Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HIGH-EFFICIENCY HIGH-POWER VERTICAL AXIS WIND GENERATOR
Document Type and Number:
WIPO Patent Application WO/2011/094916
Kind Code:
A1
Abstract:
A high-power vertical axis wind generator includes a vertical blade wind wheel (01) and an energy-increasing wing (1, 2, 401). The energy-increasing wing (1, 2, 401) is a wind shield arranged on a bracket in a manner of not blocking the blades (02) to rotate and in front of the windward of the wind wheel (01). The energy-increasing wing (1, 2, 401) corresponds to the upwind rotating portion of blades (02) of the wind wheel (01) so that the side of the wind wheel (01) blocking its rotating is blocked. The efficiency of the vertical axis wind generator may be increased above 25% by arranged the energy-increasing wing (1, 2, 401) in front of the windward of the wind wheel (01).

Inventors:
JIANG, Dalong (No. 8 Yucai St, Yukou Pinggu District, Beijing 6, 101206, CN)
蒋大龙 (中国北京市平谷区峪口镇峪蔡路8号, Beijing 6, 101206, CN)
SHENG, Mingfan (No. 8 Yucai St, Yukou Pinggu District, Beijing 6, 101206, CN)
盛明凡 (中国北京市平谷区峪口镇峪蔡路8号, Beijing 6, 101206, CN)
Application Number:
CN2010/000961
Publication Date:
August 11, 2011
Filing Date:
June 28, 2010
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
NATIONAL WIND ENERGY CO., LTD. (No. 8 Yucai St, Yukou Pinggu District, Beijing 6, 101206, CN)
国能风力发电有限公司 (中国北京市平谷区峪口镇峪蔡路8号, Beijing 6, 101206, CN)
JIANG, Dalong (No. 8 Yucai St, Yukou Pinggu District, Beijing 6, 101206, CN)
蒋大龙 (中国北京市平谷区峪口镇峪蔡路8号, Beijing 6, 101206, CN)
SHENG, Mingfan (No. 8 Yucai St, Yukou Pinggu District, Beijing 6, 101206, CN)
International Classes:
F03D3/04
Foreign References:
JP2008106736A2008-05-08
CN101233316A2008-07-30
CN2207453Y1995-09-13
JP2003042055A2003-02-13
CN1811171A2006-08-02
Attorney, Agent or Firm:
CHINA TRADEMARK & PATENT LAW OFFICE CO., LTD. (14 Yuetan Nanjie, Yuexin Bldg. Xicheng District, Beijing 5, 100045, CN)
Download PDF:
Claims:
权利 要求

1. 一种高效大功率垂直轴风力发电机, 其特征在于, 包括一风轮, 其可转动地固设在一中心塔柱上, 所述风轮上设有若干叶片, 在所述风轮 和塔柱之间设置发电机组, 该发电机组的定子部分环绕设置在塔柱上, 转 子部分设置在所述定子部分的外周, 并与风轮的轮毂固联;

还包括一增能翼, 该增能翼为一挡风物体, 其以不阻挡所述叶片的转 动的方式设置在一支架上, 且位于所述风轮迎风面的前方, 该增能翼的挡 风面与所述风轮的接受来风气流而转动受阻的一侧迎风面的叶片相对应, 使得所述风轮由于来风气流而转动受阻的侧面被挡住,该支架设置在一固 定机架上。

2. 根据权利要求 1所述的高效大功率垂直轴风力发电机, 其特征在 于, 所述增能翼是板式增能翼, 其包括一板件, 其固设在所述支架上, 该 者,

所述增能翼是风轮式增能翼, 其包括至少一风轮, 其可转动地设置在 一根风轮轴上, 该风轮轴固设在所述支架上, 该增能翼风轮上叶片的最外 侧旋转形成的圓柱体轨迹构成所述挡风面。

3. 根据权利要求 1所述的高效大功率垂直轴风力发电机, 其特征在 于, 所述垂直轴风力发电机的所述风轮为垂直叶片风轮, 其中的叶片通过 两根或多根支撑杆连接到风轮中的轮毂上,所述轮毂的至少一个与所述风 力发电机的转子相连接, 另外的所述轮毂与所述中心塔柱可转动地连接; 该叶片的形状为一垂直的柱状体, 其水平截面为飞机机翼的断面形状, 即 相对于风轮的转轴, 叶片朝外的外侧表面为流线形状弧面, 该外侧表面与 相对的内侧表面之间的圆滑过渡,形成较大的迎风端即叶片的头部和较小 的尾部; 和 /或, 该柱状体在垂直方向上各水平截面大小形状相同。

4. 根据权利要求 2所述的高效大功率垂直轴风力发电机, 其特征在 于, 所述增能翼的所述风轮为垂直叶片风轮, 其中的叶片通过支撑杆连接 到风轮中的轮毂上,该轮毂可转动地固定在与所述塔柱平行设置的所述风 轮转轴上, 该叶片的形状为一垂直的柱状体, 其水平截面为飞机机翼的断 面形状, 即叶片朝外的外侧表面为流线形状弧面, 该外侧表面与相对的内 侧表面之间的圓滑过渡, 形成较大的迎风端即叶片的头部和较小的尾部; 和 /或, 该柱状体在垂直方向上各水平截面大小形状相同; 或者,

所述增能翼的风轮为螺旋桨式风轮。

5. 根据权利要求 2或 4所述的高效大功率垂直轴风力发电机, 其特 征在于, 所述增能翼的所述风轮是一个; 或者, 所述增能翼的所述风轮为 若干个, 其均设置在所述风轮转轴上; 或者,

在所述增能翼的所述风轮和所述风轮轴之间设置发电机组,所述风轮 连接所述发电机组的转子, 构成风力发电机。

6. 根据权利要求 5所述的高效大功率垂直轴风力发电机, 其特征在 于, 当所述增能翼的所述风轮是一个时, 所述风轮上的叶片的高度与所述 风力发电机的所述风轮的所述叶片高度相当; 或者, 当所述风轮是若干个 时,各个所述风轮上的叶片的高度以及相邻风轮叶片之间的垂直方向的间 隙之和与风力发电机的所述风轮的所述叶片高度相当。

7. 根据权利要求 1或 2或 4所述的高效大功率垂直轴风力发电机, 其特征在于,所述增能翼的远离所述中心塔柱的一侧至少与所述风力发电 机的所述风轮接受来风气流而转动受阻的一侧迎风面的最外侧对应。

8. 根据权利要求 1或 2或 4所述的高效大功率垂直轴风力发电机, 其特征在于,所述增能翼的所述挡风面为平面或弧面或平面和弧面结合的 形状; 和 /或,

所述增能翼的所述挡风面的远离所述垂直轴风力发电机的中心塔柱 的最外侧边缘边至少与所述垂直轴风力发电机的所述风轮的所述迎风面 的所述侧面的最外侧对应; 和 /或,

所述增能翼的所述挡风面的宽度为所述风力发电机的风轮整个迎风 面的三分之一至二分之一; 和 /或,

所述增能翼的所述挡风面靠近所述垂直轴风力发电机的中心塔柱的 一侧边缘在所述迎风面的中点为起始点起以所述中心塔柱为中心顺时针 转角 180度至 330度所对应的迎风面上; 或者,

所述增能翼的所述挡风面为弧面, 该弧面的两端是:

对应所述垂直轴风力发电机中风轮的俯视角度,所述增能翼的挡风面 的两端设置在所述风轮中心为坐标系原点的第二象限内或者从第二象限 延伸至第三象限范围内。

9. 根据权利要求 1或 2或 4所述的高效大功率垂直轴风力发电机, 其特征在于, 所述支架包括两根支撑杆, 两根支撑杆的一端与所述增能翼 的上下两端连接, 该支撑杆的另一端连接在所述中心塔柱上, 该两根支撑 度为使得所述增能翼位于所述风轮叶片回转圆周轨迹的外面; 或者, 所述支架设置在所述垂直轴风力发电机风轮旁边的基础上,使得所述 增能翼位于所述风轮叶片回转圆周轨迹的外面。

10. 根据权利要求 9所述的高效大功率垂直轴风力发电机, 其特征在 于, 所述支撑杆可转动且可定位地固设在所述中心塔柱上; 或者,

在支承所述支架的所述基础上设置轨道,所述支架可位移地设于该轨 道上。

11. 根据权利要求 1或 9所述的高效大功率垂直轴风力发电机, 其特 征在于, 还包括一增能翼的位移机构, 包括一驱动装置, 所述驱动装置设 置在所述固定机架上, 其与所述支架相连接, 使得该支架位移而使设于其 上的所述增能翼的挡风面挡住所述风轮的不同侧面。

12. 根据权利要求 1或 3所述的高效大功率垂直轴风力发电机, 其特 征在于,所述风力发电机风轮中的叶片包括构成叶片形状的骨架和固定在 该骨架外面的蒙皮, 所述骨架包括有叶片骨架、 骨架筋和叶型支撑杆, 所述叶片骨架为若干个,其为叶片柱状体的所述水平截面飞机机翼形 状的框架, 在叶片的垂直方向以设定间距对正排布;

所述骨架筋为若干直杆件,各个骨架筋环绕在对正排布的若干所述叶 片骨架框架的周围,每根所述骨架筋与所有所述叶片骨架的所述框架在一 垂直方向上有一交汇固联点, 形成叶片的侧壁骨架来支撑和 /或固联所述 蒙皮;

所述叶型支撑杆的两端支撑固定在所述叶片骨架形成的所述框架上 相对位置的杆体上, 以支撑保持该框架的形状。

13. 根据权利要求 12所述的高效大功率垂直轴风力发电机, 其特征 在于, 所述骨架筋包含四根骨架主筋和若干根骨架副筋, 所述骨架主筋是 这样分布的: 其中两根所述骨架主筋设置在对应叶片的所述外侧表面一 侧, 另外两根所述骨架主筋设置在对应叶片的所述内侧表面一侧, 在所述 叶片的水平截面上, 四根所述骨架主筋构成一四边形, 并设在所述叶片的 垂直设置下质量中心的周围且使得所述叶片的质量由该四根骨架主筋平 衡。

14. 根据权利要求 13所述的高效大功率垂直轴风力发电机, 其特征 在于, 所述骨架主筋为其强度和 /或刚度较大的杆件, 所述骨架副筋为强 度和 /或刚度较小的杆件; 和 /或,

所述骨架主筋和骨架副筋与所述叶片骨架的连接点与所述叶型支撑 杆和所述叶片骨架的交点交汇固定;

所述骨架主筋、骨架副筋与所述叶片骨架的连接点交汇于所述叶型支 撑杆和所述叶片骨架的连接点。

15. 根据权利要求 3所述的高效大功率垂直轴风力发电机, 其特征在 于, 相对于所述风轮转轴的垂直轴线, 所述叶片流线形的所述外侧表面在 沿设定半径圆的圓周方向设置; 或者, 相对于所述风轮转轴的垂直轴线, 所述叶片流线形的所述外侧表面在与沿设定半径圓的圆周切线方向夹设 定角度的方向设置。

16. 根据权利要求 1所述的高效大功率垂直轴风力发电机, 其特征在 于, 还设有散热装置, 在风力发电机的中心轴和端盖围合而成的空间内轴 向排列有呈平面圆盘结构的定子部分和转子部分,所述定子部分包括沿径 向延伸的电枢, 所述转子部分包括多块永磁体, 在所述端盖中间的扁平间 隙处设置有贯通的风道, 在所述风道内设有至少一个送排风机。

17. 根据权利要求 16所述的高效大功率垂直轴风力发电机, 其特征 在于, 所述电枢上贯通开设有多个与所述风道连接的通风孔。

18. 根据权利要求 16所述的高效大功率垂直轴风力发电机, 其特征 在于, 所述永磁体上贯通开设有多个与所述风道连接的通风孔。

19. 根据权利要求 1所述的高效大功率垂直轴风力发电机, 其特征在 于, 还包括磁悬浮支撑装置, 其中,

所述磁悬浮支撑装置包括至少三个磁悬浮支撑机构,其中第一磁悬浮 支撑机构设置在支撑风轮的主轴环形外缘位置,第二磁悬浮支撑机构设置 在电枢的环形外缘位置,第三磁悬浮支撑机构设置在发电机的中心盘环形 外缘位置;

在各磁悬浮支撑机构中具有环状分布的多组磁钢,所述磁钢采用矩阵 式结构, 位置上下相对的磁钢的极性分布相反。

20. 根据权利要求 19所述的高效大功率垂直轴风力发电机, 其特征 在于,

在各磁悬浮支撑机构中还具有轭铁,在所述轭铁中设有多个呈矩阵分 布方式的凹槽, 在所述凹槽中固定放置所述磁钢。

21. 根据权利要求 1所述的高效大功率垂直轴风力发电机, 其特征在 于, 还包括制动装置, 其中,

所述制动装置包括至少一个电磁制动器和至少一个气动制动器,所述 电磁制动器和所述气动制动器安装在制动器支架之上,并沿发电机制动盘 的圓周均匀设置;

所述电磁制动器和所述气动制动器分别与垂直轴风力发电机的控制 器进行连接。

22. 如权利要求 21所述的高效大功率垂直轴风力发电机,其特征在 于:

在供电条件正常的情况下,所述电磁制动器和所述气动制动器按照电 磁制动一气动制动一电磁制动一气动制动的循环过程交替启动。

23. 如权利要求 21所述的高效大功率垂直轴风力发电机,其特征在 于:

在供电条件不正常的情况下, 仅由气动制动器进行动作。

24. 一种用于如权利要求 1所述高效大功率垂直轴风力发电机的制 动方法, 其特征在于:

在垂直轴风力发电机开始启动之后, 监控该垂直轴风力发电机的转 速; .

在垂直轴风力发电机的转速超过安全值的情况下,分别启动电磁制动 器和气动制动器, 所述电磁制动器和所述气动制动器根据旋转力矩的大 小, 交替启动以实现制动;

在所述电磁制动器和所述气动制动器的制动效果不明显的情况下,继 续启动刹车电阻的接触器, 进行电阻制动。

Description:
高效大功率垂直轴风力发电机 技术领域 本发明属于风力发电机技术领域, 提供一种风力发电机, 尤其是一种 高效大功率垂直轴风力发电机。 背景技术 风能是水能之外最具规模应用前景的可再生能 源,受到世界各国的高 度重视。 中国已成为世界上最活跃的风电市场。 2009 年全国新增风电装 机容量超过 800万千瓦, 累计总容量已达 2000万千瓦以上。 因此, 我国 风力发电设备制造业及相关领域的市场前景十 分广阔。

风力发电机按旋转轴的方向来分, 可分为水平轴和垂直轴两种。

在现有技术中, 垂直轴风力发电机越来越显示出其高效、 功率大和便 于安装使用、 寿命长等优点。 但是, 在垂直设置的风轮被风吹动旋转时, 风轮的转动速度并不能随风力成比例增加,在 风力不是很大的情况下这一 情况更加突出, 究其原因是, 如图 1所示, 当来风气流(图 1中平行的若 干箭头所示)冲击风轮时, 在其迎风面的一侧受到的是驱动风轮转动的有 效推力, 而在另一侧受到的则是阻止风轮转动的阻力, 上述两种力的合力 是来风气流致使风轮旋转作功的有效动力。 由于迎风面上一侧风阻的存 在,显著降低了垂直轴风轮受来风获得的驱动 力,使得发电机的效率降低。

现有技术中解决这一问题的方法是在风轮迎风 面设置导流装置,构建 一个导流风场,使得来风按照导流装置提供的 通道吹向风轮而推动风轮转 动。 这种通过将自然风引入导流通道, 再推动风轮叶片的消除风阻力的方 法, 存在降低自然风风力的缺点, 同时, 自然风的风向会频繁变化, 如果 导流装置不随风向改变导流方向, 导流装置带来的风能损耗将更大, 如果 设计可以随风向变化而改变导流方向的导流装 置,势必使得导流装置的结 构变得复杂, 这给在风场这样特定严酷的环境中的使用、 管理和维护都会 带来不便。

现有风力发电机的风轮叶片多为大小头三角形 式, 小头细长, 这种又 细又长的叶片, 受风力容易变形和产生共振, 且受风压很容易折断, 存在 抗风能力差的问题, 旋转时的共振, 可造成发电功率偏低的问题, 由于这 类风轮叶片的上述问题, 加上现在的风力发电机有向大型化、 大功率方向 发展, 随着风轮直径的增大, 叶片的损坏率更高, 使用寿命更短, 给风力 发电的发展带来较大的负面影响。

另外, 现有技术中的垂直轴风力发电机的结构特点, 普遍使用盘式无 铁芯永磁发电机进行发电。 在专利号为 ZL 200610069654. 5的中国实用新 型专利中, 公开了一种盘式风力发电机, 其定子由绕组线圈组成, 不含铁 磁材料。 固定在转子轴上的永磁体是以转子轴为轴线的 回转体, 且与固定 在上、 下壳体内的永磁体相对应, 相对面的极性相同。 由于该风力发电机 取消了铁芯, 因此减少了磁阻力。 由于取消了轴承, 使转子轴与定子之间 形成空气悬浮, 减少了空载阻力矩, 提高了电机的效率。 但是, 现有的盘 式风力发电机普遍存在散热困难等缺陷, 使风机输出功率难以进一步提 高。

在专利号为 ZL 200920115365. 3的中国实用新型专利中, 针对单一风 种冷却效果好, 能够提高大功率风力发电机效率的空-水冷却 置。 该装 置包括设置在风力发电机机壳外壁的水冷却夹 层, 夹层上部设有进水口, 夹层下部设有出水口, 夹层内沿风力发电机机壳外壁径向分隔成多个 独立 的径向水流通道, 多个水流通道在进水口和出水口处连通, 风力发电机内 部转轴上至少一侧设有风扇。 该实用新型能够提供更大的制冷量, 有助于 增加电机内部热空气与水冷机座的冷热交换, 但存在结构较为复杂, 安装 和维修不方便等缺点。

在垂直轴风力发电机中, 发电机要承载风轮所受的重力, 受力部件集 中在发电机主轴和设置在主轴上的轴承上, 因此使发电机的阻力矩加大, 发电效率降低、 影响风轮的启动风速, 同时也会降低轴承的使用寿命。 为 了解决这一问题, 人们提出了利用磁斥力实现辅助支撑, 从而减小转动阻 力矩的技术方案。 例如在专利号为 ZL 200820126507. 1的中国实用新型专 利中, 公开了一种用于垂直轴风力发电机的磁悬浮装 置, 其中发电机转子 主轴设置在支座内, 主轴底部设置上磁体, 支座上与主轴底部围成的空腔 内设置下磁体, 下磁体设置在上磁体下方并与上磁体同极性相 对设置。 由 于磁悬浮装置设置在发电机主轴底部,所以上 磁体以及上磁体上方的发电 机主轴受到由于同极磁铁相斥所产生的相上的 磁场力,部分抵消了轴承上 所受压力, 使发电机的转动阻力矩减小, 发电效率得到提高、 风轮的启动 风速降低, 同时也会延长轴承的使用寿命。

另外, 在专利号为 ZL 200820024546. 0的中国实用新型专利中, 公开 了一种磁悬浮自调桨距垂直轴风力发电机。 它包括磁悬浮风力发电机, 磁 悬浮风力发电机的发电机轴与叶轮的叶轮轴一 体制成,发电机轴穿入电机 壳体内, 在发电机轴上安装发电机转子, 与之对应的电机壳体上设有发电 机定子, 同时在发电机轴上和电机壳体内还安装轴向磁 悬浮装置和径向磁 悬浮装置, 进行磁悬浮定位。 轴向磁悬浮装置包括设置在电机壳体内部顶 端的固定盘, 固定盘与发电机轴固联, 在固定盘上设有至少一个环形的轴 向上磁体, 与之对应的电机壳体上设有相应的轴向下磁铁 。 径向磁悬浮装 置包括设置在发电机轴上的至少一个径向内磁 铁,与之对应的电机壳体上 设有相应的径向外磁体。 发明内容 本发明的首要目的在于改进现有技术发电机风 轮受到风力产生阻碍 风轮转动的阻力使得发电机功率和效率不高的 缺陷,提供一种与现有建立 导流风场原理完全不同, 能够最大限度地减少阻止风轮转动的阻力, 从而 提高风轮的转动效率的带有增能翼的高效大功 率垂直轴风力发电机; 本发明进一步的目的在于提供一种其中风轮叶 片强度、 刚度高, 重量 轻阻力小的高效大功率垂直轴风力发电机;

本发明进一步的目的还在于提供一种发电机组 散热性好的高效大功 率垂直轴风力发电机。

本发明进一步的目的还在于提供一种支撑部位 摩擦系数小的高效大 功率垂直轴风力发电机;

本发明进一步的目的还在于提供一种刹车性能 好的高效大功率垂直 轴风力发电机。

本发明的目的是这样实现的:

一种高效大功率垂直轴风力发电机, 包括一风轮, 其可转动地固设在 一中心塔柱上, 所述风轮上设有若干叶片, 在所述风轮和塔柱之间设置发 电机组, 该发电机组的定子部分环绕设置在塔柱上, 转子部分设置在所述 定子部分的外周, 并与风轮的轮毂固联;

还包括一增能翼, 该增能翼为一挡风物体, 其以不阻挡所述叶片的转 动的方式设置在一支架上, 且在所述风轮迎风面的前方, 该增能翼的挡风 面与所述风轮的接受来风气流而转动受阻的一 侧迎风面的叶片相对应,使 得所述风轮由于来风气流而转动受阻的侧面被 挡住,该支架设置在一固定 机架上。

本发明解决因来风造成风轮阻力矩而使发电机 效率降低的问题是采 用与现有技术完全不同的理念, 即应用了切断风流场的原理, 通过设置的 挡风物体, 将对风轮产生阻力矩的气流挡住, 使其不能作用于风轮相应的 叶片。 通过该挡风物体的阻拦, 可以增加发电机的发电功率, 故而称该挡 风物体为增能翼。

所述增能翼是板式增能翼, 其包括一板件, 其固设在所述支架上, 该

所述增能翼是风轮式增能翼, 其包括至少一风轮, 其可转动地设置在 一根风轮轴上, 该风轮轴固设在所述支架上, 该增能翼风轮上叶片的最外 侧旋转形成的圆柱体轨迹构成所述挡风面。

本垂直轴风力发电机风轮为垂直叶片风轮,其 中的叶片通过两根或多 干支撑杆连接到风轮中的轮毂上,所述轮毂的 至少一个与所述风力发电机 的转子相连接, 另外的所述轮毂与所述中心塔柱可转动地连接 ; 该叶片的 形状为一垂直的柱状体, 其水平截面为飞机机翼的断面形状, 即相对于风 轮的转轴, 其外侧表面和迎风的端面为圆滑过渡的流线型 弧面, 该外侧表 面与相对的内侧表面之间的圓滑过渡,形成较 大的迎风端即叶片的头部和 较小的尾部; 和 /或, 该柱状体在垂直方向上各水平截面大小形状相 同。 直叶片风轮, 其中的叶片通过支撑杆连接到风轮中的轮毂上 , 该轮毂可转 动地固定在与所述塔柱平行设置的所述风轮转 轴上,该叶片的形状为一垂 直的柱状体, 其水平截面为飞机机翼的断面形状, 即相对于风轮的转轴, 其外侧表面和迎风的端面为圓滑过渡的流线型 弧面,该外侧表面与相对的 内侧表面之间的圆滑过渡, 形成较大的迎风端即叶片的头部和较小的尾 部; 和 /或, 该柱状体在垂直方向上各水平截面大小形状相 同。

所述增能翼的风轮也可以为螺旋桨式风轮, 或是其它形式的风轮。 风轮样式的增能翼, 在来风气流的作用下旋转, 其可以起到与平板样 式的增能翼相同的阻断气流作用在风力发电机 风轮上产生阻力矩的作用。

所述风轮式增能翼的所述风轮可以是一个; 也可以为若干个, 其均设 置在所述风轮转轴上。

当所述增能翼的所述风轮是一个时,所述风轮 上的叶片的高度与所述 风力发电机的所述风轮的所述叶片高度相当; 或者, 当所述风轮是若干个 时,各个所述风轮上的叶片的高度以及相邻风 轮叶片之间的垂直方向的间 隙之和与风力发电机的所述风轮的所述叶片高 度相当。

更进一步地,在所述增能翼的所述风轮和所述 风轮轴之间设置发电机 组, 所述风轮连接所述发电机组的转子, 构成风力发电机。

所述增能翼中设置的风轮与风轮轴构成的小风 轮装置中的所述风轮 和所述风轮轴之间可以设有小型发电机组装置 。该增能翼上设置的较小型 的发电机装置的结构形式与大型垂直轴风力发 电机的结构形式可以是基 本相同的, 也可以是不同的, 而为常规风力发电机中的发电机组件。

所述增能翼的所述挡风面为平面或弧面或平面 和弧面结合的形状;和

/或,

所述增能翼的所述挡风面的远离所述垂直轴风 力发电机中设置所述 风轮的中心塔柱的最外侧边缘边至少与所述垂 直轴风力发电机的所述风 轮的所述迎风面的所述侧面的最外侧对应; 和 /或, 所述增能翼的所述挡风面的宽度为所述风力发 电机的风轮整个迎风 面的三分之一至二分之一; 和 /或,

所述增能翼的所述挡风面靠近所述垂直轴风力 发电机中设置所述风 轮的中心塔柱的一侧边缘在所述迎风面的中点 为起始点起以所述中心塔 柱为中心顺时针转角 180度至 330度所对应的迎风面上; 或者,

所述增能翼的所述挡风面为弧面, 该弧面的两端是:

对应所述垂直轴风力发电机中风轮的俯视角度 ,所述增能翼的挡风面 的两端设置在所述风轮中心为坐标系原点的第 二象限内或者从第二象限 延伸至第三象限范围内。

这样的增能翼可以确保风轮基本不产生不利于 转动发电的阻力矩。 所述增能翼可以设置在所述中心塔柱上, 具体地, 所述支架包括两根 支撑杆, 两根支撑杆的一端与所述增能翼的上下两端连 接, 该支撑杆的另 一端连接在所述固定机架即所述中心塔柱上, 该两根支撑杆分别位于所述 风力发电机的所述风轮的上方和下方,且其长 度为使得所述增能翼位于所 述风轮叶片回转圆周轨迹的外面,使之不会影 响到本垂直轴发电机风轮的

':'

运动。

所述增能翼也可以设置在其他支承物上。 例如, 所述支架设置在所述 垂直轴风力发电机风轮旁边的基础上,使得所 述增能翼位于所述风轮叶片 回转圆周轨迹的外面。

作为板体的所述增能翼,该板体的上下两端分 别固设在两根所述支撑 杆上。

所述增能翼是风轮的,该风轮轴的上下端分别 固定在两根所述支撑杆 上。

所述支架也设置在所述垂直轴风力发电机风轮 旁边的基础上。 吹向本发电机风轮的风向通常是会有变化的, 增能翼的位置也就应该 能够随风轮迎风面的改变和改变。 另外, 有些时候, 不需要使用增能翼挡 风, 则需要将增能翼从迎风面移到背风面或顺风面 , 为了使用这一需求, 所述支架最好设计成可运动的结构。 具体的, 所述支撑杆可以是可转动且 可定位地固设在所述中心塔柱上。

而对于支架支承的所述基础上的方案中, 在所述基础上可设置轨道, 所述支架可移动地设于该轨道上定位。

还包括一增能翼的位移机构, 包括一驱动装置, 所述驱动装置设置在 所述固定机架上, 其与所述支架相连接, 使得该支架位移而使设于其上的 所述增能翼的挡风面挡住所述风轮的不同侧面 。

所述风力发电机风轮中的叶片包括构成叶片形 状的骨架和固定在该 骨架外面的蒙皮, 所述骨架包括有叶片骨架、 骨架筋和叶型支撑杆,

所述叶片骨架为若干个,其为叶片柱状体的所 述水平截面飞机机翼形 状的框架, 在叶片的垂直方向以设定间距对正排布;

所述骨架筋为若干直杆件,各个骨架筋环绕在 对正排布的若干所述叶 片骨架框架的周围,每根所述骨架筋与所有所 述叶片骨架的所述框架在一 垂直方向上有一交汇固联点, 形成叶片的侧壁骨架来支撑和 /或固联所述 蒙皮;

所述叶型支撑杆的两端支撑固定在所述叶片骨 架形成的所述框架上 相对位置的杆体上, 以支撑保持该框架的形状。

所述骨架筋包含四根骨架主筋和若干根骨架副 筋,所述骨架主筋是这 样分布的: 其中两根所述骨架主筋设置在对应叶片的所述 外侧表面一侧, 另外两根所述骨架主筋设置在对应叶片的所述 内侧表面一侧,在所述叶片 的水平截面上, 四根所述骨架主筋构成一四边形, 并设在所述叶片的垂直 设置下质量中心的周围且使得所述叶片的质量 由该四根骨架主筋平衡。 所述骨架主筋为其强度和 /或刚度较大的杆件, 所述骨架副筋为强度 和 /或刚度较小的杆件; 和 /或,

所述骨架主筋和骨架副筋与所述叶片骨架的连 接点与所述叶型支撑 杆和所述叶片骨架的交点交汇固定。

所述骨架主筋、骨架副筋与所述叶片骨架的连 接点交汇于所述叶型支 撑杆和所述叶片骨架的连接点。

相对于所述风轮转轴的垂直轴线,所述叶片流 线形的所述外侧表面在 沿设定半径圆的圆周方向设置; 或者, 相对于所述风轮转轴的垂直轴线, 所述叶片流线形的所述外侧表面在与沿设定半 径圆的圆周切线方向夹设 定角度的方向设置。

一种用于大功率垂直轴风力发电机的散热装置 ,在风力发电机的中心 轴和端盖围合而成的空间内轴向排列有呈平面 圆盘结构的定子部分和转 子部分, 所述定子部分包括沿径向延伸的电枢, 所述转子部分包括多块永 磁体, 其特征在于:

在所述端盖中间的扁平间隙处设置有贯通的风 道,在所述风道内设有 至少一个送排风机。

所述电枢上贯通开设有多个与所述风道连接的 通风孔。

所述永磁体上贯通开设有多个与所述风道连接 的通风孔。

在所述端盖上靠近所述送排风机的位置开设有 通风口。

还包括磁悬浮支撑装置:

所述磁悬浮支撑装置包括至少三个磁悬浮支撑 机构,其中第一磁悬浮 支撑机构设置在支撑风轮的主轴环形外缘位置 ,第二磁悬浮支撑机构设置 在电枢的环形外缘位置,第三磁悬浮支撑机构 设置在发电机的中心盘环形 外缘位置;

在各磁悬浮支撑机构中具有环状分布的多组磁 钢 ,所述磁钢采用矩阵 式结构, 位置上下相对的磁钢的极性分布相反。

在各磁悬浮支撑机构中还具有轭铁,在所述轭 铁中设有多个呈矩阵分 布方式的凹槽, 在所述凹槽中固定放置所述磁钢。

还包括一种用于垂直轴风力发电机的制动方法 , 其特征在于: 在垂直轴风力发电机开始启动之后, 监控该垂直轴风力发电机的转 速;

在垂直轴风力发电机的转速超过安全值的情况 下,分别启动电磁制动 器和气动制动器, 所述电磁制动器和所述气动制动器根据旋转力 矩的大 小, 交替启动以实现制动;

在所述电磁制动器和所述气动制动器的制动效 果不明显的情况下,继 续启动刹车电阻的接触器, 进行电阻制动。

其中,

所述电磁制动器和所述气动制动器沿发电机制 动盘的圆周均匀设置。 在供电条件正常的情况下,所述电磁制动器和 所述气动制动器按照电 磁制动一气动制动一电磁制动一气动制动的循 环过程交替启动。

在供电条件不正常的情况下, 仅由气动制动器进行动作。

一种用于实现上述制动方法的制动装置, 其特征在于:

所述制动装置包括至少一个电磁制动器和至少 一个气动制动器,所述 电磁制动器和所述气动制动器安装在制动器支 架之上,并沿发电机制动盘 的圓周均匀设置;

所述电磁制动器和所述气动制动器分别与垂直 轴风力发电机的控制 器进行连接。 本发明提供的带有增能翼的垂直轴风力发电机 风轮通过在风轮迎风 面的前面设置增能翼, 通过阻断气流作用在风力发电机风轮上产生阻 力 矩, 可以使风轮的旋转力矩增大, 提高风力发电机的效率。 通过设置增能 翼, 风力发电机的效率可以增大 25%以上。 本风力发电机中的叶片, 该基 本形状来源於飞机机翼, 通过组成垂直柱状体的骨架和蒙皮结构, 尤其是 骨架中的叶片骨架、叶片支撑杆和骨架主副筋 的特殊的结构设置和使用轻 型材料制作, 使得本发明提供的叶片的重量轻、 强度、 刚度高, 组合加工 简单, 成型精度高、 抗风能力强、 效率高。 而本风力发电机中包括的电机 机组的散热装置和磁悬浮支撑结构都可以进一 步地提高其发电功率和效 率, 因此, 本发明提供的垂直轴风力发电机具有大功率、 高效率的特点。 再配合本发明提供的刹车装置, 通过对多种制动手段的组合使用, 实现了 对风力发电机转速的有效控制, 避免了高风速情况下的紧急停机, 不仅提 高了垂直轴风力发电机的安全性, 而且也避免了对电网造成过大的冲击。 附图概述 图 1为现有技术中风力发电机风轮迎风时的示意 ;

图 2为现有风力发电机的功率与风速关系图;

图 3 为本发明提供的带有板式增能翼的垂直轴风力 发电机风轮的结 构的示意图;

图 3a 为示出板式增能翼的平板与发电机风轮位置关 系的结构示意 图;

图 4为具有增能翼的本风轮的功率与风速的关系 ;

图 5 为本发明提供的带有风轮式增能翼的垂直轴风 力发电机风轮的 主视结构示意图; 图 6为图 5的俯视结构示意图;

图 7 为多个风轮组成的增能翼的垂直轴风力发电机 的主视结构示意 图;

图 8 为本发明提供的垂直轴风力发电机风轮的叶片 的立体结构示意 图;

图 9为安装有图 1中所述的叶片的垂直轴风力发电机风轮的一 结构 的俯视结构示意图;

图 10为图 9所示的风轮的主视结构示意图;

图 11 为本发明提供的垂直轴风力发电机增能翼位移 机构及其上连接 风轮式增能翼的主视结构示意图;

图 12为图 1的俯视结构示意图;

图 13 为采用本发明所提供的散热装置的垂直轴风力 发电机的剖视 图;

图 14为图 13中所示的散热装置的局部放大示意图;

图 15为采用本发明所提供的磁悬浮支撑装置的垂 轴风力发电机的 剖视图;

图 16为本发明中的第一磁悬浮支撑机构的磁体分 示意图; 图 17为本发明中的第二磁悬浮支撑机构的磁体分 示意图; 图 18为本发明中的第三磁悬浮支撑机构的磁体分 示意图; 图;

图 20为在本发明所提供的制动方法中, 两个制动器实现交替制动的 操作流程图。 本发明的最佳实施方式 本发明提供的高效大功率垂直轴风力发电机, 包括一垂直叶片风轮, 其可转动地固设在一中心塔柱上, 所述风轮上设有若干叶片, 在所述风轮 和塔柱之间设置发电机组, 该发电机组的定子部分环绕设置在塔柱上, 转 子部分设置在所述定子部分的外周, 并与风轮的轮毂固联;

还包括一增能翼, 该增能翼为一挡风物体, 其以不阻挡所述叶片的转 动的方式设置在一支架上, 且位于所述风轮迎风面的前方, 该增能翼的挡 风面与所述风轮的接受来风气流而转动受阻的 一侧迎风面的叶片相对应, 使得所述风轮由于来风气流而转动受阻的侧面 被挡住,该支架设置在一固 定机架上。

本发明解决因来风造成风轮阻力矩而使发电机 效率降低的问题是应 用了切断风流场的原理, 通过设置的挡风物体, 将对风轮产生阻力矩的气 流挡住, 使其不能作用于风轮相应的叶片。 通过该挡风物体的阻拦, 可以 增加发电机的发电功率, 故而称该挡风物体为增能翼。

所述支架的一优选实施例是, 包括两根支撑杆, 两根支撑杆的一端与 所述增能翼的上下两端连接, 该支撑杆的另一端连接在所述中心塔柱上, 该两根支撑杆分别位于所述风力发电机的所述 风轮的上方和下方。

所述增能翼可以是板式增能翼, 其包括一板件例如为一平板, 其固设 在所述支架上, 例如, 该平板的上下两端固设在两根所述支撑杆上, 该板 所述增能翼也可以是风轮式增能翼, 其包括一风轮, 例如为一垂直叶 片风轮, 其可转动地设置在一根风轮轴上, 该风轮轴固设在所述支架上, 例如, 该风轮轴的上下端固定在两根所述支撑杆上。 该增能翼风轮上叶片 的最外侧旋转形成的圆柱体轨迹构成所述挡风 面。

具体的, 如图 3a所示, 一种带有板式增能翼的垂直轴风力发电机, 包括一垂直叶片风轮 01 , 所述垂直叶片风轮 01上的叶片 02通过至少两 个支撑杆 05连接到风轮中的轮毂上, 至少一根支撑杆连接的轮毂与发电 机组件中的转子相连接,不与发电机组件连接 的风轮轮毂可转动地设在塔 柱 03上。 而与发电机转子对应的定子也固设在塔柱 03上。 该叶片的形状 为一垂直的柱状体, 其水平截面为飞机机翼的断面形状, 即相对于风轮的 转轴, 其外侧表面和迎风的端面为圆滑过渡的流线型 弧面, 叶片的迎风面 间距较大, 沿顺风方向, 间距逐渐减小, 该柱状体在垂直方向上水平截面 大小形状相同。

所述垂直叶片风轮 01上的叶片 02通过至少两个支撑杆 05连接到风 轮中的轮毂上, 至少一根支撑杆连接的轮毂与发电机组件中的 转子相连 接, 不与发电机组件连接的风轮轮毂可转动地设在 塔柱 9上。 而与发电机 转子对应的定子也固设在塔柱 9上。

还包括一增能翼, 为一平板 1, 其上下两端分别固联在上下两根支撑 杆 (图中未示出) 的一端, 该两根支撑杆的另一端固定在所述中心塔柱 03 上, 该两根支撑杆分别位于所述垂直风轮叶片的上 方和下方; 该增能 翼的平板 1, 其位于所述风轮叶片回转圆周轨迹 a的外面。 这样设置的增 能翼不会影响发电机的风轮 01的旋转,该增能翼位于风轮迎风面的前方, 平板板面与所述风轮 01 的接受来风气流而转动受阻的一侧迎风面的叶 片 相对应, 挡住所述风轮的一侧迎风面, 使得发电机垂直风轮接受来风气流 A而使得转动受阻的一侧面被挡住。

所述增能翼平板 1 的远离所述中心塔柱的一端在所述风力发电机 的 所述垂直叶片风轮被遮挡的所述一侧的最外端 的外侧,至少与该最外端对 应。 平板的宽度优选至少为风轮 01的整个迎风面宽度 S的三分之一至二 分之一, 如图 3a所示的平板 Γ 即为其宽度是迎风面宽度 S的二分之一。

所述增能翼也可以是弧形板, 或平面和弧面结合的形状; 所述平板靠 近所述中心塔柱 03的一侧在迎风面的 180度至 330度之间, 或者, 对应 所述风轮 01 的俯视角度, 所述增能翼弧面的两端设置在风轮中心为坐标 系原点的第二象限中或从第二象限延伸至第三 象限的范围内。

例如, 如图 3、 3a所示的平板 1或 2, 的靠近中心塔柱的一端在迎风 面中点(0。 )为起始点起的 330° 的位置上, 或平板 1宽度在一侧挡住风 轮迎风面的三分之一或迎风面对应的中心角 60。 , 或者, 平板 1 的靠近 中心塔柱的一段在迎风面中点(0° )为起始点起的 320° 的位置上。 这样 的增能翼可以确保风轮不产生不利于转动发电 的阻力矩。

另外,弧形板或平面和弧面组合形状板式增能 翼两侧边缘与风轮的塔 柱中心所做的坐标系的关系可以是:对应所述 垂直轴风力发电机中风轮的 俯视角度,所述增能翼的挡风面的两端设置在 所述风轮中心为坐标系原点 的第二象限内或者从第二象限延伸至第三象限 范围内。即增能翼是在第二 象限内的弧形板, 该弧形板还可以延伸到第三象限。 其中的第二象限对应 的风轮迎风面,从其最外端向内至少一部分为 可使风轮对应的叶片产生阻 力矩的所述侧面。所述增能翼的一端到达第二 象限的外端后还可以向第三 象限延伸一段。 这时的增能翼即可以为弧形挡风面, 或平面和弧面组合的 挡风面。

增能翼平板也可以宽一些, 如图 3中的平板 , 其挡住风轮迎风面 的二分之一, 或者, 平板 Γ 的靠近中心塔柱的一段在迎风面中点 (0° ) 的位置上。

如图 5、 6所示, 在另一个实施例中, 增能翼为风轮 2, 本带有风轮 式增能翼的垂直轴风力发电机风轮, 包括一垂直叶片风轮 01, 其可转动 地固设在一中心塔柱 03上, 其上通过支撑杆 021设有若干叶片 02, 竖直 风轮样式的增能翼 2, 在来风气流 A的作用下旋转, 其可以起到与平板样 式的增能翼相同的阻断气流作用在风力发电机 风轮上产生阻力矩的作用。 增能翼风轮 2的结构也可以是与所述风力发电机中的所述 轮 01结构形 状相同, 即其中的叶片 23通过支撑杆 21, 连接到风轮中的轮毂上, 该轮 毂可转动地固定在风轮轴 20上,风轮轴 20的上下两端分别通过两 >支撑 杆 21与中心塔柱 03连接, 其为可转动且定位的连接结构, 使得增能翼风 轮可以根据风向和需要调整和发电机风轮之间 的相对位置关系。还可以在 中心塔柱的顶部和增能翼风轮 2 的风轮轴的上端之间连接一斜拉杆 22 , 以增加增能翼与塔柱的连接稳定性。该增能翼 风轮的叶片的形状为一垂直 的柱状体, 其水平截面为飞机机翼的断面形状, 即相对于风轮的转轴, 其 外侧表面和迎风的端面为圆滑过渡的流线型弧 面,外侧表面和内侧表面之 间的间距为, 叶片的迎风面间距较大, 沿顺风方向, 间距逐渐减小, 在垂 直方向上, 该柱状体在垂直方向上水平截面大小形状相同 。 所述增能翼风 轮上的叶片的高度与所述风力发电机垂直叶片 风轮的叶片高度相当。更进 一步地,所述增能翼风轮 2和风轮轴 20之间可以设有小型发电机组装置。 该小型发电机装置的结构形式与大型垂直轴风 力发电机的结构形式基本 相似, 定子设置在风轮轴上, 转子设置在定子的外围, 叶片通过支撑杆 21, 固定在转子的周面上。这样的增能翼不仅可以 起到阻断气流作用在风 力发电机风轮上产生阻力矩的作用, 提高发电机的功率和效率, 同时, 还 能够额外发出电能,该电能可以与风力发电机 发出的电力合并起来输送到 电网上, 更加提高本风力发电机的发电功率, 也可以通过连接蓄电装置而 将这一部分电能蓄积起来, 用于本风力发电机的其他用途。 所述增能翼的所述风轮也可以为若干个, 如图 7所示, 每个竖直风轮 2V 连接在所述风轮轴 20上。 纵向固设在所述风轮轴上, 各个所述风轮 上的叶片的高度以及相邻风轮叶片之间的垂直 方向的间隙之和与所述垂 直叶片风轮的叶片高度相当。 这时, 若干个风轮可以是与上述如图 5、 6 所示的增能翼风轮相同结构的风轮, 也可以是其它形式的风轮, 例如为螺 旋桨式风轮。

这时, 对应风轮上的叶片可以是五片, 均布在风轮转轴的圓周上。 叶 片数量也可以是八个、 十二个。 而本垂直轴风力发电机的风轮 01 的叶片 数可以是 4- 24个。 如果叶片数目太少, 则对风场的利用率太低, 使得风 力发电机的功率小。 如果叶片数目太多, 则其离心力过大, 容易出现使叶 片脱落飞出的事故,

通过在风力发电机的风轮的前面设置增能翼, 提高发电机的发电功率 和效率是明显的, 比较图 2和图 4所示, 两幅图的横坐标为叶片位置角, 单位为 "度" , 纵坐标为叶片从风气流获得的有效驱动力矩值 。 图 2所示 为没有设置本增能翼的发电机风轮, 风轮单叶片的扭矩在其转动的一周 中, 有效驱动力矩在 0以下的负值约占 25%。 图 4显示出安装了增能翼后 风力发电机的扭矩图, 可以看出, 曲线一直处于 0以上。 由此可以清楚地 看出, 有了增能翼后可以增加功率 20%-25%左右, 并且可以明显降低启动 风轮所需最低风速,使得使用本增能翼的风力 发电机可在低风速情况下的 发电。

支撑所述增能翼的支架可以是前述的可绕中心 塔柱转动的支撑杆结 构。 可以在所述塔柱上设置驱动机构, 其连接所述支撑杆, 通过该驱动机 构驱动增能翼绕塔柱转动, 从而根据风向调节增能翼与风轮的相对位置, 或者在风速较大不需要增能翼时将其从风轮的 迎风面转到顺风面一侧。 支撑增能翼平板或风轮的支架也可以是设置在 风力发电机旁边地基 上的支架。 为了使得增能翼可以调整位置, 可在地基上设置一个轨道, 例 如为一圓环形的轨道, 支架可在该轨道中移动。

如图 11、 12所示, 还包括一增能翼的位移机构, 包括一驱动装置, 所述驱动装置设置在所述固定机架上, 其与所述支架相连接, 使得该支架 位移而使设于其上的所述增能翼的挡风面挡住 所述风轮的不同侧面。

具体的如图 11、 12所示, 增能翼风轮 401的风轮轴 405的上下两端 分别固联在上下两根支撑杆的一端,该两根支 撑杆的另一端可转动地固定 在中心塔柱 409上,该两根支撑杆分别位于所述垂直风轮叶 片的上方和下 方, 该增能翼为一挡风物体, 其位于所述风轮叶片回转圆周轨迹 a的外面 使之不会影响垂直叶片风轮的旋转, 并位于风轮迎风面的前方, 挡住所述 风轮的一侧迎风面,使得发电机垂直风轮接受 来风气流 A而使得转动受阻 的一侧面被挡住。在两根支撑杆其中之一的与 中心塔柱 409即上述的固定 机架的连接结构上连接驱动机构, 驱动所述支撑杆绕中心塔柱转动, 继而 带动所述增能翼转动, 来改变所述增能翼与风轮的位置关系, 以适应风向 的变化。

如图 11、 12所示, 所述支撑杆可以是包括两段, 其中靠近所述增能 翼的一段为单根杆段, 其一端与所述增能翼通过上述的主连接器连接 , 另 一段为汉杆段, 包括两根分杆, 例如固于增能翼上端的支撑杆中的分杆 413、 414 和固于增能翼下端的支撑杆中的分杆 (与上端的分杆相同) , 该两根分杆的一端也可以通过上述的结构与轴 承 411 的外圏固联, 分杆 413、 414通过支撑杆连接器 415与轴承 411外圈固联, 下部的分杆通过 支撑杆连接器与轴承 411外圏固联, 即在支撑杆连接器的侧壁上相应处开 设两个插孔, 分别插设一个支撑杆的两个分杆的端头固定, 即可实现其与 所述中心塔柱可转动地连接;在所述单根杆段 和两根分杆之间设有一三通 连接器 412 , 该三通连接器上设有三个连接部, 其成 Y形分布, 一侧的一 个连接部连接所述单根杆段的另一端,该三通 连接器另一侧的两个连接部 分别连接两个所述分杆的另一端。

前述包括两分杆的支撑杆,可以对其支撑的重 力和受到的阻力进行分 解, 这样的结构比起单杆的支撑杆其强度和刚度更 大。 在承受同样重力和 阻力时, 这种结构的支撑杆可以做的更加纤细一些, 这样, 还可以降低风 轮的阻力。

如图 11所示, 在上支撑杆所连接的轴承的外圈可连接一驱动 器 410 , 其驱动所述轴承的外圈转动。 该驱动器设置在空心的中心塔柱内固定, 其 可以是一电机, 该电机的输出轴连接轴承的外圈。 该电机的电能输入端可 以连接电网。 也可以连接本风力发电机上设置的蓄电机构, 该蓄电机构可 以从风力发电机上得到电量, 也可以是, 风轮式增能翼的风轮与风轮轴之 间设置发电机组,风轮在用作增能翼起到阻挡 相应叶片作用的同时又作为 发电机, 发出的电能由蓄电机构储蓄, 用来驱动增能翼旋转机构。 . 所述支撑装置中还包括一斜拉杆 407, 其一端设置连接结构与所述增 能翼上端固联,其另一端设置可转动连接结构 与所述中心塔柱可转动地连 接,所述斜拉杆与所述中心塔柱连接的所述连 接结构位置高于与所述增能 翼的上端连接的所述支撑杆与所述中心塔柱连 接的所述连接结构。

本风力发电机风轮叶片如图 8、 9、 10所示, 如图 1所示, 本发明提 供的垂直轴风力发电机风轮的叶片, 包括构成叶片形状的骨架和固定在该 骨架外面的蒙皮(图中未示出) , 该叶片的形状为一垂直的柱状体, 其水 平截面为飞机机翼的断面形状,即相对于风轮 的转轴 313 (参见图 9、 10 ), 叶片 311朝外的外侧表面为流线形状弧面,该外侧表 面与相对的内侧表面 之间的圓滑过渡, 形成较大的迎风端即叶片的头部和较小的尾部 。

相对于所述风轮转轴 313的垂直轴线,其柱状体的外侧表面和内侧表 面之间的间距从所述头部到尾部基本上是逐渐 减小的;在叶片的垂直方向 上各所述水平截面大小形状相同。 .

如图 6所示, 相对于风轮转轴 313的垂直轴线, 叶片 311流线形的所 述外侧表面在沿设定半径圆的圓周方向设置, 这里的设定半径的圆即为风 轮的半径, 其可以是根据风力发电机设计发电功率、 构件的强度、 刚度等 因素设定的。 该叶片与所述风轮的轮毂之间通过支撑杆 312连接;

所述叶片在风轮中的设置方式还可以是,相对 于所述风轮转轴的垂直 轴线,所述叶片流线形的所述外侧表面在与沿 设定半径圆的圆周切线方向 夹设定角度的方向设置, 例如沿螺旋线设置。 该叶片与所述风轮的轮毂之 间也是通过支撑杆连接。

这种叶片设置在风轮的外缘或接近外缘处,叶 片与风轮轮毂或者发电 机的转动部件之间是通过支撑杆 312连接的。 因此, 叶片不再是又细又长 的形状, 在风轮的轮毂到其外缘很大的一段距离可以是 连接叶片的支撑 杆, 而风轮上用于接受风力而转动的部分仅是外缘 的垂直柱状的叶片。 这 样的叶片由于其具有飞机机翼式的外侧表面, 气流流过可以很好地被叶片 利用, 转动效率很高的。 而将叶片与风轮轮毂连接的支撑杆, 其可以做成 强度和刚度都较高但风阻很小的的形状和结构 ,例如杆截面可以为椭圆形 截面。 这样, 就可以从根本上改变现有风轮叶片抗风能力差 和功率效率较 低的问题。

本发明提供的叶片, 其要承受较大风力, 但还要求其转动阻力要小, 即其自身重量要轻, 但还应具有足够的强度、 刚度。 因此, 本叶片的骨架 可以这样设计: 如图 8所示, 所述骨架包括有叶片骨架 301、 骨架主筋 303、 骨架副 筋 302、 307和叶型支撑杆,

叶片骨架 301为若干个,其为构成叶片柱状体的所述水平 截面的飞机 机翼形状的框架, 在叶片的垂直方向以设定间距对正排布;

骨架主筋 303和骨架副筋 302、 307为若干垂直设置的杆件, 例如为 直杆, 所述叶片的每根骨架主筋 303和骨架副筋 302、 307都绕所有叶片 骨架 301的所述框架设置,每根所述骨架主筋和骨架 副筋与所有所述叶片 骨架的所述框架在一垂直方向上有一交汇固联 点,按设定间距固定叶片骨 架 301周围设置的各个骨架主筋和骨架副筋形成叶 片 311的骨架侧壁支撑 所述蒙皮;

叶型支撑杆支撑设在叶片骨架 301形成的框架的相对的侧边之间,例 如,叶型支撑杆设置在该框架所在的平面内, 其两端与叶片骨架 301 固联, 即叶型支撑杆的两端分别固定在叶片骨架的对 应叶片相对的所述外侧表 面和内侧表面的框架上, 以支撑保持叶片骨架的框架的形状不变。

叶型支撑杆可以是包括两种,一种是相互平行 地设置在所述叶片骨架 形成的框架之间的若干直杆的叶型支撑扞 304。

所述骨架主筋 303和骨架副筋 302与所述叶片骨架 301上设置的所述 叶型支撑杆 4的交点交汇固定。

还有一类是斜拉杆 306, 其一端固定在所述外侧表面一根叶型支撑直 杆 304的一端,其另一端固定在所述内侧表面另一 根叶型支撑杆 304的一 端; 且进一步地, 斜拉杆可以是固定在与所述骨架主筋 303和叶型支撑杆 304的交汇固定点上

所述骨架主筋为其强度和 /或刚度较大的杆件, 所述骨架副筋为强度 和 /或刚度较小的杆件。 骨架主筋的分布优选如下方案:四根骨架主筋 303两根设置在叶片外 侧表面一侧,另外两根设置在叶片内侧表面一 侧,在叶片的水平截面上看, 四根骨架主筋 303构成一四边形,在叶片的垂直设置质量中心 的周围且使 得叶片的质量由该四根骨架主筋平衡。

骨架主筋 301和骨架副筋可以是同样轻型铝型材制作,也 可以是不同 材质制作, 骨架主筋为截面较所述骨架副筋大的空心杆体 。

为了提高骨架主筋的刚度和强度,所述骨架主 筋的杆纵向空心腔室中 可以设有纵向间隔壁, 将一个大腔室分割为两个较小的腔室。

所述叶片骨架也可以为空心杆体,该杆纵向空 腔通过纵向间隔壁分割 成两个纵向腔室。

将空心杆件的纵向腔室通过间壁分割开,这样 的杆件结构可以在提高 其刚性和强度的同时, 有效减轻叶片的重量。

所述叶片骨架、 骨架主筋、 骨架副筋和叶型支撑杆优选轻型铝制型材 制作。 骨架中的各个杆件之间通过焊接或胶粘固联, 胶粘固联使用的胶粘 剂可以是两性胶粘剂。

这样的骨架主筋和叶片骨架结构, 可以很好地保证叶片的刚度和强 度, 而叶片的重量则很轻。 这就可以使得由该叶片构成的风轮的启动风力 很小, 该风力发电机可以在风力很小时就能发电。 经试验可以, 本叶片构 成的风轮可以在二级风下转动发电。 而骨架的上述结构, 又可以使得本叶 片的强度、 刚度很大, 其承受的极限风力可达 50m/s, 能够在 35米 /秒即 将近台风的风力下正常工作。 因此, 使用本发明提供的风轮叶片的风力发 电机, 在一般风机都要停车的大风情况下可以继续安 全发电。 这一点对于 风力发电向电网供电是非常有意义的。加上本 风轮的叶片一改现有技术存 在诸多问题的叶片形状, 不易变形、 折断, 寿命长, 所以, 风场中使用本 风轮, 因气候或故障停止工作的情况很少, 电网可以持久稳定地获得风能 电量。 这对于大力发展风力发电提供了可靠的保障, 对国计民生、 保护环 境、可持续的经济发展都有重要意义。再有, 本叶片还具有组合加工简单, 成型精度高的优点。

众所周知, 发电机在运行过程中由于电枢发热产生高温, 需要及时散 热以保证正常工作。 尤其是发电机的功率越大, 对散热的要求也越高, 这 也是一般垂直轴风力发电机难以进一步提高功 率的原因之一。要将电枢发 热产生的高温降低, 一定要采用强制送排风办法, 将局部产生的高热排出 并进行内外循环, 为此本发明采用了循环送排风的办法。

由于垂直轴风力发电机的电枢 507为盘式扁平体,所以利用常规的设 计很难解决送排风问题。 结合该垂直轴风力发电机的结构特点, 本发明利 用发电机端盖 506中间的扁平间隙作为送排风道 505, 这样很容易降低电 枢 507的温升, 实现快速通风降温的作用。

具体而言, 在垂直轴风力发电机运行时, 电枢 507会发热产生高温。 为了及时排除电枢 507产生的热量, 在上、 下转子盘的两侧与端盖 506之 间设置有贯通的通风道 505。 结合图 14来看, 在端盖 506的上半部分与 永磁体 508、 轭铁 504之间形成有扁平的间隙, 作为风道 505的上部。 同 样, 在端盖 506的下半部分与永磁体 508、 轭铁 504之间也形成有扁平的 间隙, 作为风道 505的下部。 在风道 505的上部和下部, 端盖 506与电枢 钳 503之间分别设置有两个送排风机 509。 在这两个送排风机 509的作用 下, 如图 14中的箭头方向所示, 风道 505的上部形成向左吹的风, 经过 电枢钳 503与中心轴 501之间的空隙, 进入下侧的送排风机 509, 再形成 向右吹的风。 如此循环。 在端盖 506内的风道 505里面流动的空气, 将电 枢 507产生的热量均匀传导给端盖 506。 利用金属端盖 506的良好的热传 导特性, 将热量传导到外部空间。 另一方面, 在端盖 506上靠近送排风机 509的位置开设有通风口 (图中未示) , 通过该通风口可以实现内部热空 气与外部冷空气之 I'i]的交换, 从而进一步降低电枢 507的温度, 保证其正 常工作。

如图 14所示, 在电枢 507上贯通开设有多个与风道 505连接的通风 孔 510, 在永磁体 508上贯通开设有多个与风道 505连接的通风孔 511。 利用这些通风孔 510和 511可以实现风道 505的上部与下部的直接贯通。 由于垂直轴风力发电机在运转时,永磁体 508随着转子盘在电枢的上下两 侧高速旋转, 因此这些通风孔的设置可以显著加快风道 505 内的空气流 动, 进一步改善通风散热的效果。

另外, 在本散热装置中设置的送排风机并不限于两个 。 根据垂直轴风 力发电机的结构特点和散热需要, 也可以采用一个或者多个送排风机。

需要说明的是, 图 13所示的中间定子、 两侧转子的盘式结构发电机 只是垂直轴风力发电机的一种实现形式。 实际上, 该垂直轴风力发电机还 可以采用中间转子、 两侧定子的实现形式, 或者多个定子、 多个转子轴向 交替排列的实现形式。 在中间转子、 两侧定子的情况下, 上、 下定子的两 侧与端盖之间设置有贯通的通风道。 在多个定子、 多个转子轴向交替排列 的情况下, 最上侧的定子(或转子)与端盖上部之间设置 通风道, 最下侧 的转子 (或定子) 与端盖下部之间也设置通风道。

现有技术中釆用的磁悬浮装置大多是满足较小 型垂直轴风力发电机 的支撑需要, 因此磁钢往往采用单点分布方式, 产生的支撑力有限。 而对 于大型垂直轴风力发电机而言,磁悬浮装置需 要满足大平面薄形结构的支 撑需要, 因此采用单一的磁悬浮支撑机构是不够用的。 需要结合垂直轴风 力发电机的质量分布和转动阻力矩分布特点, 采用多点支撑方式, 由多个 磁悬浮支撑机构共同进行磁悬浮支撑。

为此, 本发明所提供的磁悬浮支撑装置包括至少三个 磁悬浮支撑机 构。 如图 15所示, 第一磁悬浮支撑机构用于实现风轮的磁悬浮支 撑, 该 磁悬浮支撑机构由轭铁 608和多块磁钢 609组成, 并由安装在塔柱上的支 架 607提供支撑。第二磁悬浮支撑机构 610包括实现电枢磁悬浮支撑的轭 铁和多组磁钢。第三磁悬浮支撑机构 611包括实现发电机磁悬浮支撑的轭 铁和多组磁钢。这三个磁悬浮支撑机构使整个 垂直轴风力发电机的旋转部 分工作在无阻力的悬空状态, 显著减小了旋转力矩。

如图 16所示的径向剖视图, 上述的第一磁悬浮支撑机构中具有多组 磁钢。 这些磁钢采用矩阵式结构, 沿支撑风轮的主轴环形外缘位置环状分 布。 位置上下相对的磁钢的极性分布正好相反, 从而产生用于支撑风轮的 磁斥力。

如图 17所示的径向剖视图, 第二磁悬浮支撑机构 610中具有多组磁 钢。 这些磁钢采用矩阵式结构, 沿电枢的环形外缘位置环状分布。 位置上 下相对的磁钢的极性分布正好相反, 从而产生用于支撑电枢的磁斥力。

同样地, 如图 18所示的径向剖视图, 第三磁悬浮支撑机构 611 中也 具有多组磁钢。 这些磁钢采用矩阵式结构, 沿发电机的中心盘环形外缘位 置环状分布。 位置上下相对的磁钢的极性分布正好相反, 从而产生用于支 撑发电机的磁斥力。

从垂直轴风力发电机的主轴方向看,上述的三 个磁悬浮支撑机构的磁 钢分布呈大小不同的三个环。 其中最内侧的环状体为第一磁悬浮支撑机 构, 中间的环状体为第三磁悬浮支撑机构 611 , 而最外侧的环状体为第二 磁悬浮支撑机构 610。

每个磁悬浮支撑机构中的磁钢都采用矩阵式结 构, 具有体积小、 排布 方便、 易充磁、 同等单位面积磁力强等优点。在采用矩阵式结 构的过程中, 一旦出现错位则磁悬浮支撑将无法实现,这也 是现有技术中往往不采用矩 阵式结构的主要原因。 为了解决这一技术难题, 本发明在轭铁中开设有多 个呈矩阵分布方式的 ϋ槽,在这些四槽中固定放置用于实现磁悬浮 撑的 磁钢, 从而实现对磁钢的位置限位, 有效避免了磁钢错位的问题。

现有的风力发电机在风速超过预定的安全范围 后,需要通过偏航等方 式降低风轮的转速, 特别是在风速达到台风般的速度时, 往往由安装在传 动轴上的紧急制动闸等进行强制停机以实现自 我保护。这种在紧急情况下 的突然停机会对电网的完全稳定运行造成很大 的影响, 同时也是对风能资 源的一种浪费。 为此, 本发明所提供的垂直轴风力发电机制动方法摒 弃了 在紧急情况下突然停机的传统制动思路, 通过多种制动手段的组合使用, 实现了风力发电机在较高风速情况下的限速运 行,从而既保证了风力发电 机自身的安全, 也避免了对电网造成过大的冲击。

在本发明中, 所使用的多种制动手段包括电磁制动、 气动制动和必要 时的电阻制动。 其中, 电磁制动适合在风力发电机正常发电状态下进 行转 速控制, 而气动制动既适合在正常发电状态下进行转速 控制, 也适合在无 电条件下进行转速控制。 电阻制动是在电磁制动和气动制动的效果都不 明 显的情况下, 通过改变电枢回路的电阻实现对转速的控制。 三种制动手段 相互配合, 共同确保垂直轴风力发电机在较高风速情况下 安全稳定地运 行。

如图 19所示, 在垂直轴风力发电机之中, 盘式无铁芯永磁发电机封 装在端盖 701 和中心轴 703 围合而成的封闭空间内, 底部安装有制动盘 702。 在制动盘 702的下方分别安装有电磁制动器 704和气动制动器 705。 这两个制动器都安装在制动器支架 706之上。 其中, 电磁制动器与电网供 电线路连接而动作, 因此必须在有电的条件下运行。 气动制动器连接一个 气动驱动机构, 该气动驱动机构连接一个压缩气嚢。 该气动制动器可以在 无电的奈件下运行。上述的电磁制动器和气动 制动器都分别与垂直轴风力 发电机的 PLC控制器进行连接, 从中获得有关的控制信息。 在本发明的一 个具体实施例中, 电磁制动器为 DCSZ型。 它利用电动圆盘磁感应来电产 生吸力, 从而起到制动的作用。 气动制动器为 QDCSZ型。 它由压缩气嚢供 气, 由气动阀自动向刹车钳送气, 产生制动合力, 达到制动的目的。

上述的电磁制动器 704和气动制动器 705可以是多个,它们沿发电机 制动盘的圓周均匀设置。 在实践中, 制动器的数量可以根据垂直轴风力发 电机的大小、 制动器的类型等因素灵活调整, 在此就不赘述了。

在垂直轴风力发电机的运行过程中, 可以采用机械、 光学或者频闪的 方法测量风力发电机的转速。 一旦转速开始超过预定的范围, 则将超转速 信号输送给 PLC控制器, 由 PLC控制器再给制动器发出指令, 让电磁制动 器 704和气动制动器 705开始工作。 电磁制动器 704和气动制动器 705根 据旋转力矩的大小, 交替制动。 下面分别进行详细的说明。

如图 20所示, 在垂直轴风力发电机开始启动之后, PLC控制器监控 该风力发电机的风轮旋转速度。 当达到需要进行制动的转速范围后, 启动 电磁制动器的一个刹车钳 (也称接触器) , 开始制动工作。 在此情况下, 每次延时预定的时间 (例如 5分钟)对风力发电机的转速进行测量, 在风 力发电机的转速超过安全值 (例如 25rpm ) 的情况下, 再启动电磁制动器 的另一个刹车钳(也可以是单独的另一个电磁 制动器)进行制动。 由此类 推, 一共可以启动电磁制动器上的四个刹车钳进行 制动。 如果电磁制动器 的制动效果不明显, 风力发电机的转速仍然超过 25rpm, 可以启动气动制 动器的一个刹车钳, 如果还不奏效的话, 接着启动气动制动器的另一个刹 车钳(也可以是单独的另一个气动制动器)进 行制动。 由此类推, 一共可 以启动气动制动器上的四个刹车钳进行制动。 在供电条件正常的情况下, 上述的电磁制动器和气动制动器可以交替使用 , 即电磁制动一气动制动一 电磁制动一气动制动, 由此循环(该循环过程被称为正常循环) 。 在供电 条件不正常的情况下, 可以仅仅是气动制动器进行动作, 由此形成的循环 过程被称为主循环。 在正常循环过程中, 如果制动效果不明显, 风轮的转 速仍然超过 25rpm, 则可以启动电阻制动手段。 刹车电阻的接触器开始分 级启动, 逐渐使电枢回路的电阻趋近于短路状态, 从而实现对风轮制动的 效果。 关于电阻制动的进一步介绍, 可以参考公告号为 CN87208277的中 国实用新型专利 "风力发电机制动装置" 中的相关内容, 在此就不详细赘 述了。

通过上述的交替制动步骤,可以控制风力发电 机的转速在 25rpm的安 全值以下, 始终处于正常的工作循环过程中。

以上对本发明所提供的高效大功率垂直轴风力 发电机进行了详细的 说明。 对本领域的技术人员而言, 在不背离本发明实质精神的前提下对它 所做的任何显而易见的改动, 都将构成对本发明专利权的侵犯, 将承担相 应的法律责任。 工业实用性 本发明的高效大功率垂直轴风力发电机, 应用于工业发电领域。