Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A HOST CELL MODIFIED TO PRODUCE LACTAMS
Document Type and Number:
WIPO Patent Application WO/2017/214159
Kind Code:
A1
Abstract:
The present invention provides for a genetically modified host cell capable of producing a lactam comprising a 2-pyrrolidone synthase, or an enzymatically active fragment thereof, heterologous to the host cell.

Inventors:
ZHANG JINGWEI (US)
KEASLING JAY D (US)
Application Number:
PCT/US2017/036168
Publication Date:
December 14, 2017
Filing Date:
June 06, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV CALIFORNIA (US)
International Classes:
C12N15/11; C12N15/52; C12P17/10
Foreign References:
US20080233623A12008-09-25
US20090081673A12009-03-26
US20040087654A12004-05-06
Other References:
STEVILA, E ET AL.: "Synthesis Of Lactams Using Enzyme-Catalyzed Aminolysis", TETRAHEDRON LETTERS, vol. 54, no. 5, 2013, pages 370 - 372, XP055456105
Attorney, Agent or Firm:
CHIANG, Robin, C. (US)
Download PDF:
Claims:
What is claimed is: 1. A genetically modified host cell comprising a 2-pyrrolidone synthase heterologous to the host cell, an enzymatically active fragment thereof, or an enzymatically active fragment thereof linked to a saccharide binding protein, wherein the 2-pyrrolidone synthase catalyzes the following reaction:

or reaction (2): Compound 3 Compound 4;

A

wherein Compound 3 is a“Substrate” and Compound 4 is a“Product” as indicated in Table 2 herein. 2. The genetically modified host cell of claim 1, wherein the 2-pyrrolidone synthase comprises an amino acid sequence having at least 70% identity with SEQ ID NO:1, wherein the amino acid sequence comprises one or more of the following conserved amino acid motifs or sites: acyl-activating enzyme (AAE) consensus motif (residues 137, 140-145, and 147-148), acyl-activating enzyme (AAE) consensus motif (residues 140, 257-258, 279-284, 357, 369, 372, 382, and 458), AMP binding site (residues 140, 180-181, 227, 229-230, 233, 257-258, 279-284, 357, 369, 372, 379- 382, and 439), and CoA binding site (residues 180, 229-230, 233, 257, 379-381, 433, and 439). 3. The genetically modified host cell of claim 2, wherein host cell is capable of

synthesizing Compound 1 or uptaking Compound 1 from the environment or culture. 4. The genetically modified host cell of claim 3, wherein host cell further comprises one or more enzymes of a pathway for synthesizing Compound 1 from a carbon source. 5. The genetically modified host cell of claim 4, wherein pathway for synthesizing Compound 1 from a carbon source that is native to the host cell. 6. The genetically modified host cell of claim 4, wherein pathway for synthesizing

Compound 1 from a carbon source that is heterologous to the host cell. 7. The genetically modified host cell of claim 1, wherein host cell lacks betaine-CoA ligase. 8. The genetically modified host cell of claim 2, wherein n is an integer from 1 to 20. 9. The genetically modified host cell of claim 8, wherein n is an integer from 1 to 10. 10. The genetically modified host cell of claim 9, wherein n is an integer from 1 to 7. 11. The genetically modified host cell of claim 10, wherein n is an integer from 1 to 3. 12. A method of producing a Compound 2 in a genetically modified host cell, comprising: (a) providing the genetically modified host cell of claim 1, (b) culturing the genetically modified host cell in a medium under a suitable condition such that the culturing results in the genetically modified host cell producing a Compound 2. 13. The method of claim 12, further comprising introducing one or more nucleic acid(s) into the host cell encoding the enzyme operably linked to a suitable promoter capable of transcription in the host cell, and optionally encoding the one or more enzyme(s) of a pathway for synthesizing Compound 1 from a carbon source; wherein the introducing step is prior to the culturing step. 14. The method of claim 12, further comprising separating Compound 2 from the host cell and/or the medium, wherein the separating step is subsequent, concurrent or partially concurrent with the culturing step.

Description:
A Host Cell Modified to Produce Lactams

CROSS-REFERENCE TO RELATED APPLICATIONS [0001] The application claims priority to U.S. Provisional Patent Application Ser. No.

62/346,294, filed June 6, 2016, which is herein incorporated by reference in its entirety. This application is related to U.S. Patent Application Ser. No.15/099,488, filed on April 14, 2016, which is hereby incorporated by reference. STATEMENT OF GOVERNMENTAL SUPPORT

[0002] The invention was made with government support under Contract Nos. DE-AC02- 05CH11231 awarded by the U.S. Department of Energy and grant no. NSF EEC 0540879 awarded by the National Science Foundation. The government has certain rights in the invention. FIELD OF THE INVENTION [0003] The present invention is in the field of microbial production of lactams. BACKGROUND OF THE INVENTION [0004] Lactams are important compounds used in the manufacture of commercial polymers. ε-Caprolactam (caprolactam) is used in the production of nylon 6 found in fabrics, coatings, plastics of many compositions, lubricants, etc. The worldwide use of nylons requires the production of approximately four million metric tons of caprolactam annually (1). δ- Valerolactam (valerolactam) has been proposed as a monomer for nylon 5 and nylon 6,5 synthesis, addition of which tunes the properties of the resulting polymers (2-4). [0005] Currently, both caprolactam and valerolactam are synthesized from starting materials extracted from petroleum. Caprolactam production starts from cyclohexanone, which is first converted to its oxime. Treatment of this oxime with acid induces the Beckmann

rearrangement to give caprolactam (5). Such production involves energy intensive processes and harsh acidic reaction conditions and produces large amount of waste salts. On the other hand, due to the lack of raw five-carbon petrochemical feedstocks, valerolactam is still too costly to achieve wide adoption for nylon synthesis. [0006] Unlike chemical dehydration, enzymatic or whole-cell-catalyzed reactions can be performed at lower temperature and pressure. Although several ω-amino fatty acids have been biosynthesized (3, 6, 7), full biosynthetic pathways to produce lactams are largely unknown. This is due to a lack of enzymes capable of performing the last ring closing step. In terms of polymer chemistry, ring open polymerization of these lactam monomers is preferred over condensation of their corresponding ω-amino fatty acids, because condensation chemistry generates water during each monomer addition, and adversely impacts polymer properties such as molecular weight and polydispersity, and leads to undesirable thermal and mechanical properties. To date, only one enzyme, Candida antarctica lipase B (CALB, commercially available asN435), was reported to conduct a reversible aminolysis reaction that can be utilized for valerolactam and caprolactam synthesis (8). However, the reported enzymatic reaction occurs under vacuum over P 2 O 5 , and requires high temperature and long reaction times to overcome the energy barrier of lactam formation (70% conversion at 90°C and 20% conversion at 55°C over a three-day period). Also, the intermolecular aminolysis reaction results in multiple side products, including macrocyclic dimer and trimer lactams, which are hard to eliminate during product purification. As such, there is no suitable enzyme capable of synthesizing industrially important lactams under microbial fermentation conditions. [0007] Previously, ORF27 from Streptomyces aizunensis, was hypothesized to be either a 4- aminobutyryl-CoA synthetase or a 4-guanidinobutyryl-CoA synthase (9-12), although we demonstrated that expression of ORF27 in vivo resulted in the formation of γ-butyrolactam from 4-aminobutyric acid(13). SUMMARY OF THE INVENTION [0008] The present invention provides for a genetically modified host cell comprising an ORF27 (or 2-pyrrolidone synthase), or an enzymatically active fragment thereof, or a fusion protein comprising an ORF27, or an enzymatically active fragment thereof, linked to a saccharide binding protein. In some embodiments, the ORF27 is heterologous to the host cell. In some embodiments, the 2-pyrrolidone synthase is Streptomyces aizunensis 2-pyrrolidone synthase or ORF27, or any enzyme capable of catalyzing the following reaction (1): or reaction (2): Compound 3 Compound 4;

wherein Compound 3 is a“Substrate” and Compound 4 is a“Product” as indicated in Table 2 herein. [0009] The present invention provides for a method of producing a Compound 2 in a genetically modified host cell, comprising: (a) culturing the genetically modified host cell in a medium under a suitable condition such that the culturing results in the genetically modified host cell producing a Compound 2. The host cell comprises an enzyme capable of catalyzing a Compound 1 into the Compound 2. In some embodiments, the method further comprises introducing one or more nucleic acid(s) into the host cell encoding the enzyme operably linked to a suitable promoter capable of transcription in the host cell, and optionally encoding the one or more enzyme(s) of a pathway for synthesizing Compound 1 from an endogenous produced substrate compound, such as produced from a carbon source, or a substrate compound obtained from the medium; wherein the introducing step is prior to the culturing step. In some embodiments, the method further comprises separating Compound 2 from the host cell and/or the medium, wherein the separating step is subsequent, concurrent or partially concurrent with the culturing step. [0010] In some embodiments, the Compound 1 is aminobutyrate, and Compound 2 is 2- pyrrolidone. In some embodiments, Compound 1 is 5-AVA, and Compound 2 is

valerolactam. In some embodiments, Compound 1 is 6-AHA, and Compound 2 is caprolactam. [0011] In some embodiments, the fusion protein comprises the N-terminal of the ORF27, or an enzymatically active fragment thereof, linked to the C-terminal of the saccharide binding protein. In some embodiments, the fusion protein comprises the C-terminal of the ORF27, or an enzymatically active fragment thereof, linked to the N-terminal of the saccharide binding protein. In some embodiments, the saccharide binding protein is a disaccharide binding protein, such as a maltose binding protein (MBP), lactose binding protein, or sucrose binding protein. Suitable MBP include, but are not limited to, the MBPs of Pyrococcus furiosus, Pyrobaculum aerophilum, and E. coli. In some embodiments, the saccharide binding protein and ORF27 are linked via a peptide linker. In some embodiments, peptide linker is one to about twenty amino acid residues long. In some embodiments, peptide linker is about five to about fifteen amino acid residues long. In some embodiments, peptide linker is about ten amino acid residues long. A suitable peptide linker comprises: SSGLVPRGSH (SEQ ID NO:14). The peptide linker is any sequence of amino acid residues that does not interfere or reduce the enzymatic activity of the ORF27, or enzymatically active fragment thereof, and does not interfere or reduce the ability of the saccharide binding protein to stabilize the ORF27, or enzymatically active fragment thereof. [0012] The present invention further provides for an isolated compound 2 produced from the method of the present invention. [0013] ORF27 is an enzyme involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis. ORF27 has a broad substrate spectrum and cyclizes γ-aminobutyric acid into butyrolactam, 5-aminovaleric acid (5-AVA) into δ-valerolactam, and 6-aminohexanoic acid (6-AHA) into ε-caprolactam. In one embodiment, the host cell, such as E. coli, expressing ORF27 produces valerolactam and/or caprolactam when 5-AVA and/or 6-AHA, respectively, are added to the culture medium. When integrated with a 5-AVA or 6-AHA precursor biosynthetic pathway, the host cell is able to produce valerolactam or caprolactam, respectively, from a substrate compound, such as lysine, which in turn can be synthesized from a carbon source, such as glucose. The carbon source can be a renewable source. U.S. Patent No.8,404,465 discloses the metabolic pathway, and corresponding enzymes, for synthesizing 6-AHA from lysine. BRIEF DESCRIPTION OF THE DRAWINGS [0014] The foregoing aspects and others will be readily appreciated by the skilled artisan from the following description of illustrative embodiments when read in conjunction with the accompanying drawings. [0015] Figure 1. Proposed butyrolactam, valerolactam and caprolactam formation from their respective linear substrates catalyzed by ORF27. [0016] Figure 2. ORF27 catalyzes multiple reaction pathways. [0017] Figure 3A. Valerolactam production in recombinant E. coli. Valerolactam

biosynthesis pathway. [0018] Figure 3B. Valerolactam production in recombinant E. coli. Production of valerolactam via fermentation. Titer gain by day 1-3 after induction in strains JZ-440 (ORF27 negative control) and JZ-441 from 0 g/L, 1 g/L, 5 g/L and 10 g/L lysine feeding. [0019] Figure 4. SDS-PAGE of ORF27 purified from E. coli. Ready gel for Tris-Glycine Gel (10% precast, Bio-Rad) was used. For molecular weight determination, PageRuler™ Prestained Protein Ladder (10 to 180 kDa, ThermoFisher Scientific) was used as protein ladder. [0020] Figure 5A. LC–MS analysis of 4-guanidinobutyrl-CoA formation catalyzed by ORF27.4-guanidinobutyrl-CoA synthetase reaction. [0021] Figure 5B. LC–MS analysis of 4-guanidinobutyrl-CoA formation catalyzed by ORF27. LC-MS confirmed that the reaction system requires ORF27, 4-guanidino butyric acid (4-GBA) and CoASH for 4-guanidinobutyryl-CoA (4GB-CoA) product formation. [0022] Figure 6A. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation. ORF27 minus, ATP for activation, CoASH plus.. [0023] Figure 6B. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation. ω-amino fatty acid minus, ATP, CoASH plus. [0024] Figure 6C. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation.6-AHA, ATP, CoASH minus.. [0025] Figure 6D. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation.6-AHA, ATP, CoASH plus. [0026] Figure 6E. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation.5-AVA, ATP, CoASH minus. [0027] Figure 6F. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation.5-AVA, ATP, CoASH plus. [0028] Figure 6G. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation. GABA, ATP, CoASH minus. H) GABA, ATP, CoASH plus. I) 6-AHA, ADP, CoASH plus. J) 5-AVA, ADP, CoASH plus. K) GABA, ADP, CoASH plus. [0029] Figure 6H. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation. GABA, ATP, CoASH plus. [0030] Figure 6I. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation.6-AHA, ADP, CoASH plus. [0031] Figure 6J. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation.5-AVA, ADP, CoASH plus. [0032] Figure 6K. Nucleotide and lactam product analysis of ORF27 catalyzed lactam formation. GABA, ADP, CoASH plus. [0033] Figure 7A. ORF27 catalyzed butyrolactam formation. A reaction mixture containing 57 µM of ORF27, 5 mM ω-amino fatty acids substrates, 1 mM ATP or ADP, 0.5mM CoASH and 1 mM Mg(Cl) 2 in 100 mM HEPES (pH=8) was incubated at 25°C for 19h and quenched with methanol. The quenched reaction was filtered to get rid of protein aggregates before loading onto LC-MS. [0034] Figure 7B. ORF27 catalyzed valerolactam formation. A reaction mixture containing 57 µM of ORF27, 5 mM ω-amino fatty acids substrates, 1 mM ATP or ADP, 0.5mM CoASH and 1 mM Mg(Cl) 2 in 100 mM HEPES (pH=8) was incubated at 25°C for 19h and quenched with methanol. The quenched reaction was filtered to get rid of protein aggregates before loading onto LC-MS. [0035] Figure 7C. ORF27 catalyzed caprolactam formation. A reaction mixture containing 57 µM of ORF27, 5 mM ω-amino fatty acids substrates, 1 mM ATP or ADP, 0.5mM CoASH and 1 mM Mg(Cl) 2 in 100 mM HEPES (pH=8) was incubated at 25°C for 19h and quenched with methanol. The quenched reaction was filtered to get rid of protein aggregates before loading onto LC-MS. [0036] Figure 8. pH profile of ORF27 catalyzed butyrolactam formation. A reaction mixture containing 5 µM ORF27, 1 mM GABA, 1 mM ATP, 1mM CoASH and 1 mM Mg(Cl) 2 in 100 mM HEPES (pH 7.5) was incubated at 25°C for 30 min. The reaction was quenched by equal volume of methanol, and the filtered solution was analyzed by analytical method described above. [0037] Figure 9A. Production of industrial lactam via biosynthesis. LC-MS analysis of valerolactam production from recombinant E. coli expressing ORF27 with 1mM 5-AVA feeding. [0038] Figure 9B. Production of industrial lactam via biosynthesis. LC-MS analysis of caprolactam production from recombinant E. coli expressing ORF27 with 1mM 6-AHA feeding. [0039] Figure 10. Sequence alignment of different maltose-binding periplasmic proteins (MBPs) from Pyrococcus furiosus, Pyrobaculum aerophilum, and E. coli (SEQ ID NOs:2-4, respectively). Amino acid sequences are aligned using ClustalW2 Multiple sequence alignment. Conserved amino acid residues are indicated by“*”,“:”, or“.” [0040] Figure 11. The biosynthetic pathway from α-ketoglutarate to 6-ACA, AA, and/or AAP, and the respective enzymes which catalyzes each step. DETAILED DESCRIPTION OF THE INVENTION [0041] Before the invention is described in detail, it is to be understood that, unless otherwise indicated, this invention is not limited to particular sequences, expression vectors, enzymes, host microorganisms, or processes, as such may vary. It is also to be understood that the terminology used herein is for purposes of describing particular embodiments only, and is not intended to be limiting. [0042] In order to more fully appreciate the invention the following definitions are provided. [0043] As used in the specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Thus, for example, reference to an "expression vector" includes a single expression vector as well as a plurality of expression vectors, either the same (e.g., the same operon) or different; reference to "cell" includes a single cell as well as a plurality of cells; and the like. [0044] The term“about” as used herein when referring to a numerical value means a range of values from one or two less or greater than the value, or a range of values from less than 10% (or at least one) of the value to greater than 10% (or at least one) of the value. [0045] The terms "optional" or "optionally" as used herein mean that the subsequently described feature or structure may or may not be present, or that the subsequently described event or circumstance may or may not occur, and that the description includes instances where a particular feature or structure is present and instances where the feature or structure is absent, or instances where the event or circumstance occurs and instances where it does not. [0046] The term“enzymatically active fragment” is any enzyme that has an amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95% or 99% identical to the amino acid sequence of the indicated amino acid sequence. The enzymatically active fragment retains amino acids residues that are recognized as conserved for the enzyme. The enzymatically active fragment may have non-conserved amino acid residues replaced or found to be of a different amino acid, or amino acid(s) inserted or deleted, but which does not affect or has insignificant effect on the enzymatic activity of the enzymatically active fragment. The enzymatically active fragment may be found in nature or be an engineered mutant thereof. [0047] The terms“host cell” and "host microorganism" are used interchangeably herein to refer to a living biological cell that can be transformed via insertion of an expression vector. Thus, a host organism or cell as described herein may be a prokaryotic organism (e.g., an organism of the kingdom Eubacteria) or a eukaryotic cell. As will be appreciated by one of ordinary skill in the art, a prokaryotic cell lacks a membrane-bound nucleus, while a eukaryotic cell has a membrane-bound nucleus. [0048] The term "heterologous DNA" as used herein refers to a polymer of nucleic acids wherein at least one of the following is true: (a) the sequence of nucleic acids is foreign to (i.e., not naturally found in) a given host microorganism; (b) the sequence may be naturally found in a given host microorganism, but in an unnatural (e.g., greater than expected) amount; or (c) the sequence of nucleic acids comprises two or more subsequences that are not found in the same relationship to each other in nature. For example, regarding instance (c), a heterologous nucleic acid sequence that is recombinantly produced will have two or more sequences from unrelated genes arranged to make a new functional nucleic acid.

Specifically, the present invention describes the introduction of an expression vector into a host microorganism, wherein the expression vector contains a nucleic acid sequence coding for an enzyme that is not normally found in a host microorganism. With reference to the host microorganism's genome, then, the nucleic acid sequence that codes for the enzyme is heterologous. [0049] The terms "expression vector" or "vector" refer to a compound and/or composition that transduces, transforms, or infects a host microorganism, thereby causing the cell to express nucleic acids and/or proteins other than those native to the cell, or in a manner not native to the cell. An "expression vector" contains a sequence of nucleic acids (ordinarily RNA or DNA) to be expressed by the host microorganism. Optionally, the expression vector also comprises materials to aid in achieving entry of the nucleic acid into the host microorganism, such as a virus, liposome, protein coating, or the like. The expression vectors contemplated for use in the present invention include those into which a nucleic acid sequence can be inserted, along with any preferred or required operational elements. Further, the expression vector must be one that can be transferred into a host microorganism and replicated therein. Preferred expression vectors are plasmids, particularly those with restriction sites that have been well documented and that contain the operational elements preferred or required for transcription of the nucleic acid sequence. Such plasmids, as well as other expression vectors, are well known to those of ordinary skill in the art. [0050] The term "transduce" as used herein refers to the transfer of a sequence of nucleic acids into a host microorganism or cell. Only when the sequence of nucleic acids becomes stably replicated by the cell does the host microorganism or cell become "transformed." As will be appreciated by those of ordinary skill in the art, "transformation" may take place either by incorporation of the sequence of nucleic acids into the cellular genome, i.e., chromosomal integration, or by extrachromosomal integration. In contrast, an expression vector, e.g., a virus, is "infective" when it transduces a host microorganism, replicates, and (without the benefit of any complementary virus or vector) spreads progeny expression vectors, e.g., viruses, of the same type as the original transducing expression vector to other microorganisms, wherein the progeny expression vectors possess the same ability to reproduce. [0051] The terms "isolated" or "biologically pure" refer to material that is substantially or essentially free of components that normally accompany it in its native state. [0052] As used herein, the terms "nucleic acid sequence," "sequence of nucleic acids," and variations thereof shall be generic to polydeoxyribonucleotides (containing 2-deoxy- D-ribose), to polyribonucleotides (containing D-ribose), to any other type of polynucleotide that is an N-glycoside of a purine or pyrimidine base, and to other polymers containing nonnucleotidic backbones, provided that the polymers contain nucleobases in a configuration that allows for base pairing and base stacking, as found in DNA and RNA. Thus, these terms include known types of nucleic acid sequence modifications, for example, substitution of one or more of the naturally occurring nucleotides with an analog; intemucleotide modifications, such as, for example, those with uncharged linkages (e.g., methyl phosphonates,

phosphotriesters, phosphoramidates, carbamates, etc.), with negatively charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), and with positively charged linkages (e.g., arninoalklyphosphoramidates, aminoalkylphosphotriesters); those containing pendant moieties, such as, for example, proteins (including nucleases, toxins, antibodies, signal peptides, poly-L-lysine, etc.); those with intercalators (e.g., acridine, psoralen, etc.); and those containing chelators (e.g., metals, radioactive metals, boron, oxidative metals, etc.). As used herein, the symbols for nucleotides and polynucleotides are those recommended by the IUPAC-IUB Commission of Biochemical Nomenclature (Biochem.9:4022, 1970). [0053] The term "operably linked" refers to a functional linkage between a nucleic acid expression control sequence (such as a promoter) and a second nucleic acid sequence, wherein the expression control sequence directs transcription of the nucleic acid

corresponding to the second sequence. [0054] The amino acid sequence of Streptomyces aizunensis ORF27 is: 1 MRPMTAKIFA VDSVRPIDEF EQDALRVADV IRERGVCLGD RVMLKAGNSA SYVCVLYALM 61 HIGASIVLVD QQEHKEETRR IALRTGVKVT FVDDETPIDQ DADPIHLYEL MVATQNRPPM 121 DSALSFDAWG ELSDGLIMWT SGSTGSPKGV VKSGGKFLAN LRRNAHQVGH RPDDVLMPLL 181 PFAHQYGLSM VLIAWLTRCS LVIAPYRRLD RALRMARDSG TTVIDATPSS YRSILGLVTR 241 KPALRAHLAG TRMFCVGAAP LDAPLVESYV QEFGLPLLDS YGSTELNNIA FATLDNPVSC 301 GRAMEGIGLR IVDEDGREVA AGQPGEIEVD TPDALEGQIA EDGSIIPAPT GWQRTGDLGH 361 LDADGNLYVL GRKFAVHRMG YTLYPELIER KVAAEGCPTR IVPLPDELRG SQLVFFVEDD 421 EQRDAGYWRE RLCGLLPAFE QPNKVVVLEQ FPLNRNGKPD KKELTRMAAE

(SEQ ID NO:1) [0055] The enzymatically active fragment is any polypeptide capable of catalyzing reaction (1). The enzymatically active fragment is an enzyme that has an amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95% or 99% identical to the amino acid sequence of SEQ ID NO:1. The enzymatically active fragment retains amino acids residues that are recognized as conserved for the enzyme. The enzymatically active fragment may have non- conserved amino acid residues replaced or found to be of a different amino acid, or amino acid(s) inserted or deleted, but which does not affect or has insignificant effect on the enzymatic activity of the enzymatically active fragment. The enzymatically active fragment may be found in nature or be an engineered mutant thereof. The enzymatically active fragment can comprise one or more of the following conserved amino acid sites/residues: acyl-activating enzyme (AAE) consensus motif (residues 137, 140-145, 147-148), acyl- activating enzyme (AAE) consensus motif (residues 140, 257-258, 279-284, 357, 369, 372, 382, 458), AMP binding site (residues 140, 180-181, 227, 229-230, 233, 257-258, 279-284, 357, 369, 372, 379-382, 439), and CoA binding site (residues 180, 229-230, 233, 257, 379- 381, 433, 439). [0056] Suitable saccharide binding protein include any polypeptide when linked to ORF27 stabilizes ORF27, and having an amino acid sequence that is at least 70%, 75%, 80%, 85%, 90%, 95% or 99% identical to the amino acid sequence of SEQ ID NO:2, 3, or 4. The polypeptide when linked to ORF27 stabilizes ORF2 retains amino acids residues that are recognized as conserved for the enzyme, such as one or more conserved amino acid residues indicated in Figure 10. In some embodiments, the polypeptide comprises all of the conserved amino acid residues indicated by“*”, indicated by“*” and“:”, or indicated by“*”,“:”, and “.” (as shown in Figure 10); wherein for the conserved amino acid residues indicated by“:” and“.” the amino acid residue can be the corresponding amino acid residue for any one of SEQ ID NOs: 2-4. The polypeptide when linked to ORF27 stabilizes ORF2 may have non- conserved amino acid residues replaced or found to be of a different amino acid, or amino acid(s) inserted or deleted, but which does not affect or has insignificant effect on the enzymatic activity of the enzymatically active fragment. The polypeptide when linked to ORF27 stabilizes ORF2 may be found in nature or be an engineered mutant thereof. [0057] The amino acid sequence of a fusion MBP-ORF27 (the linker peptide is underlined and in bold) is the following: MGSSHHHHHH SSGKIEEGKL VIWINGDKGY NGLAEVGKKF EKDTGIKVTV EHPDKLEEKF PQVAATGDGP DIIFWAHDRF GGYAQSGLLA EITPDKAFQD KLYPFTWDAV RYNGKLIAYP IAVEALSLIY NKDLLPNPPK TWEEIPALDK ELKAKGKSAL MFNLQEPYFT WPLIAADGGY AFKYENGKYD IKDVGVDNAG AKAGLTFLVD LIKNKHMNAD TDYSIAEAAF NKGETAMTIN GPWAWSNIDT

SKVNYGVTVL PTFKGQPSKP FVGVLSAGIN AASPNKELAK EFLENYLLTD EGLEAVNKDK PLGAVALKSY EEELAKDPRI AATMENAQKG EIMPNIPQMS AFWYAVRTAV INAASGRQTV DEALKDAQTS SGLVPRGSHM RPMTAKIFAV DSVRPIDEFE QDALRVADVI RERGVCLGDR VMLKAGNSAS YVCVLYALMH IGASIVLVDQ QEHKEETRRI ALRTGVKVTF VDDETPIDQD ADPIHLYELM VATQNRPPMD SALSFDAWGE LSDGLIMWTS GSTGSPKGVV KSGGKFLANL RRNAHQVGHR PDDVLMPLLP FAHQYGLSMV LIAWLTRCSL VIAPYRRLDR ALRMARDSGT TVIDATPSSY RSILGLVTRK PALRAHLAGT RMFCVGAAPL DAPLVESYVQ EFGLPLLDSY GSTELNNIAF ATLDNPVSCG RAMEGIGLRI VDEDGREVAA GQPGEIEVDT PDALEGQIAE DGSIIPAPTG WQRTGDLGHL DADGNLYVLG RKFAVHRMGY TLYPELIERK VAAEGCPTRI VPLPDELRGS QLVFFVEDDE QRDAGYWRER LCGLLPAFEQ PNKVVVLEQF PLNRNGKPDK KELTRMAAE* (SEQ ID NO:13) [0058] The nucleotide sequence of gBlock davB is the following: tataggggaattgtgagcggataacaatttcagaattcaaaagatcttttaagaaggaga ta tacatatgaacaagaagaaccgccaccccgccgacggcaagaagccgatcaccattttcg gc ccggacttcccttttgctttcgacgactggctggaacacccggcaggcctgggcagcatt cc ggctgagcgccatggggaagaggtggccattgtcggtgccggtatcgccggcctggtagc gg cctacgagctgatgaagctgggcctcaagccggtggtgtacgaggcttccaagctgggcg gc cggctgcgctcgcaagccttcaatggcactgacgggatcgttgccgagctgggtggcatg cg cttcccggtgtcgtccaccgccttctaccactacgtcgacaagctgggcctggagaccaa gc ccttccccaacccgctgaccccggcttcgggcagcacggtgatcgacctggaaggccaga cc tactacgccgagaagcccaccgacctgccgcaactgtttcatgaggtagccgacgcttgg gc cgatgctctggagagcggtgcgcagttcgccgatatccagcaggccatccgcgaccgtga tg taccgcgcctgaaggaactctggaacaagctggtgccactgtgggacgaccgcaccttct ac gacttcgtcgccacctcgcgctcttttgccaagctgagcttccagcaccgcgaagtgttc gg ccaggtcggtttcggcaccggcggttgggactcggacttccccaactcgatgctggaaat ct tccgcgtggtgatgaccaactgcgacgaccaccagcacctggtggtcgggggcgtggaac aa gtgccacaaggcatctggcgcgacgtaccggaacgctgcgtgcattggccagagggcacc ag cctgagcacgctgcatggcggcgcaccgcgtaccggggtcaagcgcattgcccgcgccgc cg atggccgcctggcggtcaccgacaactggggcgatacccgccactacagcgcagtactcg cc acctgccagacctggttgctgaccacccagatcgactgcgaggaatcgctgttctcgcaa aa gatgtggatggccctggaccgtacccgctacatgcagtcgtcgaaaaccttcgtcatggt cg accgcccgttctggaaggacaaggacccggaaaccggccgtgacctgctgagcatgaccc tc accgaccgcctcacccgcggcacttacctgttcgacaacggcaacgacaagcccggggtg at ctgcctgtcgtactcgtggatgagcgacgcgctgaagatgctgccgcacccggtggaaaa gc gcgtacaactggccctggatgcgctgaagaagatctacccgaagaccgatatcgccgggc ac atcatcggcgacccgatcacggtttcctgggaggccgacccgtacttcctcggcgccttc aa aggcgcgcttccgggccattaccgctacaaccagcgcatgtacgcgcacttcatgcagca gg acatgccggcggagcagcgcggtatcttcattgccggtgacgacgtgtcatggacccccg cc tgggttgaaggcgcggtgcagacgtcgctgaatgcggtgtggggtatcatgaaccacttt gg tggccacacccaccccgacaaccccggcccgggcgatgtgttcaacgaaatcggcccgat cg ccctggcggattgaggatcttttaagaaggagatatacatatgcgcatcgctct (SEA ID NO:5) [0059] The nucleotide sequence of gBlock davA is the following: Cccgatcgccctggcggattgaggatcttttaagaaggagatatacatatgcgcatcgct ct gtaccagggcgcacccaagccactggatgtgcccggcaacctgcaacggctgcgccacca gg cgcagttggcagccgaccgcggcgcacagttgctggtgtgcccggagatgttcctgtccg gc tacaacatcggcctggcccaggtcgagcgcctggccgaggccgccgatggcccggcagcc at gacggtggtggagattgcccaggcgcaccgtatcgccattgtctatggctacccggagcg cg gcgatgacggggcgatctacaacagcgtgcagctgatcgatgcgcatggccgcagcctga gc aattaccgcaagacccacctgttcggtgaactggaccgctcgatgttcagccctggtgcg ga ccacttcccggtggtggaactggaaggctggaaggttggcctgctgatctgctacgacat cg agttcccggagaacgcccgacgcctggcgctggacggcgccgagctgatcctggtgccga cg gcgaacatgacgccgtacgactttacctgccaggtgaccgtgagggcacgggcgcaggaa aa ccagtgctacctggtatatgccaactactgcggcgcggaagacgagatcgagtattgcgg gc agagcagcatcatcggcccggatggcagcttgctggccatggccgggcgggatgagtgcc ag ttgttggcagagctcgagcatgagcgggtggtgcaggggcgcagggcgtttccctacctg ac cgatttgcgccaggagctgcacctgcgtaaaggctgaggatccaaactcgagtaaggatc tc caggcatcaaataaaacgaaaggctcagtc (SEQ ID NO:6) [0060] The nucleotide sequence of plasmid pBbA7a-DavB-DavA is the following: gacgtcctcactgcccgctttccagtcgggaaacctgtcgtgccagctgcattaatgaat cggccaacgcgcggggagaggcg gtttgcgtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctga ttgcccttcaccgcctggccctgaga gagttgcagcaagcggtccacgctggtttgccccagcaggcgaaaatcctgtttgatggt ggttaacggcgggatataacatga gctgtcttcggtatcgtcgtatcccactaccgagatgtccgcaccaacgcgcagcccgga ctcggtaatggcgcgcattgcgcc cagcgccatctgatcgttggcaaccagcatcgcagtgggaacgatgccctcattcagcat ttgcatggtttgttgaaaaccggac atggcactccagtcgccttcccgttccgctatcggctgaatttgattgcgagtgagatat ttatgccagccagccagacgcagac gcgccgagacagaacttaatgggcccgctaacagcgcgatttgctggtgacccaatgcga ccagatgctccacgcccagtcgc gtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacatcaaga aataacgccggaacattagtgcag gcagcttccacagcaatggcatcctggtcatccagcggatagttaatgatcagcccactg acgcgttgcgcgagaagattgtgc accgccgctttacaggcttcgacgccgcttcgttctaccatcgacaccaccacgctggca cccagttgatcggcgcgagatttaa tcgccgcgacaatttgcgacggcgcgtgcagggccagactggaggtggcaacgccaatca gcaacgactgtttgcccgccagt tgttgtgccacgcggttgggaatgtaattcagctccgccatcgccgcttccactttttcc cgcgttttcgcagaaacgtggctggcc tggttcaccacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtat aacgttactggtttcacattcacca ccctgaattgactctcttccgggcgctatcatgccataccgcgaaaggttttgcgccatt cgatggtgtccgggatctcgacgctc tcccttatgcgactcctgcattaggaagcagcccagtagtaggttgaggccgttgagcac cgccgccgcaaggaatggtgcatg caaggagatggcgcccaacagtcccccggccacggggcctgccaccatacccacgccgaa acaagcgctcatgagcccgaa gtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgccagcaaccgcacc tgtggcgccggtgatgccggcca cgatgcgtccggcgtagaggatcgagatcgatctcgatcccgcgaaattaatacgactca ctataggggaattgtgagcggata acaatttcagaattcaaaagatcttttaagaaggagatatacatatgaacaagaagaacc gccaccccgccgacggcaagaa gccgatcaccattttcggcccggacttcccttttgctttcgacgactggctggaacaccc ggcaggcctgggcagcattccggct gagcgccatggggaagaggtggccattgtcggtgccggtatcgccggcctggtagcggcc tacgagctgatgaagctgggcct caagccggtggtgtacgaggcttccaagctgggcggccggctgcgctcgcaagccttcaa tggcactgacgggatcgttgccg agctgggtggcatgcgcttcccggtgtcgtccaccgccttctaccactacgtcgacaagc tgggcctggagaccaagcccttccc caacccgctgaccccggcttcgggcagcacggtgatcgacctggaaggccagacctacta cgccgagaagcccaccgacctg ccgcaactgtttcatgaggtagccgacgcttgggccgatgctctggagagcggtgcgcag ttcgccgatatccagcaggccatc cgcgaccgtgatgtaccgcgcctgaaggaactctggaacaagctggtgccactgtgggac gaccgcaccttctacgacttcgtc gccacctcgcgctcttttgccaagctgagcttccagcaccgcgaagtgttcggccaggtc ggtttcggcaccggcggttgggact cggacttccccaactcgatgctggaaatcttccgcgtggtgatgaccaactgcgacgacc accagcacctggtggtcgggggc gtggaacaagtgccacaaggcatctggcgcgacgtaccggaacgctgcgtgcattggcca gagggcaccagcctgagcacgc tgcatggcggcgcaccgcgtaccggggtcaagcgcattgcccgcgccgccgatggccgcc tggcggtcaccgacaactgggg cgatacccgccactacagcgcagtactcgccacctgccagacctggttgctgaccaccca gatcgactgcgaggaatcgctgtt ctcgcaaaagatgtggatggccctggaccgtacccgctacatgcagtcgtcgaaaacctt cgtcatggtcgaccgcccgttctg gaaggacaaggacccggaaaccggccgtgacctgctgagcatgaccctcaccgaccgcct cacccgcggcacttacctgttcg acaacggcaacgacaagcccggggtgatctgcctgtcgtactcgtggatgagcgacgcgc tgaagatgctgccgcacccggtg gaaaagcgcgtacaactggccctggatgcgctgaagaagatctacccgaagaccgatatc gccgggcacatcatcggcgacc cgatcacggtttcctgggaggccgacccgtacttcctcggcgccttcaaaggcgcgcttc cgggccattaccgctacaaccagc gcatgtacgcgcacttcatgcagcaggacatgccggcggagcagcgcggtatcttcattg ccggtgacgacgtgtcatggaccc ccgcctgggttgaaggcgcggtgcagacgtcgctgaatgcggtgtggggtatcatgaacc actttggtggccacacccaccccg acaaccccggcccgggcgatgtgttcaacgaaatcggcccgatcgccctggcggattgag gatcttttaagaaggagatatac atatgcgcatcgctctgtaccagggcgcacccaagccactggatgtgcccggcaacctgc aacggctgcgccaccaggcgcag ttggcagccgaccgcggcgcacagttgctggtgtgcccggagatgttcctgtccggctac aacatcggcctggcccaggtcgag cgcctggccgaggccgccgatggcccggcagccatgacggtggtggagattgcccaggcg caccgtatcgccattgtctatgg ctacccggagcgcggcgatgacggggcgatctacaacagcgtgcagctgatcgatgcgca tggccgcagcctgagcaattac cgcaagacccacctgttcggtgaactggaccgctcgatgttcagccctggtgcggaccac ttcccggtggtggaactggaaggc tggaaggttggcctgctgatctgctacgacatcgagttcccggagaacgcccgacgcctg gcgctggacggcgccgagctgat cctggtgccgacggcgaacatgacgccgtacgactttacctgccaggtgaccgtgagggc acgggcgcaggaaaaccagtgc tacctggtatatgccaactactgcggcgcggaagacgagatcgagtattgcgggcagagc agcatcatcggcccggatggcag cttgctggccatggccgggcgggatgagtgccagttgttggcagagctcgagcatgagcg ggtggtgcaggggcgcagggcg tttccctacctgaccgatttgcgccaggagctgcacctgcgtaaaggctgaggatccaaa ctcgagtaaggatctccaggcatc aaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcgg tgaacgctctctactagagtcacact ggctcaccttcgggtgggcctttctgcgtttatacctagggatatattccgcttcctcgc tcactgactcgctacgctcggtcgttcg actgcggcgagcggaaatggcttacgaacggggcggagatttcctggaagatgccaggaa gatacttaacagggaagtgaga gggccgcggcaaagccgtttttccataggctccgcccccctgacaagcatcacgaaatct gacgctcaaatcagtggtggcga aacccgacaggactataaagataccaggcgtttccccctggcggctccctcgtgcgctct cctgttcctgcctttcggtttaccgg tgtcattccgctgttatggccgcgtttgtctcattccacgcctgacactcagttccgggt aggcagttcgctccaagctggactgta tgcacgaaccccccgttcagtccgaccgctgcgccttatccggtaactatcgtcttgagt ccaacccggaaagacatgcaaaag caccactggcagcagccactggtaattgatttagaggagttagtcttgaagtcatgcgcc ggttaaggctaaactgaaaggaca agttttggtgactgcgctcctccaagccagttacctcggttcaaagagttggtagctcag agaaccttcgaaaaaccgccctgca aggcggttttttcgttttcagagcaagagattacgcgcagaccaaaacgatctcaagaag atcatcttattaatcagataaaata tttctagatttcagtgcaatttatctcttcaaatgtagcacctgaagtcagccccatacg atataagttgttactagtgcttggattc tcaccaataaaaaacgcccggcggcaaccgagcgttctgaacaaatccagatggagttct gaggtcattactggatctatcaac aggagtccaagcgagctcgtaaacttggtctgacagttaccaatgcttaatcagtgaggc acctatctcagcgatctgtctatttc gttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttac catctggccccagtgctgcaatgat accgcgagacccacgctcaccggctccagatttatcagcaataaaccagccagccggaag ggccgagcgcagaagtggtcct gcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagt tcgccagttaatagtttgcgcaacgtt gttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagc tccggttcccaacgatcaaggcgagt tacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgt cagaagtaagttggccgcagtgttat cactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgct tttctgtgactggtgagtactcaacca agtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacggg ataataccgcgccacatagcagaa ctttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttac cgctgttgagatccagttcgatgtaa cccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtga gcaaaaacaggaaggcaaaatgccg caaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaat attattgaagcatttatcagggttat tgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccg cgcacatttccccgaaaagtgccac ct (SEQ ID NO:7) [0061] The nucleotide sequence of plasmid pET28a-MBP-ORF27 is the following: tggcgaatgggacgcgccctgtagcggcgcattaagcgcggcgggtgtggtggttacgcg ca gcgtgaccgctacacttgccagcgccctagcgcccgctcctttcgctttcttcccttcct tt ctcgccacgttcgccggctttccccgtcaagctctaaatcgggggctccctttagggttc cg atttagtgctttacggcacctcgaccccaaaaaacttgattagggtgatggttcacgtag tg ggccatcgccctgatagacggtttttcgccctttgacgttggagtccacgttctttaata gt ggactcttgttccaaactggaacaacactcaaccctatctcggtctattcttttgattta ta agggattttgccgatttcggcctattggttaaaaaatgagctgatttaacaaaaatttaa cg cgaattttaacaaaatattaacgtttacaatttcaggtggcacttttcggggaaatgtgc gc ggaacccctatttgtttatttttctaaatacattcaaatatgtatccgctcatgaattaa tt cttagaaaaactcatcgagcatcaaatgaaactgcaatttattcatatcaggattatcaa ta ccatatttttgaaaaagccgtttctgtaatgaaggagaaaactcaccgaggcagttccat ag gatggcaagatcctggtatcggtctgcgattccgactcgtccaacatcaatacaacctat ta atttcccctcgtcaaaaataaggttatcaagtgagaaatcaccatgagtgacgactgaat cc ggtgagaatggcaaaagtttatgcatttctttccagacttgttcaacaggccagccatta cg ctcgtcatcaaaatcactcgcatcaaccaaaccgttattcattcgtgattgcgcctgagc ga gacgaaatacgcgatcgctgttaaaaggacaattacaaacaggaatcgaatgcaaccggc gc aggaacactgccagcgcatcaacaatattttcacctgaatcaggatattcttctaatacc tg gaatgctgttttcccggggatcgcagtggtgagtaaccatgcatcatcaggagtacggat aa aatgcttgatggtcggaagaggcataaattccgtcagccagtttagtctgaccatctcat ct gtaacatcattggcaacgctacctttgccatgtttcagaaacaactctggcgcatcgggc tt cccatacaatcgatagattgtcgcacctgattgcccgacattatcgcgagcccatttata cc catataaatcagcatccatgttggaatttaatcgcggcctagagcaagacgtttcccgtt ga atatggctcataacaccccttgtattactgtttatgtaagcagacagttttattgttcat ga ccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatca aa ggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaacca cc gctaccagcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaac tg gcttcagcagagcgcagataccaaatactgtccttctagtgtagccgtagttaggccacc ac ttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggct gc tgccagtggcgataagtcgtgtcttaccgggttggactcaagacgatagttaccggataa gg cgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacct ac accgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggaga aa ggcggacaggtatccggtaagcggcagggtcggaacaggagagcgcacgagggagcttcc ag ggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtc ga tttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggccttt tt acggttcctggccttttgctggccttttgctcacatgttctttcctgcgttatcccctga tt ctgtggataaccgtattaccgcctttgagtgagctgataccgctcgccgcagccgaacga cc gagcgcagcgagtcagtgagcgaggaagcggaagagcgcctgatgcggtattttctcctt ac gcatctgtgcggtatttcacaccgcatatatggtgcactctcagtacaatctgctctgat gc cgcatagttaagccagtatacactccgctatcgctacgtgactgggtcatggctgcgccc cg acacccgccaacacccgctgacgcgccctgacgggcttgtctgctcccggcatccgctta ca gacaagctgtgaccgtctccgggagctgcatgtgtcagaggttttcaccgtcatcaccga aa cgcgcgaggcagctgcggtaaagctcatcagcgtggtcgtgaagcgattcacagatgtct gc ctgttcatccgcgtccagctcgttgagtttctccagaagcgttaatgtctggcttctgat aa agcgggccatgttaagggcggttttttcctgtttggtcactgatgcctccgtgtaagggg ga tttctgttcatgggggtaatgataccgatgaaacgagagaggatgctcacgatacgggtt ac tgatgatgaacatgcccggttactggaacgttgtgagggtaaacaactggcggtatggat gc ggcgggaccagagaaaaatcactcagggtcaatgccagcgcttcgttaatacagatgtag gt gttccacagggtagccagcagcatcctgcgatgcagatccggaacataatggtgcagggc gc tgacttccgcgtttccagactttacgaaacacggaaaccgaagaccattcatgttgttgc tc aggtcgcagacgttttgcagcagcagtcgcttcacgttcgctcgcgtatcggtgattcat tc tgctaaccagtaaggcaaccccgccagcctagccgggtcctcaacgacaggagcacgatc at gcgcacccgtggggccgccatgccggcgataatggcctgcttctcgccgaaacgtttggt gg cgggaccagtgacgaaggcttgagcgagggcgtgcaagattccgaataccgcaagcgaca gg ccgatcatcgtcgcgctccagcgaaagcggtcctcgccgaaaatgacccagagcgctgcc gg cacctgtcctacgagttgcatgataaagaagacagtcataagtgcggcgacgatagtcat gc cccgcgcccaccggaaggagctgactgggttgaaggctctcaagggcatcggtcgagatc cc ggtgcctaatgagtgagctaacttacattaattgcgttgcgctcactgcccgctttccag tc gggaaacctgtcgtgccagctgcattaatgaatcggccaacgcgcggggagaggcggttt gc gtattgggcgccagggtggtttttcttttcaccagtgagacgggcaacagctgattgccc tt caccgcctggccctgagagagttgcagcaagcggtccacgctggtttgccccagcaggcg aa aatcctgtttgatggtggttaacggcgggatataacatgagctgtcttcggtatcgtcgt at cccactaccgagatatccgcaccaacgcgcagcccggactcggtaatggcgcgcattgcg cc cagcgccatctgatcgttggcaaccagcatcgcagtgggaacgatgccctcattcagcat tt gcatggtttgttgaaaaccggacatggcactccagtcgccttcccgttccgctatcggct ga atttgattgcgagtgagatatttatgccagccagccagacgcagacgcgccgagacagaa ct taatgggcccgctaacagcgcgatttgctggtgacccaatgcgaccagatgctccacgcc ca gtcgcgtaccgtcttcatgggagaaaataatactgttgatgggtgtctggtcagagacat ca agaaataacgccggaacattagtgcaggcagcttccacagcaatggcatcctggtcatcc ag cggatagttaatgatcagcccactgacgcgttgcgcgagaagattgtgcaccgccgcttt ac aggcttcgacgccgcttcgttctaccatcgacaccaccacgctggcacccagttgatcgg cg cgagatttaatcgccgcgacaatttgcgacggcgcgtgcagggccagactggaggtggca ac gccaatcagcaacgactgtttgcccgccagttgttgtgccacgcggttgggaatgtaatt ca gctccgccatcgccgcttccactttttcccgcgttttcgcagaaacgtggctggcctggt tc accacgcgggaaacggtctgataagagacaccggcatactctgcgacatcgtataacgtt ac tggtttcacattcaccaccctgaattgactctcttccgggcgctatcatgccataccgcg aa aggttttgcgccattcgatggtgtccgggatctcgacgctctcccttatgcgactcctgc at taggaagcagcccagtagtaggttgaggccgttgagcaccgccgccgcaaggaatggtgc at gcaaggagatggcgcccaacagtcccccggccacggggcctgccaccatacccacgccga aa caagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgata ta ggcgccagcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagag ga tcgagatctcgatcccgcgaaattaatacgactcactataggggaattgtgagcggataa ca attcccctctagaaataattttgtttaactttaagaaggagatataccatgggcagcagc ca tcatcatcatcatcacagcagcggcaaaatcgaagaaggtaaactggtaatctggattaa cg gcgataaaggctataacggtctcgctgaagtcggtaagaaattcgagaaagataccggaa tt aaagtcaccgttgagcatccggataaactggaagagaaattcccacaggttgcggcaact gg cgatggccctgacattatcttctgggcacacgaccgctttggtggctacgctcaatctgg cc tgttggctgaaatcaccccggacaaagcgttccaggacaagctgtatccgtttacctggg at gccgtacgttacaacggcaagctgattgcttacccgatcgctgttgaagcgttatcgctg at ttataacaaagatctgctgccgaacccgccaaaaacctgggaagagatcccggcgctgga ta aagaactgaaagcgaaaggtaagagcgcgctgatgttcaacctgcaagaaccgtacttca cc tggccgctgattgctgctgacgggggttatgcgttcaagtatgaaaacggcaagtacgac at taaagacgtgggcgtggataacgctggcgcgaaagcgggtctgaccttcctggttgacct ga ttaaaaacaaacacatgaatgcagacaccgattactccatcgcagaagctgcctttaata aa ggcgaaacagcgatgaccatcaacggcccgtgggcatggtccaacatcgacaccagcaaa gt gaattatggtgtaacggtactgccgaccttcaagggtcaaccatccaaaccgttcgttgg cg tgctgagcgcaggtattaacgccgccagtccgaacaaagagctggcaaaagagttcctcg aa aactatctgctgactgatgaaggtctggaagcggttaataaagacaaaccgctgggtgcc gt agcgctgaagtcttacgaggaagagttggcgaaagatccacgtattgccgccactatgga aa acgcccagaaaggtgaaatcatgccgaacatcccgcagatgtccgctttctggtatgccg tg cgtactgcggtgatcaacgccgccagcggtcgtcagactgtcgatgaagccctgaaagac gc gcagactagcagcggcctggtgccgcgcggcagcCATATGCGCCCAATGACCGCTAAAAT CT TCGCCGTCGACTCCGTCCGTCCGATCGACGAGTTTGAGCAGGACGCACTGCGCGTTGCGG AT GTGATTCGCGAACGTGGCGTGTGTCTGGGTGACCGTGTGATGTTGAAGGCGGGCAACAGC GC GTCGTACGTTTGCGTTTTGTATGCGCTGATGCACATCGGTGCGAGCATCGTTTTGGTCGA TC AGCAAGAGCATAAAGAGGAAACCCGTCGTATCGCGCTGCGTACCGGCGTAAAAGTCACGT TT GTGGATGATGAAACCCCGATTGATCAAGATGCGGACCCGATTCACCTGTACGAGCTGATG GT GGCTACCCAGAACCGTCCTCCGATGGACAGCGCACTGAGCTTCGACGCGTGGGGTGAACT GT CTGACGGTCTGATTATGTGGACGAGCGGCAGCACCGGTAGCCCGAAGGGTGTCGTGAAGA GC GGTGGTAAATTCCTGGCGAATCTGCGCCGTAACGCGCATCAAGTGGGTCATCGTCCGGAT GA CGTGCTGATGCCGCTGCTGCCGTTCGCGCACCAGTACGGTCTGTCTATGGTGCTGATTGC AT GGCTGACGCGCTGCTCCCTGGTTATTGCGCCATACCGCCGTCTGGATCGTGCTTTGCGTA TG GCCCGTGACAGCGGCACGACCGTTATCGATGCCACGCCGAGCAGCTATCGCAGCATCCTG GG CCTGGTCACGCGTAAACCGGCCCTGCGTGCACACCTGGCCGGCACCCGCATGTTCTGTGT GG GCGCAGCGCCGTTGGATGCGCCGCTGGTCGAAAGCTACGTTCAAGAGTTTGGTCTGCCGC TG TTGGACAGCTATGGTTCTACCGAGCTGAACAATATCGCTTTCGCGACCCTGGATAATCCG GT TTCCTGTGGTCGCGCAATGGAAGGTATCGGTCTGCGTATTGTTGACGAAGATGGTCGTGA AG TTGCGGCAGGCCAACCGGGCGAAATCGAGGTTGACACTCCGGATGCCCTGGAGGGTCAAA TC GCCGAGGATGGTAGCATTATTCCGGCACCGACCGGCTGGCAGCGTACGGGCGATCTGGGT CA CTTGGACGCCGACGGCAACCTGTATGTCCTGGGTCGTAAGTTTGCGGTCCACCGCATGGG TT ATACTTTGTACCCAGAGCTGATTGAGCGCAAAGTGGCCGCTGAGGGCTGCCCGACCCGCA TT GTTCCGCTGCCGGACGAGCTGCGTGGTAGCCAACTGGTCTTTTTCGTGGAAGATGATGAA CA GCGTGACGCAGGTTACTGGCGTGAACGTCTGTGCGGTTTGCTGCCGGCGTTCGAGCAGCC GA ACAAGGTGGTCGTTCTGGAGCAGTTTCCTCTGAATCGCAATGGCAAGCCGGACAAGAAAG AG CTGACCCGTATGGCGGCAGAATGATAAGGATCCgaattcgagctccgtcgacaagcttgc gg ccgcactcgagcaccaccaccaccaccactgagatccggctgctaacaaagcccgaaagg aa gctgagttggctgctgccaccgctgagcaataactagcataaccccttggggcctctaaa cg ggtcttgaggggttttttgctgaaaggaggaactatatccggat (SEQ ID NO:8) [0062] In some embodiments, the host cell is capable of synthesizing Compound 1 or uptaking Compound 1 from the environment or culture. In some embodiments, the host cell further comprises one or more enzymes of a pathway for synthesizing Compound 1 from a carbon source. In some embodiments, the pathway for synthesizing Compound 1 from a carbon source is native to the host cell. In some embodiments, the pathway for synthesizing Compound 1 from a carbon source is heterologous to the host cell. In some embodiments, the carbon source is a carbon source the host cell in the wild-type form is capable of uptaking. [0063] In some embodiments, the host cell comprises a first one or more nucleic acids encoding the 2-pyrrolidone synthase, or an enzymatically active fragment thereof, operably linked to a promoter capable of expressing the 2-pyrrolidone synthase, or an enzymatically active fragment thereof, in the host cell. In some embodiments, the host cell comprises a second one or more nucleic acids encoding one or more enzymes of a pathway for synthesizing Compound 1 from a carbon source, operably linked to a promoter capable of expressing the one or more enzymes of a pathway for synthesizing Compound 1 from a carbon source in the host cell. In some embodiments, the first and/or second nucleic acids are stably integrated into a chromosome of the host cell. In some embodiments, the first and/or second nucleic acids are capable of stable introduction into the host cell. In some embodiments, the first and/or second nucleic acids are vectors, or expression vectors. In some embodiments, the first and/or second nucleic acids are the same nucleic acid. In some embodiments, the first and/or second nucleic acids are separate nucleic acids. [0064] In some embodiments, the host cell lacks, or is disrupted for, an endogenous gene encoding betaine-CoA ligase. In some embodiments, the host cell lacks, or is disrupted for, an endogenous gene encoding a GABA transaminase, such as a gabT gene. In some embodiments, the host cell comprises an endogenous gene encoding a GadB, or the host cell expresses a heterologous GadB. In some embodiments, the host cell expresses a GadB mutant lacking amino acid residues H465 and T466, GadB_∆HT (13). [0065] In some embodiments, the host cell comprises endogenous or heterologous genes encoding a L-lysine monoxygenase, such as Pseudomonas putida davB gene, or

enzymatically active fragment thereof, and a 5-aminovaleramide amidohydrolase, such as Pseudomonas putida davA gene, or enzymatically active fragment thereof. [0066] The amino acid sequence of Pseudomonas putida DavA is: 10 20 30 40 50 MRIALYQGAP KPLDVPGNLQ RLRHQAQLAA ERGAQLLVCP EMFLTGYNIG

60 70 80 90 100 LAQVERLAEA ADGPAAMTVV EIAQAHRIAI VYGYPERGDD GAIYNSVQLI

110 120 130 140 150 DAHGRSLSNY RKTHLFGELD RSMFSPGADH FPVVELEGWK VGLLICYDIE

160 170 180 190 200 FPENARRLAL DGAELILVPT ANMTPYDFTC QVTVRARAQE NQCYLVYANY

210 220 230 240 250 CGAEDEIEYC GQSSIIGPDG SLLAMAGRDE CQLLAELEHE RVVQGRTAFP

260

YLTDLRQELH LRKG (SEQ ID NO:9) [0067] The amino acid sequence of Pseudomonas putida DavB is: 10 20 30 40 50 MNKKNRHPAD GKKPITIFGP DFPFAFDDWL EHPAGLGSIP AERHGEEVAI

60 70 80 90 100 VGAGIAGLVA AYELMKLGLK PVVYEASKLG GRLRSQAFNG TDGIVAELGG

110 120 130 140 150 MRFPVSSTAF YHYVDKLGLE TKPFPNPLTP ASGSTVIDLE GQTYYAEKPT

160 170 180 190 200 DLPQLFHEVA DAWADALESG AQFADIQQAI RDRDVPRLKE LWNKLVPLWD

210 220 230 240 250 DRTFYDFVAT SRSFAKLSFQ HREVFGQVGF GTGGWDSDFP NSMLEIFRVV

260 270 280 290 300 MTNCDDHQHL VVGGVEQVPQ GIWRHVPERC VHWPEGTSLS TLHGGAPRTG

310 320 330 340 350 VKRIARASDG RLAVTDNWGD TRHYSAVLAT CQTWLLTTQI DCEESLFSQK

360 370 380 390 400 MWMALDRTRY MQSSKTFVMV DRPFWKDKDP ETGRDLLSMT LTDRLTRGTY

410 420 430 440 450 LFDNGNDKPG VICLSYSWMS DALKMLPHPV EKRVQLALDA LKKIYPKTDI

460 470 480 490 500 AGHIIGDPIT VSWEADPYFL GAFKGALPGH YRYNQRMYAH FMQQDMPAEQ 510 520 530 540 550

RGIFIAGDDV SWTPAWVEGA VQTSLNAVWG IMNHFGGHTH PDNPGPGDVF

560

NEIGPIALAD (SEQ ID NO:10) [0068] In some embodiments, n is an integer from 1 to 20. In some embodiments, n is an integer from 1 to 10. In some embodiments, n is an integer from 1 to 9. In some

embodiments, n is an integer from 1 to 8. In some embodiments, n is an integer from 1 to 7. In some embodiments, n is an integer from 1 to 6. In some embodiments, n is an integer from 1 to 7. In some embodiments, n is an integer from 1 to 6. In some embodiments, n is an integer from 1 to 5. In some embodiments, n is an integer from 1 to 4. In some

embodiments, n is an integer from 1 to 3. When n is 1, compound 2 is butyrolactam (2- pyrrolidone). When n is 2, compound 2 is valerolactam (2-piperidinone). When n is 3, compound 2 is caprolactam. [0069] The host cell can be any eukaryotic cell, such as a yeast, or prokaryotic cell, such as a bacterium. In some embodiments, the host cell is yeast. Yeast host cells suitable for practice of the methods of the invention include, but are not limited to, Yarrowia, Candida,

Bebaromyces, Saccharomyces, Schizosaccharomyces and Pichia, including engineered strains provided by the invention. In one embodiment, Saccharomyces cerevisae is the host cell. In one embodiment, the yeast host cell is a species of Candida, including but not limited to C. tropicalis, C. maltosa, C. apicola, C. paratropicalis, C. albicans, C. cloacae, C.

guillermondii, C. intermedia, C. lipolytica, C. panapsilosis, C. zeylenoides, and C. tropicalis. In some embodiments the host cell is a bacterium, such as a Gram-positive or Gram-negative cell. Bacterial host cells suitable for practice of the methods of the invention include, but are not limited to, Escherichia, Bacillus, Salmonella, Klebsiella, Enterobacter, Pseudomonas, Streptomyces, Cynechocystis, Cynechococcus, Sinorhizobium, and Caulobacter, including engineered strains provided by the invention. In some embodiments, the 2-pyrrolidone synthase is heterologous to the host cell. [0070] In some embodiments, the host cell further comprises one or more, or all, of the biosynthetic enzymes, or enzymatically active fragments thereof, to convert α-ketoglutarate into 6-ACA, AA, and/or AAP, or any product in the pathway, shown in Fig.11. The enzymes are taught in Zhou et al.,“Algorithmic co-optimization of genetic constructs and growth conditions: application to 6-ACA, a potential nylon-6 precursor,” Nucleic Acids Res 43(21): 10560 (2015). [0071] In some embodiments, the host cell further comprises one or more endogenous or heterologous genes encoding a glutamate dehydrogenase, such as Escherichia coli glutamate dehydrogenase gene, or enzymatically active fragments thereof. The host cell is capable of expressing or overexpressing a glutamate dehydrogenase for conversion of glutamate to α- ketoglutarate. [0072] The amino acid sequence of Escherichia coli glutamate dehydrogenase is: MDQTYSLESFLNHVQKRDPNQTEFAQAVREVMTTLWPFLEQNPKYRQMSLLERLVEPERV IQFRVVWVDD RNQIQVNRAWRVQFSSAIGPYKGGMRFHPSVNLSILKFLGFEQTFKNALTTLPMGGGKGG SDFDPKGKSE GEVMRFCQALMTELYRHLGADTDVPAGDIGVGGREVGFMAGMMKKLSNNTACVFTGKGLS FGGSLIRPEA TGYGLVYFTEAMLKRHGMGFEGMRVSVSGSGNVAQYAIEKAMEFGARVITASDSSGTVVD ESGFTKEKLA RLIEIKASRDGRVADYAKEFGLVYLEGQQPWSLPVDIALPCATQNELDVDASHQLIANGV KAVAEGANMP TTIEATELFQQAGVLFAPGKAANAGGVATSGLEMAQNAARLGWKAEKVDARLHHIMLDIH HACVEHGGEG EQTNYVQGANIAGFVKVADAMLAQGVI (SEQ ID NO:15) [0073] In some embodiments, the host cell further comprises endogenous and/or heterologous genes encoding a D-xylose dehydrogenase, such as Haloferax volcanii Hv-xdh gene, or enzymatically active fragments thereof, a D-xylonate dehydratase, such as Haloferax volcanii Hv-xad gene, or enzymatically active fragments thereof, a 2-keto-3-deoxyxylonate dehydratase , such as Haloferax volcanii Hv-HVO-B0027 gene, or enzymatically active fragments thereof, and an α-ketoglutarate semialdehyde dehydrogenase, such as Haloferax volcanii Hv-HVO-B0039 gene, or enzymatically active fragments thereof. The host cell is capable of expressing or overexpressing of the four-enzymes pathway from Haloferax volcanii for conversion of xylose to α-ketoglutarate production. [0074] The amino acid sequence of Haloferax volcanii Hv-xdh is: MSPAPTDIVEEFTRRDWQGDDVTGTVRVAMIGLGWWTRDEAIPAVEASEFCETTVVVSSS KEKAEGATALTESITHGLTYDEFHEGVAADAYDAVYVVTPNGLHLPYVETAAELGKAVLC EKPLEASVERAEKLVAACDRADVPLMVAYRMQTEPAVRRARELVEAGVIGEPVFVHGHMS QRLLDEVVPDPDQWRLDPELSGGATVMDIGLYPLNTARFVLDADPVRVRATARVDDEAFE AVGDEHVSFGVDFDDGTLAVCTASQSAYQLSHLRVTGTEGELEIEPAFYNRQKRGFRLSW GDQSADYDFEQVNQMTEEFDYFASRLLSDSDPAPDGDHALVDMRAMDAIYAAAERGTDVA VDAADSDSADSDSADAAAANHDADPDSDGT (SEQ ID NO:16) [0075] The amino acid sequence of Haloferax volcanii Hv-xad is: MVEQAKLSDPNAEYTMRDLSAETIDITNPRGGVRDAEITDVQTTMVDGNYPWILVRVYTD AGVVGTGEAYWGGGDTAIIERMKPFLVGENPLDIDRLYEHLVQKMSGEGSVSGKVISAIS GIEIALHDVAGKLLDVPAYQLVGGKYRDEVRVYCDLHTEDEANPQACAEEGVRVVEELGY DAIKFDLDVPSGHEKDRANRHLRNPEIDHKVEIVEAVTEAVGDRADVAFDCHWSFTGGSA KRLASELEDYDVWWLEDPVPPENHDVQKLVTQSTTTPIAVGENVYRKFGQRTLLEPQAVD IIAPDLPRVGGMRETRKIADLADMYYIPVAMHNVSSPIGTMASAQVAAAIPNSLALEYHS YQLGWWEDLVEEDDLIQNGHMEIPEKPGLGLTLDLDAVEAHMVEGETLFDEE (SEQ ID NO:17) [0076] The amino acid sequence of Haloferax volcanii Hv-HVO-B0027 is: MHYHQLAVSGERRLTASRDSTTYDLTSADADLRTFGDLARVASIARTSVDRLAAELTEDA DVVDDAFVDRHATVPVDAEEIWAAGVTYQISEQAREEESSMPDMYFDVYDADRPEVFFKA TPSRTVEPGDAIGVRGDSEWDVPEPELGIVLRRGEIVGYTVGNDVSSRSIEGENPLYLPQ AKVYDRCCSIGPCVVTPEDVEDPHELEMSMTIERDGEVIYDDATNTSEMVRSCDELVSYF TRHNTVPELAVILTGTSLVPEQPFDLQEGDHVDITIEGIGTLSNSVTTV (SEQ ID NO:18) [0077] The amino acid sequence of Haloferax volcanii Hv-HVO-B0039 is: MTDPSKNYVNGEWVTSETGETTEVTNPANPSEVVAAYQHSNENDAAAAVDAAVAAEDEWR NTPGPERGRILREAGTLLAQRKDELTEILTAEEGKARPEAAGEVQRAIDIFHYFSSKAAD LGGTKKGASGPNTNLYTRQEPVGVAALITPWNYPIAIPAWKLAPALAAGNTVVLKPASIA PGVVIEIARALDEAGLPDGVLNVVTGPGSSVGSEFIGNEGTDLVSFTGSSQVGEMVYEQA TDAGKRVQTELGGKNPTLVADSANPAEAADIVANGGFGTTGQSCTACSRAIVHEDVYDDF VAELVDRAESLDVGPGTDHEMGPQVSESELSSTLEYIDIAEAEGATLVAGGGVPEGEAVE TGHFVEPTVFTDVDPDMRIAQEEVFGPVVAVIEVSDFDEGLAVANDVDYGLSASIVTDDH TEANRFVDEVEAGVVKVNDKTTGLELHVPFGGFKRSSSETWREQGDAGLDFYTIEKTVYD SY (SEQ ID NO:19) [0078] In some embodiments, the host cell further comprises endogenous or heterologous genes encoding a indole-3-pyruvate decarboxylae, such as Lactococcus lactis KdcA gene, or enzymatically active fragments thereof, a pyruvate transaminase, such as Vibrio fluvialis Vfl gene, or enzymatically active fragments thereof, a homocitrate synthase, such as Azotobacter vinelandii NifV gene, or enzymatically active fragments thereof, a 3-isopropylmalate dehydratase large subunit, such as Methanococcus aeolicus AksD gene, or enzymatically active fragments thereof, a 3-isopropylmalate dehydratase small subunit, such as

Methanococcus aeolicus AksE gene, or enzymatically active fragments thereof, a isopropylmalate/isohomocitrate dehydrogenase, such as Methanococcus aeolicus AksF gene, or enzymatically active fragments thereof. The host cell is capable of expressing or overexpressing of the six-enzyme pathway for 6-aminocaproic acid production. [0079] The amino acid sequence of Lactococcus lactis KdcA is: MYTVGDYLLDRLHELGIEEIFGVPGDYNLQFLDQIISREDMKWIGNANELNASYMADGYA RTKKAAAFLTTFGVGELSAINGLAGSYAENLPVVEIVGSPTSKVQNDGKFVHHTLADGDF KHFMKMHEPVTAARTLLTAENATYEIDRVLSQLLKERKPVYINLPVDVAAAKAEKPALSL EKESSTTNTTEQVILSKIEESLKNAQKPVVIAGHEVISFGLEKTVTQFVSETKLPITTLN FGKSAVDESLPSFLGIYNGKLSEISLKNFVESADFILMLGVKLTDSSTGAFTHHLDENKM ISLNIDEGIIFNKVVEDFDFRAVVSSLSELKGIEYEGQYIDKQYEEFIPSSAPLSQDRLW QAVESLTQSNETIVAEQGTSFFGASTIFLKSNSRFIGQPLWGSIGYTFPAALGSQIADKE SRHLLFIGDGSLQLTVQELGLSIREKLNPICFIINNDGYTVEREIHGPTQSYNDIPMWNY SKLPETFGATEDRVVSKIVRTENEFVSVMKEAQADVNRMYWIELVLEKEDAPKLLKKMGK LFAEQNK (SEQ ID NO:20)

[0080] The amino acid sequence of Vibrio fluvialis Vfl is:

MNKPQSWEARAETYSLYGFTDMPSLHQRGTVVVTHGEGPYIVDVNGRRYLDANSGLW NMV AGFDHKGLIDAAKAQYERFPGYHAFFGRMSDQTVMLSEKLVEVSPFDSGRVFYTNSGSEA NDTMVKMLWFLHAAEGKPQKRKILTRWNAYHGVTAVSASMTGKPYNSVFGLPLPGFVHLT CPHYWRYGEEGETEEQFVARLARELEETIQREGADTIAGFFAEPVMGAGGVIPPAKGYFQ AILPILRKYDIPVISDEVICGFGRTGNTWGCVTYDFTPDAIISSKNLTAGFFPMGAVILG PELSKRLETAIEAIEEFPHGFTASGHPVGCAIALKAIDVVMNEGLAENVRRLAPRFEERL KHIAERPNIGEYRGIGFMWALEAVKDKASKTPFDGNLSVSERIANTCTDLGLICRPLGQS VVLCPPFILTEAQMDEMFDKLEKALDKVFAEVA (SEQ ID NO:21)

[0081] The amino acid sequence of Azotobacter vinelandii NifV is:

MASVIIDDTTLRDGEQSAGVAFNADEKIAIARALAELGVPELEIGIPSMGEEEREVM HAI AGLGLSSRLLAWCRLCDVDLAAARSTGVTMVDLSLPVSDLMLHHKLNRDRDWALREVARL VGEARMAGLEVCLGCEDASRADLEFVVQVGEVAQAAGARRLRFADTVGVMEPFGMLDRFR FLSRRLDMELEVHAHDDFGLATANTLAAVMGGATHINTTVNGLGERAGNAALEECVLALK NLHGIDTGIDTRGIPAISALVERASGRQVAWQKSVVGAGVFTHEAGIHVDGLLKHRRNYE GLNPDELGRSHSLVLGKHSGAHMVRNTYRDLGIELADWQSQALLGRIRAFSTRTKRSPQP AELQDFYRQLCEQGNPELAAGGMA (SEQ ID NO:22) [0082] The amino acid sequence of Methanococcus aeolicus AksD is:

MTLAEEILSKKVGKKVKAGDVVEIDIDLAMTHDGTTPLSAKAFKQITDKVWDNKKIV IVF DHNVPANTLKAANMQKITREFIKEQNIINHYLDGEGVCHQVLPENGHIQPNMVIAGGDSH TCTYGAFGAFATGFGATDMGNIYATGKTWLKVPKTIRINVNGENDKITGKDIILKICKEV GRSGATYMALEYGGEAIKKLSMDERMVLSNMAIEMGGKVGLIEADETTYNYLRNVGISEE KILELKKNQITIDENNIDNDNYYKIINIDITDMEEQVACPHHPDNVKNISEVKGAPINQV FIGSCTNGRLNDLRIASKYLKGKKVHNDVRLIVIPASKSIFKQALKEGLIDIFVDAGALI CTPGCGPCLGAHQGVLGDGEVCLATTNRNFKGRMGNTTAEIYLSSPAIAAKSAIKGYITN

E (SEQ ID NO:23)

[0083] The amino acid sequence of Methanococcus aeolicus AksE is:

MIIKGNIHLFGDDIDTDAIIPGAYLKTTDPKELASHCMAGIDEKFSTKVKDGDIIVA GEN FGCGSSREQAPISIKHTGIKAVVAESFARIFYRNCINIGLIPITCEGINEQIQNLKDGDT IEIDLQNETIKINSMMLNCGAPKGIEKEILDAGGLVQYTKNKLKK (SEQ ID NO:24) [0084] The amino acid sequence of Methanococcus aeolicus AksF is:

MKIPKICVIEGDGIGKEVIPETVRILKEIGDFEFIYEHAGYECFKRCGDAIPEKTLK TAK ECDAILFGAVSTPKLDETERKPYKSPILTLRKELDLYANVRPIHKLDNSDSSNNIDFIII RENTEGLYSGVEYYDEEKELAISERHISKKGSKRIIKFAFEYAVKHHRKKVSCIHKSNIL RITDGLFLNIFNEFKEKYKNEYNIEGNDYLVDATAMYILKSPQMFDVIVTTNLFGDILSD EASGLLGGLGLAPSANIGDNYGLFEPVHGSAPDIAGKGVANPIAAVLSASMMLYYLDMKE KSRLLKDAVKQVLAHKDITPDLGGNLKTKEVSDKIIEELRKIS (SEQ ID NO:25) [0085] References cited:

1. PCI-Nylon.2011. Polyamide 6. website for pcinylon.com/index.php/markets- covered/polyamide-6. Accessed 2015-10-08. 2. Liu P, Zhang H, Lv M, Hu M, Li Z, Gao C, Xu P, Ma C.2014. Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase. Sci Rep 4:5657. 3. Park SJ, Kim EY, Noh W, Park HM, Oh YH, Lee SH, Song BK, Jegal J, Lee SY. 2013. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab Eng 16:42-47. 4. Park SJ, Oh YH, Noh W, Kim HY, Shin JH, Lee EG, Lee S, David Y, Baylon MG, Song BK, Jegal J, Lee SY, Lee SH.2014. High-level conversion of L-lysine into 5- aminovalerate that can be used for nylon 6,5 synthesis. Biotechnol J 9:1322-1328. 5. Josef Ritz, et al., doi:10.1002/14356007.a05_031.pub2.2005. Caprolactam.

Ullmann's Encyclopedia of Industrial Chemistry. 6. Kallifidas D, Thomas D, Doughty P, Paget MS.2010. The sigmaR regulon of Streptomyces coelicolor A32 reveals a key role in protein quality control during disulphide stress. Microbiology 156:1661-1672. 7. Stefan C.H.J. Turk WPK, Dennis K Ninaber, Karin P.A.M Kolen, Julia Knutova, Erwin Suir, Martin Schürmann, Petronella C. Raemakers-Franken, Monica Muller, Stefaan M. A. De Wildeman, Leonie M Raamsdonk, Ruud van der Pol, Liang Wu, Margarida F Temudo, Rob van der Hoeven, Michiel Akeroyd, Roland E van der Stoel, Henk J. Noorman, Roel A.L. bovenberg, and Axel C. Trefzer.2015. Metabolic engineering towards sustainable production of Nylon-6. ACS Synthetic Biology (Just Accepted)

doi:10.1021/acssynbio.5b00129. 8. Stavila E, Loos K.2013. Synthesis of lactams using enzyme-catalyzed aminolysis. Tetrahedron Letters 54:370-372. 9. Hui Hong TF, Peter F. Leadlay.2013. A Common Origin for Guanidinobutanoate Starter Units in Antifungal Natural Products. Angewandte Chemie 124:13334–13337. 10. McAlpine.2005. Microbial Genomics as a Guide to Drug Discovery and Structural Elucidation: ECO-02301, a Novel Antifungal Agent, as an Example. J Nat Prod:493-496. 11. Zazopoulos.2003. A genomics-guided approach for discovering and expressing cryptic metabolic pathways. Nat Biotechnol 21:187-190. 12. Zhang.2010. A Three Enzyme Pathway for 2-Amino-3-hydroxycyclopent-2-enone Formation and Incorporation in Natural Product Biosynthesis. J AM CHEM SOC 132:6402- 6411. 13. Zhang J, Kao, E., Wang G., Baidoo E. E.K., Chen, M., Keasling, J.2016. Metabolic Engineering of E. coli for the biosynthesis of 2-pyrrolidone. Met Eng Comm 3:1-7. 14. Yuzawa S, Chiba N, Katz L, Keasling JD.2012. Construction of a part of a 3- hydroxypropionate cycle for heterologous polyketide biosynthesis in Escherichia coli.

Biochemistry 51:9779-9781. 15. Tomoya Baba TA, Miki Hasegawa, Yuki Takai, Yoshiko Okumura, Miki Baba, Kirill A Datsenko, Masaru Tomita, Barry L Wanner, Hirotada Mori.2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection.

Molecular Systems Biology 2. 16. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, Lee SK, Keasling JD.2011. BglBrick vectors and datasheets: A synthetic biology platform for gene expression. J Biol Eng 5:12. 17. Studier W.2005. Protein production by auto-induction in high-density shaking cultures. Protein Expression and Purification 41:207-234. 18. Zhang W, Heemstra JR, Jr., Walsh CT, Imker HJ.2010. Activation of the

pacidamycin PacL adenylation domain by MbtH-like proteins. Biochemistry 49:9946-9947. 19. Zhang W, Tang Y.2009. Chapter 16 In Vitro Analysis of Type II Polyketide

Synthase. 459:367-393. 20. Gregory Bokinsky EEKB, Swetha Akella, Helcio Burd, Daniel Weaver, Jorge Alonso-Gutierrez, Héctor García-Martín, Taek Soon Lee, Jay D. Keasling.2013. HipA- Triggered Growth Arrest and β-Lactam Tolerance in Escherichia coli Are Mediated by RelA- Dependent ppGpp Synthesis. Journal of Bacteriology 195:3173-3182 [0086] It is to be understood that, while the invention has been described in conjunction with the preferred specific embodiments thereof, the foregoing description is intended to illustrate and not limit the scope of the invention. Other aspects, advantages, and modifications within the scope of the invention will be apparent to those skilled in the art to which the invention pertains. [0087] All patents, patent applications, and publications mentioned herein are hereby incorporated by reference in their entireties. [0088] The invention having been described, the following examples are offered to illustrate the subject invention by way of illustration, not by way of limitation.

EXAMPLE 1 Application of an Acyl-CoA Synthetase from Streptomyces aizunensis for Lactam

Biosynthesis [0089] ε-caprolactam and δ-valerolactam are important commodity chemicals used in the manufacture of nylons, with millions of tons produced every year. Biological production of these high valued chemicals has not been possible due to a lack of enzymes that will cyclize the ω-amino fatty acid precursors to the corresponding lactams under ambient conditions. In this study, we demonstrated proof of these bioconversions by in vitro enzyme assays. We found that ORF27, an enzyme involved in the biosynthesis of ECO-02301 in Streptomyces aizunensis, has a broad substrate spectrum and can not only cyclize γ-aminobutyric acid into butyrolactam, but also 5-aminovaleric acid (5-AVA) into δ-valerolactam and 6- aminohexanoic acid (6-AHA) into ε-caprolactam. The ORF27 lactam formation reaction was characterized by product analysis, and ORF27’s activity on the three ω-amino fatty acids were compared. Recombinant E. coli expressing ORF27 produced valerolactam and caprolactam when 5-AVA and 6-AHA, respectively, were added to the culture medium. Upon co-expressing ORF27 with a metabolic pathway that produced 5-aminovaleric acid from lysine, we were able to demonstrate production of δ-valerolactam from lysine or directly from glucose. [0090] In this study, we overexpressed ORF27 in Escherichia coli and purified it by affinity chromatography. This enabled us to explore the catalytic properties of this enzyme. ORF27 was confirmed to possess 4-guanidinylbutyryl-CoA ligase (4GBL) activity. ORF27 had broad substrate specificity: it could act on linear or branched acid substrates with positively charged or neutral functional groups on the ω-terminal end, yet the enzyme was selective against negatively charged groups on the substrate’s ω-terminal end. Intriguingly, ORF27’s activity for ω-amino fatty acids activation led to its application as a general lactam synthase, enabling biosynthesis of caprolactam, valerolactam and butyrolactam. Comparative study of ORF27’s reaction products for different ω-amino fatty acid precursors was performed to better understand this enzyme’s activity as a lactam synthase. [0091] To apply ORF27 for renewable chemical production, ORF27 was overexpressed in E. coli, and both valerolactam and caprolactam were formed in vivo by feeding their respective precursors, 5-aminovaleric acid (5-AVA) and 6-aminohexanoic acid (6-AHA). To achieve renewable production of valerolactam from sugar, we introduced a two-gene pathway into E. coli that converts lysine to 5-AVA. The pathway contains an L-lysine monoxygenase (davB from Pseudomonas putida KT2440) and a 5-aminovaleramide amidohydrolase (davA from Pseudomonas putida KT2440). Introducing the genes encoding the 5-AVA biosynthetic pathway and a gene encoding a fusion of ORF27 with maltose binding protein, MBP-ORF27, enabled E. coli to produce valerolactam from lysine or directly from glucose. Materials and Methods Strains and plasmids. [0092] All the strains and plasmids utilized in this study are listed in Table 1. The sequences for the plasmids are listed herein. [0093] Table 1. E. coli strains, plasmids and oligonucleotides used.

ORF27 Protein Expression and Purification. [0094] The gene encoding ORF27 (GenBank: AAX98201.1) was purchased from DNA 2.0 (Menlo Park, CA). The synthetic gene was optimized with E. coli codon usage and delivered in pDNA2.0-ORF27. For expression and purification of ORF27, the pDNA2.0-ORF27 plasmid was digested with NdeI and XhoI and cloned into pET28b in order to produce ORF27 with an N-terminal 6xHis tag. The resulting plasmid, pET28b-N-ORF27, was transformed into E. coli BL21 Star (DE3) for ORF27 overexpression. To place a C-terminal His-tag on ORF27, primers JZ_27_C6xHis_f and JZ_27_C6xHis_r were used to amplify ORF27 from pDNA2.0-ORF27. The resulting PCR product was digested with NcoI and XhoI and cloned into pET28b. [0095] For N-terminal 6xHis ORF27 expression, the overnight culture was inoculated (1:100 v/v) into 1 L LB medium containing 5 µg/ml kanamycin. The culture was grown at 37°C until the O.D. reached 0.6 and cooled on ice for 20 min.0.5 mM IPTG was added to induce N-6xHis ORF27overexpression for 16 h at 18°C. The cells were harvested by centrifugation (8000 × g, 6 min, 4°C), resuspended in 30 mL of lysis buffer (50 mM HEPES, pH 8.0, 0.5 M NaCl, and 10 mM imidazole), and lysed by sonication on ice. Cellular debris was removed by centrifugation (20,000 × g, 30 min, 4°C). Ni-NTA agarose resin was added to the supernatant (1 mL/L of culture), and the solution was rocked at 4°C for 1 h. The protein resin mixture was loaded onto a gravity flow column, and proteins were washed with washing buffer (50 mM HEPES, pH 8.0, 0.5 M NaCl, and 20 mM imidazole) and eluted with elution buffer (50 mM HEPES, pH 8.0, 0.5 M NaCl, and 250 mM imidazole). Purified proteins (60 mg from 1 L culture) were concentrated to 280 mg/mL and buffer exchanged into storage buffer (50 mM HEPES, pH 8.0, 8% glycerol). The final proteins were aliquoted and flash frozen in liquid nitrogen and stored at -80°C. C-terminal 6xHis ORF27 (65 mg/L LB culture) was produced using BL21 Star (DE3) transformed with pET28b-C-ORF27, purified by Ni-NTA agarose resin and stocked at 220 mg/mL in storage buffer (50 mM HEPES, pH 8.0, 8% glycerol). [0096] Nickel nitrilotriacetic acid agarose (Ni-NTA) resin and SDS-PAGE gels were purchased from Qiagen and Biorad, respectively. Protein samples were concentrated using 10 KDa MMCO Amicon Ultra filters (Millipore). DNA and protein concentrations were determined using a Nanodrop 1000 spectrophotometer (Thermo Scientific). The purified ORF27 was checked on SDS-PAGE gel for purity (Fig.4). ATP-PPi release Assays for ORF27. [0097] The substrate range of ORF27 was determined by ATP-PPi release assays as previously described (12). Without prior knowledge about the reaction pathways, the ATP- PPi assay served a semi-quantitative method to compare substrate induced acceleration of ATP consumption. For kinetic investigation of ORF27 activity with different substrates, the inorganic pyrophosphate released by enzymatic reaction was measured continuously using the EnzChek Pyrophosphate Assay Kit (Invitrogen). A typical assay contained in a total volume of 150 µL: 5 µM of ORF27, 0-20 mM substrates, 1 mM ATP, 1 mM CoASH and 1 mM Mg(Cl) 2 in 100 mM HEPES, pH 7.5.2-amino-6-mercapto-7-methylpurine

ribonucleoside (MESG) substrate, purine nucleoside phosphorylase and inorganic pyrophosphatase were added according to the protocol. Reactions were initiated by the addition of ATP and monitored at 360 nm with SpectraMax M2 (Molecular Devices, Sunnyvale, CA). Initial velocities were calculated using the standard curve for inorganic pyrophosphate. For each concentration, control reactions were carried out without enzyme or without ATP. The rates of PPi release were converted to observed rates, and the Michaelis- Menten kinetic parameters were obtained. [0098] The acids assayed were glutamic acid, γ-aminobutyrate (GABA), 4-guanidinobutyric acid, (S)-3-hydroxyl-butyric acid, valeric acid, 4-methyl-hexanoic acid, 3-aminobutyric acid, 6-aminocaproic acid, 6-guanidinohexanoic acid, glutaric acid, adipic acid, 2-aminobutyric acid and (Sigma-Aldrich, St. Louis, Missouri). During preparation of substrate stock solution, 6-guanidinohexanoic acid has low solubility under neutral pH, and HCl was added to obtain 100 mM stock solution in pH ~2.0. 4-Guanidinobutyryl CoA product identification. [0099] To confirm ORF27’s native activity as a 4-guanidinobutyryl CoA synthetase, the quenched reaction with 4-guanidinobutyric acid was analyzed for CoA products as described previously (14). The mass measurements were carried out in the TOF-Scan monitoring mode for the detection of [M - H]- ions (4-guanidinobutyrl-CoA, m/z = 893.1825). Negative controls were carried out using no enzyme, no ATP, no substrate or no CoASH. Product analysis of in vitro ORF27 lactam formation. [00100] To compare formation of various lactams by ORF27, a reaction mixture containing 57 µM of ORF27, 5 mM ω-amino fatty acids substrates, 1 mM ATP or ADP, 0.5mM CoASH and 1 mM Mg(Cl) 2 in 100 mM HEPES (pH=8) was incubated at 25°C. The reactions were quenched by addition of methanol to a final concentration of 50% (v/v) at multiple time points (0 min, 15 min, 1 h, 2 h, 4 h and 19 h). The resulting quenched reactions were kept at 4°C and filtered through 10 K Amicon Ultra-0.5 mL Centrifugal Filters

(Millipore) at 8000 ×g for 30min. The filtered solutions were analyzed for lactams and nucleotides using HPLC-MS. Control reactions were carried out without enzyme, without substrate, without ATP, without CoASH or without MgCl 2 (supplying additional 0.2 mM EDTA to chelate Mg 2+ ions from purified protein stock). Caprolactam, valerolactam and butyrolactam, AMP, ADP and ATP were purchased as standards from Sigma-Aldrich. The pH dependence of ORF27-catalyzed butrylactam formation was determined using an end- point assay, and the amount of butyrolactam was determined using the HPLC-MS method described above. Lactam Production in Vivo. [00101] E. coli JW2637-4 contains a knockout of gabT, which encodes a GABA transaminase (15). This host was initially used to confirm production of valerolactam and caprolactam in vivo. E. coli JZ-171 (ORF27) and JZ-172 (RFP negative control) were grown in LB medium containing 1 mM 5-AVA and 6-AHA. Cultures were propagated in Luria- Bertani (LB) medium, which was prepared from dehydrated powder according to the manufacturer's instructions (BD Biosciences, San Jose, CA). To analyze caprolactam production, the culture was pelleted and supernatant was filtered before mixing with 1 volume of MeOH. In vivo valerolactam biosynthesis. [00102] The davA and davB genes were ordered as gBlocks (Integrated Dna

Technologies, Coralville, IA) and cloned into the BglII and XhoI sites on pBbA7, a biobrick vector, to generate plasmid pBbA7a-DavB-DavA(16). To circumvent ORF27’s limited solubility during incubation, MBP-ORF27 was utilized (13). For high-density shake flask cultures, Studier’s autoinduction ZYM-5052 medium was prepared according to the published protocol (17). Lysine at various concentrations (0 g/L, 1 g/L, 5 g/L and 10 g/L) was included in the ZYM-5052 medium. Kanamycin (20 µg/ml) and ampicillin (100 µg/ml) were added where desired to provide selective pressure for plasmid maintenance. [00103] E. coli strains (JZ-441) harboring plasmids containing genes encoding davA, davB and MBP-ORF27 were inoculated into 10 mL of LB overnight. On day 2, the overnight culture was inoculated 1:100 (v/v) into 25 mL Studier’s autoinduction ZYM-5052 medium with various concentrations of lysine (0 g/L to 10 g/L) and appropriate antibiotics (17). The culture was incubated at 37°C. When the O.D. reached around 0.6, the culture was cooled to 25°C. The culture was then placed at 25°C incubator and the valerolactam titer was analyzed at 24 h, 48 h and 72 h. JZ-440, which contains only davA and davB, served as a negative control. Caprolactam, valerolactam and butyrolactam analytical method [00104] Liquid chromatography (LC) separation of lactams were conducted at 55°C with an Inertsil ODS-3 reverse-phase C18 column (250 mm length, 2.1 mm internal diameter, 3 µM particle size; GL Sciences) using a 1100 series high-performance LC system (Agilent Technologies). The mobile phase was composed of 0.1% formic acid in H 2 O (solvent A) and 0.1% formic acid in MeOH (solvent B). Butyrolactam was separated with the following gradient: 40% to 60% B for 4.5 min, 60% to 100% B for 0.5 min, 100% to 40% B for 0.5 min, held at 10% B for 8.5 min. A flow rate of 0.18 mL/min was used throughout. Time-of-Flight Mass Spectrometry method for lactam accurate mass monitoring [00105] The LC system was coupled to an Agilent Technologies 6210 electrospray time-of-flight (TOF) mass spectrometer. Nitrogen gas was used as both the nebulizing and drying gas to facilitate the production of gas-phase ions. The drying and nebulizing gases were set to 11 L/min and 25 psig, respectively, and a drying gas temperature of 320°C was used throughout. ESI was conducted in the positive-ion mode with a capillary voltage of 3.5 kV. Mass measurements were carried out in the TOF-Scan monitoring mode for the detection of [M + H] + ions (2-pyrrolidone, m/z=86.0600; 2-piperidinone, m/z= 100.07569;

caprolactam, m/z= 114.09134). The instrument was tuned for a range of m/z 70 to 300. Data acquisition and processing were performed using MassHunter Workstation (Agilent

Technologies). ATP, ADP, AMP analytical method [00106] Nucleotide product analysis studies was analyzed using an expedited modification of the HILIC method previously described (20). Liquid chromatography (LC) separation of lactams were conducted at 40°C with an SeQuant Zic-pHILIC column (150 mm length, 2.1 mm internal diameter, 5 µM particle size; GL Sciences) using a 1100 series high- performance LC system (Agilent Technologies). The mobile phase was composed of 50mM (NH 4 ) 2 CO 3 in H 2 O (solvent A) and acetonitrile (solvent B). ATP, ADP, AMP and CoAs were separated with the following gradient: 73% to 43% B for 6 min (flow rate 0.25mL/min), 43% to 73% B for 0.2 min (flow rate 0.25mL/min), hold at 73% B for 1 min (flow rate

0.3mL/min), hold at 73% 0.2 min (flow rate 0.3mL/min), held at 73% B for 5.1 min (flow rate of 0.38mL/min). The HPLC system was coupled to TOF MS. ESI was conducted in the negative ion mode, and a capillary voltage of 3.5 kV was utilized. Fragmentor, skimmer, and OCT1 RF voltages were set to 200 V, 65 V, and 300 V, respectively. Mass measurements were carried out in the TOF-Scan monitoring mode for the detection of [M - H]- ions (ATP, m/z=505.9885; ADP, m/z= 426.0221; AMP, m/z= 346.0558; CoASH, m/z=766.1079). MS experiments were carried out in the full-scan mode (m/z 100 to 1000). ORF27 Biochemistry and Implications on ECO-02301 Loading Mechanism [00107] By exploring its substrate specificity, 4-guanidinobutyric acid is confirmed to be its natural substrate. This is consistent with previous hypothesis that ECO-02301 biosynthesis uses 4-guanidinobutyric acid as a starter unit. The inability to isolate activated 4- aminobutyryl esters in the enzymatic reaction showed the transient nature of the intermediate. This suggests that the proposed amidinohydrolase (ORF33) in the gene cluster may hydrolyze the ureido group later during ECO-02301 biosynthesis rather than before loading onto the first ACP domain. RESULTS ORF27 Biochemistry. [00108] The sensitivity of the ATP-PPi release assay (5µM Pi) allowed the initial velocity to be determined within the first 2min of reaction incubation. During this time period, ATP hydrolysis activity by ORF27 was not observed according to the ATP-PPi assay (ATP hydrolysis was observed over longer period of time though, see discussion below). The ATP-PPi release assay revealed that ORF27 has a broad substrate specificity. The K m and k cat values of various substrates activation are shown in Table 2. [00109] Table 2. Steady State Parameters of ORF27 a

a The kinetic parameters of ORF27 were determined in a 100 mM HEPES, pH 7.5 at 25°C using the ATP-PPi release Assays b Other non-product forming pathways could occur such as ATP hydrolysis or acyl-OAMP intermediate hydrolysis.

c ND not determined.

[00110] HPLC-MS confirmed that ORF27 catalyzes 4-guanidinobutyryl-CoA formation (Figs.5A and 5B). The ability of ORF27 to accept a broad range of substrates, especially ω-amino fatty acids, implies an interesting biotechnology application. Once the acid group of ω-amino fatty acids has been activated, amide bond formation through intramolecular cyclization is theoretically thermodynamically favored, suggesting that ORF27 might be utilized as a lactam synthase to produce industrially important chemicals, such as caprolactam, valerolactam and butyrolactam (Fig.1). [00111] The ORF27-catalyzed lactam formation reaction in vitro was monitored for both nucleotide and lactam products, using either ATP or ADP as the energy source. LC-MS analysis of nucleotides (ATP, ADP, AMP) showed that ORF27 catalyzed a series of reactions (Fig.2). In the absence of ORF27, ATP remained stable throughout the reaction (Fig.6A). In the absence of ω-amino fatty acids, ORF27 predominantly hydrolyzed ATP over long term incubation, forming mainly ADP plus Pi and slightly AMP and PPi (Fig.6B). This seeming contradiction with previous negative control ATP-PPi assay result was because: due to the slow kinetics of the in vitro reaction, ATP-PPi assay was not sensitive enough to detect Pi released caused by enzymatic ATP hydrolysis into ADP and Pi during the first 2 minutes (Fig.6B). When ω-amino fatty acids were added into the reaction mixture, they facilitate ATP hydrolysis, as well as routing hydrolysis pathway towards forming AMP and PPi rather than ADP plus Pi. Therefore, the observed signal increase in the presence of substrate for the ATP-PPi assay was due to both increased ATP consumption, and having more PPi release instead of Pi release without ω-amino fatty acid substrates. [00112] Although ORF27 was predicted to be an acyl-CoA synthetase, CoASH was not required for lactam formation (Figs.6C to 6H). The minimal lactam formation system constituted ω-amino fatty acids, ORF27, ATP and Mg 2+ (Figs.7A to 7C). Lactam formation is most rapid for valerolactam, followed by butyrolactam and caprolactam. ADP appeared earlier in in reactions containing ω-amino fatty acids but not in control reactions without the substrates , suggesting ω-amino fatty acids dependent ATP hydrolysis into ADP and Pi also occurred during the reaction. [00113] When CoASH was added to the corresponding reactions, no 4-aminobutyryl- CoA or 5-aminovaleryl-CoA was detected and barely distinguishable 6-aminohexanoyl-CoA mass ions, corresponding to 0.6% of CoASH signal abundance, were detected (data not shown). Mass ions corresponding to other off-pathway products, such as the ω-amino fatty acids dimers or trimers, were not observed. [00114] In additional to using ATP, ORF27 could also utilize ADP to activate ω-amino fatty acids and catalyze lactam formation, although the reaction occurred at only 20-50% of the rate of the similar reaction when ATP was the substrate (Figs.6I to 6K). [00115] The pH profile of ORF27 activity was determined for butyrolactam, and the enzyme had a pH optimum of 8.0. The enzyme precipitated and became inactive when the pH dropped below 6.0 (Fig.8). Valerolactam and caprolactam production in vivo. [00116] To demonstrate that valerolactam or caprolactam can be produced using whole-cell catalysts, we fed the respective precursors, 5-AVA or 6-AHA, to E. coli JZ-171, which overexpressed ORF27. Valerolactam (5-AVA fed) or caprolactam (6-AHA fed) was observed in the medium upon ORF27 expression (Figs.9A and 9B). [00117] To demonstrate that valerolactam could be produced directly from glucose with no ω-amino fatty acid feeding, we introduced a pathway for 5-AVA biosynthesis into E. coli BL21(DE3)star, resulting in strain JZ-441(2-4). Valerolactam was produced directly from lysine when davA and davB were introduced into E. coli (Fig.3A). Cells growing in medium supplemented with 5 g/L of lysine produced a maximum of 195 mg/L (~2 mM) valerolactam. Increasing lysine supplementation to 10 g/L caused a reduction in bacterial growth and caused a delayed and decreased production of valerolactam. At 0 g/L lysine feeding, JZ-441 produced 89 mg/L of valerolactam (Fig.3B). JZ-440, which lacks MBP- ORF27, produced no measurable valerolactam. DISCUSSION [00118] Natural product biosynthesis continues to be a rich source of enzyme candidates with novel activities. ORF27, an enzyme in the Streptomyces aizunensis ECO- 02301 biosynthetic cluster, was identified to be a 4-guanidinobutyryl-CoA synthetase, which has interesting implications for the ECO-02301 loading mechanism (12, 18, 19). [00119] ORF27 accepted a wide range of short chain fatty acid substrates and their functionalized analogs. Both linear and branched fatty acid substrates were accepted as substrates. However, the enzyme seems to have little tolerance of polar groups at C3 position. Positively charged substrates, such as the ω-amino fatty acids or the ω-guanidino fatty acids are well tolerated, despite the fact that some substrates such as 6-guanidinohexanoic acid have two more carbons in their backbone than the native substrate. However, enzyme activity on substrates that have a negatively charged group on the ω-terminal end, such as a carboxylic acid group, was not observed, even though glutaric acid and adipic acid have similar steric hindrance as 6-guanidinohexanoic acid. This suggests that ORF27 has strict substrate selection residues around it binding pocket and preferentially favors substrates with a positively charged group on the ω-terminal end. [00120] The ability of ORF27 to accept various ω-amino fatty acids was explored for lactam biosynthesis. For lactam formation, ORF27 does not require CoASH as substrate and utilizes multiple reaction pathways. The activation of ω-amino fatty acids by ATP facilitates cyclization. This enables five-membered, six-membered and even seven-membered ring formation at mild temperatures, resulting in the production of important industrial lactams such as valerolactam and caprolactam via fermentation. Unlike the reversible aminolysis enzyme CALB that was previously described, ORF27 performs the reaction under milder condition in an irreversible fashion. The lactam product observed is exclusively cyclized monomers, without dimer or trimer contaminants. These novel features make ORF27 an ideal candidate for lactam biosynthesis. However, the enzyme catalyzed significant ATP and ADP hydrolysis during the reaction. Directed evolution of ORF27 towards less futile ATP and ADP hydrolysis could potentially improve ORF27 as a lactam synthase. [00121] By introducing davB and davA into E. coli, we demonstrated valerolactam biosynthesis from lysine. Valerolactam production in autoinduction medium was lysine dependent. At concentrations of lysine below 5 g/L, valerolactam production correlated with lysine concentration. However, high concentrations of lysine (e.g., 10 g/L) inhibited bacterial growth and resulted in decreased valerolactam production. Even without lysine feeding, direct lysine production from glucose was sufficient to produce 50% of the valerolactam produced when 5 g/L lysine was fed to the culture. Interestingly, in the absence of ORF27, a slight amount of valerolactam was observed. Since 5-AVA does not cyclize when incubated in medium at 25°C, the observed valerolactam could result from catalysis by innate E. coli enzymes. [00122] Caprolactam was also biosynthesized by feeding its precursor 6- aminohexanoic acid. With the recent publication of 6-aminohexanoic acid biosynthetic pathway in E. coli, ORF27 holds the promise to enable full caprolactam biosynthesis in a microbial host (7). This opens the door to substitute the current petrochemical process with a renewable bioprocess for a bulk chemical with four million ton annual production, potentially could make huge positive impact on our environment. CONCLUSION [00123] ORF27 is an enzyme in the ECO-02301 biosynthetic cluster. It was identified to catalyze 4-guanidinobutyryl-CoA formation, and was able to activate a wide range of substrates. While acting on ω-amino fatty acids, ORF27 can catalyze the ring closing reaction to produce lactams. Biosynthesis of polymer precursors such as caprolactam, valerolactam and butyrolactam were demonstrated from their respective ω-amino fatty acids. For in vivo production of valerolactam from lysine or glucose, the lysine to 5-AVA pathway was introduced into an E. coli strain harboring the gene encoding ORF27.

[00124] While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.