Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HIGH STABILITY FOIL WATERCRAFT
Document Type and Number:
WIPO Patent Application WO/2018/229355
Kind Code:
A1
Abstract:
River or coastal watercraft (1), comprising a hull (2), submerged-propeller propulsion units (5), a hydrolift front foil (3) and rear foil (4), each propulsion unit (5) comprising a steerable pod provided with an electric motor (16) and a direct drive propeller (17), two propulsion units (5) being mounted under the rear foil (4) and at least one propulsion unit (5) being mounted under the front foil (3).

Inventors:
THÉBAULT ALAIN (FR)
BRINGDAL ANDERS (FR)
Application Number:
PCT/FR2017/051503
Publication Date:
December 20, 2018
Filing Date:
June 12, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
SEABUBBLES (FR)
International Classes:
B63B1/26; B63H5/125; B63H23/24
Domestic Patent References:
WO2015026301A12015-02-26
Foreign References:
JP3172459U2011-12-22
EP0264326A11988-04-20
DE19545458A11997-06-12
FR807394A1937-01-11
JPH07196085A1995-08-01
DE102013002720A12014-08-14
FR1145202A1957-10-23
Attorney, Agent or Firm:
CABINET NETTER (FR)
Download PDF:
Claims:
Revendications

1. Navire (1) fluvial ou côtier, comprenant une coque (2), des propulseurs (5) à hélice mouillée, un plan porteur avant (3) et un plan porteur arrière (4) d'hydrosustentation, chaque propulseur (5) comprenant un pod orientable pourvu d'un moteur électrique (16) et d'une hélice (17) en prise directe, deux propulseurs (5) étant montés sous le plan porteur arrière (4) et au moins un propulseur (5) étant monté sous le plan porteur avant (3).

2. Navire (1) selon la revendication 1, dans lequel deux propulseurs (5) sont montés sous le plan porteur avant (3).

3. Navire (1) selon la revendication 1, dans lequel un propulseur (5) est monté sous le plan porteur avant (3) en position centrale.

4. Navire (1) selon la revendication 3, dans lequel le propulseur (5) avant est pivotant et les propulseurs (5) arrière sont fixes.

5. Navire (1) selon l'une des revendications précédentes, dans lequel le plan porteur avant (3) est relié bilatéralement à la coque (2) et comprend une partie à calage variable temporellement montée à pivotement autour d'un axe transversal.

6. Navire (1) selon la revendication 5, dans lequel la totalité du plan porteur avant (3) est à calage variable temporellement et l'axe transversal est sécant avec la coque (2).

7. Navire (1) selon l'une des revendications précédentes, dans lequel le plan porteur avant (3) et/ou arrière présente une corde décroissante, en allant de la coque (2) vers le centre dudit plan porteur avant (3) et/ou arrière.

8. Navire (1) selon l'une des revendications précédentes, dans lequel le plan porteur avant (3) et/ou arrière présente un calage décroissant, en allant vers le centre dudit plan porteur avant (3) et/ou arrière.

9. Navire (1) selon l'une des revendications précédentes, dans lequel le plan porteur avant (3) est fixe par rapport à la coque (2).

10. Navire (1) selon l'une des revendications 1 à 8, dans lequel le plan porteur avant (3) est monté à pivotement par rapport à la coque (2) selon un axe transversal.

11. Navire (1) selon l'une des revendications précédentes, dans lequel le propulseur (5) est relié à la coque (2) par le plan porteur arrière (4) et par un bras (15) caréné disposé dans un plan sensiblement vertical en coupe longitudinale, notamment un bras caréné supportant deux hélices ou deux bras carénés chacun supportant une hélice (17).

12. Navire (1) selon l'une des revendications précédentes, comprenant des batteries (18) logées dans la coque (2) et une liaison électrique entre un moteur électrique (16) de propulsion et les batteries (18).

13. Navire (1) selon l'une des revendications précédentes, dans lequel le plan porteur arrière (4) présente une forme en V à centre arrondi et un bord d'attaque (4b) à extrémité arrondies à l'opposé du centre du plan porteur arrière (4) et se raccordant au bord de fuite, l'angle du V étant préférablement compris entre 100 et 140°.

Description:
Navire à plans porteurs à haute stabilité

L'invention concerne le domaine du transport fluvial et côtier.

De nombreux prototypes de navires à sustentation par plans porteurs ou hydroptères ont vu le jour depuis des décennies. On connaît des gros hydroptères assurant des traversées lacustres ou maritimes de quelques dizaines ou centaines de milles nautiques et capables de transporter plus d'une centaine de passagers dans les années 1980.

Après cela, des navires à grande vitesse sans plan porteur, à carène en V ou multicoques, ont permis de transporter jusqu'à 1000 passagers et plusieurs centaines de voitures à près de 40 nœuds. Par leur taille, de tels navires se rapprochent des ferries traditionnels. Mais un ressac important a été signalé sur les côtes aux approches de leur port. Les coûts d'exploitation élevés et très sensibles aux prix pétroliers ont conduit au désarmement de nombreuses unités.

La Demanderesse a analysé la situation. Les gros hydroptères sont capables d'affronter des creux de plus d'un mètre. Le tirant d'eau important leur interdit certains ports. La puissance demandée par la propulsion est de l'ordre de 10 000 kW. Leur motorisation à turbine à gaz est bruyante et n'offre un bon rendement qu'à pleine puissance. Leur utilisation est donc très contrainte.

Les petits hydroptères motorisés n'ont pas connu de succès. Si les prototypes sont nombreux, les réalisations industrielles sont rares. Les petits hydroptères sont soumis à des contraintes mécaniques très différentes en raison de leur faible longueur par rapport aux creux ou au clapot.

D'un autre point de vue, le transport par les artères navigables urbaines n'a guère évolué dans son principe depuis des décennies : des bateaux mouches offrant une vision large pour le tourisme de masse et des péniches ou barges pour le transport des marchandises pondéreuses. Les artères navigables urbaines sont souvent peu ou mal utilisées.

La demande WO2015/026301 un système de commande de navire à ailes immergées en vue de réaliser la giration du navire. Les ailes présentent une forme de J et sont orientables selon un axe vertical. Le navire est destiné à un usage de loisirs. La Demanderesse a analysé la structure. De très importants efforts s'exercent sur les ailes et sur les pivots des ailes. La limitation du jeu entre les orientations des ailes semble difficile. Une structure lourde s'avère nécessaire. La Demanderesse vient proposer un transport urbain de passagers rapide, silencieux, respectant les berges des cours d'eau et offrant un haut niveau de service le rendant apte à une utilisation à la demande.

La présente invention améliore la situation.

L'invention propose un navire fluvial ou côtier, comprenant une coque, des propulseurs à hélice mouillée, un plan porteur avant et un plan porteur arrière d'hydrosustentation. Chaque propulseur comprend un pod orientable pourvu d'un moteur électrique et d'une hélice en prise directe. Deux propulseurs sont montés sous le plan porteur arrière et au moins un propulseur est monté sous le plan porteur avant. Une vitesse et une maniabilité élevées sont obtenues.

Dans un mode de réalisation, deux propulseurs sont montés sous le plan porteur avant. Dans un autre mode de réalisation, un propulseur est monté sous le plan porteur avant en position centrale.

Dans un mode de réalisation, le propulseur avant est pivotant et les propulseurs arrière sont fixes. On bénéficie de la rigidité des propulseurs arrière fixes et de la maniabilité assurée par le propulseur avant pivotant.

Dans un mode de réalisation, le plan porteur avant est relié bilatéralement à la coque et comprend une partie à calage variable temporellement montée à pivotement autour d'un axe transversal. La portance réglable permet de réduire la traînée.

Dans un mode de réalisation, la totalité du plan porteur avant est à calage variable temporellement et l'axe transversal est sécant avec la coque. L'ensemble présente une rigidité élevée. Dans un mode de réalisation, le plan porteur avant présente une corde décroissante, en allant de la coque vers le centre dudit plan porteur avant. Dans un mode de réalisation, le plan porteur arrière présente une corde décroissante, en allant de la coque vers le centre dudit plan porteur arrière.

Dans un mode de réalisation, le plan porteur avant présente un calage décroissant, en allant vers le centre dudit plan porteur avant.

Dans un mode de réalisation, le plan porteur arrière présente un calage décroissant, en allant vers le centre dudit plan porteur arrière. Le navire peut atteindre une vitesse élevée tout en conservant une immersion de la portion centrale suffisante pour un risque de ventilation bas. Au déjaugeage, c'est-à-dire à la transition entre la navigation archimédienne et la navigation sur plans porteurs, les portions latérales fournissent une portance élevée rapportée à leur dimension transversale. Le déjaugeage est facilité.

Dans un mode de réalisation, le plan porteur avant est fixe par rapport à la coque.

Dans un mode de réalisation, le propulseur est relié à la coque par le plan porteur arrière et par un bras caréné disposé dans un plan sensiblement vertical en coupe longitudinale.

Dans un mode de réalisation, le navire comprend un bras caréné supportant deux hélices.

Dans un mode de réalisation, le navire comprend deux bras carénés chacun supportant une hélice.

Dans un mode de réalisation, le navire comprend des batteries logées dans la coque et une liaison électrique entre un moteur électrique de propulsion et les batteries. La liaison électrique est de faible encombrement.

Dans un mode de réalisation, le plan porteur arrière présente une forme en V à centre arrondi et un bord d'attaque à extrémité arrondies à l'opposé du centre du plan porteur arrière et se raccordant au bord de fuite. La traînée est faible.

Dans un mode de réalisation, l'angle du V est compris entre 100 et 140°. Une haute stabilité est obtenue pour le confort des passagers.

Dans un mode de réalisation, le plan porteur arrière comprend au moins deux volets mobiles de bord de fuite commandés par ledit calculateur par l'intermédiaire d'un actionneur pour commander la portance du plan porteur arrière. La traînée est réduite et la stabilité est améliorée.

Dans un mode de réalisation, le plan porteur arrière comprend au moins deux volets mobiles de bord de fuite commandés par ledit organe de commande par l'intermédiaire d'un actionneur pour incliner latéralement le navire. La giration avec mise en dévers du navire permet un passage en virage à vitesse plus élevée à confort égal.

Dans un mode de réalisation, l'un au moins des plans porteurs comprenant un bord d'attaque à bossages arrondis. Le navire présente un faible risque de ventilation et une faible traînée hydrodynamique. On entend par ventilation, l'arrivée d'air entre l'extrados du plan porteur à bord d'attaque à bossages et la veine d'eau située au-dessus dudit extrados en déplacement. Dans un mode de réalisation, les bossages sont évanouissants vers le bord de fuite. La traînée est réduite. L'extrados et l'intrados peuvent être lisses.

Dans un mode de réalisation, les bossages sont ménagés à distance du centre dudit plan porteur. Les bossages sont prévus dans des zones à risque de ventilation.

Dans un mode de réalisation, ledit plan porteur comprend une portion centrale à profil sensiblement constant et deux portions latérales munies desdits bossages. La portion centrale peut présenter une épaisseur réduite, d'où une traînée faible. Dans un mode de réalisation, le navire comprend une pluralité de sondes de pression montées sur au moins un bord d'attaque d'un plan choisi parmi le plan porteur avant, le plan porteur arrière et, le cas échéant, un bras de support d'un desdits plans porteurs ; et un organe de commande recevant une donnée de pression mesurée par chaque sonde pour calculer une hauteur estimée par rapport à l'eau. La hauteur du navire par rapport au plan d'eau peut être contrôlée d'où une excellente stabilité et une consommation d'énergie réduite.

Dans un mode de réalisation, le plan porteur avant passe sous la coque. Dans un mode de réalisation, la course de pivotement est comprise entre 1 et 5°. D'autres caractéristiques, détails et avantages de l'invention apparaîtront à la lecture de la description détaillée ci-après, et des dessins annexés, sur lesquels :

- la figure 1 est une vue de côté en élévation d'un navire selon un aspect de l'invention,

- la figure 2 est une vue de face en élévation du navire de la figure 1 ,

- la figure 3 est une vue arrière en élévation du navire de la figure 1 ,

- la figure 4 est une vue arrière en élévation d'un navire selon un autre aspect de l'invention,

- la figure 5 est une vue arrière en élévation d'un navire selon un autre aspect de l'invention,

- la figure 6 est une vue arrière en élévation d'un navire selon un autre aspect de l'invention,

- la figure 7 est une vue de côté en élévation d'un navire selon un autre aspect de l'invention,

- la figure 8 est une vue en coupe selon un plan de symétrie longitudinal vertical d'un navire selon un autre aspect de l'invention,

- la figure 9 est une vue de côté en élévation d'un navire selon un autre aspect de l'invention,

- la figure 10 est une vue de côté en élévation d'un navire selon un autre aspect de l'invention,

- la figure 11 est une vue en perspective d'un navire selon un autre aspect de l'invention ++QUADRI++,

- la figure 12 est une vue de détail en perspective de la partie arrière d'un navire selon un autre aspect de l'invention,

- les figures 13 et 14 sont des vues arrière et de dessus en élévation du plan porteur avant selon un autre aspect de l'invention.

- les figures 15 à 18 sont des vues en coupe selon A- A, B-B, C-C, D-D de la figure 13, et

- la figure 19 est une vue de détail en perspective d'un plan porteur d'un navire selon un autre aspect de l'invention. Les dessins et la description ci-après contiennent, pour l'essentiel, des éléments de caractère certain. Ils pourront donc non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant. Le navire 1 est à flottaison assurée par une coque possédant des propriétés hydrodynamiques appropriées à une navigation à faible vitesse, au déjaugeage et à la reprise de flottaison, et des plans porteurs, souvent appelés « hydrofoils » ou ailes d'hydrosustentation, assurant la sustentation de l'ensemble au-delà d'une vitesse de déjaugeage de manière que la carène de la coque soit située au-dessus de l'eau. La carène est dans son sens habituel la partie immergée de la coque, ici carène s'entend de la partie immergée de la coque en navigation archimédienne. La traînée diminue fortement lors du déjaugeage, d'où une consommation d'énergie réduite et une autonomie accrue. La vitesse de déjaugeage est relative à la masse d'eau et, pour un navire donné, dépend de sa charge en étant croissante avec la charge. Les plans porteurs sont configurés pour assurer un déjaugeage à une vitesse de quelques nœuds seulement, 5 nœuds au plus, pour réduire les vagues générées par la traînée et susceptibles de détériorer les berges, pour augmenter la vitesse moyenne départ arrêté et arrivée arrêté, et pour diminuer la consommation d'énergie. Les plans porteurs sont configurés pour générer, eux-mêmes, une faible traînée.

Le binôme vitesse de déjaugeage à charge donnée / traînée des plans porteurs étant par nature antagoniste, i.e. l'un variant à l'inverse de l'autre, on prévoit des binômes différents selon la distance moyenne à parcourir. Une faible vitesse de déjaugeage est souhaitable pour une traversée fluviale à distances courtes et berges fragiles. Une faible traînée des plans porteurs est adaptée à une traversée de baie à distances moyennes et vitesse élevée.

Le navire 1 est référencé selon un repère tridimensionnel avec X l'axe longitudinal ou axe déplacement en ligne droite, Y l'axe transversal horizontal et Z l'axe vertical. Le navire étant susceptible de prendre de l'inclinaison, le repère est relatif au navire. L'axe X peut pivoter par rapport à l'horizontale, notamment en accélération ou en décélération. L'axe Y peut prendre de la gîte par rapport à l'horizontale, notamment en virage. L'axe Z peut se décaler de la verticale pour les deux raisons ci-dessus. De manière générale, le navire est symétrique par rapport au plan XZ longitudinal. Par ailleurs, le plan de décollage est défini comme un plan XY passant par les points bas de la carène. Le navire 1 comprend une coque 2 assurant la flottabilité à l'arrêt et à basse vitesse, un plan porteur avant 3 et un plan porteur arrière 4 assurant la sustentation dans l'eau à vitesse de croisière. Le navire 1 comprend un propulseur 5. Le navire 1 est dépourvu de safran. Chaque plan porteur 3, 4 est relié à la coque de manière bilatérale. Le terme « aile » est parfois utilisé pour désigner les plans porteurs.

Dans le mode de réalisation des figures 1 à 12, la coque 2 présente une proue 6 inclinée, une poupe 7 en tableau, des francs bords 8 et 9 droits et un fond 10. La proue 6 est de forme arrondie relevée vers l'avant. La poupe 7 est généralement parallèle au plan YZ. Les francs bords 8 et 9 sont parallèles au plan XZ. La proue 6 comprend une partie inférieure 6a formée dans le même matériau que la coque 2 et un pare-brise 6b surmontant la partie inférieure 6a. Le pare-brise 6b s'étend aussi latéralement au-dessus d'une partie avant des francs bords 8 et 9.

Le fond 10 peut être parallèle au plan XY ou nervuré parallèle à l'axe X. En coupe transversale, le fond 10 peut présenter une arête centrale 10a en V et des côtés 10b et 10c. Les côtés 10b et 10c peuvent être sensiblement dans le plan XY. Le fond 10 et la proue 6 sont en continuité de courbure. L'arête centrale 10a peut être interrompue en avant du plan porteur arrière 4. Le fond 10 dans la région du plan porteur arrière 4 et en arrière de celui-ci est sensiblement plan. Des congés de raccordement sont ménagés entre les éléments précités de la coque 2. La coque 2 peut être réalisée en matériau composite.

Le plan porteur avant 3 est fixé de chaque côté de la coque 2. Le plan porteur avant 3 est assemblé à la coque dans une zone présentant une largeur de coque maximale et située le plus à l'avant possible. Dans le mode de réalisation des figures 1 à 8, 11 et 12, le plan porteur avant 3 présente une forme d'arche passant sous la coque 1. Le plan porteur avant 3 subit, en utilisation, des contraintes majoritairement en compression et minoritairement en flexion. Ceci est quasi opposé aux contraintes en flexion pure d'un plan porteur en T inversé. Le plan porteur avant 3 est dépourvu de portion en porte à faux. L'espace entre le plan porteur avant 3 et la coque 2 est libre. Le plan porteur avant 3 est monobloc. Le plan porteur avant 3 peut être réalisé en matériau composite.

Le plan porteur avant 3 peut être fixé aux francs bords 8 et 9 par fixation à plusieurs vis- écrou de chaque côté. Le plan porteur avant 3 est situé en arrière de la proue 6, notamment à une partie de la coque 2 de largeur maximale et remontante vers la proue 6. Le plan porteur avant 3 est symétrique par rapport au plan XZ. Le plan porteur avant 3 comprend deux parties de support 11 en contact chacune avec un franc bord 8, 9, une partie centrale 12 et deux parties inclinées 13 chacune disposée entre une partie de support 11 et la partie centrale 12.

Les parties de support 11 sont généralement parallèles. En variante, des parties de support 11 convergentes peuvent être prévues. Des parties de support 11 convergentes sont reliées aux extrémités latérales des parties inclinées 13, latéralement au-delà de la coque 2. Le plan porteur correspondant est alors dépourvu de porte à faux. Les parties de support 11 situées plus haut ont une moindre probabilité d'être dans l'eau d'où une réduction de la traînée moyenne et les parties inclinées 13 s'étendant latéralement plus loin de la coque 2 offrent une stabilité accrue.

Les parties de support 11 présentent une épaisseur supérieure à l'épaisseur des parties inclinées 13 et à l'épaisseur de la partie centrale 12. Les parties de support 11 présentent une forme de plaque, éventuellement échancrée pour alléger le devis des poids. Les parties de support 11 présentent une longueur selon l'axe X supérieure à la longueur des parties inclinées 13 et à la longueur de la partie centrale 12. Une partie de support 11 de longueur élevée permet une rigidité élevée et une transmission des efforts répartie sur les francs bords 8 et 9. Les parties de support 11 étant hors d'eau en position sustentée, leur longueur élevée et/ou leur épaisseur élevée est indépendant des propriétés hydrodynamiques. Une forme en Y à deux branches vers le haut peut être prévue.

Une région inférieure l ia des parties de support 11 peut être fine en raison des efforts essentiellement de compression s'y exerçant. Ladite région inférieure peut présenter un renflement vers l'extérieur. Les parties de support 11 présentent une épaisseur croissante vers le haut de manière à répartir les efforts des liaisons vis-écrou. La région supérieure des parties inclinées 13 hors d'eau en position sustentée peut également être relativement épaisse et/ou longue.

La longueur des parties inclinées 13 et la longueur de la partie centrale 12 est également appelée corde. Le plan porteur avant 3 présente une corde constante des bords vers le centre. La partie centrale 12 présente une corde égale à la corde des parties inclinées 13. La partie centrale 12 peut présenter une corde constante. La partie centrale 12 peut présenter une épaisseur constante. La partie centrale 12 peut présenter un rapport épaisseur sur corde compris entre 5 et 15 %. La partie centrale 12 peut être parallèle à l'axe Y ou arrondie à grand rayon de manière à réduire le tirant d'eau et la surface mouillée.

Les parties inclinées 13 peuvent présenter une corde constante ou décroissante vers la partie centrale 12. Les parties inclinées 13 peuvent présenter une épaisseur décroissante vers la partie centrale 12. Chaque partie inclinée 13 peut présenter une largeur selon l'axe X comprise entre 25 et 45 % de l'envergure du plan porteur. Les parties inclinées 13 peuvent présenter une inclinaison par rapport à un axe transversal Y :

- soit décroissante continûment vers la partie centrale 12,

- soit constante, au raccordement près avec la partie centrale 12 et les parties de support 11, par exemple d'un angle compris entre 30 et 50°.

- soit croissante, passant par un maximum de 90°, puis décroissante vers la partie centrale 12 pour obtenir un effet de bombement latéral élargissant le plan porteur avant 3 par rapport à la coque 1. Le bombement peut atteindre de 20 à 50 cm selon l'axe Y.

De manière générale, l'inclinaison des parties inclinées 13 par rapport à un axe transversal Y dans la zone de traversée du plan d'eau est comprise entre 30 et 50°, préférablement entre 30 et 40°.

Le plan porteur avant et/ou arrière présente un calage décroissant, en allant vers le centre dudit plan porteur avant et/ou arrière. Le calage correspond à l'incidence en navigation stabilisée en ce sens que le calage est relatif à un repère du navire et que l'incidence est relative à la veine d'eau. L'angle de calage du plan porteur avant 3 est inférieur à T 'angle de calage du plan porteur arrière 4. Le calage est préférablement croissant du centre vers les côtés. La portance est alors croissante avec l'enfoncement dans l'eau, d'où un déjaugeage facilité, particulièrement avantageux pour l'avant du navire 1. La stabilité en roulis est améliorée, le bord enfoncé recevant plus de portance et le bord opposé recevant moins de portance.

Dans un mode, le plan porteur arrière est à corde et calage uniformes et le plan porteur avant est à corde et calage variables. Le calage variable est un vrillage volontaire, nommé « twist » en langue anglaise. La corde et le calage varient en dehors de la partie centrale. Le plan porteur avant 3 présente un bord de fuite 3a effilé et un bord d'attaque 3b arrondi, voir figure 8 en coupe. Le bord de fuite 3a est disposé dans un plan YZ transversal. Le bord d'attaque 3b est disposé dans un plan YZ transversal. Le bord de fuite 3a et le bord d'attaque 3b sont disposés dans des plans parallèles.

Le plan porteur avant 3 peut être muni de nervures 14 de bord d'attaque 3b, cf. figure 7. Chaque nervure 14 est située sensiblement dans un plan perpendiculaire à la portion voisine du plan porteur avant 3 qui supporte ladite nervure 14. Les nervures 14 sont situées à distance des parties de support 11 et à distance de la partie centrale 12. Les nervures 14 sont situées à au moins 0,10 m de la coque selon l'axe Z. Les nervures 14 s'étendent sur le bord d'attaque 3b et à proximité sur 2 à 5 cm sur l'extrados. Les nervures 14 peuvent être absentes de l'intrados. Les nervures 14 s'étendent en amont du bord d'attaque 3b. Les nervures 14 ont un bord amont arrondi dans le sens de leur épaisseur et dans le sens perpendiculaire. Les nervures 14 présentent une épaisseur de 1 à 4 mm. Les nervures 14 possèdent deux faces parallèles opposées raccordées par un congé.

Les nervures 14 sont parfois dénommées par le terme anglais « fence ». Les nervures 14 réduisent le phénomène de ventilation, i.e. d'introduction d'air dans la lame d'eau le long d'une partie inclinée 13. Les nervures 14 augmentent la portance, réduisent la traînée et autorisent une vitesse plus élevée. Les nervures 14 peuvent être au nombre de deux à six. Les nervures 14 sont disposées à au moins 0,10 m sous le plan de décollage en projection selon l'axe Z.

Le plan porteur arrière 4 peut être de même géométrie que le plan porteur avant 3. Le profil peut être le même. La forme générale en plan, la corde et l'inclinaison des parties obliques 13 peuvent être différentes. La corde du plan porteur arrière 4 est supérieure à la corde du plan porteur avant 3, à l'exception des extrémités arrondies du plan porteur arrière 4. Le plan porteur arrière 4 et le plan porteur avant 3 peuvent avoir des envergures égales. Le plan porteur arrière 4 peut être muni de nervures 14, notamment sur la région supérieure des parties inclinées 13. Les nervures 14 s'étendent sur le bord d'attaque 3b et à proximité sur 2 à 5 cm sur l'extrados et sur l'intrados.

Dans les modes de réalisation représentés, le navire 1 présente sous la coque 2 une forme de lettre Pi inversée à traverse en bas et jambes en haut. Le plan porteur arrière 4 forme barre unique et deux bras 15 de liaison à la coque 2 forment double jambes. Le plan porteur arrière 4 est en forme de V à fond arrondi en coupe dans un plan transversal. L'angle du V est compris entre 100 et 140°. La partie centrale 12 est arrondie à grand rayon, par exemple avec un rayon de courbure situé dans le bas de la carène. La partie centrale 12 présente une épaisseur sensiblement constante. Le plan porteur arrière 4 est solidaire des bras 15 de liaison de manière démontable. Dans une variante, le plan porteur avant 3 présente une forme similaire et est maintenu par deux bras 15. L'espace entre les bras 15 et entre la coque 2 et le plan porteur avant 3 est dégagé.

Les parties inclinées 13 s'étendent de la partie centrale 12 jusqu'à des extrémités libres respectives. Les parties inclinées 13 présentent un angle constant par rapport à un plan XY, par exemple compris entre 15 et 40°. Les parties inclinées 13 et la partie centrale 12 forment le plan porteur arrière 4. Chaque partie inclinée 13 est fixée à un bras 15 respectif en une région permettant un équilibrage des efforts mécaniques de l'eau sur le plan porteur arrière 4, notamment située entre 20 et 25% et entre 75 et 80% de la largeur du plan porteur arrière 4. Les parties inclinées 13 présentent une épaisseur sensiblement constante entre les bras 15 et la partie centrale 12 et décroissante de manière progressive vers les extrémités libres. L'intrados des parties inclinées 13 est de pente constante et l'extrados des parties inclinées 13 est de pente décroissante vers les extrémités libres.

Le bord de fuite 4a du plan porteur arrière 4 est situé dans un plan transversal. Le bord d'attaque 4b du plan porteur arrière 4 présente une portion centrale située dans un plan transversal et des portions d'extrémité arrondies. La portion centrale s'étend substantiellement entre des plans XZ passant par les bras 15. Les portions d'extrémité sont arrondies vers le bord de fuite 4a avec un rayon sensiblement égal à la dimension du plan porteur arrière 4 selon l'axe X. Le plan porteur arrière 4 peut présenter une corde constante entre les bras 15. La partie centrale 12 peut présenter une corde constante. Le plan porteur arrière 4 peut présenter peut présenter un rapport épaisseur sur corde compris entre 5 et 15 % entre les bras 15. Le plan porteur arrière 4 est assemblé à la coque 2 dans une zone située le plus à l'arrière possible de la coque 2.

Le plan porteur arrière 4 peut être fixé aux bras 15 par complémentarité de formes et assemblage vis-écrou. Les bras 15 de liaison à la coque 2 sont parallèles. Les bras 15 sont distants d'une distance inférieure à la largeur maximale de la coque 2. Les bras 15 sont profilés avec un bord d'attaque de rayon supérieur au rayon du bord de fuite. Les bras 15 peuvent comprendre un carénage hydrodynamique entourant une poutre structurelle transmettant les efforts entre le plan porteur arrière 4 et la coque 2. Les bras 15 sont sensiblement verticaux. La surface extérieure des bras 15 peut être parallèle à un axe Z. En coupe longitudinale, le bras 15 est situé dans un plan sensiblement vertical. Les bras 15 présentent une extrémité supérieure solidaire de la coque 2 dans la région arrière plane du fond 10 de la coque 2. Les bras 15 se prolongent sous le plan porteur arrière 4 par des supports 15a de propulseurs. Dans le mode de réalisation des figures 1 à 4, 6 et 8 à 12, les supports 15a sont coplanaires avec les bras 15. Les supports 15a peuvent former les pods.

Le plan porteur arrière 4 et le plan porteur avant 3 sont configurés pour déjauger à une vitesse comprise entre 3 et 5 nœuds en fonction notamment de la charge transportée. Au- delà de cette vitesse, la coque est supportée par le plan porteur arrière 4 et le plan porteur avant 3.

Le centre de gravité CG en charge normale est situé dans le plan de symétrie longitudinal XZ. Longitudinalement, le centre de gravité CG se trouve entre le plan porteur avant 3 et le plan porteur arrière 4, notamment entre 40 et 50% de la longueur mouillée du navire en partant de l'extrémité arrière. Sur l'axe Z, le centre de gravité CG est situé à une hauteur maximale dépendant de la largeur de la coque pour la stabilité archimédienne et de la largeur des plan porteur avant 3 et plan porteur arrière 4 pour la stabilité en navigation à coque émergée. En prenant comme point de base le plan de décollage passant par les points bas de la coque, la position en hauteur du centre de gravité CG est inférieure à 30%, préférablement 25%, de la largeur du plan porteur arrière. Le centre de gravité CG peut être situé entre 0,30 et 0,40 m au-dessus de la ligne de flottaison en charge normale pour une coque 2 de 2,20 à 2,30 m de largeur.

Le centre de gravité à vide est situé à une hauteur au-dessus de la surface de l'eau inférieure à 0,50 m dans l'état sustenté où la coque est au-dessus de la surface de l'eau.

Au cours de la mise au point d'autres paramètres se sont révélés importants. La coque est située à une distance au-dessus de la surface de l'eau comprise entre 0,10 et 0,30 m dans l'état sustenté où la coque est au-dessus de la surface de l'eau. En dessous de 0,10 m, il y a trop de risque de contact occasionnel eau-coque générant de la traînée. Au-delà de 0,30 m, la stabilité devient difficile à assurer.

La distance entre le centre du plan porteur avant 3 et le bas de la coque 2 selon l'axe Z, notamment l'arête centrale 10a, est comprise entre 0,30 et 0,70 m. La distance entre le centre du plan porteur arrière 4 et le bas de la coque 2 dans un plan transversal est comprise entre 0,30 et 0,70 m. En dessous de 0,30 m, la plage de navigation stable est trop faible entre le risque de ventilation lorsque les plans porteurs sont en immersion insuffisante et le risque de contact de la coque avec l'eau. Au-delà de 0,70 m, la traînée des plans porteurs devient fortement consommatrice d'énergie si les plans porteurs sont très immergés ou la stabilité est réduite si les plans porteurs sont peu immergés. La plage préférée est 0,40 à 0,60 m. La coque est de largeur supérieure ou égale à 2,00 m, préférablement comprise entre 2,20 et 2,30 m. Une largeur de navire de 2,30 m ou de 2,40 m, correspondant à l'envergure des plans porteurs, offre une bonne stabilité. L'envergure des plans porteurs à bombement extérieur peut atteindre 3,00 m. L'envergure des plans porteurs avant et arrière peut être égale. Dans le mode de réalisation des figures 1 à 3, l'envergure du plan porteur arrière est supérieure à l'envergure du plan porteur avant, notamment de plus de 0,50 m.

Le navire 1 peut être équipé d'un ou plusieurs sièges 27 disposé dans un habitacle 29 formé entre les francs bords 8 et 9, en arrière du pare-brise 6a. Un siège de pilote et une pluralité de sièges de passagers sont disposés.

Le navire 1 est à propulsion motorisée. Le navire 1 peut comprendre de un à quatre propulseurs 5. Les propulseurs 5 sont disposés sous les plans porteurs selon l'axe Z. Les propulseurs 5 sont solidaires d'un plan porteur 3, 4. Dans le mode mono propulseur illustré sur la figure 4, le propulseur est installé sous le plan porteur arrière 4 en position centrale. Le propulseur est orientable autour d'un axe Z, c'est-à-dire en azimut. Le propulseur est, soit fixé au seul plan porteur arrière 4 par une liaison à pivot, soit fixé à un bras caréné 15, fixe ou pivotant traversant le plan porteur arrière 4. Sur la figure 4, le plan porteur arrière 4 est associé à un mono propulseur 5 supporté par un mono bras 15 central. Latéralement, le plan porteur arrière 4 est solidaire de la coque 2 par deux parties de support 11 analogues aux parties de support 11 du plan porteur avant 3.

Dans le mode de réalisation de la figure 5, la structure est similaire à la précédente à ceci près que le mono bras 15 se divise en deux supports 15a par une poutre carénée 25 en Y inversé sous le plan porteur arrière 4. Les supports 15a présentent un angle d'environ 90° entre eux. Les supports 15a peuvent pivoter par rapport au plan porteur arrière 4. Le pivot est de préférence commun aux deux supports 15a. La poutre carénée 25 présente une forme générale d'aile de faible hauteur et de dimension selon l'axe X suffisante pour reprendre les efforts générés par la poussée des hélices 17. La poutre carénée 25 est creuse. La poutre carénée 25 forme un logement des câbles électriques d'alimentation des moteurs électriques 16. Dans le mode bi propulseur, chaque propulseur est installé sous le plan porteur arrière 4 en position latérale. Les propulseurs peuvent être orientables autour d'un axe Z ou fixes. Les propulseurs sont, soit fixés au seul plan porteur arrière 4 par des liaisons à pivot, soit fixés chacun à un bras caréné 15, fixe ou pivotant, traversant le plan porteur arrière 4, soit supportés par un mono bras pivotant, par une poutre carénée 25. Dans le cas de propulseurs fixes, la giration du navire est effectuée par différence de régime entre les propulseurs, voire par inversion de régime.

Dans le mode tri propulseur, chaque propulseur est installé sous le plan porteur arrière 4, l'un en en position centrale, les autres en position latérale. Les propulseurs peuvent être orientables autour d'un axe Z ou fixes. Les propulseurs sont, soit fixés au seul plan porteur arrière 4 par des liaisons à pivot, soit fixés chacun à un bras caréné, fixe ou pivotant, traversant le plan porteur arrière 4, soit supportés par un mono bras pivotant, une poutre carénée 25 d'axe principal Y faisant liaison entre le propulseur 5 et le mono bras 15. Dans le cas de propulseurs fixes, la giration du navire est effectuée par différence de régime entre les propulseurs latéraux, voire par inversion de régime. En variante, un propulseur 5 est installé sous le plan porteur avant 3 et les autres sous le plan porteur arrière 4 en position latérale comme dans le mode bi propulseur. Dans le mode de réalisation de la figure 6, trois propulseurs 5 sont prévus sous le plan porteur arrière 4. Les propulseurs 5 sont disposés comme les propulseurs de la figure 3 en position latérale et le propulseur de la figure 4 en position centrale. Chacun des trois propulseurs 5 est supporté par un bras 15. Les trois bras 15 supportent le plan porteur arrière 4. Les parties de support 11 visibles font partie du plan porteur avant 3. La partie centrale 12 du plan porteur avant 3 est également visible, comme sur les figures 4 et 5 légèrement au-dessus de la partie centrale 12 du plan porteur arrière 4.

Dans le mode de réalisation de la figure 7, le plan porteur arrière 4 est dépourvu de motorisation. L'espace entre le plan porteur arrière 4 et la coque 2 est libre. Le plan porteur avant 3 est associé à deux propulseurs 5. Le plan porteur avant 3 est de forme similaire à celle illustrée en figures 1 et 2. L'espace entre le plan porteur avant 3 et la coque 2 est libre. Chaque propulseur 5 est supporté par un support 15a de propulseur. Le support 15a est fixé au plan porteur avant 3. Le support 15a est, ici, indépendant du reste d'un bras tel qu'illustré sur les autres figures. Les efforts transmis par le support 15a sont repris par le plan porteur avant 3. Des câbles électriques passent dans le support 15a et le plan porteur avant 3 pour assurer l'alimentation du moteur électrique 16 à partir de la coque 2. Les propulseurs 5 peuvent être fixes ou pivotants autour d'un axe Z. Dans le mode quadri propulseur illustré sur la figure 11, deux propulseurs 5 sont installés sous le plan porteur arrière 4 en position latérale, cf. figures 1 à 3, et deux propulseurs sont installés sous le plan porteur avant 3 en position latérale comme sur la figure 7. L'écartement des propulseurs 5 peut être différent à l'avant et à l'arrière. Les propulseurs 5 peuvent être orientables autour d'un axe Z ou fixes. Les propulseurs sont, soit fixés au seul plan porteur avant 3 / arrière 4 par des liaisons à pivot, par exemple des pods, ou fixes, soit fixés chacun à un bras caréné, fixe ou pivotant, traversant le plan porteur avant 3 / arrière 4, soit supportés par un mono bras pivotant, une poutre carénée 25 d'axe principal Y faisant liaison entre les propulseurs et le mono bras. Dans le cas de propulseurs fixes, la giration du navire 1 est effectuée par différence de régime entre les propulseurs latéraux, voire par inversion de régime.

En variante, un unique propulseur 5 avant est monté en position centrale sous le plan porteur avant 3. Le propulseur 5 avant est un pod orientable et les propulseurs 5 arrière sont fixes. Cette variante peut être combinée avec le mode de réalisation des figures 9 et 10. En cas d'organes élastiques de pivotement du plan porteur avant 3, le régime du propulseur avant relativement au régime des propulseurs arrière permet de commander le calage du plan porteur avant 3 de manière indirecte. L'absence d'actionneurs peut ainsi être contournée. Cette variante peut être aussi combinée avec un plan porteur avant 3 fixe par rapport à la coque et à calage déformable. Et le navire est très manœuvrable, avec aptitude à la giration sur place.

Une ou plusieurs nervures 14 peuvent être montées sur le ou les bras carénés 15. Une aspiration d'air le long du bras caréné est évitée. Les nervures 14 sont symétriques par rapport au plan milieu XZ. Les nervures 14 s'étendent autour du bord d'attaque.

Chaque propulseur 5 comprend un moteur électrique 16 et une hélice 17 en prise directe sur le moteur. Le moteur électrique 16 présente un diamètre inférieur à 0,30 m, préférablement à 0,25 m. Le moteur électrique 16 présente un rapport longueur/diamètre supérieur à 3½, préférablement à 4. L'hélice 17 est immergée dans l'eau en fonctionnement normal. Le moteur électrique 16 et l'hélice 17 sont situés sous le plan porteur. Le ou les bras caréné 15 assure la liaison mécanique entre la coque 2 et le propulseur 5 correspondant. Le plan porteur avant 3 / arrière 4 reprend une partie des efforts mécaniques générés par le moteur. Le bras caréné 15 comprend un corps tubulaire et un carénage réduisant la traînée, fixé sur le corps. Le bras caréné 15 assure la liaison électrique entre la coque 2 et le propulseur 5 correspondant. Des câbles électriques passent dans le corps tubulaire pour assurer l'alimentation du moteur électrique 16 à partir de la coque 2, par exemple dans un alésage ménagé dans le bras, ou dans un logement dans le plan porteur.

Dans la coque 2, sont logées des batteries 18 et un organe de commande 19 muni d'une interface 20. Les batteries 18 sont logées en fond de coque 2 abaissant ainsi le centre de gravité. Les batteries 18 peuvent être disposées symétriquement. Les batteries 18 peuvent être disposées au moins en partie en deux rangées écartées l'une de l'autre. Les batteries 18 peuvent être disposées au moins en partie sous des sièges de l'habitacle du navire 1. Longitudinalement, les batteries 18 sont situées en arrière du plan porteur avant 3 et en avant ou au même niveau que le plan porteur arrière 4. L'organe de commande 19 est relié électriquement aux batteries 18, au moteur électrique 16 et à l'interface 20. Une liaison électrique d'alimentation est formée entre les batteries 18 et chaque moteur électrique 16 de propulseur 5. L'interface 20 comprend une commande de régime moteur, une commande de direction, un indicateur de charge des batteries 18 et un indicateur de régime moteur. La commande de direction peut être reliée mécaniquement aux propulseurs orientables ou reliée à l'organe de commande 19 pour générer un ordre de différenciation des régimes moteur.

De préférence, le navire 1 est dépourvu de safran. Les propulseurs 5 sont orientables. Les propulseurs 5 sont fixés chacun à un bras caréné 15 pivotant. Le bras caréné 15 se prolonge sous le plan porteur assurant une séparation entre les veines d'eau déplacées par le plan porteur et les veines d'eau passant dans l'hélice 17. Le corps du bras caréné 15 traverse le plan porteur tandis que le carénage est interrompu par le plan porteur arrière 4. Le carénage présente une portion supérieure entre la coque 2 et le plan porteur arrière 4 et une portion inférieure entre le plan porteur arrière 4 et le propulseur 5. La distance selon l'axe Z entre le plan porteur arrière 4 et l'axe du propulseur 5 est telle que le dessous du bord de fuite est situé à un niveau supérieur à l'extrémité supérieure des pales de l'hélice.

Les axes de pivotement des propulseurs 5 sont parallèles. Le pivotement des propulseurs 5 est indexé. Ainsi l'angle de poussée de chacun des propulseurs 5 arrière par rapport à l'axe X est égal ou centré autour du même centre de giration. En d'autres termes, les angles entre les axes de chaque propulseur et l'axe X sont égaux ou leurs normales sont sécantes en un point formant centre de giration. Le pivotement de chaque propulseur 5 est assuré par un bras caréné 15 correspondant. Le corps de chaque bras caréné 15 fait saillie dans la coque 2 et est commandé en pivotement par le mécanisme de commande de direction. Le pivotement des propulseurs 5 exerce une poussée du bas du navire 1 vers l'extérieur du virage. Cette poussée tend à incliner le haut du navire 1 vers l'intérieur du virage. Ceci accroît le confort des utilisateurs en virage.

La commande des propulseurs 5 peut être identique, en ce sens que la vitesse de rotation de chaque hélice est égale, notamment en vitesse de croisière. Pour les manœuvres à basse vitesse, la commande des propulseurs 5 est avantageusement indépendante. Ainsi, la vitesse de chaque propulseur est individuelle. Une vitesse de rotation plus élevée de l'hélice extérieure au virage permet de virer plus court. Une vitesse de rotation nulle de l'hélice intérieure diminue le rayon du virage tout en réduisant la consommation d'énergie. Une inversion du sens de rotation de l'hélice intérieure permet de virer sur place, par analogie avec le virage d'un engin chenillé dont les chenilles se déplacent en sens opposés.

Dans le mode de réalisation de la figure 8, chaque propulseur 5 comprend un moteur électrique 16 monté à bord et une transmission 26 à renvoi d'angle entre l'hélice 17 et le moteur électrique 16. L'hélice 17 est montée à orientation fixe par rapport à la coque. L'hélice 17 est située sous le plan porteur arrière 4. Chaque moteur électrique 16 est monté dans la coque 2, par exemple en fond de coque 2. Chaque propulseur 5 est relié à la coque 2 par le plan porteur arrière 4 et par un bras 15 disposé dans un plan sensiblement vertical en coupe longitudinale. Le bras 15 est parallèle à l'axe Z et l'angle du renvoi est à 90°. En variante, le bras 15 peut être incliné dans un plan transversal et/ou dans un plan longitudinal. Les propulseurs 5 sont à commande indépendante et la giration se fait par différentiation des vitesses de rotation des hélices 17.

Chaque transmission 26 à renvoi d'angle comprend un arbre en prise directe avec le moteur électrique 16, un pignon porté par l'arbre à une extrémité opposée au moteur électrique, et une roue dentée engrenant le pignon et en prise directe avec l'hélice 17. Un rapport de transmission de 1/1 offre une bonne compacité et permet un renvoi de faible diamètre d'où une faible traînée générée par le renvoi disposé en amont de l'hélice 17 dans le sens d'écoulement de l'eau le long du navire 1.

La traînée générée par la transmission 26 à renvoi d'angle est inférieure à la traînée générée par le moteur hors-bord des modes de réalisation précédents. Le moteur 16 dans la coque 2 est soumis à de moindres exigences de compacité, notamment diamétrale, et peut donc offrir une puissance accrue. Des vitesses de service élevées peuvent être assurées, par exemple entre 25 et 35 nœuds. Les batteries 18 peuvent être de capacité supérieure aux batteries des autres modes de réalisation afin d'assurer une autonomie élevée à grande vitesse. Ce mode de réalisation est avantageusement combiné avec le suivant.

Dans le mode de réalisation des figures 9 et 10, le plan porteur avant 3 est à calage variable temporellement. En d'autres termes, le calage d'une zone donnée du plan porteur avant 3 est susceptible d'être modifiée. En effet, la portance - résultante des forces exercées par l'eau sur le plan porteur - croît avec la vitesse à charge constante. La Demanderesse s'est rendue compte qu'un calage variable offrait un élargissement de la plage de charge utile pour une vitesse donnée intéressante dans les zones où la vitesse est réglementée, un déjaugeage à plus faible vitesse d'où une diminution des remous et de la consommation d'énergie, un élargissement de la plage de vitesse pour une charge donnée, une diminution de la traînée à vitesse élevée, une meilleure stabilité et une diminution des risques de ventilation et d'enfournement. La ventilation est une séparation entre l'extrados et la veine d'eau passant sur ledit extrados, par arrivée d'air, et se traduit par une perte de portance. L'enfournement est un déséquilibre du navire avec enfoncement brutal de la proue 6.

Le calage variable permet aussi d'augmenter l'écart entre la vitesse à laquelle le navire passe de la navigation archimédienne à la navigation sur plans porteurs, appelée vitesse de déjaugeage, et la vitesse à laquelle le navire passe de la navigation sur plans porteurs à la navigation archimédienne. La stabilité de la navigation est accrue. Le navire peut ainsi naviguer sur plans porteurs à faible vitesse. Ceci est intéressant pour l'accostage.

En variante, un bord de fuite à angle réglable a été considéré. Le mode préféré est un plan porteur avant 3 à pivotement autour d'un axe transversal. Le plan porteur avant 3 est pivotant dans sa généralité. La construction monobloc du plan porteur avant 3 est conservée. La forme arquée du plan porteur avant 3 en coupe transversale permet une transmission des efforts analogues à une voûte avec majoritairement de la compression. Le plan porteur avant 3 est dépourvu de zone en porte à faux. Deux articulations 21 sont fixées chacune à un franc bord 8, 9. Le franc bord 8, 9 peut être renforcé au voisinage des articulations 21. Les articulations 21 supportent le plan porteur avant 3 autour d'un axe parallèle à l'axe Y. L'axe d'articulation est sécant avec la coque 2.

Sur la figure 9, le pivotement du plan porteur avant 3 est commandé. Le navire 1 comprend deux actionneurs 22 de pivotement du plan porteur avant 3 fixés d'une part à la coque et d'autre part au plan porteur avant 3. Le plan porteur avant 3 est articulé à la coque 2 autour d'un axe de pivotement situé au-dessus de la ligne de flottaison. La disposition des actionneurs 22 est symétrique. Les actionneurs 22 présentent une course linéaire. Le montage des actionneurs 22 autorise le pivotement du plan porteur avant 3 sur une course angulaire comprise entre 1 à 5°. Des butées 23 peuvent être prévues pour soulager les actionneurs 22 en fin de course. Les butées 23 peuvent comprendre un organe élastique. En fin de course, les actionneurs 22 exercent une précontrainte à l'encontre des butées assurant ainsi une stabilité du plan porteur avant 3 et de faibles vibrations. Le plan porteur arrière 4 est fixe par rapport à la coque.

A une première extrémité de la course, le plan porteur avant 3 présente un calage élevé offrant une portance maximale, notamment pour le déjaugeage. A une deuxième extrémité de la course opposée à la première, le plan porteur avant 3 présente un calage faible offrant une portance minimale et une traînée réduite, notamment pour les vitesses élevées. A la deuxième extrémité de la course, le minimum du calage local du plan porteur avant 3 est supérieur à zéro. Le plan porteur avant 3 est à calage commandé.

Les actionneurs 22 sont reliés à l'organe de commande 19. Le réglage actif du calage peut être effectué avec un calage maximal sous une valeur Ri de vitesse de rotation des hélices 17, un calage minimal au-dessus d'une valeur R 2 de vitesse de rotation des hélices 17 et un calage progressif avec la vitesse entre les valeurs Ri et R 2 . A titre d'exemple, Ri = 6 nœuds et R 2 = 9 nœuds pour un navire de vitesse maximale de service de 10 à 15 nœuds. Pour un navire haute vitesse, on fixe Ri = 8 nœuds et R 2 = 20 nœuds pour un navire de vitesse maximale de service de 25 à 35 nœuds.

Sur la figure 10, le navire 1 comprend deux organes élastiques 24 de pivotement du plan porteur avant 3 fixés d'une part à la coque et d'autre part au plan porteur avant. La disposition des organes élastiques 24 est symétrique. Les organes élastiques 24 présentent une course linéaire ou angulaire. Le montage des organes élastiques 24 autorise le pivotement du plan porteur avant 3 sur une course angulaire comprise entre 1 à 5°. Des butées 23 de fin de course sont prévues. En fin de course, les organes élastiques 24 exercent une précontrainte à l'encontre des butées 23. La précontrainte à la première extrémité de la course peut être prévue jusqu'à une vitesse supérieure à la vitesse de déjaugeage. La précontrainte à la deuxième extrémité de la course peut être prévue jusqu'à une vitesse inférieure de quelques pour cents à la vitesse de croisière prévue. Pour le reste, on se réfère au mode précédent. Le plan porteur avant 3 est à incidence passive variable en fonction de la vitesse.

Les actionneurs 22 et/ou les organes élastiques 24 présentent une extrémité articulée à la coque 2 et une extrémité opposée articulée à une partie de support 11 du plan porteur avant 3 au niveau de la coque selon un axe parallèle audit axe sécant avec la coque et à distance de l'articulation 21. Les actionneurs 22 et/ou les organes élastiques 24 sont montés au-dessus de la ligne de flottaison à pleine charge. En variante, le plan porteur avant 3 est déformable élastiquement en calage. Le plan porteur avant 3 peut être fixe par rapport à coque 2. Le plan porteur avant 3 peut comprendre une portion centrale à calage décroissant en fonction de la portance.

Dans le mode de réalisation de la figure 12, le navire est similaire à celui des figures 1 à 3. En outre, les bras 15 supportent des sondes de pression 30. Les sondes de pression 30 peuvent comprendre des tubes de Pitot. Les tubes de Pitot mesurant une pression différentielle sont équipés d'une surface active de bord d'attaque sensible à la pression statique et à la pression dynamique cumulées et d'une surface active latérale sur le côté des bras 15 sensible à la pression statique. Les sondes de pression 30 sont reliées à l'organe de commande 19. Les sondes de pression 30 sont, ici, disposées sur le bord d'attaque de chaque bras 15. En variante, les sondes de pression 30 peuvent être disposées sur le bord d'attaque de chaque partie de support 11. En pratique, les sondes de pression 30 sont installées sur un bord d'attaque d'une zone d'un plan - porteur ou de support - immergée en navigation archimédienne et émergée en navigation sur plans porteurs.

Les sondes de pression 30 sont disposées en une rangée par bras 15 avec une distance entre deux sondes de pression 30 comprise entre 2 et 6 cm. Les sondes de pression 30 sont insérées dans le bras 15 offrant une surface active libre. Les sondes de pression 30 mesurant la pression permettent à l'organe de commande 19, muni d'un calculateur, de calculer une estimation du niveau du navire par rapport au plan d'eau, en d'autres termes l'enfoncement à l'état déjaugé, soit une hauteur. La précision dépend notamment de la distance entre deux sondes de pression 30 voisines. Alternativement, les sondes de pression 30 sont disposées sur une ou des parties de support 11.

L'organe de commande 19 est, avantageusement, pourvu d'une sortie de commande de la hauteur du navire par rapport au plan d'eau sur la base des données fournies par les sondes de pression 30. Selon la configuration du navire 1, ladite sortie de commande est envoyée aux propulseurs pour modifier leur régime faisant ainsi varier la portance, aux actionneurs de pivotement de plan porteur pivotant autour d'un axe transversal pour un réglage du calage, par exemple du plan porteur avant 3, aux actionneurs de déformation d'un profil de plan porteur, aux actionneurs de volet de bord de fuite, etc.

En navigation archimédienne, les bras 15 sont immergés et une information d'enfoncement, par ailleurs peu utile, ne peut pas être fournie par ce moyen. En cours de déjaugeage et à l'état déjaugé, l'information d'enfoncement peut être fournie et est utile. L'organe de commande 19 dispose ainsi d'une information bilatérale d'enfoncement. L'assiette du navire est disponible. A partir de l'assiette, l'organe de commande 19 peut générer une commande de pivotement des pods des propulseurs 5 pour augmenter ou réduire une inclinaison latérale du navire. Indépendamment des sondes de pression 30 ou en combinaison, le navire est équipé de volets mobiles 28 de bord de fuite sur le plan porteur arrière 4. Les volets mobiles 28 constituent des élevons au sens aéronautique. Les volets mobiles 28 déplacés dans le même sens agissent en gouvernes de tangage. Les volets mobiles 28 déplacés en opposition agissent en gouvernes de roulis. L'action en gouvernes de tangage permet de faire baisser l'arrière du navire, notamment en phase de décélération afin de conserver l'horizontalité du navire ou de le cabrer légèrement. L'action en gouvernes de tangage permet de faire monter l'arrière du navire afin de réduire la portance du plan porteur avant si ladite portance est excessive. L'action en gouvernes de tangage peut être mise en œuvre en freinage d'urgence pour augmenter la traînée et réduire la portance très rapidement.

L'action en gouvernes de roulis permet de compenser un déséquilibre de charge. L'action sur le volet 28 intérieur à un virage permet l'augmentation de la traînée à l'intérieur du virage et l'abaissement du bord intérieur au virage d'où un double effet de faciliter la prise de virage ou giration du navire 1 et de réduire la force centrifuge ressentie par les utilisateurs. En d'autres termes, le navire 1 est apte prendre un virage comme une moto et non comme une voiture. L'action en gouvernes de roulis permet d'incliner latéralement le navire en particulier en cas de propulseurs fixes d'où un confort accru. Ceci est facilité par les sondes de pression 30 ci-dessus.

Les volets mobiles 28 s'étendent sur les parties inclinées 13. Les volets mobiles 28 sont situés au-delà des bras 15 et à distance de l'extrémité libre du plan porteur arrière 4. Les volets mobiles 28 présentent une forme rectangulaire et sont articulés autour d'un axe situé dans le plan des parties inclinées 13. Les volets mobiles 28 sont pivotés par des actionneurs disposés dans l'épaisseur des parties inclinées 13 et commandés par l'organe de commande 19.

En cas d'inclinaison latérale du navire, une partie du volet mobile 28 d'un côté peut être hors de l'eau d'où une réduction de la portance dudit côté et un effet d'autostabilité lié à la forme du plan porteur arrière 4 sans action des volets mobiles 28. Simultanément, une action sur le volet mobile 28 dudit côté produit moins d'effet et une action sur le volet mobile 28 du côté opposé produit un plein effet.

Sur les figures 13 et 14 a été représenté un plan porteur avant 3 conçu pour des vitesses élevées en comparaison des modes de réalisation précédents. La Demanderesse a mis au point des plans porteurs offrant une faible traînée à vitesse de service élevée, d'où une consommation d'énergie réduite et une autonomie accrue.

Le plan porteur avant 3 présente une corde décroissante vers le centre du navire 1. Le plan porteur avant 3 a un bord fuite 3a situé dans un plan transversal YZ. Le plan porteur avant 3 a un bord d'attaque 3b se rapprochant du bord d'attaque 3b dans les parties inclinées 13 et situé dans un plan transversal YZ dans la partie centrale 12. La corde du plan porteur avant 3 est comprise entre 0,20 et 0,80 m. Le minimum de la corde est compris entre 0,20 et 0,30 m. Le maximum de la corde est entre 0,50 et 0,80 m. Le rapport épaisseur/corde peut être constant. L'épaisseur est constante dans la partie centrale 12 et décroissante vers le centre dans les parties inclinées 13. Le rapport entre la corde maximale et la corde minimale peut être compris entre 2 et 6.

La corde de la partie centrale 12 est constante. La corde des parties inclinées 13 est décroissante à l'opposé des extrémités des plans porteurs. La corde de petite dimension de la partie centrale 12 offre une faible surface mouillée donc une faible traînée. La corde des parties inclinées 13 croissante avec l'enfoncement du navire 1 génère une portance croissante avec l'enfoncement du navire 1. Inversement, la traînée générée par les plans porteurs décroît fortement lors du déjaugeage. La décroissance est plus forte qu'une décroissance linéaire car la diminution de la surface mouillée varie en fonction de la hauteur de déjaugeage de manière linéaire comme dans les modes de réalisation précédents et de la décroissance de la corde. En outre, le calage est, ici, décroissant dans le même sens que la corde. L'angle de calage a dans la partie centrale 12 est compris entre 1 et 3°, cf. figure 15. L'angle de calage a maximal, au voisinage de la coupe de la figure 18, est compris entre 3 et 5°. Le plan de coupe de la figure 16, au début de la partie inclinée 13, présente le même calage que la partie centrale 12. Le calage est constant dans la partie centrale 12 et croissant vers les extrémités libres des parties inclinées 13.

Le plan porteur arrière 4 peut présenter une structure similaire. Comme visible sur la figure 13, les bras 15 présentent une section rectangulaire en extrémité supérieure et une section profilée hydrodynamique en extrémité inférieure voisine du plan porteur et susceptible d'être immergée en navigation sur les plans porteurs.

Dans le mode de réalisation de la figure 19, le navire est similaire à celui des figures 1 à 3. En outre, le bord d'attaque 3b du plan porteur avant 3 est muni de bossages arrondis 32. Une pluralité de bossages 32 est formée sur chaque partie inclinée 13. Les bossages 32 sont ménagés à distance du centre dudit plan porteur. Les bossages 32 sont en saillie vers l'avant. Les bossages 32 sont séparés par un creux 33 d'orientation parallèle à l'axe X et perpendiculaire à la zone locale de la partie inclinée 13. Les bossages 32 sont circulaires en section dans un plan transversal YZ. Les bossages 32 présentent une pointe hémisphérique en section dans un plan longitudinal XZ. Les bossages 32 présentent un diamètre sensiblement égal à l'épaisseur locale du plan porteur. Les bossages 32 sont disposés à espacement constant. Les bossages 32 peuvent être formés sur l'un des plans porteurs 3, 4 ou sur les deux. Lesdits bossages 32 sont évanouissants vers l'extrados et l'intrados. L'extrados et l'intrados peuvent être lisses. En d'autres termes, les bossages sont dépourvus de saillie dans une direction perpendiculaire à l'axe X.

Let plan porteur peut comprendre une portion centrale 12 à profil sensiblement constant et deux portions latérales 13 munies desdits bossages 32. La portion centrale 12 peut présenter un calage constant et une corde constante. Les portions latérales 13 peuvent présenter un calage décroissant en allant vers la portion centrale 12. Les bossages 32 sont alors d'axes légèrement décalés. Les portions latérales 13 peuvent présenter une corde décroissante en allant vers la portion centrale 12. Les bossages 32 présentent une décroissance vers le bord de fuite en fonction de la corde. Le plan porteur est dépourvu de nervure de bord d'attaque située sensiblement dans un plan perpendiculaire à une portion voisine du plan porteur. Les bossages 32 offrent une réduction de la traînée en conservant la portance et diminuent le risque de ventilation. Les extrémités libres des portions latérales 13 sont orientées de manière générale selon l'axe X et perpendiculaires à l'axe principal des portions latérales 13 avec un bombement arrondi, également présent en figure 13.

Le navire 1 offre une plage large de conditions de navigation, notamment en termes de vitesse de croisière, vitesse de déjaugeage, vitesse de reprise de navigation archimédienne, décélération, rayon de giration dans les deux types de navigation, archimédienne et déjaugée, etc.