especially preferred are compositions 45.1 to 45.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 1 1 and B.76 as further herbicides B.

Also especially preferred are compositions 46.1 to 46.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 1 1 and B.82 as further herbicides B. I u

Also especially preferred are compositions 47.1 to 47.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B. 1 16 as further herbicide B.

Also especially preferred are compositions 48.1 to 48.3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 16 and B.67 as further herbicides B.

Also especially preferred are compositions 49.1 to 49.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 16 and B.94 as further herbicides B.

Also especially preferred are compositions 50.1 to 50.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 16 and B.103 as further herbicides B.

Also especially preferred are compositions 51.1 to 51 .3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 16 and B.128 as fur- ther herbicides B.

Also especially preferred are compositions 52.1 to 52.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 16 and B.104 as further herbicides B.

Also especially preferred are compositions 53.1 to 53.3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 16 and B.107 as further herbicides B.

Also especially preferred are compositions 54.1 to 54.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.1 16 and B.1 1 1 as further herbicides B.

Also especially preferred are compositions 55.1 to 55.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.122 as further herbicide B.

Also especially preferred are compositions 56.1 to 56.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.126 as further herbicide B.

Also especially preferred are compositions 57.1 to 57.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.128 as further herbicide B.

Also especially preferred are compositions 58.1 to 58.3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.131 as further herbicide B.

Also especially preferred are compositions 59.1 to 59.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.132 as further herbicide B.

Also especially preferred are compositions 60.1 to 60.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.133 as further herbicide B.

Also especially preferred are compositions 61.1 to 61 .3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.135 as further herbicide Λ η Λ

104

B.

Also especially preferred are compositions 62.1 to 62.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.137 as further herbicide B.

Also especially preferred are compositions 63.1 to 63.3653 which differ from the corresponding compositions 1 1 .1 to 1 .3653 only in that they additionally comprise B.138 as further herbicide B.

Also especially preferred are compositions 64.1 to 64.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.140 as further herbicide B.

Also especially preferred are compositions 65.1 to 65.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.145 as further herbicide B.

Also especially preferred are compositions 66.1 to 66.3653 which differ from the correspond- ing compositions 1.1 to 1 .3653 only in that they additionally comprise B.153 as further herbicide B.

Also especially preferred are compositions 67.1 to 67.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.156 as further herbicide B.

Also especially preferred are compositions 68.1 to 68.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.171 as further herbicide B.

Also especially preferred are compositions 69.1 to 69.3653 which differ from the corresponding compositions 1.1 to 1 .3653 only in that they additionally comprise B.174 as further herbicide B.

Also especially preferred are compositions 70.1 to 70.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-10) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 71.1 to 71.3653 which differ from the correspond- ing compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-1 1 ) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 72.1 to 72.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-17) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 73.1 to 73.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-18) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 74.1 to 74.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-24) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 75.1 to 75.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-25) in place of the compound (1.1 .1-3). „ nr .

105

Also especially preferred are compositions 76.1 to 76.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-31 ) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 77.1 to 77.3653 which differ from the correspond- ing compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-32) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 78.1 to 78.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-38) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 79.1 to 79.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-39) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 80.1 to 80.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-45) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 81.1 to 81 .3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-46) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 82.1 to 82.3653 which differ from the correspond- ing compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-52) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 83.1 to 83.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-53) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 84.1 to 84.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-59) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 85.1 to 85.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-60) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 86.1 to 86.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-66) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 87.1 to 87.3653 which differ from the correspond- ing compositions 1.1 to 1.3653 only in that they comprise the compound (1 .1 .1-67) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 88.1 to 88.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-3) in place of the compound (1 .1.1-3).

Also especially preferred are compositions 89.1 to 89.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-4) in place of the compound (1 .1.1-3).

Also especially preferred are compositions 90.1 to 90.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-10) in place of „ Λ

106

the compound (1.1 .1-3).

Also especially preferred are compositions 91.1 to 91 .3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-1 1 ) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 92.1 to 92.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-17) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 93.1 to 93.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-24) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 94.1 to 94.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-25) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 95.1 to 95.3653 which differ from the correspond- ing compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-31 ) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 96.1 to 96.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-32) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 97.1 to 97.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-38) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 98.1 to 98.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-39) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 99.1 to 99.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-45) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 100.1 to 100.3653 which differ from the corre- sponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.2.1-46) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 101 .1 to 101 .3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.2.1-52) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 102.1 to 102.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.2.1-53) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 103.1 to 103.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.2.1-59) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 104.1 to 104.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.2.1-60) in place of the compound (1 .1 .1-3). „ _ _

107

Also especially preferred are compositions 105.1 to 105.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.2.1-66) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 106.1 to 106.3653 which differ from the corresponding compositions 1.1 to 1.3653 only in that they comprise the compound (1 .2.1-67) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 107.1 to 107.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-3) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 108.1 to 108.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-4) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 109.1 to 109.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-10) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 1 10.1 to 1 10.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-1 1 ) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 1 1 1 .1 to 1 1 1.3653 which differ from the corre- sponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-17) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 1 12.1 to 1 12.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-18) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 1 13.1 to 1 13.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-24) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 1 14.1 to 1 14.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-25) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 1 15.1 to 1 15.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-31 ) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 1 16.1 to 1 16.3653 which differ from the corre- sponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-32) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 1 17.1 to 1 17.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-38) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 1 18.1 to 1 18.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-39) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 1 19.1 to 1 19.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-45) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 120.1 to 120.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-46) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 121 .1 to 121.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-52) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 122.1 to 122.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-53) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 123.1 to 123.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-59) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 124.1 to 124.3653 which differ from the corre- sponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-60) in place of the compound (1.1 .1-3).

Also especially preferred are compositions 125.1 to 125.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-66) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 126.1 to 126.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.5.1-67) in place of the compound (1 .1 .1-3).

Also especially preferred are compositions 127.1 to 127.3653 which differ from the corresponding compositions 1 .1 to 1.3653 only in that they comprise the compound (1.2.1-18) in place of the compound (1 .1 .1-3).

The invention also relates to agrochemical compositions comprising at least an auxiliary and at least one pyridine compound of formula (I) according to the invention.

An agrochemical composition comprises a pesticidal effective amount of a pyridine compound of formula (I). The term "effective amount" denotes an amount of the composition or of the compounds I, which is sufficient for controlling unwanted plants, especially for controlling unwanted plants in cultivated plants and which does not result in a substantial damage to the treated plants. Such an amount can vary in a broad range and is dependent on various factors, such as the plants to be controlled, the treated cultivated plant or material, the climatic conditions and the specific pyridine compound of formula (I) used.

The pyridine compounds of formula (I), their N-oxides, salts or derivatives can be converted into customary types of agrochemical compositions, e. g. solutions, emulsions, suspensions, dusts, powders, pastes, granules, pressings, capsules, and mixtures thereof. Examples for agrochemical composition types are suspensions (e.g. SC, OD, FS), emulsifiable concentrates (e.g. EC), emulsions (e.g. EW, EO, ES, ME), capsules (e.g. CS, ZC), pastes, pastilles, wettable powders or dusts (e.g. WP, SP, WS, DP, DS), pressings (e.g. BR, TB, DT), granules (e.g. WG, SG, GR, FG, GG, MG), insecticidal articles (e.g. LN), as well as gel formulations for the treatment of plant propagation materials such as seeds (e.g. GF). These and further agrochemical „ nn

109

compositions types are defined in the "Catalogue of pesticide formulation types and international coding system", Technical Monograph No. 2, 6 th Ed. May 2008, CropLife International.

The agrochemical compositions are prepared in a known manner, such as described by Mollet and Grubemann, Formulation technology, Wiley VCH, Weinheim, 2001 ; or Knowles, New devel- opments in crop protection product formulation, Agrow Reports DS243, T&F Informa, London, 2005.

Suitable auxiliaries are solvents, liquid carriers, solid carriers or fillers, surfactants, disper- sants, emulsifiers, wetters, adjuvants, solubilizers, penetration enhancers, protective colloids, adhesion agents, thickeners, humectants, repellents, attractants, feeding stimulants, compatibil- izers, bactericides, anti-freezing agents, anti-foaming agents, colorants, tackifiers and binders. Suitable solvents and liquid carriers are water and organic solvents, such as mineral oil fractions of medium to high boiling point, e.g. kerosene, diesel oil; oils of vegetable or animal origin; aliphatic, cyclic, and aromatic hydrocarbons, e. g. toluene, paraffin, tetrahydronaphthalene, alkylated naphthalenes; alcohols, e.g. ethanol, propanol, butanol, benzylalcohol, cyclohexanol; glycols; DMSO; ketones, e.g. cyclohexanone; esters, e.g. lactates, carbonates, fatty acid esters, gamma-butyrolactone; fatty acids; phosphonates; amines; amides, e.g. N-methylpyrrolidone, fatty acid dimethylamides; and mixtures thereof.

Suitable solid carriers or fillers are mineral earths, e.g. silicates, silica gels, talc, kaolins, limestone, lime, chalk, clays, dolomite, diatomaceous earth, bentonite, calcium sulfate, magnesium sulfate, magnesium oxide; polysaccharides, e.g. cellulose, starch; fertilizers, e.g. ammonium sulfate, ammonium phosphate, ammonium nitrate, ureas; products of vegetable origin, e.g. cereal meal, tree bark meal, wood meal, nutshell meal, and mixtures thereof.

Suitable surfactants are surface-active compounds, such as anionic, cationic, non-ionic, and amphoteric surfactants, block polymers, polyelectrolytes, and mixtures thereof. Such surfactants can be used as emulsifier, dispersant, solubilizer, wetter, penetration enhancer, protective colloid, or adjuvant. Examples of surfactants are listed in McCutcheon's, Vol.1 : Emulsifiers & Detergents, McCutcheon's Directories, Glen Rock, USA, 2008 (International Ed. or North American Ed.).

Suitable anionic surfactants are alkali, alkaline earth or ammonium salts of sulfonates, sul- fates, phosphates, carboxylates, and mixtures thereof. Examples of sulfonates are alkylaryl- sulfonates, diphenylsulfonates, alpha-olefin sulfonates, lignine sulfonates, sulfonates of fatty acids and oils, sulfonates of ethoxylated alkylphenols, sulfonates of alkoxylated arylphenols, sulfonates of condensed naphthalenes, sulfonates of dodecyl- and tridecylbenzenes, sulfonates of naphthalenes and alkylnaphthalenes, sulfosuccinates or sulfosuccinamates. Examples of sul- fates are sulfates of fatty acids and oils, of ethoxylated alkylphenols, of alcohols, of ethoxylated alcohols, or of fatty acid esters. Examples of phosphates are phosphate esters. Examples of carboxylates are alkyl carboxylates, and carboxylated alcohol or alkylphenol ethoxylates.

Suitable nonionic surfactants are alkoxylates, N-substituted fatty acid amides, amine oxides, esters, sugar-based surfactants, polymeric surfactants, and mixtures thereof. Examples of alkoxylates are compounds such as alcohols, alkylphenols, amines, amides, arylphenols, fatty acids, or fatty acid esters which have been alkoxylated with 1 to 50 equivalents. Ethylene oxide and/or propylene oxide may be employed for the alkoxylation, preferably ethylene oxide. Examples of N-substituted fatty acid amides are fatty acid glucamides or fatty acid alkanolamides. Examples of esters are fatty acid esters, glycerol esters, or monoglycerides. Examples of sugar- „„ Λ

110

based surfactants are sorbitans, ethoxylated sorbitans, sucrose, and glucose esters, or al- kylpoly-glucosides. Examples of polymeric surfactants are home- or copolymers of vinylpyrroli- done, vinylalcohols, or vinylacetate.

Suitable cationic surfactants are quaternary surfactants, e.g. quaternary ammonium com- pounds with one or two hydrophobic groups, or salts of long-chain primary amines. Suitable amphoteric surfactants are alkylbetains and imidazolines. Suitable block polymers are block polymers of the A-B or A-B-A type comprising blocks of polyethylene oxide and polypropylene oxide, or of the A-B-C type comprising alkanol, polyethylene oxide and polypropylene oxide. Suitable polyelectrolytes are polyacids or polybases. Examples of polyacids are alkali salts of polyacrylic acid or polyacid comb polymers. Examples of polybases are polyvinylamines or polyeth- yleneamines.

Suitable adjuvants are compounds, which have a neglectable or even no pesticidal activity themselves, and which improve the biological performance of the pyridine compounds of formula (I) on the target. Examples are surfactants, mineral or vegetable oils, and other auxiliaries. Further examples are listed by Knowles, Adjuvants, and additives, Agrow Reports DS256, T&F Informa UK, 2006, chapter 5.

Suitable thickeners are polysaccharides (e.g. xanthan gum, carboxymethylcellulose), inorganic clays (organically modified or unmodified), polycarboxylates, and silicates.

Suitable bactericides are bronopol and isothiazolinone derivatives such as alkylisothiazoli- nones and benzisothiazolinones.

Suitable anti-freezing agents are ethylene glycol, propylene glycol, urea, and glycerin.

Suitable anti-foaming agents are silicones, long chain alcohols, and salts of fatty acids.

Suitable colorants (e.g. in red, blue, or green) are pigments of low water solubility and water- soluble dyes. Examples are inorganic colorants (e.g. iron oxide, titan oxide, iron hexacyanofer- rate) and organic colorants (e.g. alizarin-, azo-, and phthalocyanine colorants).

Suitable tackifiers or binders are polyvinylpyrrolidone, polyvinylacetates, polyvinyl alcohols, polyacrylates, biological or synthetic waxes, and cellulose ethers.

Examples for agrochemical composition types and their preparation are:

i) Water-soluble concentrates (SL, LS)

10-60 wt% of a pyridine compound of formula (I) according to the invention and 5-15 wt% wetting agent (e.g. alcohol alkoxylates) are dissolved in water and/or in a water-soluble solvent (e.g. alcohols) ad 100 wt%. The active substance dissolves upon dilution with water.

ii) Dispersible concentrates (DC)

5-25 wt% of a pyridine compound of formula (I) according to the invention and 1-10 wt% dis- persant (e. g. polyvinylpyrrolidone) are dissolved in organic solvent (e.g. cyclohexanone) ad 100 wt%. Dilution with water gives a dispersion.

iii) Emulsifiable concentrates (EC)

15-70 wt% of a pyridine compound of formula (I) according to the invention and 5-10 wt% emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in water-insoluble organic solvent (e.g. aromatic hydrocarbon) ad 100 wt%. Dilution with water gives an emulsion.

iv) Emulsions (EW, EO, ES)

5-40 wt% of a pyridine compound of formula (I) according to the invention and 1 -10 wt% emulsifiers (e.g. calcium dodecylbenzenesulfonate and castor oil ethoxylate) are dissolved in 20-40 „„„

1 11

wt% water-insoluble organic solvent (e.g. aromatic hydrocarbon). This mixture is introduced into water ad 100 wt% by means of an emulsifying machine and made into a homogeneous emulsion. Dilution with water gives an emulsion.

v) Suspensions (SC, OD, FS)

In an agitated ball mill, 20-60 wt% of a pyridine compound of formula (I) according to the invention are comminuted with addition of 2-10 wt% dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate), 0,1-2 wt% thickener (e.g. xanthan gum) and water ad 100 wt% to give a fine active substance suspension. Dilution with water gives a stable suspension of the active substance. For FS type composition up to 40 wt% binder (e.g. polyvinylalco- hoi) is added.

vi) Water-dispersible granules and water-soluble granules (WG, SG)

50-80 wt% of a pyridine compound of formula (I) according to the invention are ground finely with addition of dispersants and wetting agents (e.g. sodium lignosulfonate and alcohol ethoxylate) ad 100 wt% and prepared as water-dispersible or water-soluble granules by means of technical appliances (e. g. extrusion, spray tower, fluidized bed). Dilution with water gives a stable dispersion or solution of the active substance.

vii) Water-dispersible powders and water-soluble powders (WP, SP, WS)

50-80 wt% of a pyridine compound of formula (I) according to the invention are ground in a ro- tor-stator mill with addition of 1-5 wt% dispersants (e.g. sodium lignosulfonate), 1 -3 wt% wetting agents (e.g. alcohol ethoxylate) and solid carrier (e.g. silica gel) ad 100 wt%. Dilution with water gives a stable dispersion or solution of the active substance.

viii) Gel (GW, GF)

In an agitated ball mill, 5-25 wt% of a pyridine compound of formula (I) according to the invention are comminuted with addition of 3-10 wt% dispersants (e.g. sodium lignosulfonate), 1 -5 wt% thickener (e.g. carboxymethylcellulose) and water ad 100 wt% to give a fine suspension of the active substance. Dilution with water gives a stable suspension of the active substance. iv) Microemulsion (ME)

5-20 wt% of a pyridine compound of formula (I) according to the invention are added to 5-30 wt% organic solvent blend (e.g. fatty acid dimethylamide and cyclohexanone), 10-25 wt% sur- factant blend (e.g. alcohol ethoxylate and arylphenol ethoxylate), and water ad 100 %. This mixture is stirred for 1 h to produce spontaneously a thermodynamically stable microemulsion. iv) Microcapsules (CS)

An oil phase comprising 5-50 wt% of a pyridine compound of formula (I) according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), 2-15 wt% acrylic monomers (e.g. methylmethacrylate, methacrylic acid, and a di- or triacrylate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). Radical polymerization initiated by a radical initiator results in the formation of poly(meth)acrylate microcapsules. Alternatively, an oil phase comprising 5-50 wt% of a pyridine compound of formula (I) according to the invention, 0-40 wt% water insoluble organic solvent (e.g. aromatic hydrocarbon), and an isocya- nate monomer (e.g. diphenylmethene-4,4'-diisocyanate) are dispersed into an aqueous solution of a protective colloid (e.g. polyvinyl alcohol). The addition of a polyamine (e.g. hexamethylene- diamine) results in the formation of polyurea microcapsules. The monomers amount to 1-10 wt%. The wt% relate to the total CS composition.

ix) Dustable powders (DP, DS) 1-10 wt% of a pyridine compound of formula (I) according to the invention are ground finely and mixed intimately with solid carrier (e.g. finely divided kaolin) ad 100 wt%.

x) Granules (GR, FG)

0.5-30 wt% of a pyridine compound of formula (I) according to the invention is ground finely and associated with solid carrier (e.g. silicate) ad 100 wt%. Granulation is achieved by extrusion, spray-drying or the fluidized bed.

xi) Ultra-low volume liquids (UL)

1-50 wt% of a pyridine compound of formula (I) according to the invention are dissolved in organic solvent (e.g. aromatic hydrocarbon) ad 100 wt%.

The agrochemical compositions types i) to xi) may optionally comprise further auxiliaries, such as 0,1-1 wt% bactericides, 5-15 wt% anti-freezing agents, 0,1-1 wt% anti-foaming agents, and 0,1-1 wt% colorants.

The agrochemical compositions comprising generally comprise between 0.01 and 95%, preferably between 0.1 and 90%, and in particular between 0.5 and 75%, by weight of the pyridine compound of formula (I). The pyridine compounds of formula (I) are employed in a purity of from 90% to 100%, preferably from 95% to 100% (according to NMR spectrum).

Solutions for seed treatment (LS), suspoemulsions (SE), flowable concentrates (FS), powders for dry treatment (DS), water-dispersible powders for slurry treatment (WS), water-soluble powders (SS), emulsions (ES), emulsifiable concentrates (EC) and gels (GF) are usually employed for the purposes of treatment of plant propagation materials, particularly seeds. The agrochemical compositions in question give, after two-to-tenfold dilution, active substance concentrations of from 0.01 to 60% by weight, preferably from 0.1 to 40% by weight, in the ready-to-use preparations. Application can be carried out before or during sowing.

Methods for applying pyridine compounds of formula (I) and agrochemical compositions thereof, on to plant propagation material, especially seeds, include dressing, coating, pelleting, dusting, soaking and in-furrow application methods of the propagation material. Preferably, pyridine compounds of formula (I) and agrochemical compositions thereof, are applied on to the plant propagation material by a method such that germination is not induced, e. g. by seed dressing, pelleting, coating and dusting.

Various types of oils, wetters, adjuvants, fertilizer, or micronutrients, and further pesticides

(e.g. herbicides, insecticides, fungicides, growth regulators, safeners) may be added to the pyridine compounds of formula (I) and the agrochemical compositions comprising them as premix or, if appropriate not until immediately prior to use (tank mix). These agents can be admixed with the agrochemical compositions according to the invention in a weight ratio of 1 :100 to 100:1 , preferably 1 :10 to 10:1 .

The user applies the pyridine compound of formula (I) according to the invention and the agrochemical compositions comprising them usually from a pre-dosage device, a knapsack sprayer, a spray tank, a spray plane, or an irrigation system. Usually, the agrochemical composition is made up with water, buffer, and/or further auxiliaries to the desired application concentration and the ready-to-use spray liquor or the agrochemical composition according to the invention is thus obtained. Usually, 20 to 2000 liters, preferably 50 to 400 liters, of the ready-to-use spray liquor are applied per hectare of agricultural useful area.

According to one embodiment, either individual components of the agrochemical composition according to the invention or partially premixed components, e. g. components comprising pyridine compounds of formula (I) may be mixed by the user in a spray tank and further auxiliaries and additives may be added, if appropriate.

In a further embodiment, individual components of the agrochemical composition according to the invention such as parts of a kit or parts of a binary or ternary mixture may be mixed by the user himself in a spray tank and further auxiliaries may be added, if appropriate.

In a further embodiment, either individual components of the agrochemical composition according to the invention or partially premixed components, e. g components comprising pyridine compounds of formula (I) can be applied jointly (e.g. after tank mix) or consecutively.

The pyridine compounds of formula (I), are suitable as herbicides. They are suitable as such or as an appropriately formulated composition (agrochemical composition).

The pyridine compounds of formula (I), or the agrochemical compositions comprising the pyridine compounds of formula (I), control vegetation on non-crop areas very efficiently, especially at high rates of application. They act against broad-leaved weeds and grass weeds in crops such as wheat, rice, maize, soya, and cotton without causing any significant damage to the crop plants. This effect is mainly observed at low rates of application.

The pyridine compounds of formula (I), or the agrochemical compositions comprising them, are applied to the plants mainly by spraying the leaves. Here, the application can be carried out using, e.g., water as carrier by customary spraying techniques using spray liquor amounts of from about 100 to 1000 l/ha (e.g. from 300 to 400 l/ha). The pyridine compounds of formula (I), or the agrochemical compositions comprising them, may also be applied by the low-volume or the ultra-low-volume method, or in the form of micro granules.

Application of the pyridine compounds of formula (I), or the agrochemical compositions comprising them, can be done before, during, and/or after, preferably during and/or after, the emergence of the undesirable plants.

The pyridine compounds of formula (I), or the agrochemical compositions comprising them, can be applied pre-, post-emergence or pre-plant, or together with the seed of a crop plant. It is also possible to apply the pyridine compounds of formula (I), or the agrochemical compositions comprising them, by applying seed, pretreated with the pyridine compounds of formula (I), or the agrochemical compositions comprising them, of a crop plant. If the active ingredients are less well tolerated by certain crop plants, application techniques may be used in which the herbicidal compositions are sprayed, with the aid of the spraying equipment, in such a way that as far as possible they do not come into contact with the leaves of the sensitive crop plants, while the active ingredients reach the leaves of undesirable plants growing underneath, or the bare soil sur- face (post-directed, lay-by).

In a further embodiment, the pyridine compounds of formula (I), or the agrochemical compositions comprising them, can be applied by treating seed. The treatment of seeds comprises essentially all procedures familiar to the person skilled in the art (seed dressing, seed coating, seed dusting, seed soaking, seed film coating, seed multilayer coating, seed encrusting, seed dripping and seed pelleting) based on the pyridine compounds of formula (I), or the agrochemical compositions prepared therefrom. Here, the herbicidal compositions can be applied diluted or undiluted.

The term "seed" comprises seed of all types, such as, e.g., corns, seeds, fruits, tubers, seedlings and similar forms. Here, preferably, the term seed describes corns and seeds. The „„ .

114

seed used can be seed of the useful plants mentioned above, but also the seed of transgenic plants or plants obtained by customary breeding methods.

When employed in plant protection, the amounts of active substances applied, i.e. the pyridine compounds of formula (I) without formulation auxiliaries, are, depending on the kind of effect de- sired, from 0.001 to 2 kg per ha, preferably from 0.005 to 2 kg per ha, more preferably from 0.05 to 0.9 kg per ha and in particular from 0.1 to 0.75 kg per ha.

In another embodiment of the invention, the application rate of the pyridine compounds of formula (I) is from 0.001 to 3 kg/ha, preferably from 0.005 to 2.5 kg/ha and in particular from 0.01 to 2 kg/ha of active substance (a.s.).

In another preferred embodiment of the invention, the rates of application of the pyridine compounds of formula (I) according to the present invention (total amount of pyridine

compounds of formula (I)) are from 0.1 g/ha to 3000 g/ha, preferably 10 g/ha to 1000 g/ha, depending on the control target, the season, the target plants and the growth stage.

In another preferred embodiment of the invention, the application rates of the pyridine com- pounds of formula (I) are in the range from 0.1 g/ha to 5000 g/ha and preferably in the range from 1 g/ha to 2500 g/ha or from 5 g/ha to 2000 g/ha.

In another preferred embodiment of the invention, the application rate of the pyridine compounds of formula (I) is 0.1 to 1000 g/ha, preferablyl to 750 g/ha, more preferably 5 to 500 g/ha.

In treatment of plant propagation materials such as seeds, e. g. by dusting, coating or drenching seed, amounts of active substance of from 0.1 to 1000 g, preferably from 1 to 1000 g, more preferably from 1 to 100 g, and most preferably from 5 to 100 g, per 100 kilogram of plant propagation material (preferably seeds) are generally required.

In another embodiment of the invention, to treat the seed, the amounts of active substances applied, i.e. the pyridine compounds of formula (I) are generally employed in amounts of from 0.001 to 10 kg per 100 kg of seed.

When used in the protection of materials or stored products, the amount of active substance applied depends on the kind of application area and on the desired effect. Amounts customarily applied in the protection of materials are 0.001 g to 2 kg, preferably 0.005 g to 1 kg, of active substance per cubic meter of treated material.

Depending on the application method in question, the pyridine compounds of formula (I), or the agrochemical compositions comprising them, can additionally be employed in a further number of crop plants for eliminating undesirable plants. Examples of suitable crops are the following:

Allium cepa, Ananas comosus, Arachis hypogaea, Asparagus officinalis, Avena sativa, Beta vulgaris spec, altissima, Beta vulgaris spec, rapa, Brassica napus var. napus, Brassica napus var. napobrassica, Brassica rapa var. silvestris, Brassica oleracea, Brassica nigra, Camellia sinensis, Carthamus tinctorius, Carya illinoinensis, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cucumis sativus, Cynodon dactylon, Daucus carota, Elaeis guineensis, Fragaria vesca, Glycine max, Gossypium hirsutum, (Gossypium arboreum,

Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hevea brasiliensis, Hordeum vulgare, Humulus lupulus, Ipomoea batatas, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec, Manihot esculenta, Medicago sativa, Musa spec, Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa, Phaseolus lunatus, Phaseolus „„ ,_

1 15

vulgaris, Picea abies, Pinus spec, Pistacia vera, Pisum sativum, Prunus avium, Prunus persica, Pyrus communis, Prunus armeniaca, Prunus cerasus, Prunus dulcis and Prunus domestica, Ribes sylvestre, Ricinus communis, Saccharum officinarum, Secale cereale, Sinapis alba, Solanum tuberosum, Sorghum bicolor (s. vulgare), Theobroma cacao, Trifolium pratense, Triticum aestivum, Triticale, Triticum durum, Vicia faba, Vitis vinifera, and Zea mays.

Preferred crops are Arachis hypogaea, Beta vulgaris spec, altissima, Brassica napus var. napus, Brassica oleracea, Citrus limon, Citrus sinensis, Coffea arabica (Coffea canephora, Coffea liberica), Cynodon dactylon, Glycine max, Gossypium hirsutum, (Gossypium arboreum, Gossypium herbaceum, Gossypium vitifolium), Helianthus annuus, Hordeum vulgare, Juglans regia, Lens culinaris, Linum usitatissimum, Lycopersicon lycopersicum, Malus spec, Medicago sativa, Nicotiana tabacum (N.rustica), Olea europaea, Oryza sativa , Phaseolus lunatus, Phaseolus vulgaris, Pistacia vera, Pisum sativum, Prunus dulcis, Saccharum officinarum, Secale cereale, Solanum tuberosum, Sorghum bicolor (s. vulgare), Triticale, Triticum aestivum, Triticum durum, Vicia faba, Vitis vinifera, and Zea mays.

Especially preferred crops are crops of cereals, corn, soybeans, rice, oilseed rape, cotton, potatoes, peanuts, or permanent crops.

The pyridine compounds of formula (I) according to the invention, or the agrochemical compositions comprising them, can also be used in genetically modified plants. The term "genetically modified plants" is to be understood as plants whose genetic material has been modified by the use of recombinant DNA techniques to include an inserted sequence of DNA that is not native to that plant species' genome or to exhibit a deletion of DNA that was native to that species' genome, wherein the modification(s) cannot readily be obtained by cross breeding, mutagenesis or natural recombination alone. Often, a particular genetically modified plant will be one that has obtained its genetic modification(s) by inheritance through a natural breeding or propagation process from an ancestral plant whose genome was the one directly treated by use of a recombinant DNA technique. Typically, one or more genes have been integrated into the genetic material of a genetically modified plant in order to improve certain properties of the plant. Such genetic modifications also include but are not limited to targeted post-translational modification of protein(s), oligo- or polypeptides, e. g., by inclusion therein of amino acid mutation(s) that per- mit, decrease, or promote glycosylation or polymer additions such as prenylation, acetylation farnesylation, or PEG moiety attachment.

Plants that have been modified by breeding, mutagenesis or genetic engineering, e.g. have been rendered tolerant to applications of specific classes of herbicides, such as auxin herbicides such as dicamba or 2,4-D; bleacher herbicides such as hydroxyphenylpyruvate dioxygen- ase (HPPD) inhibitors or phytoene desaturase (PDS) inhibitors; acetolactate synthase (ALS) inhibitors such as sulfonyl ureas or imidazolinones; enolpyruvyl shikimate 3-phosphate synthase (EPSP) inhibitors such as glyphosate; glutamine synthetase (GS) inhibitors such as glufosinate; protoporphyrinogen-IX oxidase inhibitors; lipid biosynthesis inhibitors such as acetyl CoA carboxylase (ACCase) inhibitors; or oxynil (i. e. bromoxynil or ioxynil) herbicides as a result of con- ventional methods of breeding or genetic engineering; furthermore, plants have been made resistant to multiple classes of herbicides through multiple genetic modifications, such as resistance to both glyphosate and glufosinate or to both glyphosate and a herbicide from another class such as ALS inhibitors, HPPD inhibitors, auxin herbicides, or ACCase inhibitors. These herbicide resistance technologies are, e.g., described in Pest Management Science 61 , 2005, „„„

116

246; 61 , 2005, 258; 61 , 2005, 277; 61 , 2005, 269; 61 , 2005, 286; 64, 2008, 326; 64, 2008, 332; Weed Science 57, 2009, 108; Australian Journal of Agricultural Research 58, 2007, 708; Science 316, 2007, 1 185; and references quoted therein. Several cultivated plants have been rendered tolerant to herbicides by mutagenesis and conventional methods of breeding, e. g., Clear- field® summer rape (Canola, BASF SE, Germany) being tolerant to imidazolinones, e. g., ima- zamox, or ExpressSun® sunflowers (DuPont, USA) being tolerant to sulfonyl ureas, e. g., tribe- nuron. Genetic engineering methods have been used to render cultivated plants such as soybean, cotton, corn, beets and rape, tolerant to herbicides such as glyphosate, imidazolinones, and glufosinate, some of which are under development or commercially available under the brands or trade names RoundupReady® (glyphosate tolerant, Monsanto, USA), Cultivance® (imidazolinone tolerant, BASF SE, Germany), and LibertyLink® (glufosinate tolerant, Bayer CropScience, Germany).

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more insecticidal proteins, especially those known from the bacterial genus Bacillus, particularly from Bacillus thuringiensis, such as delta-endotoxins, e. g., CrylA(b), CrylA(c), CrylF, CrylF(a2), CryllA(b), CrylllA, CrylllB(bl ) or Cry9c; vegetative insecticidal proteins (VIP), e. g., VIP1 , VIP2, VIP3, or VIP3A; insecticidal proteins of bacteria colonizing nematodes, e. g., Photorhabdus spp. or Xenorhabdus spp.; toxins produced by animals, such as scorpion toxins, arachnid toxins, wasp toxins, or other insect-specific neurotoxins; toxins pro- duced by fungi, such as Streptomycetes toxins, plant lectins, such as pea or barley lectins; agglutinins; proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cys- tatin or papain inhibitors; ribosome-inactivating proteins (RIP), such as ricin, maize-RIP, abrin, luffin, saporin or bryodin; steroid metabolism enzymes, such as 3-hydroxy-steroid oxidase, ec- dysteroid-IDP-glycosyl-transferase, cholesterol oxidases, ecdysone inhibitors or HMG-CoA-re- ductase; ion channel blockers, such as blockers of sodium or calcium channels; juvenile hormone esterase; diuretic hormone receptors (helicokinin receptors); stilbene synthase, bibenzyl synthase, chitinases or glucanases. In the context of the present invention these insecticidal proteins or toxins are to be understood expressly also as including pre-toxins, hybrid proteins, truncated or otherwise modified proteins. Hybrid proteins are characterized by a new combina- tion of protein domains, (see, e. g., WO 02/015701 ). Further examples of such toxins or genetically modified plants capable of synthesizing such toxins are disclosed, e. g., in EP-A 374 753, WO 93/007278, WO 95/34656, EP-A 427 529, EP-A 451 878, WO 03/18810, and WO

03/52073. The methods for producing such genetically modified plants are generally known to the person skilled in the art and are described, e. g., in the publications mentioned above.

These insecticidal proteins contained in the genetically modified plants impart to the plants producing these proteins tolerance to harmful pests from all taxonomic groups of arthropods, especially to beetles (Coeloptera), two-winged insects (Diptera), and moths (Lepidoptera) and to nematodes (Nematoda). Genetically modified plants capable to synthesize one or more insecticidal proteins are, e. g., described in the publications mentioned above, and some of which are commercially available such as YieldGard® (corn cultivars producing the CrylAb toxin), Yield- Gard® Plus (corn cultivars producing CrylAb and Cry3Bb1 toxins), Starlink® (corn cultivars producing the Cry9c toxin), Herculex® RW (corn cultivars producing Cry34Ab1 , Cry35Ab1 and the enzyme Phosphinothricin-N-Acetyltransferase [PAT]); NuCOTN® 33B (cotton cultivars producing the CrylAc toxin), Bollgard® I (cotton cultivars producing the CrylAc toxin), Bollgard® II „„_,

1 17

(cotton cultivars producing CrylAc and Cry2Ab2 toxins); VIPCOT® (cotton cultivars producing a VIP-toxin); NewLeaf® (potato cultivars producing the Cry3A toxin); Bt-Xtra®, NatureGard®, KnockOut®, BiteGard®, Protecta®, Bt1 1 (e. g., Agrisure® CB) and Bt176 from Syngenta Seeds SAS, France, (corn cultivars producing the CrylAb toxin and PAT enzyme), MIR604 from Syn- genta Seeds SAS, France (corn cultivars producing a modified version of the Cry3A toxin, c.f. WO 03/018810), MON 863 from Monsanto Europe S.A., Belgium (corn cultivars producing the Cry3Bb1 toxin), IPC 531 from Monsanto Europe S.A., Belgium (cotton cultivars producing a modified version of the CrylAc toxin) and 1507 from Pioneer Overseas Corporation, Belgium (corn cultivars producing the Cry1 F toxin and PAT enzyme).

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the resistance or tolerance of those plants to bacterial, viral or fungal pathogens. Examples of such proteins are the so-called "pathogene- sis-related proteins" (PR proteins, see, e.g., EP-A 392 225), plant disease resistance genes (e. g., potato culti-vars, which express resistance genes acting against Phytophthora infestans de- rived from the Mexican wild potato, Solanum bulbocastanum) or T4-lyso-zym (e.g., potato cultivars capable of synthesizing these proteins with increased resistance against bacteria such as Erwinia amylovora). The methods for producing such genetically modi-fied plants are generally known to the person skilled in the art and are described, e.g., in the publications mentioned above.

Furthermore, plants are also covered that are by the use of recombinant DNA techniques capable to synthesize one or more proteins to increase the productivity (e.g., bio-mass production, grain yield, starch content, oil content or protein content), tolerance to drought, salinity or other growth-limiting environmental factors or tolerance to pests and fungal, bacterial or viral pathogens of those plants.

Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of ingredients or new ingredients, specifically to improve human or animal nutrition, e. g., oil crops that produce health-promoting long-chain omega-3 fatty acids or unsaturated omega-9 fatty acids (e. g., Nexera® rape, Dow AgroSciences, Canada).

Furthermore, plants are also covered that contain by the use of recombinant DNA techniques a modified amount of ingredients or new ingredients, specifically to improve raw material production, e.g., potatoes that produce increased amounts of amylopectin (e.g. Amflora® potato, BASF SE, Germany).