Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HINGE
Document Type and Number:
WIPO Patent Application WO/2014/169333
Kind Code:
A1
Abstract:
Disclosed is a hinge including: a first hinge, component including: a first external surface for securing to a first structure; and a first magnetic element; and a second hinge component, pivotally coupled to die first, hinge component, including: a second external surface for securing to a second structure; and a second magnetic element. A magnetic force between the first, and second magnetic elements bias the first and second hinge components toward a retained position.

Inventors:
STUART MICHAEL CHRISTOPHER (AU)
Application Number:
PCT/AU2014/000432
Publication Date:
October 23, 2014
Filing Date:
April 15, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
STUART MICHAEL CHRISTOPHER (AU)
International Classes:
E05F1/12; E05D5/06; E05D7/00; E05D11/08; E05F3/20
Domestic Patent References:
WO2009018615A12009-02-12
Foreign References:
JPH08193457A1996-07-30
FR2763631A11998-11-27
US5570917A1996-11-05
Other References:
See also references of EP 2986798A4
Attorney, Agent or Firm:
DAVIES COLLISON CAVE (255 Elizabeth StreetSydney, New South Wales 2000, AU)
Download PDF:
Claims:
Clairns

1. A hinge including;

a first, hinge component including: a first external surface for securing to a first structure; and a first magnetic element; and

a second hinge component, pivotally coupled to the first hinge component, including: a second external surface for securing to a second structure; and a second magnetic element;

wherein magnetic force between the first and second magnetic elements bias the first and second hinge components toward a retained position.

2. The hinge according to claim I , wherein the hinge includes a biasing mechanism configured to bia the first hinge component and the second hinge component toward the retained position.

3. The hinge according to claim 2, wherein the biasing mechanism is a spring,

4. The hinge according to claim 3, wherein a first end of the biasing mechanism is operably connected to the first hinge component and a second end of the biasing mechanism is operably connected to the second hinge component,

5. The hinge according to any one of claim 1 to 4, wherein the first hinge component includes an upper and lower cylindrical section and die second hinge component, includes an intermediate cylindrical section which is located between and coaxially with the upper and lower cylindrical sections,

6. The hinge according to claim 5, wherein the upper, lower and intermediate cylindrical sections include a hollow.

7. The hinge according to claim 6. wherein the hinge includes an upper cap member which couples with the upper cylindrical section and a portion of the upper cap member protrudes into the intermediate cylindrical section.

8. The hinge according to claim 6 or 7, wherei the hinge includes a lower cap member that couples with the lower cylindrical section and a portion protrudes into the intermediate cylindrical section.

9< The hinge according to any one of claims 1 to 8, wherein the hinge includes a adjustable braking arrangement coniigured to hinder movement, between the first hinge component relative to the second hinge component during at least some portion of hinged motion toward the retained position.

10. The hinge according to any of claims 1 to 9* wherein the hinge includes a dampener configured to slow the movement of the first hinge component relative to the second hinge component whe moving toward the retained position.

11. The hinge according to claim 10, wherein the dampening is a hydraulic dampener.

12. The hinge according to claim 17. wherein a body of the dampener is housed within a cavity of one of the first and second hinge components and wherein, a pin of the dampening mechanism protrudes outwardly from the cavity and retracts withi the body when the hinge moves toward the retained position.

13. The hinge according to claim 12, wherein the dampener is biased to eject a portion of the pin from the body once the first and second hinge components move from the retained position to an unretained position.

14. The hinge accordin to any one of claims 1 to 13, wherein the first hinge component includes an L-shaped portion including a first and second arm which have respective faces which define the first external, surface of the first hinge component.

15. The hinge according to claim 14, wherein the first arm includes a cavity for housing the first magnetic element.

16. The hinge according to claim 15ยป wherein the first magnetic element is retained within the cavity by a cover element.

17. The hinge according to any one of claims I to 16, wherein the second hinge component includes an L-shaped portion including a first and second arm which have respective faces which define the second external surface of the second hinge component.

18. The hinge according to claim 17, wherein the first arm of the second hinge component includes a cavity for housing the second magnetic element.

1:9. The hinge according to claim 21, wherein the second magnetic element is retained within the cavity by a cover element.

20. The hinge according to any one of claims 1 to 19, wherein the first and second hinge components includes apertures to enable a fixing means to secure the hinge to the first and second structures.

21, A kit of parts for a hinge including:

a first hinge component including: a first external surface for securing to a first structure; and a first magnetic element; and

a second hinge component, pivotally coupled to the first hinge component, including: a second external surface for securing to a second structure; and a second magnetic element;

wherein magnetic force between the first and second magnetic elements bias the first and second hinge components toward a retained position.

Description:
HINGE

Cross-Reference to Related Applications

[001] The present application claims priority from Australian Provisional Patent Application No 2013901292 filed on 15 April 2013, the content of which is incorporated herein by reference.

Technical Field

[002] The present invention relates to a hinge. Background Art

[003] A conventional hinge generall includes a pai of hinge components pi tally secured together, in particular applications, such as hinges for doors or gates, it is desirable to provide a hinge which biases the hinge components to either a closed or open position.

[004] These type of hinges generally include a mechanical biasing element which is typically a spring in order to bias the movement of the hinge components to either the closed or open position. However, over time, parts of the hinge can wear and/or the sprin looses torsional force, thereby leading to the hinge potentially failing to self close or self open,

[005] Some hinges include a mechanism to adjust the tension in the spring so that the hinge may once again bias toward the open or closed position. However, suc hinges generally require that portions of the hinge be taken apart to adjust the spring tension whic is a time-consuming process. It would be beneficial if the spring tensioning process could be avoided as long as possible whilst still providing a hinge which biases toward to open or closed position fully even in the event that the spring looses tension.

[006] The reference in this specification to any prior publicatio (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment, or admission or any form of suggestion that that prior publication (or information derived from it ) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

Summary

[007] In a first aspect there is provided a hinge including:

a first hinge component including: a first external surface for securing to a first structure; and a first magnetic element; and

a second hinge component, pivotally coupled to the first hinge component, including: a second external surface for securing to a second structure; and a second magnetic element;

wherein magnetic force between the first and second magnetic elements bias the first and second hinge components toward a retained position.

[008] in certain embodiments, the hinge includes a biasing mechanism configured to bias the first hinge component and the second hinge component toward the retained position.

[009] In. certain embodiments, the biasing mechanism is a spring.

[010] In certain embodiments, a first end of the biasing mechanism is operably connected to the first hinge component and a second end of the biasing mechanism is operably connected to the second hinge component.

[011] In certain embodiments, the first hing component includes an upper and lower cylindrical section and the second hinge component includes an intermediate cylindrical section vvhich is located between and coaxially with the upper and lower cylindrical sections. 012] In certain embodiments, the upper, lower and intermediate cylindrical sections include a hollow. [013] In certain embodiments, die binge includes an upper cap member which couples with die upper cylindrical section and a portion of the upper cap member protrudes into the intermediate cylindrical section.

[014] In certain embodiments, wherein the hinge includes a lower cap member that coitpies with the lower cylindricai section and a portion protnides into the intermediate cylindrical section,

[015] In certain embodiments, the hinge includes a adjustable braking arrangement configured to hinder movement between the first hinge component relative to the second hinge component during at least some portion of hinged motion toward the retained position.

[016] In certain embodiments, the hinge includes a dampener configured to slow the movement of the first hinge component relative to the second hinge component whe moving toward the retained position,

[017] In. certain embodiments, d e dampening is a hydraulic dampener.

[018] In certain embodiments, a body of the dampener is housed within a cavity of one of the first: and second hinge components and wherei a pin of the dampening mechanism protrudes outwardly from the cavity and retracts within the body when the hinge moves toward the retained position.

[019] In certain embodiments, the dampener i biased to eject a portion of the pin from the body once the first and second hinge components move from, the retained positio to an un retained position. 020] In certain embodiments, the first hinge component includes a L- sh ped portion including a first and second arm which have respective faces which define the first external surface of the first hinge component. [021] In certain embodiments, the first arm includes a cavity for housing the first magnetic element.

[022] In certain embodiments, the first magnetic element is retained within the cavity by a cover element.

[023] In certain embodiments, the second hinge component includes an L- haped poition including a first and second arm which have respective faces which define the second external surface of the second hinge component.

[024] In certain embodiments, the first arm of the second hinge component includes a cavity for housing the second magnetic element

[025] In certain embodiments, the second magnetic element is retained within the cavity by a cover element.

[026] In. certain embodiments, the first and second hinge components includes apertures to enable a fixing means to secure the hinge to the first and second structures.

[027] In another aspect there is provided a kit of parts for a hinge including:

a first hinge component including; a first external surface for securing to a first structure; and a first magnetic element; and

a second hinge component, pi otall coupled to the first hinge component, including: a second external surface for securing to a second structure; and a second magnetic element;

wherein magnetic force between the first and second magnetic elements bias the first and second hinge components toward a retained position.

[028] Other aspects and embodiments will be appreciated throughout the detailed description. Brief Description Of Figures

[029] The example embodiment of the present invention should become apparent from the following description, whic is given by way of example only, of a preferred but. non- limiting embodiment, described in connection with the accompanying figures.

[030] Figure 1 illustrates an elevated side isometric view of an example of the hinge in the Open position;

[031] Figure 2 illustrates an elevated front isometric view of the hinge of Figure 1 in the open position;

[032] Figure 3 is an elevated rear isometric view of the hinge of Figure 1 in the open position;

[033] Figure 4 is an elevated opposing side isometric view of the hinge, of Figure 1 in the open position;

[034] Figure 5 is a top view of the hinge of Figure 1 in the open position;

[035] Figure 6 is a bottom view of the hinge of Figure i in the open posi tion

[036] Figure 7 is a first elevated front isometric view of the hinge of Figure 1 in the closed position;

[037] Figure 8 is a second elevated front isometric view of the hinge of Figure 1 in the closed position;

[038] Figure 9 is a first elevated rear isometric view of the hinge o Figure 1 in the closed position; [039} Figure 10 is a second elevated rear isometric view of the hinge of Figure i in closed position;

[040] Figure 1 1 is top view of the hinge of Figure 1 in the closed position;

[041] Figure 12 is a bottom view of the hinge of Figure 1 in the closed position;

[042] Figure 13 is an exploded isometric view of the hinge of Figure I ;

[043] Figure 14 is rear view of the hinge of Figure 1 in the closed position;

[044] Figure 1.5 is a cross-section view of the hinge along section A-A of Figure 14;

[045] Figure 16 is a cross-sectional view of the hinge along section B-B of Figure 1.4;

[046] Figure 17 is a cross-sectional view of the hinge along sectio C-C of Figure 14;

[047] Figure 18 is an isometric view of the first, hinge component;

[048] Figure 19 is an isometric view of the second hinge component;

[049] Figure 20 is an isometric view of the cover element;

[050] Figure 21 is an elevated front view of a dampener;

[051 ] Figure 22 is an elevated view of a cap member;

[052] Figure 23 is a cross-sectional view of the cap member along section D-D; 053] Figure 24 is a top vie of the hinge with the spring and cap members removed; [054} Figure 25 is an isometric view of another example of a hinge including art alternate upper cap member

[055] Figure 26 in a first elevated front isometric view of another example hinge in the closed position;

[056] Figure 27 is a second elevated front isometric view of the hinge of Figure 26 in the closed position;

[057] Figure 28 is a first elevated rear isometric view of the hinge of Figure 26 in the closed position ;

[058] Figure 29 is a second elevated rear isometric vie of the hinge of Figure 26 in the closed position;

[059] Figure 30 is an exploded isometric view of the hinge of Figure 26;

[060] Figure 31 is an elevated front view of the hinge of Figure 26 in the open position;

[061] Figure 32 is an elevated rear view of the hinge of Figure 26 in the open position;

[062] Figure 33 is an elevated isometric view of the upper cap member of the hinge of Figure 26;

[063] Figure 34 is underside isometric view of the upper cap member of the hinge of Figure 26:

[064] Figure 35 is an elevated view of a dampener of the hinge of Figure 26;

[065] Figure 36 is a perspective view of an alternate first hinge component; [066} Figure 37 is. a perspective view of an alternative second hinge component;

[067] Figure 38 is a top view of the first cover element for the fir t hinge componen of Figure 36;

[068] Figure 39 is a rotated underside view of the first cover element of Figure 38;

[069] Figure 40 is a top view of the second cove element, for the second hinge component of Figure 37 ; and

[070] Figure 41 is am underside view of the second cover element of Figure 40. Modes for Carryin Out The Invention

[071] The following modes, given by way of example only, are described in order to provide a more precise understanding of the subject matter of a preferred embodiment or embodiments,

[072] In die figures, incorporated to illustrate features of an example embodiment, like reference numerals are used to identify like parts throughout the figures.

[073] Referring to Figures 1 to 13, there is shown an example of a hinge 100. The hinge 100 includes a first hinge component 101 and a second hinge component 102 which are pivotally coupled together about a pivot axis 103 (see Figure 13).

[074] The first hinge component 101 includes a first external surface 104 for securing to a first structure 1001 (see Figure 5, shown in broken line). In one particular form, the first structure 1001 is a portion of a gate such as a gate for a pool fence. As shown in Figures 13 and 16, the first hinge component 101 also includes a first magnetic element 105. Figure 18 shows the first hinge component 101 isolated from the other components of the hinge 100. [075} The second hinge component 102 includes a second external surface 106 for securing to a second structure 1002 (see Figure 5, shown in broken line). In one particular form, the second structure 1002 is a post. The second hinge component 102 also includes a second magnetic element 107 that is more clearly shown in the exploded view of Figures 13 and cross- ectional view of Figure 16.

[076] The first and second magnetic elements 105, 107 are orientated such that preferably magnetic attraction between the first and second magnetic elements 105. 107 assist in biasing tire first and second hinge components 101, 102 toward and maintaining the first and second hinge components 101, 102 in a retained position. As shown in Figure 16, the magnetic elements 105, 107 are orientated such that the magnetic elements 105, 107 are attracted toward each other in a face-to-face arrangement. The retained position may be an open or closed position depending upon the configuration of the hinge 100 and its application (i.e. a hinge for a pool gate requires closed retained position; a hinge for a toilet door requires an opened retained position). Throughout the remainder of the specification and for the purposes of clarity, the hinge 100 will be described in relation to a closed retained position.

[077] As the magnetic elements 105, 107 do not suffer from wear, the magnetic elements 105, 107 supplement disadvantages of mechanical biasing elements such as springs and the like which generally fail over time, at least in some degree. Thus, as a mechanical biasing element of a hinge wears, the magnetic elements 105, 1.07 assist with biasin the hinge to the retained position. This therefore delays the time when the spring needs to be tensioned.

[078] Referring to Figures 1 and 18, the first hinge component: 101 includes a first securing portion 1.08 which provides the first external surface 104 for resting against and securing the first hinge component 101. to a structure such as a post or door. The first securing portion 108 has a profile that corresponds to a portion of the structure that the first hinge component 101 is secured thereto. In the example depicted in the figures, the first securing portion 108 of the first hinge component 101 has an L-shaped profile including substantially orthogonal arms 109, 1 10 for securing the first hinge component 101 to different orthogonal faces of a structure such as a square/rectangular post. The first securing portion 1 8 of the first hinge component 1 1 includes a pluralit of apertures 111 to enable a fixing means, such as screws Or the like, to secure the first hinge component 101 to the structure.

[079] A first arm 109 of the first securing portion 1 8 of the first hinge component 101 is provided as a substantially flat plate and the second arm 1 10 is a ridged plate. The first arm 109 includes a recess 1 12 provided in the form of a cavity that has located therein the first magnetic element 1 5 of the hinge 100 as shown in Figures 13 and 16. The first magnetic element 105 is retained in the recess 1 1.2 (see Figure 13) and covered with a cover element 1.13 (see Figures 16 and 20) to form the flat profile of the first arm 109. The external surface of the cover element .1 13 sits substantially flush with the face of the first ami J 09 such that the first external surface can sit flush against die structure 1001.

[080] The first hinge component 101 includes two short cylinder sections 11.4, 115 spaced apart from one another including an upper cylinder section 1 14 and a lower cylinder section 1 15. located at the outside of the corner of the L shaped member 108, such that, the central axes of the cylinder sections 114, 115 align. The upper and lower cylinder sections 114, 115 are provided in the form of upper and lower ring sections. The cylinder sections 1 14, 115 are formed such that they merge with ridges 1 16a, 1 16b that run along the second arm 1 10 and taper to a point at the far edge of the second arm 1 0.

[081] Referring to Figure 2, 3 and 19 there is shown the second hinge component 102 which includes a second securing portion 1 17 providing the second external surface 106 for securing the second hinge component 101 to the second structure 1002. The second securing portion 117 has an L-shaped profile with a first arm 1 18 provided i the form of a flat plate and a second arm 119 provided in the form of a ridged plate. As shown in the cross-sectional view of Figure 16, the first arm 1 18 includes a recess 120 in the form of a cavity that has located therein the second magnetic element 107 of tlte hinge 100. The second magnetic element 107 is retained in the cavity 120 and covered with a cover element 121 (see Figures 1.6 and 20) to form the fiat profile of the first arm 1 18. The external surface of the cover element 121 sits substantiall flush with the face of the first arm 118 suc that the second external surface 106 can sit flush against the structure 1002.

[082] Similarly to the first hinged component 101 , the L-shape of the second securing portion 1 17 allows for the second hinge component 102 to attach to two faces of a rectangular/square structure such as a post, door or other mounting point as shown in Figure 5. The second securing portion 1 7 also includes apertures 322 to enable it to be secured using a fixing means.

[083] The second hinge component 102 includes an intermediate cylinder section 123, extending from the outside of the corner of the L shaped second securing portion 117. The intermediate cylinder section 123 has an axial length which substantially corresponds to the spacing between the uppe and lower cylinder sections 114, 1 15 of the first hinge component 101. As shown in Figure 1 and 2, the intermediate cylinder section 123 is located between the upper and lower cylindrical sections 114, 115 such that the cylinder sections 1 14, 1 15, 123 are coaxial.

[084] As shown in Figure 19, the ridges 124, 125 which extend along the back of the second arm 119 of the L- shaped second securing portion 117 extend toward and merge with the intermediate cylinder section 123. ' The intermediate cylinder 123 and ridges 124, 125 form a C shape on the outside of the second arm 1 1 .

[085] As shown in Figures 18 and 19. the cylinder sections 1 14, 115, 123 are hollow thereby defining a common void 126 when placed in a co-axial arrangement that extends through the cylinder sections 1 14, 1 15, 123. The co-axial cylinder sections 1 14, 1 15, 123 include a top open end and a bottom open end. Referring to Figure 13, the first and second hinge components 101, 102 are pivotally coupled together via cap members 129, 130 which protrude through the top and bottom open ends of the co-axial cylinder sections 1 14, 1 15, 123. [086] In particular, referring to Figures 22 and 23 there i s shown an example of a lower cap member 130. The lower cap member 1 0 ma also be used as the upper cap member 129. The lower cap member 130 has a head 131 and a neck 132. The external wall of the neck 132 includes one or more keyed portion 134 (in the example, diametrically opposing keyed sections) for engaging with one or more corresponding recesses 159, 160 (see Figure 18) in the inner walls of the upper and lower cylindrical sections 114, 115 of the first hinge component 101. The neck 132 of the upper cap member 129 extends through the upper cylinder section 1 14, wherein a distal portion 135 of the neck 132 relative to the head 131 protrude downwardly into an upper portion of the intemicdiate cylindrical section 123. Similarly, the neck 132 of the lower cap member 130 extends through the lower cylindrical section 1 15, wherein a distal end 135 of die neck 132 relative to the head 131 protrudes upwardly into a lower portion of the intermediate cylindrical section 123, Whilst the distal ends 135 of the necks 132 of the ca members 129, 130 extend into the i termediate cylindrical section 123 thereby coupling the first hinge component 101 to the second hinge component 102 by forming a hinge pin, the distal ends 13 are able to freely rotate within the intermediate cylindrical section 123 thereby enabling the pivotal movement between the first and second hinge components 101 , 102. As will be discussed in more detail below, the lower cap member 130 includes a recessed section 136 adjacent the distal portion 135 of the neck 132. For convenience in manufacturing, both end caps 129, 130 can include the recessed section 136. However, it is possible that only the lower end cap 1.30 requires the recessed section 136 in order to provide a braking mechanism .137 for the hinge 100.

[087] As shown in Figure 17, the hinge 100 includes a biasing mechanism 1 8 in the form of a torsional spring which is located within the hollow of the intermediate cylindrical section 123. A top spring tail 139 of the spring 138 engages the upper cap member 129, such that the sprin 138 is operably connected to the first hinge component 101. In certain embodiments, the top spring tail 139 urges against an inner wall 239 located within the top cap member 129 as shown in Figure 23. A bottom sprin tail 140 of the spring 138 is located within a hole 141 of a protrusion 142 extending from the inner wall 143 of the intermediate cylindrical section 123, such that the spring 138 is also operably connected to the second hinge component 102. Due to this operable connection of the spring 138 to the first and second hinge components 101, 102, movement of the hinge 100 from the retained position causes potential energy to build in the spring 138 thereby urging the first and second hinge component 101 , 102 toward the retained position again.

[088] A shown in Figures 13, the second hinge component 102 includes a void 144 having an opening in the first arm 118 of die second securing portion 117. As show in Figure 3. the void 144 recei ves therein a body 145 of a dampener 146 (see Figure 21 ). The void 144 can. include an internal thread that engages with a threaded section of the body

145 of the dampener 146 to secure the dampener 146 within the void 144. The dampener

146 is preferably a hydraulic dampener including a pin 147 that extends from the body 145. As shown in Figures 3 and 5, the pin 147 ex tends outwardly from the face of the first arm 1 18 when the hinge 100 is located in an open position. As can be seen from Figure 15, the void 144 extends into the upper ridge 124 of the second hinge component 1.02. As shown in Figure 3, the firs arm of the 109 of the first hinge component 101 includes a void 148 for housing a striker plate 149 which contacts the pin 147 when the hinge 100 moves to the retained position. The outer face of the striker plate 149 is angled inwardly toward the axis 103 of the hinge 100.

[089] As the hinge 100 moves toward the retained position such that the magnetic elements 105, 107 provide a magnetic force aiding this hinged movement, the pin 147 of the dampener 146 will come into contact with the striker plate 149 of the first component 101, wherein the pin 147 slowly retracts within the body 145, thereby slowing the approach of th first arms 109, 1 1 8 toward one another. In the closed position, at least a portion of the striker plate 149 protrudes within the void 144 housing the dampener 146 in order to allow the hinge 1.00 to fully close.

[090] Figures 1 to 12 show the hinge 1 0 in a range of positions. This is made possible because the ridges 124, 125 on the second hinge component 102 are spaced sufficiently to fit between the ridges 1 16a, 116b of the first hinge component 101 whe in the fully open position. [091] Figures 7 to 12 show the hinge 100 in the closed position. In this position the first amis 109, 118 of the first and second hinge component 101, 102 are located in a side-by- side relationship, which also locates the first and second magnetic elements 105, 107 in close magnetic proximity of one another. Figures 1 to 6 show the hinge 100 in an open position. In this position the two L shaped securing portions 108, 1 17 form an X shape when viewed along the pivot axis 103. As shown in Figure 3, the pin 147 of the dampener 146 protrudes from the first arm 1 18 of the second hinge component 102.

[092] The hinge 100 can also include a braking mechanism .137. in particular, the braking mechanism 137 includes a braking screw 150 (see Figure 13) that is opetably connected to a brake pad 151 which extends at least partially into and through the inner wall 143 of the intermediate cylindrical section 123 of the second hinge component 102 via an aperture 152. The braking screw 150 and pad 151 align with a recessed section 136 of the distal end 135 of the lower cap member 130. As the hinge 100 moves from an unretained position toward the retained position, the brake pad 151 frictionally contacts the outer wall 153 of the distal end 135 of the lower cap member 1 0. As the hinge 100 approaches the retained position, the brake pad 151 applies less or no frktioiial force to the distal end 135 of the lower cap member 130 due to the recessed section 136 aligning with the brake pad 151. As shown in Figure 13, the braking screw 1.50 and pad 151 ca be mounted within an aperture 152 located in a protrusion 154 of the outer wall 155 of the intermediate cylindrical section 123, wherein the aperture 152 extends through to the inner wall 143 of the intermediate cylindrical section 123 and into the hollow 156. The aperture 152 ha a threaded internal wall to allow the braking screw 1.50 to be engaged within the aperture 152 as well as to allow adjustment of the distance which the brake pad 151 extends within the hollow 156 of the intermediate cylindrical section .126, thereby customi ing the brake force applied. As can be seen in Figure 3, the first arm .109 of the first hinge component 101. includes a cut-out section 157 which has a shape slightly bigger than the protrusion 1 4 to allow for the protrusion 154 to at least partially extend into the cut-out section 157 such that the first amis 109, 118 are placed in a face-to-face relationship in the retained position. [093] As will be appreciated from Figures 7 to 12, the position of the braking screw 150 is such that it can only be adjusted when the hinge 100 is in a position other than the retained position. This thereby prevents the braking screw 1.50 being adjusted whilst aligned with the recessed section 136 of the lower cap member 130 and thereby preventing over-tightening of the braking mechanism 137.

[094] The main hinge components 101 ,. 1 2, 121, 1 13, 129, 130 are well suited to being manufactured from a chea material such as polyethylene or other plastic, however ma als be made from any other suitable material. In one particular form, the first and second hinge components 101 , the upper and lower cap members 129, 130 and the covers 121 are manufactured from moulded glass reinforced nylon,

[095] It will be appreciated that the first and second securing portion 108, i 17 could have a substantially curved cross-sectional profile along the pivot axis 103 in order to be secured to a curved structure, such as a pole having a circular cross- ection,

[096] I certain embodiments, the bottom spring tail 140 of the spring may engage within a hole of an internal walled section of the intermediary cylindrical section 123.

[097] Referring to Figure 25, the upper cap member 129 can include a head which includes a sloped surface 1.58 to restrict children using the hinge 100 as a step.

[098] Referring to Figures 26 to 32 there is shown a further embodiment, of the hinge 100. The hinge 100 of this embodiment, includes a spring tensioning mechanism to tighten the spring should the supplemental force of the attractive magnetic force betwee the magnetic elements 105, 107 be insufficient to move the hinge to the closed position. In particular, the spring tensioning mechanism includes the upper cap member 129, as shown in Figure 33 which includes a series of indents 292, 293, 294 for recei ving an end of a grub screw 200 through a hole 201 in the wall of the upper cylinder portion 1.14 of the first hinge component. When initially installed, the grub screw 200 may be in contact with the first indent 292. In the event that the spring 138 has lost tension, the grub screw 200 can be unscrewed to disengage the first indent 292, wherein the user uses a coin or screwdriver to turn the upper cap member 129 to tension the spring 138 due to the first spring tail 139 engaged against and resting o the inner wall 239. lire upper cap member 129 can be turned such that the hole 201 in the upper cylinder member 1 14 aligns with one of the other indents 293, 294. Once aligned, the grub screw 200 can be retightened such that it engages one of the other indents 293, 294, More than three indents can be provided. The top of the end cap 129 additionally includes markings 296 to indicat the location of the indents 292, 293, 294 as well as the amount of mechanical bias which the spring 138 can apply to the hinge.

[099] Alternatively, it will be appreciated that either the upper or lower bottom end cap member 129, 130 can be modified to include a sprin tensioning mechanism as disclosed in Australian Patent No. 666491, the contents of which in herein incorporated by reference.

[0100] As shown in Figure 30, the hinge 100 can include a spring stiffener 250 which is provided in the form of a rod. The spring stiffener 250 may extend between the upper and lower cap members 129, 130 to provide stability for the spring 138 within tire intermediate cylindrical section 123. The spring stiffener 250 discourages the spring 1.38 fro deflecting within the intermediate cylindrical section 123. The ends of the stiffener can be tight fittingly received by cap cavities 295 located in the upper and lower cap members 129, 130.

[0101] Referring to Figure 30 and 35, the dampener 146 ca include diametrically opposed channels 246 that run along the length of the body and also the top surface thereof. The channels 246 enable a pair of pointy nose pliers or the like to engage the dampener 146 and apply a rotational force to tire dampener 146 whilst being screwed into the void 144.

[0102] As shown in Figure 30, the magnetic elements 105, 107 can have a non-rectangular profile such that the magnetic elements 105, 107 can substantially extend the length of the arms 109, 1 18. However, referring to Figures 36 and 37 there is shown a further em.bodim.ent of a hinge, where rectangular magnetic elements 105, 1.07 can be received within the respective cavities. As shown in Figures 38 to 41, the cover elements 1 13. 121 can include pins 210, 220, 230, 240 which are received within pin receiving areas of the cavity 112, 120 to align the covers and to provide a snap-fit arrangement.

[0103] Optional embodiments of the present invention may also be said to broadly consist in the parts, elements and features referred to or indicated herein, individually or collectively, in any or all combinations of two or more of the parts, elements or features, and wherein specific integers are mentioned herein which have known equivalents in the art to which the invention relates, such known equivalents are deemed to be incorporated herein as if individually set forth.

[0104] Although preferred embodiment has been described in detail, it should be understood that various changes, substitutions, and alterations can be made by one of ordinary skill in the art without departing from the scope of the present invention.