Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HETEROCYCLYLCARBONYL AMINOCYCLOPROPANE CARBOXYLIC ACID DERIVATIVES
Document Type and Number:
WIPO Patent Application WO/2004/024692
Kind Code:
A1
Abstract:
Disclosed are novel heterocyclylcarbonyl aminocyclopropane carboxylic acid derivatives of formula (I), in which G represents five-membered or six-membered heterocyclyl that is substituted by halogen and/or alkyl having 1 to 4 hydrocarbon atoms and can also contain an anellated cyclohexane radical, R represents an -O-R1 group, -NH-R2 group, or (Ia) group, or an optionally substituted, saturated N-heterocyclyl radical that is linked to the carbonyl group via nitrogen, and R1, R2, R3, and R4 independently represent optionally substituted alkyl, optionally substituted alkenyl, optionally substituted alkinyl, optionally substituted cycloalkyl, optionally substituted aryl, or optionally substituted aralkyl. Also disclosed are several methods for producing said novel agents and the use thereof as microbicides. The invention further relates to novel acylamino cyclopropane carboxylic acids of formula (IV), in which G has the meaning indicated above, and a method for producing said substances.

Inventors:
KRUEGER BERND-WIELAND (DE)
ASSMANN LUTZ (DE)
MAULER-MACHNIK ASTRID (DE)
KUCK KARL-HEINZ (DE)
KITAGAWA YOSHINORI (JP)
Application Number:
PCT/EP2003/009124
Publication Date:
March 25, 2004
Filing Date:
August 18, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAYER CROPSCIENCE AG (DE)
KRUEGER BERND-WIELAND (DE)
ASSMANN LUTZ (DE)
MAULER-MACHNIK ASTRID (DE)
KUCK KARL-HEINZ (DE)
KITAGAWA YOSHINORI (JP)
International Classes:
A01N53/00; C07D213/81; C07D275/03; C07D277/30; C07D333/38; C07D275/02; (IPC1-7): C07D213/81; A01N43/40; A01N43/42; A01N43/78; C07D215/16; C07D277/30; C07D333/26
Foreign References:
EP0221502A11987-05-13
Other References:
PATENT ABSTRACTS OF JAPAN vol. 018, no. 601 (C - 1274) 16 November 1994 (1994-11-16)
Attorney, Agent or Firm:
BAYER CROPSCIENCE AKTIENGESELLSCHAFT (Patents and Licensing, Leverkusen, DE)
Download PDF:
Claims:
Patentansprüche
1. Heterocyclylcarbonylaminocyclopropancarbonsäurederivate der Formel in welcher G für fünfoder sechsgliedriges Heterocyclyl steht, das durch Halogen und/oder Alkyl mit 1 bis 4 Kohlenstoffatomen substituiert ist und auch einen annellierten CyclohexanRest enthalten kann, und R für eine GruppeORl,NHR2 oder steht oder für einen gegebenenfalls substituierten, gesättigten NHeterocyclylRest steht, der über Stickstoff mit der Carbonylgruppe verbunden ist, Rl, R2, R3 und R4 unabhängig voneinander für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substi tuiertes Alkinyl, gegebenenfalls substituiertes Cycloalkyl, gegebenen falls substituiertes Aryl oder für gegebenenfalls substituiertes Aralkyl stehen.
2. Verfahren zur Herstellung von Heterocyclylcarbonylaminocyclopropancar bonsäurederivaten der Formel (I) gemäß Anspruch 1, dadurch gekenn zeichnet, dass man a) Aminocyclopropancarbonsäureester der Formel in welcher Rl die oben angegebene Bedeutung hat, bzw. deren Hydrohalogenide oder Hydrogensulfate mit Säurehalogeniden der Formel in welcher X für Halogen steht und G die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebe nenfalls in Gegenwart eines Säurebindemittels umsetzt, oder b) Acylaminocyclopropancarbonsäuren der Formel in welcher G die oben angegebene Bedeutung hat, mit Verbindungen der Formel RH (V) in welcher R die oben angegebene Bedeutung hat, in Gegenwart eines Kondensationsmittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels sowie gegebenenfalls in Gegenwart eines Katalysators umsetzt.
3. Mikrobizide Mittel, gekennzeichnet durch einen Gehalt an mindestens einem Heterocyclylcarbonylaminocyclopropancarbonsäurederivat der Formel (I) gemäß Anspruch 1 neben Streckmitteln und/oder oberflächenaktiven Stoffen.
4. Verwendung von Heterocylylcarbonylaminocyclopropancarbonsäurederi vaten der Formel (I) gemäß Anspruch 1 zur Bekämpfung von unerwünschten Mirkoorganismen.
5. Verfahren zur Bekämpfung von unerwünschten Mikroorganismen, dadurch gekennzeichnet, dass man Heterocyclylcarbonylaminocyclopropancarbon säurederivate der Formel (I) gemäß Anspruch 1 auf die Mikroorganismen und/oder deren Lebensraum ausbringt.
6. Verfahren zur Herstellung von mikrobiziden Mitteln, dadurch gekenn zeichnet, dass man Heterocyclylcarbonylaminocyclopropancarbonsäure derivate der Formel (I) gemäß Anspruch 1 mit Streckmitteln und/oder ober flächenaktiven Stoffen vermischt.
7. Acylaminocyclopropancarbonsäuren der Formel in welcher G für fünfoder sechsgliedriges Heterocyclyl steht, das durch Halogen und/oder Alkyl mit 1 bis 4 Kohlenstoffatomen substituiert ist und auch einen annellierten CyclohexanRest enthalten kann.
8. Verfahren zur Herstellung von Acylaminocyclopropancarbonsäuren der Formel (IV) gemäß Anspruch 7, dadurch gekennzeichnet, dass man c) Heterocyclylcarbonylaminocyclopropancarbonsäurederivate der Formel in welcher G die in Anspruch 7 angegebenen Bedeutungen hat und Ri für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substi tuiertes Cycloalkyl, gegebenenfalls substituiertes Aryl oder für gegebenenfalls substituiertes Arakyl steht, mit Wasser in Gegenwart einer Base und gegebenenfalls in Gegenwart eines organischen Verdünnungsmittels umsetzt.
Description:
Heterocyclylcarbonyl-aminocyclopropancarbonsäure-derivate Die vorliegende Erfindung betrifft neue Heterocyclylcarbonylaminocyclopropan- carbonsäurederivate, mehrere Verfahren zu deren Herstellung und deren Verwendung zur Bekämpfung von unerwünschten Mikroorganismen.

Es ist bereits bekannt geworden, dass zahlreiche Acylaminocyclopropancarbon- säurederivate fungizide Eigenschaften besitzen (vgl. DE-A 35 39 307, DE-A 195 44 674 und WO 01-12 587).

Die Wirksamkeit der dort beschriebenen Stoffe ist gut, lässt aber bei niedrigen Aufwandmengen in manchen Fällen zu wünschen übrig.

Es wurden nun neue Heterocyclylcarbonylaminocyclopropancarbonsäurederivate der Formel in welcher G für fünf-oder sechsgliedriges Heterocyclyl steht, das durch Halogen und/oder Alkyl mit 1 bis 4 Kohlenstoffatomen substituiert ist und auch einen annellierten Cyclohexan-Rest enthalten kann, und

R für eine Gruppe-O-R1,-NH-R2 oder steht oder für einen gegebenenfalls substituierten, gesättigten N-Heterocyclyl-Rest steht, der über Stickstoff mit der Carbonylgruppe verbunden ist, wobei Rl, R2, R3 und R4 unabhängig voneinander für gegebenenfalls substituiertes Alkyl, gegebenenfalls substituiertes Alkenyl, gegebenenfalls substituiertes Alkinyl, gegebenenfalls substituiertes Cycloalkyl, gegebenenfalls substituiertes Aryl oder für gegebenenfalls substituiertes Aralkyl stehen, gefunden.

Weiterhin wurde gefunden, dass man Heterocyclylcarbonylaminocyclopropancarbon- säurederivate der Formel (I) erhält, wenn man a) Aminocyclopropancarbonsäureester der Formel in welcher Rl die oben angegebene Bedeutung hat, bzw. deren Hydrohalogenide oder Hydrogensulfate mit Säurehalogeniden der Formel

in welcher X für Halogen steht und G die oben angegebene Bedeutung hat, gegebenenfalls in Gegenwart eines Verdünnungsmittels und gegebenenfalls in Gegenwart eines Säurebindemittels umsetzt, oder b) Acylaminocyclopropancarbonsäuren der Formel in welcher G die oben angegebene Bedeutung hat, mit Verbindungen der Formel R-H (V) in welcher

R die oben angegebene Bedeutung hat, in Gegenwart eines Kondensationsmittels und gegebenenfalls in Gegenwart eines Verdünnungsmittels sowie gegebenenfalls in Gegenwart eines Katalysators umsetzt.

Schließlich wurde gefunden, dass die neuen Heterocyclylcarbonylaminocyclo- propancarbonsäurederivate der Formel (I) sehr gute mikrobizide Eigenschaften besitzen und sowohl im Pflanzenschutz als auch im Materialschutz zur Bekämpfung unerwünschter Mikroorganismen eingesetzt werden können. Die erfindungsgemäßen Stoffe lassen sich nicht nur zur direkten Bekämpfung von unerwünschten Mikroorganismen verwenden, sondern üben auf Pflanzen auch eine resistenz- induzierende Wirkung aus.

Überraschenderweise zeigen die erfindungsgemäßen Heterocyclylcarbonylamino- cyclopropancarbonsäurederivate der Formel (I) eine wesentlich bessere fungizide Wirksamkeit als die konstitutionell ähnlichsten, vorbekannten Wirkstoffe gleicher Wirkungsrichtung.

Die erfindungsgemäßen Heterocyclylcarbonylaminocyclopropancarbonsäurederivate sind durch die Formel (I) allgemein definiert. Bevorzugt sind diejenigen Stoffe der Formel (I), in denen G für einfach bis dreifach durch Chlor, Brom und/oder Methyl substituiertes Pyridyl steht, für einen einfach oder zweifach durch Chlor, Brom und/oder Methyl substituierten Rest der Formel if 4-steht, C (N

für einfach bis dreifach durch Chlor und/oder Brom substituiertes Thienyl steht oder für einfach oder zweifach durch Chlor und/oder Brom substituiertes Isothiazolyl steht, und R für einen gegebenenfalls durch Alkyl mit 1 bis 4 Kohlenstoffatomen substituierten, fünf-bis siebengliedrigen, gesättigten N-Heterocyclyl-Rest steht, der über Stickstoff mit der Carbonylgruppe verbunden ist und 1 bis 3 Stickstoffatome enthält, wobei ein Stickstoffatom durch ein Sauerstoff-oder Schwefelatom ersetzt sein kann, oder R für eine Gruppe-ORI,-NH-R2 oder steht, worin RI für gegebenenfalls durch Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Alkyl mit 1 bis 8 Kohlenstoffatomen, für gegebenenfalls durch Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Alkenyl mit 2 bis 8 Kohlenstoffatomen, für gegebenenfalls durch Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Alkinyl mit 2 bis 8 Kohlen- stoffatomen steht, oder für gegebenenfalls durch Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Cycloalkyl mit 3 bis 8 Kohlenstoffatomen steht, oder für Aryl mit 6 oder 10 Kohlenstoffatomen oder für Aralkyl mit 6 oder 10 Kohlenstoffatomen im Arylteil und 1 bis 4 Kohlenstoffatomen im

Alkylteil steht, wobei diese Reste jeweils im Arylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl ; jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoff- atomen ; jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen ; jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen ; jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogen- alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen ; jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Hydroximino- alkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, oder die Aryl-Reste einfach substituiert sein können durch zweifach in ortho-Stellung verknüpftes Alkylen mit 3 bis 4 Kohlenstoffatomen oder Dioxyalkylen mit 1 oder 2 Kohlenstoffatomen, wobei diese Reste

einfach bis vierfach, gleichartig oder verschieden substituiert sein können durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, R2 für gegebenenfalls durch Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Alkyl mit 1 bis 8 Kohlenstoffatomen, für gegebenenfalls durch Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Alkenyl mit 2 bis 8 Kohlenstoffatomen, für gegebenenfalls durch Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Alkinyl mit 2 bis 8 Kohlen- stoffatomen steht, oder für gegebenenfalls durch Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Cycloalkyl mit 3 bis 8 Kohlenstoffatomen steht, oder für Aryl mit 6 oder 10 Kohlenstoffatomen oder für Aralkyl mit 6 oder 10 Kohlenstoffatomen im Arylteil und 1 bis 4 Kohlenstoffatomen im Alkylteil steht, wobei diese Reste jeweils im Arylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl ; jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlenstoff- atomen ; jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen ; jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenalkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl

mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen ; jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halo- genalkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen ; jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Hydrox- iminoalkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoff- atomen in den einzelnen Alkylteilen oder Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, oder die Arylreste einfach substituiert sein können durch zweifach in ortho-Stellung verknüpftes Alkylen mit 3 oder 4 Kohlenstoffatomen oder Dioxyalkylen mit 1 oder 2 Kohlenstoffatomen, wobei diese Reste einfach bis vierfach, gleichartig oder verschieden substituiert sein können durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffstoffatomen und 1 bis 9 gleichen oder verschiedenen Halogenatomen, und R3 und R4 unabhängig voneinander für gegebenenfalls durch Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Alkyl mit 1 bis 8 Kohlen- stoffatomen, für gegebenenfalls durch Alkoxy mit 1 bis 4 Koh- lenstoffatomen substituiertes Alkenyl mit 2 bis 8 Kohlenstoffatomen, für gegebenenfalls durch Alkoxy mit 1 bis 4 Kohlenstoffatomen substituiertes Alkinyl mit 2 bis 8 Kohlenstoffatomen stehen, oder

für gegebenenfalls durch Alkyl mit 1 bis 4 Kohlenstoffatomen substituiertes Cycloalkyl mit 3 bis 8 Kohlenstoffatomen stehen, oder für Aryl mit 6 oder 10 Kohlenstoffatomen oder für Aralkyl mit 6 oder 10 Kohlenstoffatomen im Arylteil und 1 bis 4 Kohlenstoffatomen im Alkylteil stehen, wobei diese Reste jeweils im Arylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Halogen, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl ; jeweils geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylthio, Alkylsulfinyl oder Alkylsulfonyl mit jeweils 1 bis 6 Kohlen- stoffatomen ; jeweils geradkettiges oder verzweigtes Alkenyl oder Alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen ; jeweils geradkettiges oder verzweigtes Halogenalkyl, Halogenalkoxy, Halogenälkylthio, Halogenalkylsulfinyl oder Halogenalkylsulfonyl mit jeweils 1 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen ; jeweils geradkettiges oder verzweigtes Halogenalkenyl oder Halogen- alkenyloxy mit jeweils 2 bis 6 Kohlenstoffatomen und 1 bis 13 gleichen oder verschiedenen Halogenatomen ; jeweils geradkettiges oder verzweigtes Alkylamino, Dialkylamino, Alkylcarbonyl, Alkylcarbonyloxy, Alkoxycarbonyl, Hydroximino- alkyl oder Alkoximinoalkyl mit jeweils 1 bis 6 Kohlenstoffatomen in den einzelnen Alkylteilen oder

Cycloalkyl mit 3 bis 6 Kohlenstoffatomen, oder die Aryl-Reste einfach substituiert sein können durch zweifach in ortho-Stellung verknüpftes Alkylen mit 3 oder 4 Kohlenstoffatomen oder Dioxyalkylen mit 1 oder 2 Kohlenstoffatomen, wobei diese Reste einfach bis vierfach, gleichartig oder verschieden substituiert sein können durch Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen und/oder Halogenalkyl mit 1 bis 4 Kohlenstoffstoffaromen und 1 bis 9 gleichen oder verschiedenen Halogenatomen.

Besonders bevorzugt sind Verbindungen der Formel (I), in denen G für 2,6-Dichlorpyrid-4-yl, 3,4-Dichlorisothiazol-5-yl, 5-Brom-2-thienyl, 5- Chlor-2-thienyl oder 4, 5-Dibrom-2-thienyl steht, oder G für 2-Chlor-pyrid-4-yl, 2-Chlor-6-methyl-pyrid-4-yl oder den Rest der Formel * steht, (", N CI

R für gegebenenfalls durch Methyl, Ethyl, n-oder i-Propyl, n-, i-, s-oder t- Butyl substituiertes Pyrrolidinyl, Piperidinyl, Hexahydroazepinyl, Mor- pholinyl oder Piperazinyl steht, oder R für eine Gruppe-OR1,-NH-R2 oder steht, worin

RI für jeweils gegebenenfalls durch Methoxy oder Ethoxy substituiertes Methyl, Ethyl, n-oder i-Propyl, n-, i-, s-oder t-Butyl, Pentyl, Hexyl, Heptyl oder Octyl, Allyl, Butenyl, Pentenyl, Propargyl, Butinyl oder Pentinyl steht, oder für jeweils gegebenenfalls durch Methyl oder Ethyl substituiertes Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl steht, oder für Phenyl, Benzyl oder Phenethyl steht, wobei diese Reste jeweils im Phenylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Methyl, Ethyl, n-oder i-Propyl, n-, i-, s-oder t-Butyl, Methoxy, Ethoxy, n-oder i-Propoxy, Methylthio, Ethylthio, n-oder i- Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluormethoxy, Tri- fluormethoxy, Difluörchlormethoxy, Trifluorethoxy, Difluor- methylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluor- methylsulfinyl oder Trifluormethylsulfonyl, Methylamino, Ethyl- amino, n-oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxy, Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethox- iminomethyl, Methoximinoethyl oder Ethoximinoethyl oder Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl, oder die Phenyl-Reste einfach substituiert sein können durch zweifach in ortho-Stellung verknüpftes Trimethylen (Propan-1, 3-diyl), Tetra- methylen (Butan-1, 4-diyl) oder Ethylendioxy, wobei jeder dieser Reste einfach bis vierfach, gleichartig oder verschieden substituiert

sein kann durch Fluor, Chlor, Methyl, Trifluormethyl, Ethyl, n-Propyl oder Isopropyl, oder die Phenyl-Reste einfach substituiert sein können durch zweifach in ortho-Stellung verknüpftes Methylendioxy, das einfach oder zweifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Methyl, Trifluormethyl, Ethyl, n-Propyl oder Isopropyl, R2 für jeweils gegebenenfalls durch Methoxy oder Ethoxy substituiertes Methyl, Ethyl, n-oder i-Propyl, n-, i-, s-oder t-Butyl, Pentyl, Hexyl, Heptyl oder Octyl, Allyl, Butenyl, Pentenyl, Propargyl, Butinyl oder Pentinyl steht, oder für jeweils gegebenenfalls durch Methyl oder Ethyl substituiertes Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl steht, oder für Phenyl, Benzyl oder Phenethyl steht, wobei diese Reste jeweils im Phenylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Methyl, Ethyl, n-oder i-Propyl, n-, i-, s-oder t-Butyl, Methoxy, Ethoxy, n-oder i-Propoxy, Methylthio, Ethylthio, n-oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl oder Tri- fluormethylsulfonyl, Methylamino, Ethylamino, n-oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxy, Meth- oxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinoethyl oder Ethoximinoethyl, oder Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl,

oder die Phenyl-Reste einfach substituiert sein können durch zweifach in ortho-Stellung verknüpftes Trimethylen (Propan-1, 3-diyl), Tetramethylen (Butan-1,4-diyl) oder Ethylendioxy, wobei jeder dieser Reste einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Methyl, Trifluormethyl, Ethyl, n-Propyl oder Isopropyl, oder die Phenyl-Reste einfach substituiert sein können durch zweifach in ortho- Stellung verknüpftes Methylendioxy, das einfach oder zweifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Methyl, Trifluormethyl, Ethyl, n-Propyl oder Isopropyl, R3 und R4 unabhängig voneinander jeweils für gegebenenfalls durch Methoxy oder Ethoxy substituiertes Methyl, Ethyl, n-oder i-Propyl, n-, i-, s-oder t-Butyl, Pentyl, Hexyl, Heptyl oder Octyl, Allyl, Butenyl, Pentenyl, Propargyl, Butinyl oder Pentinyl stehen, oder für jeweils gegebenenfalls durch Methyl oder Ethyl substituiertes Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl stehen, oder für Phenyl, Benzyl oder Phenethyl stehen, wobei diese Reste jeweils im Phenylteil einfach bis dreifach, gleichartig oder verschieden substituiert sein können durch Fluor, Chlor, Brom, Cyano, Nitro, Amino, Hydroxy, Formyl, Carboxy, Carbamoyl, Thiocarbamoyl, Methyl, Ethyl, n-oder i-Propyl, n-, i-, s-oder t-Butyl, Methoxy, Ethoxy, n-oder i-Propoxy, Methylthio, Ethylthio, n-oder i-Propylthio, Methylsulfinyl, Ethylsulfinyl, Methylsulfonyl oder Ethylsulfonyl, Trifluormethyl, Trifluorethyl, Difluormethoxy, Trifluormethoxy, Difluorchlormethoxy, Trifluorethoxy, Difluormethylthio, Difluorchlormethylthio, Trifluormethylthio, Trifluormethylsulfinyl oder Tri- fluormethylsulfonyl, Methylamino, Ethylamino, n-oder i-Propylamino, Dimethylamino, Diethylamino, Acetyl, Propionyl, Acetyloxy,

Methoxycarbonyl, Ethoxycarbonyl, Hydroximinomethyl, Hydroximinoethyl, Methoximinomethyl, Ethoximinomethyl, Methoximinoethyl oder Ethoximinoethyl, oder Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl, oder die Phenyl-Reste einfach substituiert sein können durch zweifach in ortho-Stellung verknüpftes Trimethylen (Propan-1, 3-diyl), Tetramethylen (Butan-1, 4-dinyl) oder Ethylendioxy, wobei jeder dieser Reste einfach bis vierfach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Methyl, Trifluormethyl, Ethyl, n-Propyl oder Isopropyl, oder die Phenyl-Reste einfach substituiert sein können durch zweifach in ortho-Stellung verknüpftes Methylendioxy, das einfach oder zweifach, gleichartig oder verschieden substituiert sein kann durch Fluor, Chlor, Methyl, Trifluormethyl, Ethyl, n-Propyl oder Isopropyl.

Eine ganz besonders bevorzugte Gruppe erfindungsgemäßer Stoffe sind diejenigen Verbindungen der Formel (I), in denen G für 2,6-Dichlorpyrid-4-yl, 3,4-Dichlorisothiazol-5-yl, 5-Brom-2-thienyl, 5- Chlor-2-thienyl oder 4,5-Dibrom-2-thienyl steht, oder G für 2-Chlor-pyrid-4-yl, 2-Chlor-6-methyl-pyrid-4-yl oder den Rest der Formel * steht, Fizz N cl R für eine Gruppe-O-Rl oder-NH-R2 steht, worin

RI für jeweils gegebenenfalls durch Methoxy oder Ethoxy substituiertes Methyl, Ethyl, n-oder i-Propyl, n-, i-, s-oder t-Butyl, Pentyl, Hexyl, Heptyl, Octyl, Allyl, Butenyl, Pentenyl, Propargyl, Butinyl oder Pentinyl steht, oder für jeweils gegebenenfalls durch Methyl oder Ethyl substituiertes Cyclopropyl, Cyclobutyl, Cyclopentyl oder Cyclohexyl steht, und R2 für jeweils gegebenenfalls durch Methoxy oder Ethoxy substituiertes Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, i-Butyl, sec-Butyl ; tert. -Butyl, Pentyl, Hexyl, Heptyl, Octyl, Allyl, Butenyl, Pentenyl, Propargyl, Butinyl oder Pentinyl steht, oder für jeweils gegebenenfalls durch Methyl oder Ethyl substituiertes Cyclopropyl, Cyclobutyl,, Cyclopentyl oder Cyclohexyl steht.

Verwendet man 3,4-Dichlor-5-isothiazol-carbonylchlorid und 1-Amino-cyclopropan- 1-carbonsäure-n-butylester als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Verfahrens (a) durch das folgende Formelschema veran- schaulicht werden. Cl 0 ci ci 0 Q CI _ CI4CI H2NXow CH3 Base % ; XDs CH3 lez O 0 0

Verwendet man 1-[(2, 6-Dichlor-isonicotinoyl)-amino]-cyclopropan-carbonsäure und Butan-2-ol als Ausgangsstoffe, so kann der Verlauf des erfindungsgemäßen Ver- fahrens (b) durch das folgende Formelschema veranschaulicht werden.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (a) als Ausgangs- substanzen benötigten Amino-cyclopropan-carbonsäureester sind durch die Formel (II) allgemein definiert. In dieser Formel hat Rl vorzugsweise diejenigen Bedeu- tungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden.

Die Amino-cyclopropan-carbonsäureester der Formel (II) sind bekannt oder lassen sich nach bekannten Methoden herstellen (vgl. DE-A 28 24 517, WO 86-03 378, EP- A 0 199 257 und Plant Growth Regul. 8 (4), 297-307 (1989)). So lassen sie sich herstellen, indem man 1-Amino-cyclopropan-carbonsäure mit einem Alkohol in Gegenwart von Thionylchlorid umsetzt.

Die weiterhin zur Durchführung des erfindungsgemäßen Verfahrens (a) als Reaktionskomponenten benötigten Säurehalogenide sind durch die Formel (III) allgemein definiert. In dieser Formel hat G vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden. X steht vorzugsweise für Chlor oder Brom.

Die Säurehalogenide der Formel (III) sind bekannt oder lassen sich nach bekannten Methoden herstellen (vgl. DE-A 36 15 293, WO 99-24 413 und EP-A 0 393 936).

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (a) alle üblichen, inerten organischen Solventien in Betracht. Vorzugs- weise verwendbar sind aliphatische, alicyclische oder aromatische Kohlenwasser- stoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methyl- cyclohexan, Benzol, Toluol, Xylol oder Decalin ; halogenierte Kohlenwasserstoffe, wie beispielsweise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetra- chlormethan, Dichlorethan oder Trichlorethan ; Ether, wie Diethylether, Diisopropyl- ether, Methyl-t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1,2- Dimethoxyethan, 1, 2-Diethoxyethan oder Anisol, oder Amide, wie N, N-Dimethyl-

formamid, N, N-Dimethylacetamid, N-Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid.

Als Säurebindemittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (a) alle üblichen anorganischen und organischen Basen in Frage.

Vorzugsweise verwendbar sind Erdalkalimetall oder Alkalimetallhydride, -hydroxide,-amide,-alkoholate,-acetate,-carbonate oder-hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-methylat, Natrium-ethylat, Kalium-tert. -butylat, Natriumhydroxid, Kaliumhydroxid, Natriumacetat, Kaliumace- tat, Calciumacetat, Ammoniumacetat, Natriumcarbonat, Kaliumcarbonat, Kalium- hydrogencarbonat, Natriumhydrogencarbonat oder Caesiumcarbonat, weiterhin Ammonium-Verbindungen, wie Ammoniumhydroxid, Ammoniumcarbonat oder Ammoniumacetat, außerdem tertiäre Amine, wie Trimethylamin, Triethylamin, Tri- butylamin, N, N-Dimethylanilin, N, N-Dimethyl-benzylamin, Pyridin, N-Methylpipe- ridin, N-Methylmorpholin, N, N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diazabicyclononen (DBN) oder Diazabicycloundecen (DBU).

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (a) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen von 0°C bis 120°C, vorzugsweise bei Temperaturen von 0°C bis 80°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (a) setzt man auf 1 Mol an Amino-cyclopropan-carbonsäureester der Formel (II) im Allgemeinen 0,2 bis 5 Mol, vorzugsweise 0,5 bis 2 Mol an Säurehalogenid der Formel (III) ein. Die Aufarbeitung erfolgt nach üblichen Methoden.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (b) als Ausgangsstoffe benötigten Acylamino-cyclopropan-carbonsäuren sind durch die Formel (IV) allgemein definiert. In dieser Formel hat G vorzugsweise diejenigen Bedeutungen,

die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden.

Die Acylamino-cyclopropan-carbonsäuren der Formel (IV) sind bisher noch nicht bekannt.

Ebenso wie die Heterocyclylcarbonyl-amino-cyclopropan-carbonsäurederivate der Formel (I) lassen sich auch die Acylamino-cyclopropan-carbonsäuren der Formel (IV) sehr gut zur Bekämpfung von unerwünschten Mikroorganismen verwenden. Sie besitzen insbesondere fungizide Eigenschaften und lassen sich sowohl zur direkten Bekämpfung von phytopathogenen Fungi als auch zur Resistenzinduzierung in Pflanzen verwenden. Außerdem können sie auch zur Bekämpfung von uner- wünschten Mikroorganismen im Materialschutz eingesetzt werden.

Die Acylamino-cyclopropan-carbonsäuren der Formel (IV) lassen sich herstellen, indem man c) Heterocyclylcarbonyl-amino-cyclopropan-carbonsäure-derivate der Formel in welcher G und Rl die oben angegebenen Bedeutungen haben, mit Wasser in Gegenwart einer Base und gegebenenfalls in Gegenwart eines organischen Verdünnungsmittels umsetzt.

Verwendet man 1-[(2, 6-Dichlor-isonicotinoyl)-amino]-cyclopropan-carbonsäure- methylester als Ausgangssubstanz, so kann der Verlauf des erfindungsgemäßen Verfahrens (c) durch das folgende Formelschema veranschaulicht werden.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (c) als Ausgangssubstanzen benötigten Heterocyclylcarbonyl-amino-cyclopropan-carbon- säure-derivate sind durch die Formel (Ia) allgemein definiert. In dieser Formel haben G und RI vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diese Reste als bevorzugt genannt worden.

Bei den Heterocyclylcarbonyl-amino-cyclopropan-carbonsäure-derivate n der Formel (la) handelt es sich um erfindungsgemäße Stoffe, die sich nach dem erfin- dungsgemäßen Verfahren (a) herstellen lassen.

Als Basen kommen bei der Durchführung des erfindungsgemäßen Verfahrens (c) alle üblichen anorganischen Basen in Betracht. Vorzugsweise verwendbar sind Erdalkalimetall-oder Alkalimetall-hydroxide, wie beispielsweise Lithiumhydroxid, Natriumhydroxid, Kaliumhydroxid oder Calciumhydroxid.

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (c) alle üblichen, mit Wasser mischbaren, organischen Solventien in Frage. Vorzugsweise verwendbar sind Alkohole, wie Methanol, Ethanol, n-oder i- Propanol, n-, i-, sek. -oder tert.-Butanol, Ethandiol, Propan-1, 2-diol, Ethoxyethanol, Methoxyethanol, Diethylenglykolmonomethylether oder Diethylenglykolmono- ethylether.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (c) in einem größeren Bereich variiert werden. Im Allgemeinen arbeitet man bei Temperaturen von 0°C bis 80°C, vorzugsweise bei Temperaturen von 0°C bis 50°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (c) setzt man Hetero- cyclylcarbonyl-amino-cyclopropan-carbonsäure-derivate der Formel (Ia) in Gegen- wart einer äquivalenten Menge oder eines Überschusses an Base mit einem Überschuß an Wasser um. Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

Die bei der Durchführung des erfindungsgemäßen Verfahrens (b) als Reaktions- komponenten benötigten Verbindungen sind durch die Formel (V) allgemein definiert. In dieser Formel hat R vorzugsweise diejenigen Bedeutungen, die bereits im Zusammenhang mit der Beschreibung der erfindungsgemäßen Stoffe der Formel (I) für diesen Rest als bevorzugt genannt wurden.

Die Verbindungen der Formel (V) sind bekannt oder lassen sich nach bekannten Verfahren herstellen.

Als Verdünnungsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (c) alle üblichen inerten, organischen Solventien in Betracht. Vorzugs- weise verwendbar sind aliphatische, alicyclische oder aromatische Kohlenwasser- stoffe, wie beispielsweise Petrolether, Hexan, Heptan, Cyclohexan, Methylcyclo- hexan, Benzol, Toluol oder Decalin ; halogenierte Kohlenwasserstoffe, wie beispiels- weise Chlorbenzol, Dichlorbenzol, Dichlormethan, Chloroform, Tetrachlormethan, Dichlorethan oder Trichlorethan ; Ether, wie Diethylether, Diisopropylether, Methyl- t-butylether, Methyl-t-amylether, Dioxan, Tetrahydrofuran, 1, 2-Dimethoxyethan, 1, 2-Diethoxyethan oder Anisol ; Ketone, wie Aceton, Butanon, Methyl-isobutylketon oder Cyclohexanon ; Nitrile, wie Acetonitril, Propionitril, n-oder i-Butyronitril oder

Benzonitril ; Amide, wie N, N-Dimethylformamid, N, N-Dimethylacetamid, N- Methylformanilid, N-Methylpyrrolidon oder Hexamethylphosphorsäuretriamid ; Ester wie Essigsäuremethylester oder Essigsäureethylester ; Sulfoxide, wie Dimethyl- sulfoxid oder Sulfone, wie Sulfolan.

Als Kondensationsmittel kommen bei der Durchführung des erfindungsgemäßen Verfahrens (b) alle für Amidierungsreaktionen üblicherweise einsetzbaren Hilfsmittel in Frage. Vorzugsweise verwendbar sind Säurehalogenidbildner wie Phosgen, Phosphortribromid, Phosphortrichlorid, Phosphorpentachlorid, Phosphoroxychlorid oder Thionylchlorid ; Anhydridbildner wie Chlorameisensäureethylester, Chlor- ameisensäuremethylester, Chlorameisensäureisopropylester, Chlorameisensäureiso- butylester oder Methansulfonylchlorid ; Carbodiimide, wie N, N'-Dicyclohexyl- carbodiimid (DCC) oder andere übliche Kondensationsmittel, wie Phosphorpentoxid, Polyphosphorsäure, N, N'-Carbonyldiimidazol, 2-Ethoxy-N-ethoxycarbonyl-1, 2- dihydrochinolin (EEDQ), bis- (2-Oxo-3-oxazolidinyl) phosphinsäurechlorid (BOP-C1) oder Triphenylphosphin/Tetrachlorkohlenstoff.

Als Hilfsmittel für die Kondensation kommen bei der Durchführung des erfindungsgemäßen Verfahrens (b) auch Säureakzeptoren, wie übliche anorganische oder organische Basen in Betracht. Vorzugsweise verwendbar sind Erdalkalimetall- oder Alkalimetallhydride, -hydroxide,-amide,-alkoholate,-acetate,-carbonate oder -hydrogencarbonate, wie beispielsweise Natriumhydrid, Natriumamid, Natrium-me- thylat, Natrium-ethylat, Kalium-tert. -butylat, Natriumhydroxid, Kaliumhydroxid, Natriumacetat, Kaliumacetat, Calciumacetat, Natriumcarbonat, Kaliumcarbonat, Kaliumhydrogencarbonat oder Natriumhydrogencarbonat, weiterhin Ammonium- Verbindungen, wie Ammoniumhydroxid, Ammoniumacetat oder Ammoniumcarbo- nat, sowie tertiäre Amine, wie Trimethylamin, Triethylamin, Tributylamin, N, N-Di- methylanilin, N, N-Dimethyl-benzylamin, Pyridin, N-Methylpiperidin, N- Methylmorpholin, N, N-Dimethylaminopyridin, Diazabicyclooctan (DABCO), Diaza- bicyclononen (DBN) oder Diazabicycloundecen (DBU).

Als Katalysatoren kommen bei der Durchführung des erfindungsgemäßen Verfahrens (b) alle für derartige Umsetzungen üblichen Reaktionsbeschleuniger in Frage.

Vorzugsweise verwendbar sind 4-Dimethylamino-pyridin, 1-Hydroxy-benzotriazol oder Dimethylformamid.

Die Reaktionstemperaturen können bei der Durchführung des erfindungsgemäßen Verfahrens (b) in einem größeren Bereich variiert werden. Im allgemeinen arbeitet man bei Temperaturen zwischen-78°C und +120°C, vorzugsweise bei Temperaturen zwischen-60°C und +25°C.

Bei der Durchführung des erfindungsgemäßen Verfahrens (b) setzt man auf 1 Mol an Acylamino-cyclopropan-carbonsäure der Formel (IV) im Allgemeinen zwischen 0,5 und 5 Mol, vorzugsweise eine äquimolare Menge an Verbindung der Formel (V) ein.

Die Aufarbeitung erfolgt wiederum nach üblichen Methoden.

Bei der Durchführung der erfindungsgemäßen Verfahren (a) bis (c) arbeitet man im Allgemeinen unter Atmosphärendruck. Es ist aber auch möglich, unter vermindertem oder erhöhten Druck, zum Beispiel zwischen 0,1 und 10 bar zu arbeiten.

Die erfindungsgemäßen Stoffe weisen eine starke mikrobizide Wirkung auf und können zur Bekämpfung von unerwünschten Mikroorganismen, wie Fungi und Bakterien, im Pflanzenschutz und im Materialschutz eingesetzt werden.

Fungizide lassen sich Pflanzenschutz zur Bekämpfung von Plasmodiophoromycetes, Oomycetes, Chytridiomycetes, Zygomycetes, Ascomycetes, Basidiomycetes und Deuteromycetes einsetzen.

Bakterizide lassen sich im Pflanzenschutz zur Bekämpfung von Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae und Streptomycetaceae ein- setzen.

Beispielhaft aber nicht begrenzend seien einige Erreger von pilzlichen und bakteriellen Erkrankungen, die unter die oben aufgezählten Oberbegriffe fallen, genannt : Xanthomonas-Arten, wie beispielsweise Xanthomonas campestris pv. oryzae ; Pseudomonas-Arten, wie beispielsweise Pseudomonas syringe pv. lachrymans ; Erwinia-Arten, wie beispielsweise Erwinia amylovora ; Pythium-Arten, wie beispielsweise Pythium ultimum ; Phytophthora-Arten, wie beispielsweise Phytophthora infestans ; Pseudoperonospora-Arten, wie beispielsweise Pseudoperonospora humuli oder Pseudoperonospora cubensis ; Plasmopara-Arten, wie beispielsweise Plasmopara viticola ; Bremia-Arten, wie beispielsweise Bremia lactucae ; Peronospora-Arten, wie beispielsweise Peronospora pisi oder P. brassicae ; Erysiphe-Arten, wie beispielsweise Erysiphe graminis ; Sphaerotheca-Arten, wie beispielsweise Sphaerotheca fuliginea ; Podosphaera-Arten, wie beispielsweise Podosphaera leucotricha ; Venturia-Arten, wie beispielsweise Venturia inaequalis ;

Pyrenophora-Arten, wie beispielsweise Pyrenophora teres oder P. gramme (Konidienform : Drechslera, Syn : Helminthosporium) ; Cochliobolus-Arten, wie beispielsweise Cochliobolus sativus (Konidienform : Drechslera, Syn : Helminthosporium) ; Uromyces-Arten, wie beispielsweise Uromyces appendiculatus ; Puccinia-Arten, wie beispielsweise Puccinia recondita ; Sclerotinia-Arten, wie beispielsweise Sclerotinia sclerotiorum ; Tilletia-Arten, wie beispielsweise Tilletia caries ; Ustilago-Arten, wie beispielsweise Ustilago nuda oder Ustilago avenae ; Pellicularia-Arten, wie beispielsweise Pellicularia sasakii ; Pyricularia-Arten, wie beispielsweise Pyricularia oryzae ; Fusarium-Arten, wie beispielsweise Fusarium culmorum ; Botrytis-Arten, wie beispielsweise Botrytis cinerea ; Septoria-Arten, wie beispielsweise Septoria nodorum ; Leptosphaeria-Arten, wie beispielsweise Leptosphaeria nodorum ; Cercospora-Arten, wie beispielsweise Cercospora canescens ; Altemaria-Arten, wie beispielsweise Altemaria brassicae ;

Pseudocercosporella-Arten, wie beispielsweise Pseudocercosporella herpotrichoides.

Die erfindungsgemäßen Wirkstoffe weisen auch eine starke stärkende Wirkung in Pflanzen auf. Sie eignen sich daher zur Mobilisierung pflanzeneigener Abwehrkräfte gegen Befall durch unerwünschte Mikroorganismen.

Unter pflanzenstärkenden (resistenzinduzierenden) Stoffen sind im vorliegenden Zusammenhang solche Substanzen zu verstehen, die in der Lage sind, das Abwehr- system von Pflanzen so zu stimulieren, dass die behandelten Pflanzen bei nach- folgender Inokulation mit unerwünschten Mikroorganismen weitgehende Resistenz gegen diese Mikroorganismen entfalten.

Unter unerwünschten Mikroorganismen sind im vorliegenden Fall phytopathogene Pilze, Bakterien und Viren zu verstehen. Die erfindungsgemäßen Stoffe können also eingesetzt werden, um Pflanzen innerhalb eines gewissen Zeitraumes nach der Behandlung gegen den Befall durch die genannten Schaderreger zu schützen. Der Zeitraum, innerhalb dessen Schutz herbeigeführt wird, erstreckt sich im allgemeinen von 1 bis 10 Tage, vorzugsweise 1 bis 7 Tage nach der Behandlung der Pflanzen mit den Wirkstoffen.

Die gute Pflanzenverträglichkeit der Wirkstoffe in den zur Bekämpfung von Pflanzen- krankheiten notwendigen Konzentrationen erlaubt eine Behandlung von oberirdischen Pflanzenteilen, von Pflanz-und Saatgut, und des Bodens.

Dabei lassen sich die erfindungsgemäßen Wirkstoffe mit besonders gutem Erfolg zur Bekämpfung von Getreidekrankheiten, wie beispielsweise gegen Erysiphe-Arten, einsetzen. Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Steigerung des Ernteertrages. Sie sind außerdem mindertoxisch und weisen eine gute Pflanzen- verträglichkeit auf.

Die erfindungsgemäßen Wirkstoffe können gegebenenfalls in bestimmten Konzen- trationen und Aufwandmengen auch als Herbizide, zur Beeinflussung des Pflanzen- wachstums, sowie zur Bekämpfung von tierischen Schädlingen verwendet werden. Sie lassen sich gegebenenfalls auch als Zwischen-und Vorprodukte für die Synthese weiterer Wirkstoffe einsetzen.

Erfindungsgemäß können alle Pflanzen und Pflanzenteile behandelt werden. Unter Pflanzen werden hierbei alle Pflanzen und Pflanzenpopulationen verstanden, wie erwünschte und unerwünschte Wildpflanzen oder Kulturpflanzen (einschließlich natürlich vorkommender Kulturpflanzen). Kulturpflanzen können Pflanzen sein, die durch konventionelle Züchtungs-und Optimierungsmethoden oder durch biotechnologische und gentechnologische Methoden oder Kombinationen dieser Methoden erhalten werden können, einschließlich der transgenen Pflanzen und einschließlich der durch Sortenschutzrechte schützbaren oder nicht schützbaren Pflanzensorten. Unter Pflanzenteilen sollen alle oberirdischen und unterirdischen Teile und Organe der Pflanzen, wie Sproß, Blatt, Blüte und Wurzel verstanden werden, wobei beispielhaft Blätter, Nadeln, Stengel, Stämme, Blüten, Fruchtkörper, Früchte und Samen sowie Wurzeln, Knollen und Rhizome aufgeführt werden. Zu den Pflanzenteilen gehört auch Erntegut sowie vegetatives und generates Vermeh- rungsmaterial, beispielsweise Stecklinge, Knollen, Rhizome, Ableger und Samen.

Die erfindungsgemäße Behandlung der Pflanzen und Pflanzenteile mit den Wirkstoffen erfolgt direkt oder durch Einwirkung auf deren Umgebung, Lebensraum oder Lagerraum nach den üblichen Behandlungsmethoden, z. B. durch Tauchen, Sprühen, Verdampfen, Vernebeln, Streuen, Aufstreichen und bei Vermehrungs- material, insbesondere bei Samen, weiterhin durch ein-oder mehrschichtiges Umhüllen.

Im Materialschutz lassen sich die erfindungsgemäßen Stoffe zum Schutz von technischen Materialien gegen Befall und Zerstörung durch unerwünschte Mikroorganismen einsetzen.

Unter technischen Materialien sind im vorliegenden Zusammenhang nichtlebende Materialien zu verstehen, die für die Verwendung in der Technik zubereitet worden sind. Beispielsweise können technische Materialien, die durch erfindungsgemäße Wirkstoffe vor mikrobieller Veränderung oder Zerstörung geschützt werden sollen, Klebstoffe, Leime, Papier und Karton, Textilien, Leder, Holz, Anstrichmittel und Kunststoffartikel, Kühlschmierstoffe und andere Materialien sein, die von Mikroorganismen befallen oder zersetzt werden können. Im Rahmen der zu schützenden Materialien seien auch Teile von Produktionsanlagen, beispielsweise Kühlwasserkreisläufe, genannt, die durch Vermehrung von Mikroorganismen beeinträchtigt werden können. Im Rahmen der vorliegenden Erfindung seien als technische Materialien vorzugsweise Klebstoffe, Leime, Papiere und Kartone, Leder, Holz, Anstrichmittel, Kühlschmiermittel und Wärmeübertragungsflüssigkeiten genannt, besonders bevorzugt Holz.

Als Mikroorganismen, die einen Abbau oder eine Veränderung der technischen Materialien bewirken können, seien beispielsweise Bakterien, Pilze, Hefen, Algen und Schleimorganismen genannt. Vorzugsweise wirken die erfindungsgemäßen Wirkstoffe gegen Pilze, insbesondere Schimmelpilze, holzverfärbende und holzzerstörende Pilze (Basidiomyceten) sowie gegen Schleimorganismen und Algen.

Es seien beispielsweise Mikroorganismen der folgenden Gattungen genannt : Alternaria, wie Alternaria tenuis, Aspergillus, wie Aspergillus niger, Chaetomium, wie Chaetomium globosum, Coniophora, wie Coniophora puetana,

Lentinus, wie Lentinus tigrinus, Penicillium, wie Penicillium glaucum, Polyporus, wie Polyporus versicolor, Aureobasidium, wie Aureobasidium pullulans, Sclerophoma, wie Sclerophoma pityophila, Trichoderma, wie Trichoderma viride, Escherichia, wie Escherichia coli, Pseudomonas, wie Pseudomonas aeruginosa, Staphylococcus, wie Staphylococcus aureus.

Die Wirkstoffe können in Abhängigkeit von ihren jeweiligen physikalischen und/oder chemischen Eigenschaften in die üblichen Formulierungen überführt werden, wie Lösungen, Emulsionen, Suspensionen, Pulver, Schäume, Pasten, Granulate, Aerosole, Feinstverkapselungen in polymeren Stoffen und in Hüllmassen für Saatgut, sowie ULV-Kalt-und Warmnebel-Formulierungen.

Diese Formulierungen werden in bekannter Weise hergestellt, z. B. durch Vermischen der Wirkstoffe mit Streckmitteln, also flüssigen Lösungsmitteln, unter Druck stehenden verflüssigten Gasen und/oder festen Trägerstoffen, gegebenenfalls unter Verwendung von oberflächenaktiven Mitteln, also Emulgiermitteln und/oder Dispergiermitteln und/oder schaumerzeugenden Mitteln. Im Falle der Benutzung von Wasser als Streck- mittel können z. B. auch organische Lösungsmittel als Hilfslösungsmittel verwendet werden. Als flüssige Lösungsmittel kommen im wesentlichen in Frage : Aromaten, wie

Xylol, Toluol oder Alkylnaphthaline, chlorierte Aromaten oder chlorierte aliphatische Kohlenwasserstoffe, wie Chlorbenzole, Chlorethylene oder Methylenchlorid, alipha- tische Kohlenwasserstoffe, wie Cyclohexan oder Paraffine, z. B. Erdölfraktionen, Alkohole, wie Butanol oder Glycol sowie deren Ether und Ester, Ketone, wie Aceton, Methylethylketon, Methylisobutylketon oder Cyclohexanon, stark polare Lösungs- mittel, wie Dimethylformamid und Dimethylsulfoxid, sowie Wasser. Mit verflüssigten gasförmigen Streckmitteln oder Trägerstoffen sind solche Flüssigkeiten gemeint, welche bei normaler Temperatur und unter Normaldruck gasförmig sind, z. B. Aerosol- Treibgase, wie Halogenkohlenwasserstoffe sowie Butan, Propan, Stickstoff und Kohlendioxid. Als feste Trägerstoffe kommen in Frage : z. B. natürliche Gesteinsmehle, wie Kaoline, Tonerden, Talkum, Kreide, Quarz, Attapulgit, Montmorillonit oder Diato- meenerde und synthetische Gesteinsmehle, wie hochdisperse Kieselsäure, Aluminium- oxid und Silikate. Als feste Trägerstoffe für Granulate kommen in Frage : z. B. gebrochene und fraktionierte natürliche Gesteine wie Calcit, Marmor, Bims, Sepiolith, Dolomit sowie synthetische Granulate aus anorganischen und organischen Mehlen sowie Granulate aus organischem Material wie Sägemehl, Kokosnußschalen, Mais- kolben und Tabakstengel. Als Emulgier und/oder schaumerzeugende Mittel kommen in Frage : z. B. nichtionogene und anionische Emulgatoren, wie Polyoxyethylen-Fettsäure- ester, Polyoxyethylen-Fettalkoholether, z. B. Alkylarylpolyglycolether, Alkylsulfonate, Alkylsulfate, Arylsulfonate sowie Eiweißhydrolysate. Als Dispergiermittel kommen in Frage : z. B. Lignin-Sulfitablaugen und Methylcellulose.

Es können in den Formulierungen Haftmittel wie Carboxymethylcellulose, natürliche und synthetische pulverige, körnige oder latexförmige Polymere verwendet werden, wie Gummiarabicum, Polyvinylalkohol, Polyvinylacetat, sowie natürliche Phospholi- pide, wie Kephaline und Lecithine, und synthetische Phospholipide. Weitere Additive können mineralische und vegetabile Öle sein.

Es können Farbstoffe wie anorganische Pigmente, z. B. Eisenoxid, Titanoxid, Ferro- cyanblau und organische Farbstoffe, wie Alizarin-, Azo-und Metallphthalocyanin-

farbstoffe und Spurennährstoffe, wie Salze von Eisen, Mangan, Bor, Kupfer, Kobalt, Molybdän und Zink verwendet werden.

Die Formulierungen enthalten im allgemeinen zwischen 0,1 und 95 Gewichtsprozent Wirkstoff, vorzugsweise zwischen 0,5 und 90 %.

Die erfindungsgemäßen Wirkstoffe können als solche oder in ihren Formulierungen auch in Mischung mit bekannten Fungiziden, Bakteriziden, Akariziden, Nematiziden oder Insektiziden verwendet werden, um so z. B. das Wirkungsspektrum zu verbreitern oder Resistenzentwicklungen vorzubeugen. In vielen Fällen erhält man dabei syner- gistische Effekte, d. h. die Wirksamkeit der Mischung ist größer als die Wirksamkeit der Einzelkomponenten.

Als Mischpartner kommen zum Beispiel folgende Verbindungen in Frage : Fungizide : Aldimorph, Ampropylfos, Ampropylfos-Kalium, Andoprim, Anilazin, Azaconazol, Azoxystrobin, Benalaxyl, Benodanil, Benomyl, Benzamacril, Benzamacryl-isobutyl, Bialaphos, Binapacryl, Biphenyl, Bitertanol, Blasticidin-S, Bromuconazol, Bupirimat, Buthiobat, Calciumpolysulfid, Carpropamid, Capsimycin, Captafol, Captan, Carbendazim, Carboxin, Carvon, Chinomethionat (Quinomethionat), Chlobenthiazon, Chlorfenazol, Chloroneb, Chloropicrin, Chlorothalonil, Chlozolinat, Clozylacon, Cufraneb, Cymoxanil, Cyproconazol, Cyprodinil, Cyprofuram, Debacarb, Dichlorophen, Diclobutrazol, Diclofluanid, Diclomezin, Dicloran, Diethofencarb, Difenoconazol, Dimethirimol, Dimethomorph, Diniconazol,

Diniconazol-M, Dinocap, Diphenylamin, Dipyrithione, Ditalimfos, Dithianon, Dodemorph, Dodine, Drazoxolon, Ediphenphos, Epoxiconazol, Etaconazol, Ethirimol, Etridiazol, Famoxadon, Fenapanil, Fenarimol, Fenbuconazol, Fenfuram, Fenhexamid, Fenitropan, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetat, Fentinhydroxyd, Ferbam, Ferimzon, Fluazinam, Flumetover, Fluoromid, Fluquinconazol, Flurprimidol, Flusilazol, Flusulfamid, Flutolanil, Flutriafol, Folpet, Fosetyl-Alminium, Fosetyl- Natrium, Fthalid, Fuberidazol, Furalaxyl, Furametpyr, Furcarbonil, Furconazol, Furconazol-cis, Furmecyclox, Fluoxastrobin, Guazatin, Hexachlorobenzol, Hexaconazol, Hymexazol, Imazalil, Imibenconazol, Iminoctadin, Iminoctadinealbesilat, Iminoctadinetriacetat, Iodocarb, Ipconazol, Iprobenfos (IBP), Iprodione, Iprovalicarb, Irumamycin, Isoprothiolan, Isovaledione, Kasugamycin, Kresoxim-methyl, Kupfer-Zubereitungen, wie : Kupferhydroxid, Kupfernaphthenat, Kupferoxychlorid, Kupfersulfat, Kupferoxid, Oxin-Kupfer und Bordeaux-Mischung, Mancopper, Mancozeb, Maneb, Meferimzone, Mepanipyrim, Mepronil, Metalaxyl, Metconazol, Methasulfocarb, Methfuroxam, Metiram, Metomeclam, Metsulfovax, Mildiomycin, Myclobutanil, Myclozolin, Nickel-dimethyldithiocarbamat, Nitrothal-isopropyl, Nuarimol, Ofurace, Oxadixyl, Oxamocarb, Oxolinicacid, Oxycarboxim, Oxyfenthiin,

Paclobutrazol, Pefurazoat, Penconazol, Pencycuron, Phosdiphen, Picoxystrobin, Pimariein, Piperalin, Polyoxin, Polyoxorim, Probenazol, Prochloraz, Procymidon, Propamocarb, Propanosine-Natrium, Propiconazol, Propineb, Pyraclostrobin, Pyrazophos, Pyrifenox, Pyrimethanil, Pyroquilon, Pyroxyfur, Prothioconazole, Quinconazol, Quintozen (PCNB), Quinoxyfen, Schwefel und Schwefel-Zubereitungen,Spiroxamine Tebuconazol, Tecloftalam, Tecnazen, Tetcyclacis, Tetraconazol, Thiabendazol, Thicyofen, Thifluzamide, Thiophanate-methyl, Thiram, Tioxymid, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Triazbutil, Triazoxid, Trichlamid, Tricyclazol, Tridemorph, Trifloxystrobin, Triflumizol, Triforin, Triticonazol, Uniconazol, Validamycin A, Vinclozolin, Viniconazol, Zarilamid, Zineb, Ziram sowie Dagger G, OK-8705, OK-8801, a- (1, 1-Dimethylethyl)-ß- (2-phenoxyethyl)-1H-1, 2, 4-triazol-l-ethanol, a- (2, 4-Dichlorphenyl)-ß-fluor-propyl-1H-1, 2, 4-triazol-l-ethanol, α-(2,4-Dichlorphenyl)-ß-methoxy-α-methyl-1H-1, 2, 4-triazol-l-ethanol,

α-(5-Methyl-1,3-dioxan-5-yl)-ß-[[4-(trifluoromethyl)-pheny l]-methylen]-1H-1, 2,4- triazol-l-ethanol, (5RS, 6RS) -6-Hydroxy-2,2, 7, 7-tetramethyl-5-(lH-1, 2, 4-triazol-1-yl)-3-octanon, (E)-a- (Methoxyimino)-N-methyl-2-phenoxy-phenylacetamid, 1-(2,4-Dichlorphenyl)-2-(1H-1, 2, 4-triazol-1-yl)-ethanon-O-(phenylmethyl)-oxim, 1-(2-Methyl-1-naphthalenyl)-1H-pyrrol-2,5-dion, <BR> <BR> <BR> <BR> 1- (3, 5-Dichlorphenyl)-3- (2-propenyl)-2, 5-pyrrolidindion,<BR> <BR> <BR> <BR> <BR> <BR> 1-[(Diiodmethyl)-sulfonyl]-4-methyl-benzol,<BR> <BR> <BR> <BR> <BR> <BR> 1- [ [2- (2., 4-Dichlorphenyl)-1, 3-dioxolan-2-yl]-methyl]-lH-imidazol, 1-[[2-(4-Chlorpenyl)-3-phenyloxiranyl]-methyl]-1H-1, 2,4-triazol, <BR> <BR> <BR> <BR> 1- [I- [2- [ (2, 4-Dichlorphenyl)-methoxy]-phenyl]-ethenyl]-lH-imidazol,<B R> <BR> <BR> <BR> <BR> <BR> 1-Methyl-5-nonyl-2-(phenylmethyl)-3-pyrrolidinol, 2', 6'-Dibrom-2-methyl-4'-trifluormethoxy-4-trifluor-methyl-1, 3-thiazol-5-carboxanilid, 2, 6-Dichlor-5- (methylthio)-4-pyrimidinyl-thiocyanat, 2, 6-Dichlor-N- (4-trifluormethylbenzyl)-benzamid, 2, 6-Dichlor-N-[[4-(trifluormethyl)-phenyl]-methyl]-benzamid,

2- (2, 3, 3-Triiod-2-propenyl)-2H-tetrazol, 2- [ (1-Methylethyl)-sulfonyl]-5- (trichlormethyl)-1, 3, 4-thiadiazol, <BR> <BR> <BR> <BR> <BR> <BR> 2- [ [6-Deoxy-4-0- (4-O-methyl-ß-D-glycopyranosyl)-a-D-glucopyranosyl]-amino]- 4- methoxy-lH-pyrrolo [2,3-d] pyrimidin-5-carbonitril, 2-Aminobutan, 2-Brom-2- (brommethyl)-pentandinitril, 2-Chlor-N- (2, 3-dihydro-1, 1, 3-trimethyl-lH-inden-4-yl)-3-pyridincarboxamid, 2-Chlor-N-(2,6-dimethylphenyl)-N-(isothiocyanatomethyl)-acet amid, 2-Phenylphenol (OPP), 3, 4-Dichlor-1- [4- (difluormethoxy)-phenyl]-lH-pyrrol-2, 5-dion, 3, 5-Dichlor-N-[cyan[(1-methyl-2-propynyl)-oxy]-methyl]-benzami d, 3- (1, 1-Dimethylpropyl-1-oxo-1H-inden-2-carbonitril, 3- [2- (4-Chlorphenyl)-5-ethoxy-3-isoxazolidinyl]-pyridin, 4-Chlor-2-cyan-N, N-dimethyl-5- (4-methylphenyl)-1H-imidazol-l-sulfonamid, 4-Methyl-tetrazolo [1, 5-a] quinazolin-5 (4H)-on, 8-Hydroxychinolinsulfat, 9H-Xanthen-9-carbonsäure-2-[(phenylamino)-carbonyl]-hydrazi d,

bis-(1-Methylethyl)-3-methyl-4-[(3-methylbenzoyl)-oxy]-2, 5-thiophendicarboxylat, cis-1- (4-Chlorphenyl)-2- (lH-1, 2, 4-triazol-1-yl)-cycloheptanol, <BR> <BR> <BR> <BR> cis-4- [3- [4- (1, 1-Dimethylpropyl)-phenyl-2-methylpropyl]-2, 6-dimethyl-morpholin- hydrochlorid, Ethyl- [ (4-chlorphenyl)-azo]-cyanoacetat, Kaliumhydrogencarbonat, Methantetrathiol-Natriumsalz, Methyl-1- (2, 3-dihydro-2, 2-dimethyl-lH-inden-l-yl)-lH-imidazol-5-carboxylat, Methyl-N- (2, 6-dimethylphenyl)-N- (5-isoxazolylcarbonyl)-DL-alaninat, <BR> <BR> <BR> <BR> Methyl-N-(chloracetyl)-N-(2, 6-dimethylphenyl)-DL-alaninat,<BR> <BR> <BR> <BR> <BR> <BR> N- (2, 6-Dimethylphenyl)-2-methoxy-N- (tetrahydro-2-oxo-3-furanyl)-acetamid, N- (2, 6-Dimethylphenyl)-2-methoxy-N- (tetrahydro-2-oxo-3-thienyl)-acetamid, N- (2-Chlor-4-nitrophenyl)-4-methyl-3-nitro-benzolsulfonamid, N- (4-Cyclohexylphenyl)-1, 4,5, 6-tetrahydro-2-pyrimidinamin, N- (4-Hexylphenyl)-1, 4,5, 6-tetrahydro-2-pyrimidinamin, N- (5-Chlor-2-methylphenyl)-2-methoxy-N- (2-oxo-3-oxazolidinyl)-acetamid,

N-(6-Methoxy)-3-pyridinyl)-cyclopropancarboxamid, N- [2, 2, 2-Trichlor-1-[(chloracetyl)-amino]-ethyl]-benzamid, N-[3-Chlor-4,5-bis-(2-propinyloxy)-phenyl]-N'-methoxy-methan imidamid, N-Formyl-N-hydroxy-DL-alanin-Natriumsalz, O, O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidot hioat, O-Methyl-S-phenyl-phenylpropylphosphoramidothioats, S-Methyl-1, 2, 3-benzothiadiazol-7-carbothioat, spiro [2H]-1-Benzopyran-2, 1' (3'H)-isobenzofuran]-3'-on, 4- [3, 4-Dimethoxyphenyl)-3- (4-fluorphenyl)-acryloyl]-morpholin Bakterizide : Bronopol, Dichlorophen, Nitrapyrin, Nickel-dimethyldithiocarbamat, Kasugamycin, Octhilinon, Furancarbonsäure, Oxytetracyclin, Probenazol, Streptomycin, Tecloftalam, Kupfersulfat und andere Kupfer-Zubereitungen.

Insektizide/Akarizide/Nematizide : Abamectin, Acephate, Acetamiprid, Acrinathrin, Alanycarb, Aldicarb, Aldoxycarb, Alpha-cypermethrin, Alphamethrin, Amitraz, Avermectin, AZ 60541, Azadirachtin, Azamethiphos, Azinphos A, Azinphos M, Azocyclotin, Bacillus popilliae, Bacillus sphaericus, Bacillus subtilis, Bacillus thuringiensis, Baculoviren, Beauveria bassiana, Beauveria tenella, Bendiocarb, Benfuracarb,

Bensultap, Benzoximate, Betacyfluthrin, Bifenazate, Bifenthrin, Bioethanomethrin, Biopermethrin, Bistrifluron, BPMC, Bromophos A, Bufencarb, Buprofezin, Butathiofos, Butocarboxim, Butylpyridaben, Cadusafos, Carbaryl, Carbofuran, Carbophenothion, Carbosulfan, Cartap, Chloethocarb, Chlorethoxyfos, Chlorfenapyr, Chlorfenvinphos, Chlorfluazuron, Chlormephos, Chlorpyrifos, Chlorpyrifos M, Chlovaporthrin, Chromafenozide, Cis- Resmethrin, Cispermethrin, Clocythrin, Cloethocarb, Clofentezine, Clothianidine, Cyanophos, Cycloprene, Cycloprothrin, Cyfluthrin, Cyhalothrin, Cyhexatin, Cypermethrin, Cyromazine, Deltamethrin, Demeton M, Demeton S, Demeton-S-methyl, Diafenthiuron, Diazinon, Dichlorvos, Dicofol, Diflubenzuron, Dimethoat, Dimethylvinphos, Diofenolan, Disulfoton, Docusat-sodium, Dofenapyn, Eflusilanate, Emamectin, Empenthrin, Endosulfan, Entomopfthora spp., Esfenvalerate, Ethiofencarb, Ethion, Ethoprophos, Etofenprox, Etoxazole, Etrimfos, Fenamiphos, Fenazaquin, Fenbutatin oxide, Fenitrothion, Fenothiocarb, Fenoxacrim, Fenoxycarb, Fenpropathrin, Fenpyrad, Fenpyrithrin, Fenpyroximate, Fenvalerate, Fipronil, Fluazuron, Flubrocythrinate, Flucycloxuron, Flucythrinate, Flufenoxuron, Flumethrin, Flutenzine, Fluvalinate, Fonophos, Fosmethilan, Fosthiazate, Fubfenprox, Furathiocarb, Granuloseviren Halofenozide, HCH, Heptenophos, Hexaflumuron, Hexythiazox, Hydroprene, Imidacloprid, Indoxacarb, Isazofos, Isofenphos, Isoxathion, Ivermectin, Kernpolyederviren

Lambda-cyhalothrin, Lufenuron Malathion, Mecarbam, Metaldehyd, Methamidophos, Metharhizium anisopliae, Metharhizium flavoviride, Methidathion, Methiocarb, Methoprene, Methomyl, Methoxyfenozide, Metolcarb, Metoxadiazone, Mevinphos, Milbemectin, Milbemycin, Monocrotophos, Naled, Nitenpyram, Nithiazine, Novaluron Omethoat, Oxamyl, Oxydemethon M Paecilomyces fumosoroseus, Parathion A, Parathion M, Permethrin, Phenthoat, Phorat, Phosalone, Phosmet, Phosphamidon, Phoxim, Pirimicarb, Pirimiphos A, Pirimiphos M, Profenofos, Promecarb, Propargite, Propoxur, Prothiofos, Prothoat, Pymetrozine, Pyraclofos, Pyresmethrin, Pyrethrum, Pyridaben, Pyridathion, Pyrimidifen, Pyriproxyfen, Quinalphos, Ribavirin Salithion, Sebufos, Silafluofen, Spinosad, Spirodiclofen, Sulfotep, Sulprofos, Tau-fluvalinate, Tebufenozide, Tebufenpyrad, Tebupirimiphos, Teflubenzuron, Tefluthrin, Temephos, Temivinphos, Terbufos, Tetrachlorvinphos, Tetradifon Theta-. cypermethrin, Thiacloprid, Thiamethoxam, Thiapronil, Thiatriphos, Thiocyclam hydrogen oxalate, Thiodicarb, Thiofanox, Thuringiensin, Tralocythrin, Tralomethrin, Triarathene, Triazamate, Triazophos, Triazuron, Trichlophenidine, Trichlorfon, Triflumuron, Trimethacarb,

Vamidothion, Vaniliprole, Verticillium lecanii YI 5302 Zeta-cypermethrin, Zolaprofos (lR-cis)- [5- (Phenylmethyl)-3-furanyl]-methyl-3- [ (dihydro-2-oxo-3 (2H) - furanyliden)-methyl]-2, 2-dimethylcyclopropancarboxylat (3-Phenoxyphenyl)-methyl-2, 2,3, 3-tetramethylcyclopropanecarboxylat 1-[(2-Chlor-5-thiazolyl) methyl] tetrahydro-3, 5-dimethyl-N-nitro-1, 3, 5-triazin-2 (1H)- imin 2- (2-Chlor-6-fluorphenyl)-4- [4- (1, 1-dimethylethyl) phenyl]-4, 5-dihydro-oxazol 2- (Acetlyoxy)-3-dodecyl-1, 4-naphthalindion 2-Chlor-N-[[[4-(1-phenylethoxy)-phenyl]-amino]-carbonyl]-ben zamid 2-Chlor-N-[[[4-(2,2-dichlor-1,1-difluorethoxy)-phenyl]-amino ]-carbonyl]-benzamid 3-Methylphenyl-propylcarbamat 4- [4- (4-Ethoxyphenyl)-4-methylpentyl]-1-fluor-2-phenoxy-benzol <BR> <BR> 4-Chlor-2-(1, 1-dimethylethyl)-5-[[2-(2, 6-dimethyl-4-phenoxyphenoxy) ethyl] thio]- 3 (2H)-pyridazinon 4-Chlor-2- (2-chlor-2-methylpropyl)-5- [ (6-iod-3-pyridinyl) methoxy] -3 (2H)- pyridazinon

4-Chlor-5-[(6-chlor-3-pyridinyl)methyl]-2-(3, 4-dichlorphenyl) -3 (2H)-pyridazinon Bacillus thuringiensis strain EG-2348 Benzoesäure [2-benzoyl-1- (1, 1-dimethylethyl)-hydrazid Butansäure 2, 2-dimethyl-3-(2,4-dichlorphenyl)-2-oxo-1-oxaspiro [4.5] dec-3-en-4-yl- ester [3-[(6-Chlor-3-pyridinyl) methyl]-2-thiazolidinyliden]-cyanamid Dihydro-2- (nitromethylen)-2H-1, 3-thiazine-3 (4H)-carboxaldehyd Ethyl-[2-[[1,6-dihydro-6-oxo-1-(phenylmethyl)-4-pyridazinyl] oxy]ethyl]-carbamat N- (3, 4, 4-Trifluor-1-oxo-3-butenyl)-glycin <BR> <BR> N- (4-Chlorphenyl)-3- [4- (difluormethoxy) phenyl] -4, 5-dihydro-4-phenyl-lH-pyrazol-<BR> l-carboxamid N-[(2-Chlor-5-thiazolyl)methyl]-N'-methyl-N"-nitro-guanidin N-Methyl-N'-(l-methyl-2-propenyl)-1, 2-hydrazindicarbothioamid N-Methyl-N'-2-propenyl-1, 2-hydrazindicarbothioamid O, O-Diethyl-[2-(dipropylamino)-2-oxoethyl]-ethylphosphoramidot hioat N-Cyanomethyl-4-trifluormethyl-nicotinamid

3, 5-Dichlor-1- (3, 3-dichlor-2-propenyloxy)-4- [3- (5-trifluormethylpyridin-2-yloxy)- propoxy]-benzol Auch eine Mischung mit anderen bekannten Wirkstoffen, wie Herbiziden oder mit Düngemitteln und Wachstumsregulatoren ist möglich.

Darüber hinaus weisen die erfindungsgemäßen Verbindungen der Formel (I) auch sehr gute antimykotische Wirkungen auf. Sie besitzen ein sehr breites antimyko- tisches Wirkungsspektrum, insbesondere gegen Dermatophyten und Sprosspilze, Schimmel und diphasische Pilze (z. B. gegen Candida-Spezies wie Candida albicans, Candida glabrata) sowie Epidermophyton floccosum, Aspergillus-Spezies wie Aspergillus niger und Aspergillus fumigatus, Trichophyton-Spezies wie Trichophy- ton mentagrophytes, Microsporon-Spezies wie Microsporon canis und audouinii. Die Aufzählung dieser Pilze stellt keinesfalls eine Beschränkung des erfassbaren myko- tischen Spektrums dar, sondern hat nur erläuternden Charakter.

Die Wirkstoffe können als solche, in Form ihrer Formulierungen oder den daraus be- reiteten Anwendungsformen, wie gebrauchsfertige Lösungen, Suspensionen, Spritz- pulver, Pasten, lösliche Pulver, Stäubemittel und Granulate angewendet werden. Die Anwendung geschieht in üblicher Weise, z. B. durch Gießen, Verspritzen, Versprühen, Verstreuen, Verstäuben, Verschäumen, Bestreichen usw. Es ist ferner möglich, die Wirkstoffe nach dem Ultra-Low-Volume-Verfahren auszubringen oder die Wirkstoff- zubereitung oder den Wirkstoff selbst in den Boden zu injizieren. Es kann auch das Saatgut der Pflanzen behandelt werden.

Beim Einsatz der erfindungsgemäßen Wirkstoffe als Fungizide können die Aufwand- mengen je nach Applikationsart innerhalb eines größeren Bereiches variiert werden.

Bei der Behandlung von Pflanzenteilen liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,1 und 10.000 g/ha, vorzugsweise zwischen 10 und 1.000 g/ha.

Bei der Saatgutbehandlung liegen die Aufwandmengen an Wirkstoff im allgemeinen zwischen 0,001 und 50 g pro Kilogramm Saatgut, vorzugsweise zwischen 0,01 und

10 g pro Kilogramm Saatgut. Bei der Behandlung des Bodens liegen die Auf- wandmengen an Wirkstoff im allgemeinen zwischen 0, 1 und 10.000 g/ha, vorzugsweise zwischen 1 und 5.000 g/ha.

Wie bereits oben erwähnt, können erfindungsgemäß alle Pflanzen und deren Teile behandelt werden. In einer bevorzugten Ausführungsform werden wild vorkommende oder durch konventionelle biologische Zuchtmethoden, wie Kreuzung oder Protoplastenfusion erhaltenen Pflanzenarten und Pflanzensorten sowie deren Teile behandelt. In einer weiteren bevorzugten Ausführungsform werden transgene Pflanzen und Pflanzensorten, die durch gentechnologische Methoden gegebenenfalls in Kombination mit konventionellen Methoden erhalten wurden (Genetic Modified Organisms) und deren Teile behandelt. Der Begriff"Teile"bzw. "Teile von Pflanzen"oder"Pflanzenteile"wurde oben erläutert.

Besonders bevorzugt werden erfindungsgemäß Pflanzen der jeweils handelsüblichen oder in Gebrauch befindlichen Pflanzensorten behandelt. Unter Pflanzensorten versteht man Pflanzen mit neuen Eigenschaften ("Traits"), die sowohl durch konventionelle Züchtung, durch Mutagenese oder durch rekombinante DNA- Techniken gezüchtet worden sind. Dies können Sorten, Rassen, Bio-und Genotypen sein.

Je nach Pflanzenarten bzw. Pflanzensorten, deren Standort und Wachs- tumsbedingungen (Böden, Klima, Vegetationsperiode, Ernährung) können durch die erfindungsgemäße Behandlung auch überadditive ("synergistische") Effekte auftreten. So sind beispielsweise erniedrigte Aufwandmengen und/oder Erwie- terungen des Wirkungsspektrums und/oder eine Verstärkung der Wirkung der erfindungsgemäß verwendbaren Stoffe und Mittel, besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser-bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Emährungswert der Emteprodukte, höhere Lagerfähigkeit

und/oder Bearbeitbarkeit der Ernteprodukte möglich, die über die eigentlich zu erwartenden Effekte hinausgehen.

Zu den bevorzugten erfindungsgemäß zu behandelnden transgenen (gentech- nologisch erhaltenen) Pflanzen bzw. Pflanzensorten gehören alle Pflanzen, die durch die gentechnologische Modifikation genetisches Material erhielten, welches diesen Pflanzen besondere vorteilhafte wertvolle Eigenschaften ("Traits") verleiht. Beispiele für solche Eigenschaften sind besseres Pflanzenwachstum, erhöhte Toleranz gegenüber hohen oder niedrigen Temperaturen, erhöhte Toleranz gegen Trockenheit oder gegen Wasser-bzw. Bodensalzgehalt, erhöhte Blühleistung, erleichterte Ernte, Beschleunigung der Reife, höhere Ernteerträge, höhere Qualität und/oder höherer Ernährungswert der Ernteprodukte, höhere Lagerfähigkeit und/oder Bearbeitbarkeit der Ernteprodukte. Weitere und besonders hervorgehobene Beispiele für solche Eigenschaften sind eine erhöhte Abwehr der Pflanzen gegen tierische und mikrobielle Schädlinge, wie gegenüber Insekten, Milben, pflanzenpathogenen Pilzen, Bakterien und/oder Viren sowie eine erhöhte Toleranz der Pflanzen gegen bestimmte herbizide Wirkstoffe. Als Beispiele transgener Pflanzen werden die wichtigen Kulturpflanzen, wie Getreide (Weizen, Reis), Mais, Soja, Kartoffel, Baumwolle, Raps sowie Obstpflanzen (mit den Früchten Äpfel, Birnen, Zitrusfrüchten und Weintrauben) erwähnt, wobei Mais, Soja, Kartoffel, Baumwolle und Raps besonders hervorgehoben werden. Als Eigenschaften ("Traits") werden besonders hervor- gehoben die erhöhte Abwehr der Pflanzen gegen Insekten durch in den Pflanzen entstehende Toxine, insbesondere solche, die durch das genetische Material aus Bacillus Thuringiensis (z. B. durch die Gene CryIA (a), CryIA (b), CryIA (c), CryIIA, CryIIIA, CryIIIB2, Cry9c Cry2Ab, Cry3Bb und CryIF sowie deren Kombinationen) in den Pflanzen erzeugt werden (im folgenden"Bt Pflanzen"). Als Eigenschaften ("Traits") werden auch besonders hervorgehoben die erhöhte Abwehr von Pflanzen gegen Pilze, Bakterien und Viren durch Systemische Akquirierte Resistenz (SAR), Systemin, Phytoalexine, Elicitoren sowie Resistenzgene und entsprechend exprimierte Proteine und Toxine. Als Eigenschaften ("Traits") werden weiterhin besonders hervorgehoben die erhöhte Toleranz der Pflanzen gegenüber bestimmten

herbiziden Wirkstoffen, beispielsweise Imidazolinonen, Sulfonylharnstoffen, Gly- phosate oder Phosphinotricin (z. B. "PAT"-Gen). Die jeweils die gewünschten Eigen- schaften ("Traits") verleihenden Gene können auch in Kombinationen miteinander in den transgenen Pflanzen vorkommen. Als Beispiele für"Bt Pflanzen"seien Maissorten, Baumwollsorten, Sojasorten und Kartoffelsorten genannt, die unter den Handelsbezeichnungen YIELD GARD (z. B. Mais, Baumwolle, Soja), Knock0ut@ (z. B. Mais), StarLink (z. B. Mais), Bollgard (Baumwolle), Nucoton@ (Baumwolle) und NewLeafE) (Kartoffel) vertrieben werden. Als Beispiele für Herbizid tolerante Pflanzen seien Maissorten, Baumwollsorten und Sojasorten genannt, die unter den Handelsbezeichnungen Roundup Ready (Toleranz gegen Glyphosate z. B. Mais, Baumwolle, Soja), Liberty Link (Toleranz gegen Phosphinotricin, z. B. Raps), IMI (Toleranz gegen Imidazolinone) und STS@ (Toleranz gegen Sulfonylharnstoffe z. B. Mais) vertrieben werden. Als Herbizid resistente (konventionell auf Herbizid-Toleranz gezüchtete) Pflanzen seien auch die unter der Bezeichnung Clearfield0 vertriebenen Sorten (z. B. Mais) erwähnt. Selbst- verständlich gelten diese Aussagen auch für in der Zukunft entwickelte bzw. zukünftig auf den Markt kommende Pflanzensorten mit diesen oder zukünftig entwickelten genetischen Eigenschaften ("Traits").

Die aufgeführten Pflanzen können besonders vorteilhaft erfindungsgemäß mit den Verbindungen der allgemeinen Formel (I) bzw. den erfindungsgemäßen Wirkstoff- mischungen behandelt werden. Die bei den Wirkstoffen bzw. Mischungen oben angegebenen Vorzugsbereiche gelten auch für die Behandlung dieser Pflanzen. Besonders hervorgehoben sei die Pflanzenbehandlung mit den im vorliegenden Text speziell aufgeführten Verbindungen bzw. Mischungen.

Die Herstellung und die Verwendung der erfindungsgemäßen Stoffe wird durch die folgenden Beispiele veranschaulicht. Herstellungsbeispiele Beispiel 1

Verfahren (a) Zu einer Mischung von 11,9 g (78, 5 mmol) 1-Aminocyclopropan-l- carbonsäuremethylester und 19,9 g Triethylamin in 120 ml Tetrahydrofuran gibt man eine Lösung von 17 g (78,5 mmol) 3,4-Dichlor-5-isothiazolcarbonylchlorid in 160 ml Tetrahydrofuran und rührt 16 Stunden bei Raumtemperatur. Die Reaktionsmischung wird in 1,5 1 Wasser gegossen und dreimal mit jeweils 300 ml Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Man erhält 17,6 g (72 % der Theorie) 1- { [ (3, 4-Dichlor-5-isothiazolyl) carbonyl] amino} cyclopropancarbonsäuremethylester.

HPLC : logP = 2,03 Beispiel 2 Verfahren (b) Zu einer Mischung von 0,2 g (0,73 mmol) 1-[(2, 6-Dichloroisonicotinoyl) - amino] cyclopropancarbonsäure in 5 ml Dichlormethan gibt man unter Argon 0,1 g (1,45 mmol) n-Butylamin, 0,19 g Diisopropylethylamin und 0,204 g bis- (2-Oxo-3-

oxazolidinyl) phosphinsäurechlorid und rührt 16 Stunden bei Raumtemperatur. Die Reaktionsmischung wird in 50 ml Wasser gegossen und dreimal mit jeweils 50 ml Essigsäureethylester extrahiert. Die vereinigten organischen Phasen werden über Natriumsulfat getrocknet und unter vermindertem Druck eingeengt. Der Rückstand wird mit Cyclohexan/Essigester (3 : 1) an Kieselgel chromatografiert. Man erhält 0,05 g (21 % der Theorie) 1-[(2, 6-Dichloroisonicotinoyl) amino] cyclopropancarbonsäure- n-butylamid.

1H-NMR (DMSO) : 5 = 0, 87 (t, 3H), 1,32 (m, 8H), 7,05 (t, 1H), 7,92 (s, 2H), 9,22 (s, 1H) ppm.

Nach den zuvor angegebenen Methoden werden auch die in der nachstehenden Tabelle 1 genannten Verbindungen der Formel (I) erhalten.

Tabelle 1 Bsp. Nr. G R logP 3 CiX XCI-O-C2H5 2, 4 NU # . 4 #-O-CH3 1, 87 CI N CI 5 Br-O-CH3 2, 45 gar's Br : , s Tabelle 1 (Fortsetzung) Bsp. Nr. G R logP 6 Br n-Propoxy 3, 15 Ber s Br S 7 Br Cyclobutoxy 3, 27 ber s "c 8 Br-O-CH2-C=C-3, 00 1 CH3 Ber s 9 CI CI n-Propoxy 2, 79 Nu s 10 ci ci Propargyloxy 2, 36 Nu s -O-CH3 1, 83 Brg# 12-O-CH3 1, 78 /\ CI S # 13 ci ci _c-2, 68 y asz 14 # All, bw 2 Nu s Tabelle 1 (Fortsetzung) Bsp. Nr. G R logP 15 #-O-C2Hs 2, 21 CI N C ! 16 # n-Propoxy 2, 61 CI N C ! 17 # n-Butoxy 3, 00 CI N Cl 18 # 2-Butoxy 2, 94 C ! N CI 19 # Propargyloxy 2, 21 1 ce N ce 20 # Allyloxy 2, 44 CI N CI 21 # Cyclobutoxy 2, 74 ci N ci Tabelle 1 (Fortsetzung) Bsp. Nr. G R logP 22 ClCI-O-CH2-CH=CH-2, 99 CH3 asz s 23 CI'CI Cyclobutoxy 2, 96 N# NI-1s 24 # i-Butoxy 2, 95 CI N CI 25 #-O-CH2-C-C-2, 51 CH3 ci N ci CI N CI 26-O-CH2-CH=CH-2, 78 CH3 ci N ci 27I CI i-Butoxy 3, 22 Nu # 28 CI CI 2-Butoxy 3, 23 N # 29 CI CI n-Butoxy 3, 24 NuS # s Tabelle 1 (Fortsetzung) Bsp. Nr. G R logP 30-i-Propoxy Br S # 31-NH-CH3 1, 34 CI) CI 32 CI CI-i-Propoxy 2, 77 ts9-2 33 #-i-Propoxy 2, 56 ci N ci I I 34 ci ci n-Butylamino 2, 33 N # 35 ci-'CH3)- (-H2-G13 2, 14 Nn 36 CI n-Butoxy 2, 2 NEZ 37 CI i-Propoxy 1, 8 N 0..

Tabelle 1 (Fortsetzung) Bsp. Nr. G R logP 38 CH3 vcH3SCH2 CH3 2, 35 N Ci 39 Cl n-Butoxy 2, 42 N Hic H3C # 40 Cl i-Propoxy 2, 01 N Hic 41 Cl n-Butoxy 2, 85 NEZ !' 42-0-aXCH3XH2JM3 2, 75 NEZ cri C)"

Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A8 durch HPLC (Gradientenmethode, Acetonitril/0, 1 % wäßrige Phosphorsäure) # steht für die Anknüpfungsstelle Herstellung von Vorprodukten der Formel (1 Beispiel 43

Verfahren (c) Zu einer Lösung von 11,5 g (39,0 mmol) 1-1 [ (3, 4-Dichlor-5-isothiazolyl) carbonyl]- amino} cyclopropancarbonsäuremethylester in 250 ml Isopropanol gibt man 150 ml 1N Natronlauge und rührt 1 Stunde bei Raumtemperatur. Die Reaktionsmischung wird in 1,5 1 Wasser gegossen und mit 1N Salzsäure angesäuert bis ein pH-Wert zwischen 3 und 4 erreicht ist. Der Niederschlag wird abgesaugt, mit 300 ml Wasser gewaschen und getrocknet. Man erhält 7,23 g (59 % der Theorie) 1-f [ (3, 4-Dichlor-5- isothiazolyl) carbonyl] amino} cyclopropancarbonsäure.

HPLC : logP = 1, 57 Nach den zuvor angegebenen Methoden werden auch die in der nachstehenden Tabelle 2 genannten Verbindungen der Formel (IV) erhalten.

Tabelle 2 Bsp. Nr. G logP 44 Br 1 brus 45 ci 1, 43 N I Cl "fuzz cri gr S # Die Bestimmung der logP-Werte erfolgte gemäß EEC-Directive 79/831 Annex V. A8 durch HPLC (Gradientenmethode, Acetonitril/0, 1 % wässrige Phosphorsäure) # steht für die Anknüpfungsstelle Herstellun¢ eines Vorproduktes der Formel (II) Beispiel 47 In 50ml auf-10°C gekühltes Isopropanol werden 21,2 ml Thionylchlorid unter Rühren langsam eingetropft. Anschließend werden 5 g 1-Aminocyclopropan-l- carbonsäure bei-10°C portionsweise zugegeben. Danach wird die Reaktions- mischung 40 Stunden auf 40°C erwärmt. Man kühlt dann ab auf Raumtemperatur, gibt erneut 10,6 ml Thionylchlorid hinzu und rührt 7 Tage bei 40°C. Es wird

wiederum auf Raumtemperatur abgekühlt, erneut mit 10, 6 ml Thionylchlorid versetzt und noch einmal 7 Tage lang bei 40°C gerührt. Man destilliert unter vermindertem Druck einen Teil der flüchtigen Bestandteile ab und lässt auf Raumtemperatur abkühlen. Das kristalline Produkt wird abgesaugt, mit Diisopropylether gewaschen und getrocknet. Man erhält 9,48 g (98 % der Theorie) 1-Aminocyclopropan-l- carbonsäureisopropylester in Form des Hydrochlorids.

1H-NMR (DMSO) : 5 = 1,41 (d, 6H), 1,90 (m, 1H), 7,05 (t, 1H), 3,92 (d, 2H), 8,78 (s, 2H) ppm.

Verwendunssbeispiele Beispiel Erysiphe-Test (Gerste)/Resistenzinduktion Lösungsmittel : 50 Gew.-Teile N, N-Dimethylformamid Emulgator : 1 Gew.-Teil Alkylarylpolyglykolether Zur Herstellung einer zweckmäßigen Wirkstoffzubereitung vermischt man 1 Gewichts- teil Wirkstoff mit den angegebenen Mengen Lösungsmittel und Emulgator und ver- dünnt das Konzentrat mit Wasser auf die gewünschte Konzentration.

Zur Prüfung auf resistenzinduzierende Wirksamkeit besprüht man junge Pflanzen mit der Wirkstoffzubereitung in der angegebenen Aufwandmenge. 5 Tage nach der Behandlung werden die Pflanzen mit Sporen von Erysiphe graminis f. sp. hordei bestäubt. Anschließend werden die Pflanzen in einem Gewächshaus bei einer Temperatur von ca. 20°C und einer relativen Luftfeuchtigkeit von ca. 80 % aufgestellt, um die Entwicklung von Mehltaupusteln zu begünstigen.

7 Tage nach der Inokulation erfolgt die Auswertung. Dabei bedeutet 0 % ein Wir- kungsgrad, der demjenigen der Kontrolle entspricht, während ein Wirkungsgrad von 100 % bedeutet, dass kein Befall beobachtet wird.

Wirkstoffe, Wirkstoffkonzentrationen und Versuchsergebnisse gehen aus der folgenden Tabelle hervor.

Tabelle A Erysiphe-Test (Gerste)/Resistenzinduktion Wirkstoff Aufwandmenge an Wirkungsgrad Wirkstoff in g/ha in % Erfindungsgemäß : (14) 375 97 CL 0 o ci ci 0 N N O Vs O (23) 375 95 ci cl N o S 11 O (16) 375 96 ci N ci y ut 0 N Tabelle A (Fortsetzung) Erysiphe-Test (Gerste) / Resistenzinduktion Wirkstoff Aufwandmenge an Wirkungsgrad Wirkstoff in g/ha in % (18) 375 100 CI N ci o 0 0 N (24) 375 97 CI N CI o 0 H (19) 375 100 ci N ci 0 7-111 0 0 N Tabelle A (Fortsetzung) Erysiphe-Test (Gerste)/Resistenzinduktion Wirkstoff Aufwandmenge an Wirkungsgrad Wirkstoff in g/ha in % (25) 375 96 ci N ci vu 0 0 N (20) 375 100 ci N ci vu O H (26) 375 100 CI N CI iso 0 O _H Tabelle A (Fortsetzung) Erysiphe-Test (Gerste) / Resistenzinduktion Wirkstoff Aufwandmenge an Wirkungsgrad Wirkstoff in g/ha in % (21) 375 97 CI N ci 0 OYN (43) 375 97 CI CI 0 H OU VS I I 0 (4) 375 95 0 MU N N 0 cri CI Tabelle A (Fortsetzung) Erysiphe-Test (Gerste)/Resistenzinduktion Wirkstoff Aufwandmenge an Wirkungsgrad Wirkstoff in g/ha in % (45) 375 96 ; N4o~\ H N 'oh Oh ci N ci (29) 375 96 ci ci 0 Q VS s (10) 375 97 ci ci 0 X e vs 0 (13) 375 96 ci ci 0 H S \\ -X XNeo9\