Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HYBRID MODULE FOR A DRIVE TRAIN OF A VEHICLE
Document Type and Number:
WIPO Patent Application WO/2010/081453
Kind Code:
A2
Abstract:
The invention relates to a hybrid module for a drive train of a vehicle, comprising a first disconnect clutch, an electric motor, and a second disconnect clutch. The first disconnect clutch is disposed in the torque flow path between a combustion engine in the drive train and the electric motor, while the second disconnect clutch is disposed in the torque flow path between the electric motor and a transmission in the drive train. The first disconnect clutch and the second disconnect clutch are disposed in a joint wet chamber.

Inventors:
ARNOLD, Johannes (Ruhesteinstrasse 11, Achern, 77855, DE)
AGNER, Ivo (Hornisgrindestrasse 22, Bühl, 77815, DE)
Application Number:
DE2009/001808
Publication Date:
July 22, 2010
Filing Date:
December 22, 2009
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LUK LAMELLEN UND KUPPLUNGSBAU BETEILIGUNGS KG (Industriestrasse 3, Bühl, 77815, DE)
ARNOLD, Johannes (Ruhesteinstrasse 11, Achern, 77855, DE)
AGNER, Ivo (Hornisgrindestrasse 22, Bühl, 77815, DE)
International Classes:
F16D25/12; B60K6/36
Attorney, Agent or Firm:
LUK LAMELLEN UND KUPPLUNGSBAU BETEILIGUNGS KG (Industriestrasse 3, Bühl, 77815, DE)
Download PDF:
Claims:
Patentansprüche

1. Hybridmodul für einen Antriebstrang eines Fahrzeuges, mit einer ersten Trennkupplung, einem Elektromotor und einer zweiten Trennkupplung, wobei die ersten Trennkupplung im Momentenfluß zwischen einem Verbrennungsmotor im Antriebstrang und dem Elektromotor und die zweite Trennkupplung im Momentenfluß zwischen Elektromotor und einem Getriebe im Antriebstrang angeordnet sind, wobei die erste Trennkupplung und die zweite Trennkupplung in einem gemeinsamen Nassraum angeordnet sind.

2. Hybridmodul nach Anspruch 1 , wobei die zweite Trennkupplung eine Doppelkupplung mit zwei Teilkupplungen ist, im Momentenfluß zwischen Elektromotor und Getriebe im Antriebstrang angeordnet ist, wobei die erste Trennkupplung und die Doppelkupplung im gemeinsamen Nassraum angeordnet sind.

3. Hybridmodul nach Anspruch 1 oder 2, wobei der gemeinsame Nassraum der Kupplungen von einem Deckel abgeschlossen wird, der zwischen einem Rotor des Elektromotors und einem Ausgangslamellenträger der ersten Trennkupplung angeordnet ist und der an einem Getriebegehäuse abgestützt ist.

4. Hybridmodul nach Anspruch 3, wobei ein Rotor des Elektromotors mit der Ausgangsseite der ersten Trennkupplung und die Ausgangsseite der ersten Trennkupplung mit einer Eingangsseite der zweiten Trennkupplung verbunden sind.

5. Hybridmodul nach Anspruch 3 oder 4, wobei ein Stator des Elektromotors am Deckel befestigt ist.

6. Hybridmodul nach einem der Ansprüche 3 bis 5, wobei eine Montagebaugruppe aus erster Trennkupplung, Elektromotor und zweiter Trennkupplung gebildet ist, die mit dem Getriebe verbindbar ist, bevor das Getriebe im Antriebstrang mit dem Verbrennungsmotor verbunden wird.

7. Hybridmodul nach Anspruch 1 oder 2, wobei eine Ausgangsseite der ersten Trennkupplung mit einem Rotor des Elektromotors und der Rotor des Elektromotors mit einer Eingangsseite der zweiten Trennkupplung verbunden sind.

8. Hybridmodul nach Anspruch 7, wobei eine Wandung des gemeinsamen Nassraumes ein Kupplungsgehäuse der zweiten Trennkupplung, insbesondere der Doppelkupplung, einen Rotorträger des Elektromotors und einen Ausgangslamellenträger der ersten Trennkupplung umfasst.

9. Hybridmodul nach Anspruch 8, wobei der Rotorträger des Elektromotors mit dem Kupplungsgehäuse der zweiten Trennkupplung und der Rotorträger mit dem Ausgangslamellenträger der ersten Trennkupplung, insbesondere der Doppelkupplung, fest verbunden, insbesondere verschweißt, verschraubt oder verstemmt, ist.

10. Hybridmodul nach Anspruch 9, wobei zwischen dem Rotorträger des Elektromotors und dem Kupplungsgehäuse der zweiten Trennkupplung und/ oder zwischen dem Rotorträger und dem Ausgangslamellenträger der ersten Trennkupplung ein statisches Dichtelement angeordnet ist.

11. Hybridmodul nach einem der Ansprüche 8 bis 10, mit einem Radialwellendichtring, der zwischen einer Kupplungsnabe der ersten Trennkupplung und einem Ausgangslamellenträger der ersten Trennkupplung angeordnet ist und den gemeinsamen Nassraum abdichtet.

12. Hybridmodul nach einem der Ansprüche 8 bis 11 , wobei der Ausgangslamellenträger der ersten Trennkupplung und der Rotorträger des Elektromotors über ein gemeinsames motorseitiges Lager an einem Deckel abgestützt sind, der an einem Getriebegehäuse abgestützt ist, und wobei das Kupplungsgehäuse über ein getriebeseitiges Lager am Getriebegehäuse abgestützt ist.

13. Hybridmodul nach einem der Ansprüche 1 bis 12, mit einem im gemeinsamen Nassraum angeordneten Bogenfederdämpfer und/oder einem im gemeinsamen Nassraum angeordneten Fliehkraftpendel zur Schwingungsisolation im Antriebstrang zwischen Verbrennungsmotor und Getriebe.

14. Hybridmodul nach einem der Ansprüche 2 bis 13, mit einem Betätigungssystem für die Doppelkupplung mit einer Kolben/ Zylinder-Einheit und einem Kraftübertragungselement für jede der Teilkupplungen der Doppelkupplung mit Kraftübertragung mit oder ohne Hebelwirkung zwischen den Kolben/ Zylinder-Einheiten und den Reiblamellen der Teilkupplungen.

Description:
Hvbridmodul für einen Antriebsstrang eines Fahrzeuges

Die vorliegende Erfindung betrifft ein Hybridmodul für einen Antriebsstrang eines Fahrzeuges, wobei das Hybridmodul zwischen einem Verbrennungsmotor und einem Getriebe angeordnet ist.

Ein Antriebsstrang eines Hybridfahrzeuges umfasst eine Kombination aus einer Brennkraftmaschine und einer elektrischen Maschine, und ermöglicht - beispielsweise in Ballungsgebieten - eine rein elektrische Betriebsweise bei gleichzeitiger ausreichender Reichweite und Verfügbarkeit gerade bei Überlandfahrten. Zudem besteht die Möglichkeit, in bestimmten Betriebssituationen gleichzeitig durch die Brennkraftmaschine und die elektrische Maschine anzutreiben. Die elektrische Maschine von Hybridfahrzeugen ersetzt dabei meist den früher üblichen Starter für die Brennkraftmaschine und die Lichtmaschine, um eine Gewichtszunahme des Hybridfahrzeuges gegenüber Fahrzeugen mit üblichen Antriebssträngen zu reduzieren.

Zudem kann zwischen Brennkraftmaschine und Elektromotor eine erste Trennkupplung angeordnet sein, um die Brennkraftmaschine von der elektrischen Maschine und dem restlichen Antriebsstrang des Hybridfahrzeuges abzutrennen. Bei rein elektrischer Fahrt werden dann die erste Trennkupplung geöffnet und die Brennkraftmaschine abgeschaltet, so dass das Abtriebsmoment des Hybridfahrzeuges alleine von der elektrischen Maschine aufgebracht wird.

Weiterhin kann zwischen Elektromotor und Getriebe eine zweite Trennkupplung angeordnet sein, so dass auch die elektrische Maschine vom übrigen Antriebsstrang des Hybridfahrzeuges abgetrennt werden kann. Sind die erste Trennkupplung geschlossen und die zweite Trennkupplung geöffnet, so kann die Brennkraftmaschine über die elektrische Maschine gestartet werden, so dass auf einen separaten Starter für die Brennkraftmaschine verzichtet werden kann.

Gerade bei Verwendung der ersten und zweiten Trennkupplungen in Verbindung mit einem notwendigerweise groß dimensionierten Elektromotor baut das entsprechende Hybridmodul im Gegensatz zu herkömmlichen Antriebssträngen mit einer Trennkupplung und Startermotor oder mit einer Doppelkupplung und Startermotor vergleichsweise groß. Es ist daher eine Aufgabe der vorliegenden Erfindung eine Hybridmodul für einen Antriebsstrang eines Fahrzeuges mit reduzierten Bauraumanforderungen zu schaffen.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Hybridmodul für einen Antriebsstrang eines Fahrzeuges mit den Merkmalen des Patentanspruches 1.

Bevorzugte Ausführungsbeispiele des erfindungsgemäßen Hybridmoduls sind in den abhängigen Ansprüchen dargelegt.

Die vorliegende Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele in Verbindung mit den zugehörigen Figuren näher erläutert. In diesen zeigen:

Fig. 1 einen schematischen Aufbau eines Hybridmoduls (mit Elektromotor und Trennkupplung) in Verbindung mit einer Doppelnasskupplung, welche zwischen dem Verbrennungsmotor und einem Doppelkupplungsgetriebe eines Antriebsstranges eines Fahrzeuges angeordnet sind,

Fig. 2 einen Halbschnitt eines erstes Ausführungsbeispiel eines erfindungsgemäßen

Hybridmoduls in Verbindung mit Doppelnasskupplung mit rotierendem Nassraum zur Anordnung in einem Antriebsstrang eines Hybridfahrzeuges,

Fig. 3 einen Halbschnitt der Doppelnasskupplung mit rotierendem Nassraum gemäß dem Ausführungsbeispiel nach Fig. 2,

Fig. 4 einen Halbschnitt der Trennkupplung gemäß dem Ausführungsbeispiel nach Fig. 2,

Fig. 5 ein weiteres Ausführungsbeispiel eines Hybridmoduls mit Elektromotor und

Trennkupplung in Verbindung mit einem weiteren Ausführungsbeispiel einer Doppelnasskupplung mit nicht-mitrotierendem Nassraum zur Verwendung in einem Antriebsstrang eines Hybridfahrzeuges, wobei das Hybridmodul (Elektromotor und Trennkupplung) mit der Doppelnasskupplung eine gemeinsame Montagebaugruppe, bildet Fig. 6 ein weiteres Ausführungsbeispiel eines Komplettmoduls im Sinne von Fig. 5 mit

Hybridmodul (Elektromotor und Trennkupplung) und Doppelnasskupplung mit nicht- mitrotierendem Nassraum, die für die Montage auf zwei Module aufgeteilt sind,

Fig. 7 ein weiteres Ausführungsbeispiel eines Komplettmoduls im Sinne von Fig. 5 mit

Hybridmodul (Elektromotor und Trennkupplung) und Doppelnasskupplung mit nicht- mitrotierendem Nassraum, die für die Montage auf zwei Module aufgeteilt sind und

Fig. 8 eine Detaildarstellung der Trennkupplung beim Ausführungsbeispiel nach Fig. 7.

Die in Fig. 1 gezeigte Anordnung beinhaltet eine Doppelnasskupplung 1 , beispielsweise mit mitrotierendem oder nicht-mitrotierendem Nassraum, sowie eine Trennkupplung 2 zwischen Verbrennungsmotor 3 und Doppelkupplung 1. Zwischen der Trennkupplung 2 und der Doppelkupplung 1 ist eine elektrische Maschine 4 angeordnet. Die Trennkupplung 2 und die elektrische Maschine 4 bilden gemeinsam ein Hybridmodul 5. Alternativ zu einer nassen Doppelkupplung könnte auch eine trockene Doppelkupplung vorgesehen sein.

Jede der Teilkupplungen der Doppelnasskupplung 1 ist mit einem Teilgetriebe 6, 7 verbunden, wobei die Teilgetriebe 6, 7 (mit den Übersetzungsverhältnissen i1 bzw. i2) einen gemeinsamen Ausgang aufweisen, welcher ein vom Verbrennungsmotor und/ oder der Elektromaschine erzeugtes Drehmoment über das Differential 8 auf die angetriebenen Räder 9 überträgt. Vorliegend sind exemplarisch zwei Räder dargestellt, wobei dies nur symbolisch zu verstehen ist und selbstverständlich auch eine andere Anzahl an angetriebenen Rädern vorgesehen sein kann.

Sind beide Teilkupplungen der Doppelkupplung 1 geöffnet, so kann bei geschlossener Trennkupplung 2 der Verbrennungsmotor 3 über den Elektromotor 4 gestartet werden.

In rein elektromotorischen Betrieb ist die Trennkupplung 2 geöffnet und der Verbrennungsmotor 3 vom Kraftfluss auf diese Weise abgetrennt.

Beim Betrieb mit Verbrennungsmotor 3 ist die Trennkupplung 2 geschlossen. Der Elektromotor 4 kann dann beispielsweise zum Boosten und zum Rekuperieren von Bremsenergie verwendet werden. - A -

Bei dem in Fig. 1 gezeigten Aufbau eines Hybridantriebsstranges läuft der Elektromotor 4 im Fahrbetrieb mit um, unabhängig davon, ob er in den Leistungsfluss mit eingebunden ist oder nicht.

In Fig. 2 ist ein erstes Ausführungsbeispiel eines Hybridmoduls mit einer Trennkupplung 2 und einer aus Stator 10 und Rotor 11 bestehenden elektrischen Maschine 4 in Verbindung mit einer dem Hybridmodul nachgeschalteten Doppelnasskupplung 1 mit einer radial äußeren Teilkupplung K1 und einer radial inneren Teilkupplung K2 gezeigt, wobei die Trennkupplung 2 und die Doppelkupplung 1 in einem gemeinsamen geschlossenen Nassraum angeordnet sind.

Der gemeinsame Nassraum von Doppelkupplung 1 und Trennkupplung 2 umfasst einen Rotorträger 12 des Elektromotors 4, der mit einem Außenlamellenträger 13 der Trennkupplung 2 und mit einem Kupplungsgehäuse 14 der Doppelkupplung 1 öldicht und drehmomentfest verbunden ist. Mit anderen Worten ist der Nassraum der Doppelkupplung 1 über den Rotorträger 12 der elektrischen Maschine 4 und über den Außenlamellenträger 13 der Trennkupplung 2 erweitert. Die öldicht und drehmomentenfest ausgeführte Verbindung zwischen Kupplungsgehäuse 14 und Rotorträger 12 bzw. zwischen Rotorträger 12 und Außenlamellenträger 13 der Trennkupplung 2 kann als eine Schweiß- oder eine Schraubverbindung mit zusätzlichen statisch wirkendem Dichtelement (Dichtring) ausgebildet sein.

Der Rotorträger 12 des Elektromotors 4 ist als ringförmiger Topf ausgebildet, der zusammen mit Außenlamellenträger 13 und Gehäuse 14 den Nassraum zum Verbrennungsmotor 3 abschließt.

Der Rotor 13 wird auf den Rotorträger 12 aufgepresst.

Der Stator 10 des Elektromotors 4 ist in die Kupplungsglocke eingebaut, d h. mit dem Getriebegehäuse 25 verbunden.

Eine Abdichtung des gemeinsamen Nassraumes von Doppelkupplung und Trennkupplung gegenüber dem umgebenen Trockenraum übernimmt ein Radialwellendichtring 15, der zwischen einer mit einem eingangsseitigen Innenlamellenträger 17 der Trennkupplung 2 verbundenen Kupplungsnabe 16 der Trennkupplung 2 und dem ausgangsseitigen Außenlamellenträger 13 der Trennkupplung 2 angeordnet ist. Hierbei ist die Kupplungsnabe 16 als ge- schlossener Topf ausgebildet, welcher den Nassraum zum Verbrennungsmotor hin abschließt.

Die Kupplungsnabe 16 ist über eine Flexplate bzw. einer Driveplate 18, welche mittels einer Schraubverbindung oder einer Kardanikaufhängung 19 mit einer weiteren Flexplate oder Driveplate 20 verbunden, welche wiederum mit einer Kurbelwelle 21 des Verbrennungsmotors 3 verbunden ist.

Eine Vorzentrierung der Kupplungsnabe 16 bei Montage und damit des Hybridmoduls 5 und der Doppelkupplung 1 bei Montage kann über einen Pilotzapfen 22 erfolgen, der in eine Ausnehmung der Kurbelwelle 21 eingesteckt ist (vergleichbar einem Wandleraufbau), wodurch eine motorseitige Montage des Hybridmoduls und der Doppelkupplung erleichtert wird, gerade in dem Falle, dass das Hybridmodul und die Doppelkupplung zunächst mit dem Getriebe verbunden werden, bevor eine Verbindung mit dem Motor erfolgt.

Der ausgangsseitige Außenlamellenträger 13 der Trennkupplung 2, der Rotorträger 12 und die Doppelkupplung 1 sind über ein motorseitiges Lager 23 an einem Deckel 24 drehbar abgestützt, wobei der Deckel 24 an einem Getriebegehäuse 25, beispielsweise über einen Sicherungsring 26 und ggf. ein weiteres Dichtelement, abgestützt und befestigt ist.

Der Außenlamellenträger 13 der Trennkupplung 2 und damit auch Rotorträger 12 und Rotor 11 der elektrischen Maschine 4 sind über das motorseitige Lager 23 deckelfest in der Getriebeglocke rotorseitig gelagert. Getriebeseitig ist die Einheit über das Kupplungsgehäuse 14 ebenfalls in der Kupplungsglocke über das Lager 26 gelagert. Vorliegend ist das getriebeseiti- ge Lager 23 als reines Radiallager (Loslager) und das getriebeseitige Lager 26 als Radial- und Axiallager (Festlager) ausgebildet. Das getriebeseitige Lager 26 und das motorseitige Lager 23 sind jeweils in den gegenüberliegenden Endbereichen des Hybridmoduls und der Doppelkupplung angeordnet, so dass sich gerade für den Rotorträger eine breite Lagerung und damit einen präzisen Lauf des Rotors im Stator ergibt. Die einzuhaltenden kleinen Toleranzen im Spalt zwischen Rotor und Stator können dementsprechend sicher eingehalten werden.

Die vorstehend beschriebene Lagerung ermöglicht außerdem eine Abstützung der auftretenden Radial- und Axialkräfte und legt durch die deckelfeste Anbindung die axiale Position der Einheit Trennkupplung und Doppelkupplung innerhalb der Kupplungsglocke fest. Details zur Doppelkupplung 1 sind in Fig. 3 angegeben, wobei das Ausführungsbeispiel der Doppelkupplung nach Fig. 3 nur exemplarisch zu verstehen ist für unterschiedliche Arten an Doppelkupplungen mit mitrotierendem Nassraum.

Figur 3 zeigt das Doppelkupplungsaggregat 1 in zusammengebautem Zustand als Teilschnitt oberhalb der Drehachse 102. Das Kupplungsaggregat 1 ist zwischen der Antriebseinheit 3 und dem Getriebe 6,7 angeordnet.

Das Gehäuse 108 ist mittels des Wälzlagers 123 verdrehbar am Getriebegehäuse 122 abgestützt, wobei zwischen dem ringförmigen axialen Ansatz 124 des Gehäuseteils 107 und dem Wälzlager 123 der Zahnkranz 125 für die Getriebeölpumpe, die auch das Druckmittel des Kupplungsaggregats 1 umwälzen kann, mittels eines hülsenförmigen Ansatzes angeordnet und von dem Ansatz 124 angetrieben wird. Der aus dem Zahnkranz 125 und dem Wälzlager 123, das über den Zahnkranz 125 auch eine Lagerung für das Gehäuse 108 an der Gehäusewandung des Getriebegehäuses 122 bildet, gebildete Pumpenantrieb ist vorzugsweise an dem Getriebegehäuse 122 vormontiert, wobei bei der Verbindung von Kupplungsaggregat 1 und Getriebe das Schöpfrohr 114 in der Zuführeinrichtung zentriert wird und die Führungsstifte 183 diese durchgreifen und im Getriebegehäuse 122 axial verlagerbar und das Schöpfrohr 114 drehfest lagernd aufgenommen werden. Auf dem axialen Ansatz 124 ist eine zentrierte Dichtscheibe 126, beispielsweise aus Blech oder Kunststoff mit einer Dichtung 127 wie Radi- alwellendichtring zum Ansatz 124 zur Abdichtung des Gehäuses 108 gegenüber dem Getriebegehäuse 122 vorgesehen.

Innerhalb des zumindest teilweise mit Druckmittel befüllten Gehäuses 108 sind der Drehschwingungsdämpfer 112 und die beiden radial übereinander angeordneten Nasskupplungen 128,129 aufgenommen. Das Eingangsteil des Drehschwingungsdämpfers 112 wird dabei von dem Gehäuse gebildet, das die in Umfangsrichtung wirksamen Energiespeicher 111 , die in dem gezeigten Ausführungsbeispiel aus vorzugsweise zwei über den Umfang angeordneten Bogenfedergruppen mit jeweils zwei radial ineinander geschachtelten Bogenfe- dern 130, 131 gebildet sind, mittels den in die Stirnseiten der Bogenfedern 130, 131 radial eingreifenden Mitnehmern 117, 118 in Umfangsrichtung beaufschlagt. Die Mitnehmer 117 sind dabei aus über den Umfang angeordneten Einformungen des Gehäuseteils 106, die Mitnehmer 18 durch ausgestellte Bereiche des Ringflanschteils 116 gebildet. Das Ringflanschteil 116 wird nach Einlegen der Bogenfedern 130, 131 an den radialen Absatz 132 des Gehäuseteils 106 angelegt und axial fixiert wie beispielsweise verschweißt und dient der verliersiche- ren Aufnahme der Bogenfedern 130, 131 vor der Montage und der axialen Führung der Bo- genfedern 130, 131 während des Betriebs. Zwischen den Bogenfedern 130 und dem radial äußeren Bereich des Gehäuseteils 106 ist eine Verschleißschutzschale 133 vorgesehen, die zweiteilig in Umfangsrichtung zwischen den Mitnehmern 117 angeordnet sind schwimmend gegenüber dem Gehäuse 108 gelagert sein können.

Der Drehschwingungsdämpfer 112 ist im Drehmomentfluss vor den Nasskupplungen 128, 129 wirksam, so dass das Ausgangsteil des Drehschwingungsdämpfers 112 gleichzeitig das gemeinsame Eingangsteil 113 der Nasskupplungen 128, 129 ist. Hierzu verfügt das Eingangsteil 113 über ein Flanschteil 113a mit den ausgangsseitigen Mitnehmer 119 des Drehschwingungsdämpfers 112, die als radial erweiterte Arme des Flanschteils 113A ausgebildet sind und im nicht verspannten Zustand der Bogenfedern 130, 131 am selben Umfang der Mitnehmer 117, 118 die Stirnflächen der Bogenfedern 130, 131 beaufschlagen und damit bei einer Relatiwerdrehung des Gehäuses 108 gegenüber dem Eingangsteil 113 der Nasskupplungen 128, 129 eine Verspannung der Bogenfedern 130, 131 bewirken, so dass die derartige Relatiwerdrehungen bewirkenden Drehmomentspitzen bedämpft werden, indem die als Energiespeicher 111 wirksamen Bogenfedern die Energie dieser Drehmomentspitzen kurzzeitig Zwischenspeichern.

Über den Drehschwingungsdämpfer 112 wird das Drehmoment der Antriebseinheit in das Eingangsteil 113 eingetragen. Das Eingangsteil 113 verteilt das Drehmoment auf die eingangs- seitigen Lamellenträger 134, 135 der Nasskupplungen 128, 129, die mittels einer gemeinsamen Trägerscheibe 136, die mit der Kupplungsnabe 137 fest verbunden wie verschweißt ist, zentriert und gelagert sind. Radial außen und vorzugsweise axial beabstandet und auf radial derselben Höhe ist an der Trägerscheibe 136 der Drehschwingungstilger 150, beispielsweise - wie gezeigt - ein Fliehkraftpendel 151 mit zu der Trägerscheibe 136 in Umfangsrichtung und radiale Richtung begrenzt verlagerbaren Fliehgewichten 152 angeordnet. In den eingangssei- tigen Lamellenträger 134, 135 sind jeweils Lamellen 138, 139 eingehängt, die sich axial mit ausgangsseitigen Reiblamellen 140, 141 abwechseln und bei axialer Beaufschlagung einen Reibeingriff bilden. Die ausgangsseitigen Reiblamellen 140, 141 sind in Lamellenträgern 142, 143 eingehängt, die jeweils mit einer Nabe 144, 145 mit einer Verzahnung 146, 147 mit der Getriebeeingangswelle 148 beziehungsweise mit der um diese angeordnete, als Hohlwelle ausgebildete Getriebeeingangswelle 149 verbunden wie verschweißt sind und daher auf den beiden Getriebeeingangswellen 148, 149 gelagert und zentriert sind. Nach dem Einbau ist die Kupplungsnabe 137 mittels der Wälzlager 153, 154 auf der Getriebeeingangswelle 149 axial schwimmend gelagert. Die Getriebeeingangswelle 149 ist mittels des Wälzlagers 155 axial und radial fest im Getriebegehäuse 122 gelagert.

Die schwimmende Lagerung der Kupplungsnabe 137 ist begrenzt durch die beiden Anlaufscheiben 156, 157. Die Anlaufscheibe 156 ist einteilig aus Kunststoff gebildet und enthält das in die Stirnseite der Kupplungsnabe 137 eingebrachte Trägerteil 158 und die Schmierölnuten 159. Die Nabe 145 ist gegenüber der Nabe 144 mittels des Wälzlagers 160 axial und verdrehbar angelegt. Die Nabe 144 stützt sich mittels des Wälzlagers 161 axial fest an dem Gehäuseteil 106 verdrehbar ab, so dass die Kupplungsnabe 137 über die Shimmscheibe 167 axial abgestützt ist, indem beispielsweise durch diese ein definiertes Spiel eingestellt wird. Die für die Lager 160, 161 nötige axiale Vorspannung wird mittels des axial wirksamen Energiespeichers 145, beispielsweise einer Wellfeder eingestellt, der sich mittels der Sicherungsscheibe 145B an der Getriebeeingangswelle 149 abstützt. In die entgegen gesetzte Richtung stützt sich die Kupplungsnabe 137 mittels des Dichtblechs 162, das an dem Absatz 163 mittels des Sicherungsrings 164 axial fest an dieser angeordnet ist, an dem Schöpfrohr 114 ab, das wiederum mittels der Anlaufscheibe 165, die als Wälzlager ausgebildet sein kann, an dem Gehäuseteil 107 axial abstützt. Zwischen dem Dichtblech 162 und dem Schöpfrohr 114 ist die axial wirksame Anlaufscheibe 157 angeordnet, der eine axial begrenzte Verlagerung der Kupplungsnabe 137 entgegen dessen Wirkung in Richtung des Gehäuseteils 107 erlaubt, so dass die Kupplungsnabe 137 in beide Richtungen axial begrenzt verlagerbar gegenüber dem Gehäuse 108 verlagerbar und daher schwimmend gelagert ist. Die Anlaufscheibe 157 ist aus einer mit dem Dichtblech 162 verzahnten Trägerscheibe 166 und einer darauf fest aufgenommenen Shimmscheibe 167 gebildet, die in Kontakt mit einer mit dem Schöpfrohr 114 verzahnten Anlaufscheibe 168 tritt.

Die beiden Nasskupplungen 128, 129 werden durch mittels eines Druckmittels axial verlagerbare Kolben 169, 170 beaufschlagt, die die Lamellen 138 beziehungsweise 139 axial mit den Reiblamellen 140 beziehungsweise 141 gegen eine Endlamelle 171 , 172 verpressen und dadurch einen Reibeingriff bilden. Hierzu wird das Druckmittel jeweils über Drehdurchführungen 173, 174 in Versorgungsleitungen 175, 176 geleitet und in die Druckkammern 177, 178 dosiert, wodurch die Kolben 169, 170 entgegen der Wirkung der axial wirksamen Energiespeicher 179, 180 verlagert werden und die Nasskupplungen 128, 129 dadurch je nach angelegtem Druck des Druckmittels geschlossen werden. Wird der Druck in den Druckkammern 177, 178 abgebaut, werden die Nasskupplungen selbständig durch Entspannung der Energiespeicher 179, 180 wieder geöffnet. Die Versorgungsleitungen 181, 182 dienen der Kühlung der Nasskupplungen 128, 129 insbesondere den Reibbelägen der Reiblamellen 140, 141 , die insbesondere unter schlupfenden Bedingungen der Nasskupplungen 128, 129 besonderem Wärmestress ausgesetzt sind. Das auf diese Weise dosierte Druckmittel kühlt die Reiblamellen 140, 141 ab und strömt nach radial außen, von wo es durch das mittels der Führungsstifte 183 fest mit dem Getriebegehäuse 122 verbundenen Schöpfrohr 114 abgeschöpft und über die Ableitung 184 dem Getriebesumpf zugeführt wird.

Zwischen dem Drehschwingungsdämpfer 112 und dem Eingangsteil 113 der Nasskupplungen 128, 129 kann eine Reibeinrichtung 185 vorgesehen sein. Hierzu kann mittels über den Umfang verteilter, axial erhabener Stifte 186 des Lamellenträgers 134 ein Reibring 187 beaufschlagt werden, der mittels des an dem Gehäuseteil 106 befestigten Halterings 188 zentriert und mittels des axial wirksamen Energiespeichers 189, der beispielsweise wie gezeigt eine Tellerfeder sein kann, gegenüber diesem verspannt ist. Zusätzlich oder alternativ kann die Reibeinrichtung 185 als Zentrierung der beiden Nasskupplungen 128, 129 im Gehäuse 108 vor der Endmontage dienen, solange diese noch nicht auf der Getriebeeingangswelle 149 zentriert ist.

In Fig. 4 ist eine mögliche Ausgestaltung der Trennkupplung nach Fig. 2 abgebildet. Das von der Kurbelwelle 21 kommende Drehmoment wird über die Driveplate bzw. die Flexplate 18 an die Kupplungsnabe 16 übertragen, wobei die Kupplungsnabe 16 über eine Lager 27 auf einer als Vollwelle ausgebildeten Getriebeeingangswelle 148 radial abgestützt ist. Die Kupplungsnabe 13 weist einen radial erstreckten Bereich 13a auf, an dem ein eingangsseitiger Innenla- mellenträger 28 befestigt ist. An diesem eingangsseitigen Lamellenträger 28 sind Eingangslamellen drehfest jedoch axial bewegbar eingehängt. Alternierend zu diesen Eingangslamellen 29 sind Ausgangslamellen 30 vorgesehen, welche im ausgangsseitigen Außenlamellen- träger 31 drehfest jedoch axial bewegbar eingehängt sind. Der ausgangsseitige Außenlamel- lenträger 13 ist wie bereits erläutert, mit dem Rotorträger 12 fest verbunden, wobei am Rotorträger 12 der Rotor 11 aufgezogen ist und wobei über einen Spalt benachbart zum Rotor 11 der Stator 10 angeordnet ist, welcher am Getriebegehäuse 25 befestigt. Der ausgangsseitige Außenlamellenträger 13 ist über das Lager 23 am Deckel 24 in radialer Richtung gelagert.

Die eingangsseitigen und ausgangsseitigen Lamellen 29, 30 bilden ein Lamellenpaket, dessen Reibflächen über den Kolben 31 in Reibkontakt bringbar sind. Der Kolben ist über die Tellerfeder 32 derart vorbelastet, dass das Lamellenpaket geöffnet ist, wenn keine Betätigungskraft ausgeübt wird. Die Betätigungskraft entsteht über die Zylinder/Kolben-Einheit 33 mit den topfförrπigen Blechen 35 und 36, welche sich an einem verlängerten Nabenbereich 34 der Eingansnabe 13 abstützen, wobei zwischen den topfförmigen Blechen 35 und 36 und dem Kolben 31 Druckkammern gebildet sind, welche über Bohrungen im verlängerten Nabenbereich 34 mit Druckmedium beaufschlagbar sind.

Wie dargelegt zeigt das vorstehend beschriebene Ausführungsbeispiel nach Fig. 2 eine Hybridtrennkupplung und eine Doppelkupplung mit einem gemeinsamen rotierenden Nassraum, wobei die Drehmomentübertragung zwischen Hybridtrennkupplung, E-Motor und Doppelkupplung über den ausgangsseitigen Außenlamellenträger der Hybridtrennkupplung, den Rotorträger des Elektromotors und das Gehäuse der Doppelkupplung erfolgt.

Fig. 5 zeigt ein weiteres Ausführungsbeispiel eines Hybridaufbaues mit Hybridtrennkupplung 2, Elektromotor 4 und einer nachgeschalteten Doppelnasskupplung 201, vorliegend jedoch mit nicht-rotierendem Nassraum. Vergleichbar dem vorherigen Ausführungsbeispiel besteht das System für die Schwingungsisolation vorliegend aus einem Bogenfederdämpfer 202 und einem Fliehkraftpendel 203, die in die Kupplung 201 integriert und im gemeinsamen Nassraum angeordnet sind.

Vorliegend wird Drehmoment von der Kurbelwelle 222 über die Driveplate/ Flexplate 220 an die Driveplate/ Flexplate 218 übertragen, wobei die Driveplate/ Flexplate 218 mit der ein- gangsseitigen Kupplungsnabe 216 fest verbunden ist. Die eingangsseitige Kupplungsnabe 216 ist mit einem eingangsseitigen Innenlamellenträger 217 der Hybridtrennkupplung 2 verbunden, an dem eingangsseitige Reiblamellen drehfest jedoch axial bewegbar eingehängt sind.

Die Eingangsreiblamellen sind alternierend mit Ausgangsreiblamellen angeordnet, welche im ausgangsseitigen Außenlamellenträger 213 drehfest jedoch axial bewegbar eingehängt sind. Der Außenlamellenträger 213 ist fest mit dem Rotorträger 212 des Elektromotors 4 verbunden, wobei der Rotor 211 auf dem Rotorträger 212 aufgezogen ist. Der ausgangsseitige Außenlamellenträger 213 der Hybridtrennkupplung ist über das motorseitige Lager 223 am Deckel 232 abgestützt, wobei der Deckel 232 innen derart ausgeformt ist, dass der Stator 210 des Elektromotors 4 über einen Spalt benachbart zum Rotor 211 des Elektromotors 4 angeordnet werden kann, der Stator 210 ist dementsprechend auf dem Deckel 232 aufgezogen. Radial außen wird der Kupplungsdeckel 232 in der Kupplungsglocke 225 zentriert und über einen Sicherungsring oder über Schrauben axial fixiert. Der Sicherungsring oder die Schrauben erzeugen den notwendigen Anpressdruck für eine statische Dichtung in Form beispielsweise eine O-Ringes. Denkbar sind hier auch am Kupplungsdeckel aufvulkanisierte Dichtelemente, die ebenfalls vorgespannt werden müssen oder über eine Dichtlippe verfügen, die beim Montieren mit einer radial verlaufenden Dichtfläche vorgespannt sind.

Radial innen ist am Kupplungsdeckel 232 einen Radialwellendichtring 233, der entweder anvulkanisiert ist oder wie ein klassischer Radialwellendichtring in den Kupplungsdeckel 323 eingepresst ist. Der Radialwellendichtring 233 fungiert als dynamisches Dichtelement und stellt eine Übergangsstelle vom stehenden Kupplungsdeckel 232 zur mit Motordrehzahl rotierenden Eingangsseite der Hybridtrennkupplung dar.

Der ausgangsseitige Außenlamellenträger 213 der Hybridtrennkupplung ist drehfest verbunden mit einer Eingangsseite 214 des Bogenfederdämpfers 202.

Die Eingangsseite 214 des Bogenfederdämpfers 202 ist topfförmig ausgebildet, wobei ein radial innerer Bereich der Eingangsseite 214 als Teil der Kolben-Zylinder-Einheit zur Betätigung der Hybridtrennkupplung ausgebildet ist.

Die Ausgangsseite 204 des Bogenfederdämpfers 202 ist mit einem Eingangslamellenträger 205 der radial außen angeordneten Teilkupplung K1 , sowie mit einem Flansch 206 verbunden, wobei der Flansch 206 mit dem Eingangslamellenträger 207 der radial innen angeordneten Kupplung K2 verbunden ist, und wobei der Flansch 206 zugleich Eingangsflansch des Fliehkraftpendels 203 ist.

Der Ausgangslamellenträger 208 der radial äußeren Kupplung K1 und der Ausgangslamellenträger 209 der radial innen angeordneten Kupplung K2 sind mit jeweils einer der Getriebeeingangswellen des Doppelkupplungsgetriebes 6, 7 verbunden.

Der Flansch 206 ist zudem mit einer Kupplungsnabe 230 verbunden, welche die Kolben- Zylinder-Einheiten der vorliegend direkt betätigten Nasskupplung mit Druckmedium versorgt.

Zwischen dem abtriebsseitigen Lamellenträger 208 der radial äußeren Kupplung K1 und der äußeren Getriebeeingangswelle ist eine Wellfeder 247 angeordnet, die eine axiale Vorlast er- zeugt. Am abtriebsseitigen Lamellenträger 209 der radial inneren Kupplung K2 ist die Kupplungsnabe 230 der Doppelkupplung - vorliegend über einen Dichtstopfen 244 mit Anlauffunktion - axial abgestützt. Die Kupplungsnabe 230 und die mit dieser fest verbundene Eingangsseite der Doppelkupplung sowie die Sekundärseite des ZMS und das Fliehkraftpendel sind am Getriebegehäuse in axialer Richtung über Shimm-Scheiben 240, 241 abgestützt, wobei eine der Scheiben im Getriebegehäuse und eine weitere der Scheiben am Pumpenzahnrad vormontierbar sind, und wobei zumindest eine Scheibe zwischen diesen beiden vormontierbaren Scheiben zwischenlegbar ist um eine axiale Position der Doppelkupplung einzustellen. Die Vorspannkraft der Wellfeder 241 wird vorliegend über das Pumpenzahnrad 242 und eine Schulter der Kupplungsnabe weitergeleitet. Das Pumpenzahnrad 242 ist dabei über einen Sicherungsring 243 in Verbindung mit der Schulter der Kupplungsnabe axial fest mit dieser verbunden.

Der abtriebsseitige Lamellenträger 209 der radial inneren Kupplung K2 stützt sich weiterhin über ein Axiallager am abtriebsseitigen Lamellenträger 208 der radial äußeren Kupplung K1 ab, der sich wiederum über ein Axiallager an einer Kupplungsnabe 245 der Hybridtrennkupplung abstützt. Die Kupplungsnabe 245 der Hybridtrennkupplung ist über eine Anlaufscheibe 246 am eingangsseitigen Innenlamellenträger 216 der Hybridtrennkupplung abgestützt.

In radialer Richtung ist die Kupplungsnabe 230 der Doppelkupplung 201 über zwei Radiallager auf der äußeren Getriebeeingangswelle abgestützt.

Der sich zwischen Rotor 211 , 212 der elektrischen Maschine 4 und der Ausgangsseite der Hybridtrennkupplung befindliche Deckel 232 trennt Nass- und Druckraum voneinander ab.

Wie dargelegt, ist die Ausgangsseite der Hybrid-Trennkupplung mit der Eingangsseite der Doppelnasskupplung 201 drehfest und axial fest verbunden. Aufgrund dieses Aufbaues kann ein vormontierbares Komplettmodul als Montagebaugruppe gebildet werden, das außerdem noch einen Bogenfederdämpfer und ein Fliehkraftpendel umfassen kann.

In Fig. 6 ist ein weiteres Ausführungsbeispiel des Hybridaufbaus mit Trennkupplung und Elektromotor inklusive einer Doppelnasskupplung gezeigt, wobei Dämpfer und Fliehkraftpendel in der Nassdoppelkupplung mit nicht-mitrotierendem Nassraum integriert sind, wobei gemäß dem Ausführungsbeispiel nach Fig. 6 das Gesamtmodul auf zwei Module für die Montage aufgeteilt sind. Diese Aufteilung erfolgt derart, dass die Eingangsseite 214 der Doppel- nasskupplung nach Fig. 5 aufgeteilt wird in einen topfförmigen Bereich 301 , welcher über ein Gleitlager 302 radial innen letztlich an einer der Getriebeeingangswelle abgestützt ist, und der über diese Abstützung und eine Tellerfeder 303 in Richtung Getriebe vorbelastet ist. Zur Drehmomentenübertragung zwischen Hybridtrennkupplung 2 und Doppelkupplung 1 ist die axiale Steckverzahnung 304 vorgesehen, wobei eine Hälfte der axialen Steckverzahnung 304 mit der Eingangsseite 301 der Doppelnasskupplung verbunden ist und wobei eine korrespondierende Seite der Steckverzahnung 304 mit dem Ausgangslamellenträger der Hybrid- Trennkupplung verbunden ist.

Die übrigen Merkmale des Ausführungsbeispiels nach Fig. 6 entsprechend dem im Zusammenhang mit Fig. 5 beschriebenen.

In Fig. 7 ist ein weiteres Ausführungsbeispiel des Hybridaufbaus mit Trennkupplung und Elektromotor inklusive einer Doppelnasskupplung gezeigt, wobei Dämpfer und Fliehkraftpendel wieder in die Nasskupplung integriert sind in Verbindung mit dem zweiteiligen Aufbau des Gesamtmoduls wie in Fig. 6 bereits gezeigt, wobei die Doppelnasskupplung nach Fig. 7 über eine Hebelübersetzung betätigbar ist und wobei zwischen den Betätigungselementen und den zugehörigen Kolbenzylindereinheiten Betätigungslager angeordnet sind.

Die in Zusammenhang mit den Fig. 6 und 7 gezeigten Ausführungsbeispiele der Hybrid- Trennkupplung sind in Fig. 8 nochmals näher gezeigt in einer Ausführungsvariante mit mehrteiligem Ausgangslamellenträger 305 und mehrteiligem Eingangslamellenträger 306 und der Abstützung des Ausgangslamellenträgers 305 über den Deckel 307 sowie die drehfeste Verbindung zwischen Ausgangslamellenträger 305 und Rotorträger 308. Hierbei ist zwischen Deckel 307 und Außenlamellenträger 305 das Lager 309 angeordnet. Weiterhin ist zwischen Deckel 307 und Rotorträger 308 der Radialwellendichtring 310 angeordnet. Zudem ist zwischen Rotorträger 308 und Kupplungsnabe 311 der Hybrid-Trennkupplung der Radialwellendichtring 312 angeordnet. Zur Abstützung der Betätigungseinrichtung der Hybrid- Trennkupplung ist eine separate Nabe vorgesehen, welche drehbar auf der als Vollwelle ausgebildeten Eingangswelle eines der Teilgetriebe angeordnet ist. An dieser Nabe sind topfför- mige Bleche 313 und 314 angeordnet, welche den Zylinder bilden, in dem das Betätigungselement 315 bewegbar aufgenommen ist. Die Vorbelastung des Betätigungselementes 315 erfolgt über die Tellerfeder 316. Das topfförmige Blech 314 der Betätigungseinrichtung ist in den Ausgangslamellenträger 305 vergleichbar den Reiblamellen eingehängt. Den vorstehend beschriebenen Ausführungsbeispielen des Hybridantriebsstranges ist gemeinsam, dass die Hybrid-Trennkupplung und die Doppelnasskupplung in einem gemeinsamen Nassraum angeordnet sind, wobei dieser Nassraum wahlweise geschlossen (d. h. mitrotierend) bzw. nicht-mitrotierend ausgebildet sein kann.

Dabei sind die vorstehend beschriebenen Ausführungsbeispiele lediglich exemplarisch zu verstehen und die jeweils gewählten Ausbildungen der Hybrid-Trennkupplung, des Elektromotors und der Doppelkupplung können zwischen den Ausführungsbeispielen auch ausgetauscht werden.

Bezuqszeichenliste

Doppelnasskupplung

Trennkupplung

Verbrennungsmotor elektrische Maschine

Hybridmodul

Teilgetriebe

Teilgetriebe

Differenzial angetriebenes Rad

Stator

Rotor

Rotorträger

Außenlamellenträger erstreckter Bereich

Kupplungsgehäuse

Radialwellendichtring

Kupplungsnabe

Driveplate

Schraubverbindung

Driveplate

Kurbelwelle

Pilotzapfen

Lager

Deckel

Getriebegehäuse getriebeseitiges Lager

Lager

Eingangslamellenträger

Eingangslamelle

Ausgangslamelle

Ausgangslamellenträger

Tellerfeder Zylinderkolbeneinheit

Nabenbereich topfförmiges Blech topfförmiges Blech

Drehachse

Gehäuseteil

Gehäuseteil

Gehäuse

Energiespeicher

Drehschwingungsdämpfer

Eingangsteil

Flanschteil

Schöpfrohr

Ringflanschteil

Mitnehmer

Mitnehmer

Mitnehmer

Getriebegehäuse

Wälzlager

Ansatz

Zahnkranz

Nasskupplung

Nasskupplung

Bogenfeder

Bogenfeder

Verschleißschutzschale

Lamellenträger

Lamellenträger

Lagerscheibe

Kupplungsnabe

Lamelle

Lamelle

Reiblamellen

Reiblamellen Lamellenträger 143 Lamellenträger

144 Nabe

145 Nabe

145A Energiespeicher

145B Sicherungsscheibe

146 Verzahnung

147 Verzahnung

148 Getriebeeingangswelle

149 Getriebeeingangswelle

150 Drehschwingungstilger

151 Fliehkraftpendel

152 Fliehgewicht

153 Wälzlager

154 Wälzlager

155 Wälzlager

156 Anlaufscheibe

157 Anlaufscheibe

158 Trägerteil

160 Wälzlager

161 Wälzlager 167 Shimmscheibe

169 Kolben

170 Kolben

175 Versorgungsleitung

176 Versorgungsleitung

177 Druckkammer

178 Druckkammer

179 Energiespeicher

180 Energiespeicher

181 Versorgungsleitung

182 Versorgungsleitung

183 Führungsstift

184 Ableitung

185 Reibeinrichtung

186 Stifte

189 Energiespeicher 201 Kupplung

202 Bodenfederdämpfung

203 Fliehkraftpendel

204 Ausgangsseite

205 Eingangslamellenträger

206 Flansch

207 Eingangslamellenträger

208 Ausgangslamellenträger

209 Ausgangslamellenträger

210 Stator

211 Rotor

212 Rotorträger

213 Ausgangslamellenträger 216 Kupplungsnabe

218 Driveplate/Flexplate

220 Driveplate/Flexplate

222 Kurbelwelle

223 Lager

232 Deckel

233 Radialwellendichtring

301 topfförmigen Bereich

302 Gleitlager

303 Tellerfeder

304 Steckverzahnung

K1 Teilkupplung

K2 Teilkupplung