Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
A HOUSEHOLD APPLIANCE
Document Type and Number:
WIPO Patent Application WO/2007/029179
Kind Code:
A3
Abstract:
The present invention relates to a household appliance (1) comprising a condenser (5) that is cooled by wetting.

More Like This:
Inventors:
GULDALI YALCIN (TR)
OZKADI FATIH (TR)
KARATAS HAKAN (TR)
TEKE ISMAIL (TR)
ATAYILMAZ S OZGUR (TR)
Application Number:
PCT/IB2006/053119
Publication Date:
October 18, 2007
Filing Date:
September 05, 2006
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ARCELIK AS (TR)
GULDALI YALCIN (TR)
OZKADI FATIH (TR)
KARATAS HAKAN (TR)
TEKE ISMAIL (TR)
ATAYILMAZ S OZGUR (TR)
International Classes:
F25D23/00; F25D21/14
Foreign References:
JPH1073362A1998-03-17
JPH05346236A1993-12-27
FR2495742A11982-06-11
Attorney, Agent or Firm:
ANKARA PATENT BUREAU LIMITED (Kavaklidere, Ankara, TR)
Download PDF:
Claims:

Claims

[1] A household appliance (1) comprising a compressor (2) that provides the circulation of the refrigerant fluid in the cooling cycle, an evaporator (3) that provides transferring the ambient heat to the refrigerant fluid, a condenser (5) that provides cooling of the refrigerant fluid delivered from the compressor (2), a reservoir (6) wherein water is contained for wetting the surface of the condenser (5), a distributor (7) used in overspreading the water in the reservoir (6) onto the condenser (5), and characterized by a valve (11) situated between the reservoir (6) and the distributor (7), that opens in proportion to the temperature of the condenser (5) when the temperature of the condenser (5) exceeds a threshold value determined by the producer, allowing only the necessary amount of water to flow out to wet the condenser (5) when required.

[2] A household appliance (1) as in Claim 1, characterized by a thermostat (12) that measures the temperature of the condenser (5).

[3] A household appliance (1) as in Claim 2, characterized by an expandable type valve (11) containing a gas that expands in proportion to the heat.

[4] A household appliance (1) as in any one of the above claims, characterized by a reservoir (6) wherein the water collected is obtained by defrosting the ice on the evaporator (3).

[5] A household appliance (1) as in any one of the above claims, characterized by at least one sensor (13) that measures the level of the water in the reservoir (6).

[6] A household appliance (1) as in Claim 5, characterized by the melting of the ice on the evaporator (3) to supply the required water to wet the condenser (5) when the level of the water falls below a level determined by the producer, even if there is no need at that moment of the cooling cycle.

[7] A household appliance (1) as in any one of the above claims, characterized by a reservoir (6) and a distributor (7) being situated at a higher elevation than the condenser (5), at least one transmission duct (8) that delivers water from the distributor (7) onto the condenser (5), a collector (10) situated below the condenser (5) wherein the excess water flowing from the condenser (5) is retained and at least one capillary tube (9) that provides to convey the water in the collector (10) onto the condenser (5) again.

Description:

Description A HOUSEHOLD APPLIANCE

[1] The present invention relates to a household appliance comprising a condenser the surface of which is cooled.

[2] A household appliance, in particular a cooling device, operates by means of a refrigerant fluid being circulated by a compressor through a condenser, an expander and an evaporator in accordance with a cooling cycle. While the refrigerant fluid flows through the evaporator within the cooling device body, it changes from the liquid to gaseous phase by absorbing the heat of the food items stored in the cabin. Then the fluid with its pressure being increased in the compressor again changes to the liquid phase in the condenser. The performance of the cooling device indirectly depends on reducing the surface temperature of the condenser. The cooling of the condenser provides to increase the cooling performance of the cooling device by allowing the compressor to be operated within a lower pressure range.

[3] In the state of the art British document no. GB221248, an evaporative condenser is described, the surface of which is covered with a material having a high absorbency feature that is wetted with water so as to be cooled. The water for wetting the surface is delivered to the condenser through the aqueducts and the textile strips dipped into these aqueducts are conveyed to the condenser by means of capillary action.

[4] In the United States Patent no. US6101883, an evaporative condenser covered by a material that absorbs water is described. This condenser is wetted by means of a water feeding apparatus that is actuated when the compressor operates.

[5] The implementations explained in the European Patent no. EP122833 and the

German Patent no. DE2803263 comprise a textile strip providing the delivery of defrost water to the condenser by capillary action. The defrost water is evaporated on the surface of the condenser.

[6] In the United States patent application no. US2004144118, the condensate water is collected in a reservoir and conveyed by capillary action from this reservoir to wet an evaporative condenser. When the level of water is lower than a certain level in the reservoir, water is delivered from the main water supply.

[7] However in the household appliances of the state of the art, it has been observed that a large amount of water is necessary for wetting the surface of the condenser. Therefore water should be used economically.

[8] The object of the present invention is to design a household appliance that comprises a water feeding apparatus which provides the wetting of the condenser only when required and with the required amount of water.

[9] The household appliance designed to fulfill the object of the present invention is

explicated in the attached claims. In the said household appliance, there is a valve between the condenser and the reservoir wherein water is collected. This valve opens when the temperature of the condenser exceeds a threshold value to allow the use of the water in the reservoir for wetting the condenser. The valve opens proportionally to the temperature of the condenser providing only the necessary amount of water to be delivered to the condenser. Consequently it has been possible to cool the condenser by utilizing a reduced amount of water.

[ 10] The surface of the condenser utilized in the household appliance of the present invention is preferably cladded. A material having a high water absorbency feature is used in the cladding. The water absorbency feature of the material provides the water to hold on to the surface of the condenser better.

[11] In an embodiment of the present invention, the reservoir is situated on the condenser. Water flows over the condenser by itself with the effect of gravity. The excess water flows to be collected in a container below. The water collected here is again delivered over the compressor with capillary action without the use of force.

[12] In another embodiment of the present invention, the water collected in the reservoir is obtained by defrosting the ice deposited on the evaporator.

[13] . In yet another embodiment of the present invention, an expandable valve is utilized. This valve is situated on the condenser at a region that is expected to dry earlier. When the surface of the condenser dries up and its temperature rises, the gas in the valve expands in proportion to the temperature and provides the valve to open at the same proportion. When the surface is wetted and the temperature falls down, the valve closes again to prevent unnecessary use of water.

[14] In yet another embodiment of the present invention, the level of water in the reservoir is measured and when it falls under a threshold value, water is supplied by defrosting the ice on the evaporator.

[15] The household appliance designed to fulfill the object of the present invention is illustrated in the attached figures, where:

[16] Figure 1 - is the side schematic view of a household appliance.

[17] Figure 2 - is the rear schematic view of the household appliance.

[18] Elements illustrated in the figures are numbered as follows:

[19] 1. Household appliance

[20] 2. Compressor

[21] 3. Evaporator

[22] 4. Expander

[23] 5. Condenser

[24] 6. Reservoir

[25] 7. Distributor

[26] 8. Duct

[27] 9. Capillary tube

[28] 10. Collector

[29] 11. Valve

[30] 12. Thermostat

[31] 13. Sensor

[32] The household appliance (1) of the present invention comprises:

[33] - a compressor (2) that provides the circulation of the refrigerant fluid in the cooling cycle,

[34] - an evaporator (3) that provides to transfer the ambient heat to the refrigerant fluid,

[35] - an expander (4) that provides to lower the pressure of the refrigerant fluid to be delivered into the evaporator (3),

[36] - a condenser (5) that provides cooling of the refrigerant fluid delivered from the compressor (2),

[37] - a reservoir (6) wherein water is collected to be used in wetting the surface of the condenser (5),

[38] - a distributor (7) used in spreading the water in the reservoir (6) over the condenser

(5), and

[39] - a valve (11) situated between the reservoir (6) and the distributor (7), that opens in proportion with the temperature of the condenser (5) when the temperature of the condenser (5) exceeds a threshold value predetermined by the producer, allowing the necessary amount of water to flow out only when required (Figure 1).

[40] In this embodiment of the present invention, the valve (11) opens during the cooling cycle when the temperature of the condenser (5), for example the surface temperature exceeds a value determined by the producer. The valve (11) opens as much as the increase in the surface temperature of the condenser (5). The water in the reservoir (6) flows out through the valve (11) to be delivered to the distributor (7). The water in the distributor (7) wets the condenser (5) by overspreading on its surface. The temperature of the condenser (5) is reduced as the water on its surface evaporates. After the temperature of the condenser (5) falls down, the valve (11) is closed, cutting off the water flow from the reservoir (6) to the distributor (7).

[41] In another embodiment of the present invention, the household appliance (1) comprises a thermostat (12) that detects the temperature. The thermostat (12) is positioned on the condenser (5), at a region that is expected to dry earlier, preferably on the side of the condenser (5) nearest to the compressor (2). In this region, the surface temperature of the condenser (5) is high since the temperature of the refrigerant fluid just leaving the compressor (2) is also high. When the thermostat (12) detects a rise in the surface temperature of the condenser (5), the valve (11) opens by an amount

that is proportional to the temperature. When the surface of the condenser (5) is cooled by wetting, the thermostat (12) detects this condition and the valve (11) is closed again. Consequently the water in the reservoir (6) is utilized economically.

[42] In another embodiment of the present invention, an expandable valve (11) is utilized. A gas that expands depending on the heat is contained within the expandable valve (11). The expanding of the gas by the heat provides the valve (11) to be opened in proportion to the temperature.

[43] In yet another embodiment of the present invention, the defrost water from melting of the ice accumulated on the evaporator (3) is collected in the reservoir (6). Accordingly, it is possible to cool the condenser (5) without utilizing an extra water source.

[44] In another embodiment of the present invention, the household appliance (1) comprises at least one sensor (13) that detects the level of water in the reservoir (6). When the level of the water falls below a level determined by the producer, the ice on the evaporator is melted to supply the required water to wet the condenser (5), even if the household appliance (1) does not have the need at that moment of the cooling cycle.

[45] In an embodiment of the present invention, the surface of the condenser (5) is coated by a material having a high water absorbency characteristic.

[46] In another embodiment of the present invention, the reservoir (6) and the distributor

(7) are situated at a higher elevation than the condenser (5). In this embodiment, the household appliance (1) furthermore comprises at least one transmission duct (8) that delivers water from the distributor (7) to the condenser (5), a collector (10) situated below the condenser (5) wherein the excess water flowing from the condenser (5) is retained and capillary tubes (9) that provide to convey the water in the collector (10) to the condenser (5) again. Since the water flowing from the distributor (7) is conveyed by the effect of gravity and the water retained in the collector (10) is conveyed by capillary action onto the condenser (5), there is no need for using up energy to convey the water.

[47] In this embodiment, the ice accumulated on the evaporator (3) melts from time to time. This water is collected in the reservoir (6). If the surface temperature of the condenser (5) measured by the thermostat (13) is high, the valve (11) is opened to allow the water in the reservoir (6) to flow out to the distributor (7) and from there to the transmission ducts (8) and to flow onto the condenser (5) therefrom. The coating on the condenser (5) absorbs some of the water that flows by the effect of gravity. The unabsorbed part of the water is retained in the collector (10) below the condenser (5). The water in the collector (10) is again delivered onto the condenser (5) by means of the capillary tubes (9) as the coating on the condenser (5) dries up. As the water

absorbed by the coating of the condenser (5) evaporates, the surface temperature of the condenser (5) is reduced. Consequently the valve (11) is closed, cutting off the water flow from the reservoir (6). When the amount of the water in the reservoir (6) is detected to be insufficient, priority is given to the defrosting process in the evaporator (3) to supply water.

[48] The household appliance (1) of the present invention is either a cooling device or a dryer.

[49] In the household appliance (1) of the present invention, the water required for wetting the condenser (5) is utilized economically since it is only used at the required time and not more than the required amount. Since energy is not consumed to deliver this water to the condenser (5), the household appliance (1) consumes less energy but in return its performance is increased.