Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HYBRID INFUSION DEVICE HOUSING
Document Type and Number:
WIPO Patent Application WO/2015/130534
Kind Code:
A1
Abstract:
Described is a housing for a drug infusion pump. Generally, the housing is of a hybrid design having a rigid portion containing the drive mechanism and any desired electronic components, and a pliant portion that improves the adherence of the patch-style infusion device to the body of the patient.

Inventors:
HUTCHINSON MICHAEL (US)
Application Number:
PCT/US2015/016464
Publication Date:
September 03, 2015
Filing Date:
February 19, 2015
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ANIMAS CORP (US)
International Classes:
A61M5/142
Foreign References:
US20060264894A12006-11-23
US7648494B22010-01-19
US8430849B22013-04-30
US20140088507A12014-03-27
Attorney, Agent or Firm:
PLANTZ, Bernard F. et al. (One Johnson & Johnson PlazaNew Brunswick, New Jersey, US)
Download PDF:
Claims:
CLAIMS

WHAT IS CLAIMED IS:

1. A medical infusion device, comprising:

a rigid housing having a top portion, a base portion, and a cavity;

an inline drive mechanism within the cavity;

a reservoir in fluid communication with the inline drive mechanism;

a fluid outlet port in fluid communication with the inline drive mechanism, wherein the fluid outlet port extends through the housing;

one or more pliant portions depending from the rigid housing; and

an adhesive patch attached to at least the base portion of the rigid housing.

2. The medical device of claim 1 wherein the reservoir is in fluid communication with the inline drive mechanism via one or more fluid channels.

3. The medical infusion device of claim 1, comprising a receiver mechanism for releasably attaching a cannula or a lineset to the fluid outlet port.

4. The medical infusion device of claim 3, wherein the receiver mechanism

comprises one or more finger-press tabs.

5. The medical infusion device of claim 4, wherein the one or more finger-press tabs each are in mechanical communication with at least one catch-tab.

6. The medical infusion device of claim 5, wherein the one or more finger-press tabs each are in mechanical communication with at least one latch-tab.

7. The medical infusion device of claim 6, wherein the receiver mechanism is attached to a cartridge configured to fit in the cavity.

8. The medical infusion device of claim 7, wherein the inline drive mechanism is disposed within the cartridge.

9. The medical infusion device of claim 8, wherein the reservoir is within the cartridge.

10. The medical infusion device of claim 8, wherein at least one of the one or more pliant portions depending from the housing having a cavity therein.

1 1. The medical infusion device of claim of claim 10, wherein the cavity in the at least one of the one or more pliant portions depending from the housing comprises the reservoir.

12. The medical infusion device of claim 7 wherein the cartridge is releasably secured in the housing by the latch tabs.

Description:
HYBRID INFUSION DEVICE HOUSING

Inventor: MICHAEL HUTCHINSON

CROSS-REFERENCE TO RELATED APPLICATIONS

[001] This application claims the benefits of priority under the Paris Convention as well as 35 USC§§ 119, 120, 365 and 371 based on prior filed US Patent application S.N.

14/188,794, filed on February 25, 2014, which application is hereby incorporated by reference as if set forth herein this application.

FIELD OF THE INVENTION

[002] The present invention relates, in general, to drug delivery devices and, more particularly, to a drug infusion device that may be worn as a patch-style pump with a hybrid housing made partially of pliant material and partially of rigid material, in which an infusion cannula is inserted directly under the skin of a patient or as a tethered pump to permit the use of an infusion set to permit the insertion of the cannula under the skin at a location separated from drug infusion device.

BACKGROUND OF THE INVENTION

[003] The use of drug delivery devices for various types of drug therapy is becoming more common as the automated infusion of a drug may provide more reliable and more precise treatment to a patient.

[004] Diabetes is a major health concern, as it can significantly impede on the freedom of action and lifestyle of persons afflicted with this disease. Typically, treatment of the more severe form of the condition, Type I (insulin-dependent) diabetes, requires one or more insulin injections per day, referred to as multiple daily injections. Insulin is required to control glucose or sugar in the blood, thereby preventing hyperglycemia that, if left uncorrected, can lead to diabetic ketoacidosis. Additionally, improper administration of insulin therapy can result in hypoglycemic episodes, which can cause coma and death. Hyperglycemia in diabetics has been correlated with several long-term effects of diabetes, such as heart disease, atherosclerosis, blindness, stroke, hypertension, and kidney failure.

[005] The value of frequent monitoring of blood glucose as a means to avoid or at least minimize the complications of Type I diabetes is well established. Patients with Type II (non-insulin-dependent) diabetes can also benefit from blood glucose monitoring in the control of their condition by way of diet and exercise. Thus, careful monitoring of blood glucose levels and the ability to accurately and conveniently infuse insulin into the body in a timely manner is a critical component in diabetes care and treatment.

[006] To more effectively control diabetes in a manner that reduces the limitations imposed by this disease on the lifestyle of the affected person, various devices for facilitating blood glucose (BG) monitoring have been introduced. Typically, such devices, or meters, permit the patient to quickly, and with a minimal amount of physical discomfort, obtain a sample of their blood or interstitial fluid that is then analyzed by the meter. In most cases, the meter has a display screen that shows the BG reading for the patient. The patient may then dose theirselves with the appropriate amount, or bolus, of insulin. For many diabetics, this results in having to receive multiple daily injections of insulin. In many cases, these injections are self-administered.

[007] Due to the debilitating effects that abnormal BG levels can have on patients, i.e., hyperglycemia, persons experiencing certain symptoms of diabetes may not be in a situation where they can safely and accurately self-administer a bolus of insulin. Moreover, persons with active lifestyles find it extremely inconvenient and imposing to have to use multiple daily injections of insulin to control their blood sugar levels, as this may interfere or prohibit their ability to engage in certain activities. For others with diabetes, multiple daily injections may simply not be the most effective means for controlling their BG levels. Thus, to further improve both accuracy and convenience for the patient, insulin infusion pumps have been developed.

[008] Insulin pumps are generally devices that are worn on the patient's body, either above or below their clothing. Because the pumps are worn on the patient's body, a small and unobtrusive device is desirable. Therefore, it would be desirable for patients to have a more compact drug delivery device that delivers medication reliably and accurately. Further it would be desirable for such an infusion system to conform to the patient's body when worn, to reduce discomfort and unintentional dislodgement, and offers the flexibility for the patient to choose to operate the pump with or without an infusion set.

BRIEF DESCRIPTION OF THE DRAWINGS

[009] The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

[010] FIGS. 1A and IB are perspective and cross-sectional perspective views, respectively, of an in-line drive mechanism according to an exemplary embodiment of the present invention in which the drive mechanism is in a retracted position. [Oil] FIG. 2 is a cross-sectional perspective view of the in-line drive mechanism illustrated in FIGS. 1A and IB engaged with a plunger that is inserted into a drug reservoir.

[012] FIG. 3 is a cross-sectional perspective view of the in-line drive mechanism illustrated in FIGS. 1A and IB with the piston extended.

[013] FIGS. 4A and 4B are simplified perspective views of drug delivery devices that are suitable for use with embodiments of the present invention.

[014] FIGS. 5A - 5C are cross-sectional perspective views of an in-line drive mechanism according to another embodiment of the present invention with the piston in retracted, intermediate and extended positions, respectively.

[015] FIGS. 6A - 6C are cross-sectional perspective views of an in-line drive mechanism according to yet another embodiment of the present invention with the piston in retracted, intermediate and extended positions, respectively.

[016] FIG. 7 illustrates a perspective view of an infusion pump according to an embodiment of the invention in which the infusion pump includes an adapter for receiving an infusion set luer connector.

[017] FIG. 8 depicts a perspective view of a medication reservoir cartridge according to the infusion pump of FIG. 7 and including an adapter for receiving a luer connector.

[018] FIG. 9 depicts a cross-sectional view of an insertable component attached to the adapter for receiving a luer connector. [019] FIGS. 10A and 10B show illustrations of an infusion pump according to an embodiment of the present invention equipped for tethered (FIG. 10A) and untethered (FIG. 10B) deployment.

DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS OF THE

INVENTION

[020] FIGS. 1 A - 3 illustrate a drive mechanism 100 of an infusion pump according to an exemplary embodiment of the present invention. Generally cylindrical in shape, the drive mechanism 100 includes a proximal end 102, a distal end 104 and a combined motor and gearbox (hereinafter referred to as a "motor 106") operatively coupled to a lead screw 108 that is configured to engage a piston 110. The proximal end 102 of the drive mechanism 100 is compliance mounted (i.e., has a "floating" mount) to an internal surface (not shown) of a housing of a drug delivery device such as, for example, an insulin pump. A compliance mount allows the motor housing to turn slightly in response to high motor torque during motor startup. The distal end 104 of the drive mechanism 100 is configured to engage a plunger 1 11 that is slidably inserted into a drug reservoir 112 (or cartridge) of a drug delivery device. The drive mechanism 100 is coaxially aligned or "in-line" with the axis of travel of the plunger 11 1. Embodiments of drug delivery devices that may be used with exemplary embodiments of the present invention are illustrated in FIGS. 4A and 4B.

[021] The piston 1 10 includes a cavity 1 13 to receive the motor 106 and the lead screw 108 such that the lead screw 108 and at least a portion of the motor 106 are substantially contained within the piston cavity 1 13 when the piston 110 is in a retracted position. At least a portion of the motor 106 is also substantially contained within a cavity 1 14 of the lead screw 108 regardless of whether the piston 1 10 is in the retracted or extended position. In this embodiment, the length of the motor 106 is greater than a diameter of the motor 106. The length of the motor 106 is from about 20 millimeters to about 30 millimeters and the diameter of the motor is from about 5 millimeters to about 10 millimeters. This configuration of the piston 1 10, lead screw 108 and motor 106 results in a more compact drug delivery device than with conventional motor configurations which are parallel to the axis of travel of the plunger.

[022] An outer surface 116 of the piston 1 10 further includes a keying feature 1 18 that mates with a slot (not shown) in the internal surface of the housing of the drug delivery device. The keying feature 1 18 prevents rotation of the piston 110 during use of the drive mechanism 100 such that the piston 110 moves only in the axial direction A.

[023] The motor 106 is coupled to and drives a drive shaft 120, which is coupled via a hub to an inner surface 124 of a first end 126 of the lead screw 108. The motor 106 is housed within and is attached to a motor mounting sleeve 128 by at least one dowel pin 130. The motor mounting sleeve 128 prevents the motor 106 from rotating by being keyed (not shown) to a base mount 132 that is attached to an internal surface of the drug delivery device. The base mount 132 radially surrounds the motor mounting sleeve 128 near a proximal end 134 of the motor mounting sleeve 128. A plurality of linear bearings 136 between the motor mounting sleeve 128 and the base mount 132 allow the motor mounting sleeve 128 to "float" axially such that a force sensor 138 can sense a load on the motor 106 when, for example, the infusion line that delivers the drug from the drug reservoir is occluded. The force sensor 138 is coupled to a force sensor contact 140 at the proximal end 134 of the motor mounting sleeve 128.

[024] The lead screw 108 includes external threads 142 that mate with internal threads 144 of the piston 110. Radial bearings 146 that allow rotational movement of the lead screw 108 may be included in a space 148 between a second end 150 of the lead screw 108 and an outer surface 152 of the motor mounting sleeve 128.

[025] In use, the torque generated from the motor 106 is transferred to the drive shaft 120, which then rotates the lead screw 108. As the lead screw 108 rotates, the external threads 142 of the lead screw 108 engage with the internal threads 144 of the piston 1 10, causing the piston 1 10 to move in the axial direction A from a retracted position (see FIG. IB) to an extended position (see FIG. 3). As the piston 1 10 moves from the retracted position to the extended position, the distal end of the piston 1 10 engages the plunger 1 11 (shown in FIG. 2) such that the drug is delivered from the drug reservoir or cartridge.

[026] Referring to FIGS. 4A and 4B, drug delivery devices 300 and 400 that may be used with embodiments of the present invention each include a housing 302 and 402, respectively, a display 404 (not shown in device 300) for providing operational information to the user, a plurality of navigational buttons 306 and 406 for the user to input information, a battery (not shown) in a battery compartment for providing power to drug delivery devices 300 and 400, processing electronics (not shown), drive mechanism 100 for forcing a drug from a drug reservoir through a side port 308 and 408 connected to an infusion set (not shown) and into the body of the user.

[027] Referring now to FIGS. 5A - 5C, another embodiment of the present invention is illustrated. The drive mechanism 500 is cylindrical in shape and includes a proximal end 502, a distal end 504 and a motor 506 operatively coupled to a lead screw 508, which is configured to engage a piston 510. The proximal end 502 of the drive mechanism 500 is compliance mounted to an internal surface (not shown) of a housing of a drug delivery device. The distal end 504 of the drive mechanism 500 is configured to engage a plunger 511 that is slidably inserted into a drug reservoir of a drug delivery device. The drive mechanism 500 is coaxially aligned or "in-line" with the axis of travel of the plunger.

[028] The piston 510 includes a cavity 512 to receive the motor 506 and the lead screw 508 such that the lead screw 508 and the motor 506 are substantially contained within the piston cavity 512 when the piston 510 is in a retracted position. In this embodiment, the piston 510 and lead screw 508 have a "telescoping" configuration, as will be described in more detail below. The piston 510 includes a cap 513, a first member 514 and a second member 516. The cap 513 is affixed to the first member 514. At least one spline 517 on an inner surface 519 of the first member 514 mates with at least one groove (not shown) on an outer surface of the second member 516. The at least one spline 517 prevents rotational movement of the first member 514 such that the first member 514 only moves in an axial direction A'. The second member 516 is at least partially slidably inserted into the first member 514 and includes internal threads 544 that mate with external threads 542 on the lead screw 508. The second member 516 includes a keying feature 518 (e.g., a flange) on a proximal end that mates with a slot (not shown) on an inner surface of the drug delivery device housing. The keying feature 518 prevents rotation of the second member such that the second member only moves in the axial direction A'.

[029] In this embodiment of the drive mechanism 500, the motor 506 is a "flat" motor with the diameter being greater than the length. The length of the motor is from about 2 millimeters to about 12 millimeters and the diameter of the motor is from about 10 millimeters to about 15 millimeters. The configuration of the piston 510, lead screw 508 and motor 506 results in a more compact drug delivery device than with conventional motor configurations, which are parallel to the axis of travel of the plunger. [030] The motor 506 drives a drive shaft 520, which is coupled to a drive nut 522. The motor 506 is housed within and is attached to a motor mounting sleeve 528. The motor mounting sleeve 528 prevents the motor 506 from rotating by being keyed (not shown) to a base mount 532 that is attached to an internal surface of the drug delivery device. The base mount 532 is nested inside the motor mounting sleeve 528 near the proximal end 534 of the motor mounting sleeve 528. A plurality of linear bearings 536 between the motor mounting sleeve 528 and the base mount 532 allow the motor mounting sleeve 528 to "float" axially such that a force sensor 538 can sense a load on the motor 506 when, for example, the infusion line that delivers the drug from the drug reservoir is occluded. The force sensor 538 is coupled to a force sensor contact 540 at the proximal end of the motor 506.

[031] A distal end 535 of the motor mounting sleeve 528 is located adjacent to a second end 550 of the lead screw 508 when the piston 510 is in a retracted position. In order for the drive shaft 520 to connect to the drive nut 522, the drive shaft 520 protrudes through an opening 552 in the distal end 535 of the motor mounting sleeve 528. A first dynamic radial seal 554 is located between the drive shaft 520 and the motor mounting sleeve 528 to prevent fluid from contacting the motor 506. The first dynamic radial seal 554 allows axial movement of the motor mounting sleeve 528 for force sensing. The static radial seal 554 may be formed from a low friction material such as, for example, Teflon. In the embodiment shown in FIGS. 5A and 5B, the drive nut 522 spans the longitudinal distance from the first end 526 to the second end 550 inside a lead screw cavity 556. In an alternative embodiment, the drive nut 522 spans a portion of the distance from the first end 526 to the second end 550 inside the lead screw cavity 556 and the length of the drive shaft 520 is increased accordingly. [032] A dynamic radial seal 558 may also be located between the base mount 532 and the motor mounting sleeve 528 to prevent fluid from reaching the motor 506. The dynamic radial seal 558 allows axial movement of the motor mounting sleeve 528 for force sensing. The dynamic radial seal 558 may be formed from a low friction material such as, for example, Teflon.

[033] The drive nut 522 includes external threads 560 that mate with internal threads 562 of the lead screw 508. The lead screw 508 also includes external threads 542 that mate with internal threads 544 of the second member 516 of the piston 510. Radial bearings 546 may be included in a space 548 between the first end 526 of the lead screw 508 and an inner surface of the first member 514 of the piston 510 to allow rotation of the lead screw 508.

[034] In use, the torque generated from the motor 506 is transferred to the drive shaft 520, which then rotates the lead screw 508. As the lead screw 508 rotates, the external threads 560 of the drive nut 522 engage with the internal threads 562 of the lead screw 508 such that the lead screw 508 moves first distance B l in an axial direction until a first stop 564 on the drive nut 522 is engaged with an internal surface of the second end 550 of the lead screw 508, as illustrated in FIG. 5B. Because the external threads 542 near the second end 550 of the lead screw 508 are engaged with the internal threads 544 of the second member 516 of the piston 510 and the piston 510 can only move axially, the piston 510 also moves first distance Bl . Next, the external threads 542 of the lead screw 508 engage with the internal threads 544 of the second member 516 of the piston 510, causing the piston 510 to move a second distance B2 in an axial direction until a second stop 566 on an external surface of the lead screw 508 is engaged, as illustrated in FIG. 5C. Thus, the piston 510 moves from a retracted position (see FIG. 5A) to a fully extended (or telescoped) position (see FIG. 5C). As the piston 510 moves from the retracted to the extended position, the distal end of the piston 510 engages the plunger 51 1 such that the drug is delivered from the drug reservoir or cartridge. Because the internal and external threads of the components in the drive mechanism 500 have the same pitch, the order in which the components move axially is not critical to the function of the drive mechanism 500.

[035] FIGS. 6A - 6C illustrate yet another embodiment of the present invention. The drive mechanism 600 is cylindrical in shape and includes a proximal end 602, a distal end 604 and a motor 606 operatively coupled to a lead screw 608 that is configured to engage a piston 610. The proximal end 602 of the drive mechanism 600 is compliance mounted to an internal surface (not shown) of a housing of a drug delivery device. The distal end 604 of the drive mechanism 600 is configured to engage a plunger (not shown) that is slidably inserted into a drug reservoir of a drug delivery device. The drive mechanism 600 is coaxially aligned or "inline" with the axis of travel of the plunger.

[036] The piston 610 includes a cavity 612 to receive the motor 606 and the lead screw 608 such that the lead screw 608 and the motor 606 are substantially contained within the piston cavity 612 when the piston 610 is in a retracted position. In this embodiment, the piston 610 and lead screw 608 have a "telescoping" configuration, as will be described in more detail below. The piston 610 includes internal threads 644 near a proximal end that mate with external threads 642 on the lead screw 608. The piston 610 further includes a keying feature (not shown) on an outer surface of the proximal end that mates with a slot (not shown) on an inner surface of the drug delivery device housing. The keying feature prevents rotation of the piston 610 such that the piston 610 only moves in an axial direction A". [037] In this embodiment, the motor 606 is a "flat" motor with the diameter being greater than the length. The length of the motor 606 is from about 2 millimeters to about 12 millimeters and the diameter of the motor 606 is from about 10 millimeters to about 15 millimeters. The configuration of the piston 610, lead screw 608 and motor 606 results in a more compact drug delivery device than with conventional motor configurations which are parallel to the axis of travel of the plunger.

[038] The motor 606 is coupled to and drives a drive shaft 620. The drive shaft 620 is coupled to a drive nut 622 to an inner surface 624 of a first end 626 of the lead screw 608. The motor 606 is housed within a motor mounting sleeve 628, which prevents the motor 606 from rotating by being affixed (not shown) to an internal surface of the drug delivery device. A plurality of linear bearings 636 located between the motor 606 and the motor mounting sleeve 628 allow the motor 606 to "float" axially such that a force sensor 638 can sense a load on the motor 606 when, for example, the infusion line that delivers the drug from the drug reservoir is occluded. The force sensor 638 is coupled to a force sensor contact 640 at the proximal end of the motor 606. A spring 641 may optionally be located between the motor 606 and the drug delivery device housing such that the motor 606 is biased away from the force sensor 638.

[039] A distal end 635 of the motor mounting sleeve 628 is located adjacent to a second end 646 of the drive nut 622 when the piston 610 is in a retracted position. In order for the drive shaft 620 to connect to the drive nut 622, the drive shaft 620 protrudes through an opening 652 in the distal end of the motor mounting sleeve 628. A dynamic radial seal 658 is located between the drive shaft 620 and the motor mounting sleeve 628 to prevent fluid from contacting the motor 606. The dynamic radial seal 658 allows axial movement of the motor mounting sleeve 628 for force sensing. The dynamic radial seal 658 is formed from a low friction material such as, for example, Teflon.

[040] The drive nut 622 includes external threads 660 that mate with internal threads 662 of the lead screw 608.

[041] In use, the torque generated from the motor 606 is transferred to the drive shaft 620, which then rotates the lead screw 608. As the lead screw 608 rotates, the external threads 660 of the drive nut 622 engage with the internal threads 662 near the first end 626 of the lead screw 608 such that the lead screw 608 moves a first distance CI in an axial direction until a surface 645 on the proximal end of the lead screw 608 engages the second end 646 of the drive nut 622, as illustrated in FIG. 6B. Because the external threads 642 near the second end 650 of the lead screw 608 are engaged with the internal threads 644 of the piston 610 and the piston 610 can only move axially, the piston 610 also moves the first distance CI in an axial direction. Next, the external threads 642 near the second end 650 of the lead screw 608 engage with the internal threads 644 near the proximal end of the piston 610, causing the piston 610 to move a second distance C2 in an axial direction until a stop 666 on an external surface of the lead screw 608 is engaged, as illustrated in FIG. 6C. Thus, the piston 610 moves from a retracted position (see FIG. 6A) to a fully extended (or telescoped) position (see FIG. 6C). As the piston 610 moves from the retracted to the extended position, the distal end of the piston 610 engages the plunger such that the drug is delivered from the drug reservoir or cartridge. Because the internal and external threads of the components in the drive mechanism 600 have the same pitch, the order in which the components move axially is not critical to the function of the drive mechanism 600. [042] An advantage of the telescoping arrangement illustrated in FIGS. 6A - 6C is that the length of the piston 610 can be reduced by about 40% (or distance CI in FIG. 6A) versus non-telescoping configurations, resulting in a more compact drug delivery device.

[043] The motors depicted in FIGS. 1 - 6B may optionally include an encoder (not shown) that, in conjunction with the electronics of the drug delivery device, can monitor the number of motor rotations. The number of motor rotation can then be used to accurately determine the position of the piston, thus providing information relating to the amount of fluid dispensed from the drug reservoir.

[044] FIG. 7 illustrates an infusion device according to the present invention, employing an in-line drive mechanism. This embodiment relates to an inline infusion pump with an adapter to permit it to be used as a hybrid device - either tethered or untethered. Many insulin pumps require the use of an infusion set that attaches to the reservoir or cartridge within the pump to deliver medication under the skin. Exemplary of such an infusion set is the one described in U.S. Patent No. 6,572,586, which is hereby incorporated by reference in its entirety.

[045] Some patient may prefer having their infusion pump located remotely from their infusion site where the cannula of the infusion set is inserted under the skin. Those patients will prefer to use the presently disclosed infusion system with an infusion set. Others, however, choose to avoid the use of an infusion set and will opt for a patch-style (e.g.

untethered) infusion pump. This style of infusion pump use omits the use of the infusion set and the cannula that is inserted under the skin of the user extends directly from the cartridge or reservoir of the infusion pump. A wearable, patch-style infusion device exemplary of untethered pumps is described in U.S. Patent No. 8,109,912, which is hereby incorporated by reference in its entirety.

[046] The infusion device 700 includes housing 715 that contains within it the inline drive mechanism and cartridge, reservoir, bladder, or other structure for storing medication. The housing 715 includes flexible wings 720, 720' that are attached to the housing, but are made from a soft, pliant material, such as silicone rubber, that will allow the device to conform to the location on the patient's body where the device 700 is worn. The device 700 is adhered to the patient's body using an adhesive patch 705 that may be attached to the housing 715 via ultrasonic welding, laser welding, chemical bonding agents, etc.

[047] Since devices according to this embodiment of the invention are typically used by Type 1 diabetics, when the device is configured to deliver basal insulin, having a structure that permits the device to adhere securely and comfortably to the body of patients of varying sizes (children through adults) is beneficial. Using flexible wings 720, 720' on either side of the device 700 allows the device 700 to rest more securely against the contours of the body while reducing stresses at locations on the adhesive patch 705. This makes it less likely that a patient will accidentally dislodge their patch pump, whether through exercise, normal activity (walking, performing household chores, etc.), during movement while sleeping, etc. Patients should also find that a housing 715 with a semi-pliant design is more comfortable, as the likelihood of a sharp edge or corner protruding from the device and causing irritation or discomfort is minimized.

[048] The infusion device 700 shown also has the ability to operate as a tethered pump, meaning that it uses an infusion set to connect the fluid outlet port 725 on the pump 700 to a cannula that is inserted under the skin of the patient at a remote location. Alternatively, the device 700 can operate as an untethered pump that has a cannula directly attached to the device's fluid output port 725 and be inserted under the skin of the patient at a location proximate to the location on the patient's body where the device 700 adheres via the adhesive patch 705.

[049] The device 700 includes a receiver mechanism 710 for receiving an infusion set or cannula that includes finger-press tabs 750, 750' that are used to deflect catch-tabs 730, 730 that releasably attaches to an infusion set or an cannula, as illustrated in FIGS 10A, 10B. Guide tabs 735, 735' help place the cannula adapter 920 (FIG. 10B) to ensure that the cannula is connected to the fluid outlet port 725. As shown in FIG. 10A, a hybrid pump housing with flexible wings 900 attaches to an infusion set 910. In FIG. 10B, the hybrid pump housing with flexible wings 900 attaches to a cannula adapter 920.

[050] As further illustrated in FIG. 8, the receiver mechanism 710 also may include latch tabs 760 that releasably secure the receiver mechanism 710 to the housing 715. In the embodiment illustratively shown in FIG. 8, the receiver mechanism 710 is attached to a housing insert 740. The housing insert 740, as illustratively shown in FIG. 9, may include an in-line drive mechanism 760, or other type of fluid pumping mechanism such as a peristaltic pump, micro-electrical mechanical pump (MEMS) or other drive system known in the art. In addition, the housing insert may include a reservoir for medication 765 that has fluid channels 770, 770' for communicating with the fluid outlet port 725. In one embodiment, the reservoir 765 portion of the housing comprises a flexible bladder that fits within the flexible wings 720, 720'. Alternatively, the housing insert 740 may comprise the fluid drive mechanism 760 and a reservoir could be formed within cavities in the flexible wings 720, 720'. [051] It will be recognized that equivalent structures may be substituted for the structures illustrated and described herein and that the described embodiment of the invention is not the only structure, which may be employed to implement the claimed invention. In addition, it should be understood that every structure described above has a function and such structure can be referred to as a means for performing that function. While embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention.

[052] It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.