Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HYDROELECTRIC POWER PLANT HAVING AN ELECTRICAL DRIVE FOR ACTUATING THE INLET VALVE
Document Type and Number:
WIPO Patent Application WO/2019/020372
Kind Code:
A1
Abstract:
The invention relates to a hydroelectric power plant comprising an upper water pool, a lower water pool, a waterway which connects the upper water pool to the lower water pool, a hydraulic machine which is situated in the waterway, an inlet valve which is situated in a pressure pipe, and an electrical drive for actuating the inlet valve, the electrical drive being designed such that it ensures reliable closing of the inlet valve even in the event of a power failure, without an emergency power supply being provided therefor.

Inventors:
RICHTER PETER (DE)
Application Number:
PCT/EP2018/068753
Publication Date:
January 31, 2019
Filing Date:
July 11, 2018
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VOITH PATENT GMBH (DE)
International Classes:
F03B13/08; F16K31/04; F16K31/50
Foreign References:
JPH0685981U1994-12-13
JPH0718404B21995-03-06
JPS5749959U1982-03-20
CN105626941A2016-06-01
Other References:
None
Download PDF:
Claims:
Patentansprüche

1. Wasserkraftanlage, umfassend ein Oberwasserbecken (1), ein Unterwasserbecken (2), einen Wasserweg (3), der das Oberwasserbecken (1) mit dem Unterwasserbecken (2) verbindet, eine hydraulische Maschine (4), welche im Wasserweg (3) angeordnet ist und den Wasserweg (3) in zwei Teilstücke (31, 32) unterteilt, wobei eine Druckrohrleitung (31) zwischen dem Oberwasserbecken (1) und der hydraulischen Maschine angeordnet ist, und ein Einlassventil (5), welches in der Druckrohrleitung (31) angeordnet ist, wobei das Einlassventil (5) einen drehbar gelagerten Ventilkörper (51), einen am Ventilkörper (51) angreifenden Hebel (53), ein am Hebel (53) angeordnetes Gewicht (54), eine elektrisch ansteuerbare Arretierungseinheit (553) zum Arretieren des Ventilkörpers und einen elektrischen Antrieb (55) umfasst, wobei der Antrieb (55) so ausgebildet ist, dass er das Einlassventil (5) durch Heben und Senken des Gewichtes (54) öffnen und schließen kann, und der Antrieb (55) einen Antriebsstrang umfasst, welcher einen elektrischen Motor (551), ein Getriebe (554) und einen Spindelgewindetrieb (555) in dieser Reihenfolge umfasst, welche so angeordnet sind, dass durch den Betrieb des Motors (551) die Länge des Antriebs (55) variiert werden kann, um das Gewicht (54) zu heben und zu senken, dadurch gekennzeichnet, dass die Arretierungseinheit (553) in den Antrieb (55) integriert und so ausgebildet ist, dass sie den Antriebsstrang blockieren kann, wenn ein elektrisches Steuersignal anliegt, und den Antriebsstrang frei geben kann, wenn kein elektrisches Steuersignal anliegt, und der Antrieb (55) ferner eine mechanische Bremse (552) mit einstellbarer Bremskraft umfasst, welche so ausgebildet ist, dass sie hemmend in den Antriebstrang eingreifen kann.

2. Wasserkraftanlage nach Anspruch 1, wobei die Bremse (552) so angeordnet ist, dass sie an einer Stelle des Antriebsstrangs eingreifen kann, an der geringe Drehmomente wirken.

3. Wasserkraftanlage nach einen der Ansprüche 1 oder 2, wobei die Arretierungseinheit (553) so angeordnet ist, dass sie an einer Stelle des Antriebsstrangs eingreifen kann, an der geringe Drehmomente wirken.

4. Wasserkraftanlage nach einem der Ansprüche 1 bis 3, wobei die Bremse (552) elektrisch ansteuerbar ausgeführt ist, so dass die Bremse (552) in einem ersten Zustand mit der voreingestellten Bremskraft in den Antriebsstrang hemmend eingreifen kann, und in einem zweiten Zustand den Antriebsstrang komplett freigeben kann, wobei der zweite Zustand eingenommen werden kann, wenn ein elektrisches Steuersignal anliegt, und der erste Zustand eingenommen werden kann, wenn kein elektrisches Steuersignal anliegt.

5. Wasserkraftanlage nach einem der Ansprüche 1 bis 3, wobei die Bremse (552) so ausgeführt ist, dass sie nur in derjenigen Drehrichtung des Antriebsstrangs hemmend in diesen eingreifen kann, bei der das Einlaufventil (5) geschlossen wird, und sich in der anderen Drehrichtung der Antriebsstrang ungehindert durch die Bremse (552) drehen kann.

6. Wasserkraftanlage nach einem der Ansprüche 1 bis 5, wobei die Bremse (552) in den Motor (551) integriert ausgeführt ist.

7. Wasserkraftanlage nach einem der Ansprüche 1 bis 6, wobei die Arretierungseinheit (553) in das Getriebe (554) integriert ausgeführt ist.

8. Wasserkraftanlage nach einem der Ansprüche 1 bis 7, wobei der Spindelgewindetrieb (555) als Kugelgewindetrieb ausgeführt ist.

9. Wasserkraftanlage nach einem der Ansprüche 1 bis 7, wobei der Spindelgewindetrieb (555) als Planetenrollengewindetrieb ausgeführt ist.

Description:
Wasserkraftanlage mit einem elektrischen Antrieb zur Betätigung des

Einlaufventils

Die vorliegende Erfindung betrifft eine Wasserkraftanlage mit einem elektrischen Antrieb zur Betätigung des Einlaufventils, und ein Verfahren zum Betätigen eines solchen Einlaufventils.

Die meisten Wasserkraftanlagen besitzen aus Sicherheitsgründen ein Einlaufventil mit dessen Hilfe im Schadensfall die Anlage sicher außer Betrieb gesetzt werden kann. Herkömmlicherweise wird ein solches Einlaufventil mit Hilfe eines hydraulischen Servomotors und einem Hydraulikaggregat betätigt. Hierfür wird eine große Menge Hydrauliköl benötigt, das ein Risiko für die Umwelt darstellt. Zur Reduzierung dieses Risikos wurden Antriebe für Einlaufventile einer Wasserkraftanlage vorgeschlagen, die elektrisch betätigt werden. So offenbart die JPH02259283(A) einen elektrischen Antrieb zu Betätigung des Einlaufventils einer Wasserkraftanlage, welcher einen elektrischen Motor, ein Getriebe, einen Spindelgewindetrieb, einen Hebel und einen Gewicht umfasst. Der Hebel ist mit der Drehachse des Einlaufventils verbunden und trägt ein Gewicht, so dass das Einlaufventil mit Hilfe der Gewichtskraft geschlossen werden kann. Der elektrische Motor ist über das Getriebe mit dem Spindelgewindetrieb verbunden. Der Spindelgewindetrieb greift an den Hebel an, so dass der Hebel und das Gewicht mit Hilfe des elektrischen Motors gehoben und so das Einlaufventil geöffnet werden kann. Da der Spindelgewindetrieb keine Selbsthemmung besitzt, treibt das Gewicht beim Schließen den Motor über den Spindelgewindetrieb und das Getriebe an, der dabei als Generator wirkt. Über einen zuschaltbaren variablen Lastwiderstand kann so die Schließzeit des Einlaufventils kontrolliert werden, um einen Druckstoß beim Schließen des Einlaufventils zu vermeiden. Ferner umfasst die Anordnung noch eine Einrichtung zum Arretieren des Einlaufventils in der Geöffnet-Stellung, welche eine einigermaßen komplizierte Mechanik umfasst, die an den Hebel angreift. Die Arretierung kann mit Hilfe eines Elektromagneten entriegelt werden. Dazu ist es notwendig, dass ein elektrischer Strom durch den Elektromagneten fließt. Bei einem Stromausfall kann dies problematisch sein, d.h. es müssen hierzu z.B. Batterien vorgesehen sein, welche wiederum überwacht sein müssen, damit ein Schließen in jedem Fall sicher durchgeführt werden kann.

Der Erfinder hat sich die Aufgabe gestellt, einen alternativen elektrischen Antrieb zum Betätigen des Einlaufventils einer Wasserkraftanlage anzugeben, welcher einfacher aufgebaut ist und ein Schließen des Einlaufventils auch im Falle eines Stromausfalls sicher gewährleistet, ohne dass hierfür Batterien oder ähnliches vorgesehen werden müssen.

Der Erfinder hat erkannt, dass die gestellte Aufgabe durch eine Wasserkraftanlage mit den Merkmalen des Anspruchs 1 gelöst werden kann. Vorteilhafte Ausführungsformen ergeben sich aus den von Anspruch 1 abhängigen Unteransprüchen.

Die erfindungsgemäße Lösung wird nachfolgend anhand von Figuren erläutert. Darin ist im Einzelnen folgendes dargestellt:

Figur 1 Wasserkraftanlage;

Figur 2 Einlaufventil;

Figur 3 Erfindungsgemäßer Antrieb zum Betätigen eines Einlaufventils.

Figur 1 zeigt den schematischen Aufbau einer Wasserkraftanlage. Die Wasserkraftanlage umfasst ein Oberwasserbecken, welches mit 1 bezeichnet ist, und ein Unterwasserbecken, welches mit 2 bezeichnet ist, wobei der Wasserspiegel im Oberwasserbecken 1 über dem Wasserspiegel des Unterwasserbeckens 2 liegt. Bei den Becken 1 und 2 kann es sich auch um natürliche Gewässer wie beispielsweise Seen oder Flüsse handeln. Die Wasserkraftanlage umfasst ferner einen Wasserweg, welcher mit 3 bezeichnet ist und das Oberwasserbecken 1 mit dem Unterwasserbecken 2 verbindet. Im Wasserweg 3 ist eine hydraulische Maschine angeordnet, welche mit 4 bezeichnet ist. Dadurch wird der Wasserweg 3 in zwei Teilstücke geteilt. Der oberhalb der hydraulischen Maschine 4 gelegene Teil - die Druckrohrleitung - ist mit 31 bezeichnet, und der unterhalb der hydraulischen Maschine 4 gelegene Teil - das Saugrohr - ist mit 32 bezeichnet. Bei der hydraulischen Maschine 4 kann es sich um eine Turbine, eine Pumpe oder um eine Pumpturbine handeln. In der Druckrohrleitung 31 befindet sich ein Einlaufventil, das mit 5 bezeichnet ist.

Figur 2 zeigt ein Einlaufventil 5. Das Einlaufventil 5 umfasst einen Ventilkörper, welcher mit 51 bezeichnet ist und drehbar um eine Achse gelagert ist, welche mit 52 bezeichnet ist. Durch Drehen des Ventilkörpers 51 um die Achse 52 kann das Einlaufventil 5 geöffnet und geschlossen werden. Dazu umfasst das Einlaufventil 5 wenigstens einen Hebel, welcher an dem Ventilkörper 51 angreift und mit 53 bezeichnet ist. Am Hebel 53 ist ein Gewicht angebracht, welches mit 54 bezeichnet ist. Hebel 53 und Gewicht 54 sind so ausgelegt, dass das Einlaufventil 5 allein durch die Gewichtskraft des Gewichts 54 sicher geschlossen werden kann. Natürlich ist es als äquivalent aufzufassen, wenn der Hebel 53 bereits so massiv ausgeführt ist, dass kein weiteres Gewicht 54 notwendig ist, um das Einlaufventil 5 zu schließen. Ferner umfasst das Einlaufventil 5 einen Antrieb zur Betätigung des Einlaufventils 5, welcher mit 55 bezeichnet ist. Der Antrieb 55 ist so gestaltet und mit dem Einlaufventil 5 verbunden, dass durch den Antrieb 55 das Gewicht 54 gehoben werden kann, um das Einlaufventil 5 zu öffnen. In Figur 2 greift der Antrieb 55 hierzu an den Hebel 53 an. Er könnte jedoch genauso gut am Gewicht 54 angreifen. Der Antrieb 55 ist so gestaltet, dass er zum Betätigen des Einlaufventils 5 seine Länge durch Ein- und Ausfahren verändern kann. In einem ersten Zustand - dem eingefahren Zustand - besitzt der Antrieb 55 eine vergleichsweise kurze Länge, so dass sich das Gewicht 54 soweit absenken kann, dass das Einlaufventil 5 geschlossen ist. In einem zweiten Zustand - dem ausgefahrenen Zustand - besitzt der Antrieb 55 eine vergleichsweise große Länge, so dass das Gewicht soweit angehoben ist, dass das Einlaufventil 5 geöffnet ist. Figur 3 zeigt stark schematisch einen erfindungsgemäßen Antrieb 55. Der Antrieb 55 umfasst einen elektrischen Motor, welcher mit 551 bezeichnet ist, eine mechanische Bremse mit einstellbarer Bremskraft, welche mit 552 bezeichnet ist, eine Arretierungseinheit, welche mit 553 bezeichnet ist, ein Getriebe, welches mit 554 bezeichnet ist, und einen Spindelgewindetrieb ohne Selbsthemmung, welcher mit 555 bezeichnet ist. Der Motor 551 ist so mit dem Getriebe 554 und dem Spindelgewindetrieb 555 verbunden, dass durch ein Drehen des Motors 551 der Spindelgewindetrieb 555 die Länge des Antriebs zwischen den beiden Aufhängungspunkten, welche durch die beiden Kreise oben und unten in Figur 3 angedeutet sind, variieren kann. Die genannten Komponenten sind dabei so ausgelegt, dass die zum Heben des Gewichts 54 notwendige Kraft durch den Antrieb aufgebracht werden kann. Dabei wird das Getriebe 554 so wirken, dass die vom Motor 551 gelieferte Drehbewegung - relativ hohe Drehzahl bei relativ geringem Drehmoment - in eine Drehbewegung mit geringerer Drehzahl und höherem Drehmoment transformiert und auf den Spindelgewindetrieb 555 übertragen wird. Da der Spindelgewindetrieb 555 keine Selbsthemmung besitzt, genügt es zum Schließen des Einlaufventils den Motor ström- bzw. spannungslos zu schalten. Dabei dient die mechanische Bremse 552 mit einstellbarer Bremskraft dazu die Schließzeit des Einlaufventils einzustellen - je höher die Bremskraft desto länger ist die Schließzeit. Die Bremse 552 ist so angeordnet, dass sie die Drehbewegung des Antriebsstrangs innerhalb des Antriebs 55 hemmen kann. Um diesen Zweck zu erfüllen, kann sich die Bremse 552 an verschiedenen Stellen befinden, z.B. zwischen dem Motor 551 und dem Getriebe 552, wie in Figur 3 gezeigt, oder aber zwischen dem Getriebe 554 und dem Spindelgewindetrieb 555. Sie könnte auch in den Motor 551 integriert sein, oder sich innerhalb des Getriebes 554 befinden. Es ist jedoch von Vorteil, wenn die Bremse 552 an einer Stelle des Stranges hemmend angreift, die motorseitig des Getriebes 554 gelegen ist, da dort kleinere Bremskräfte ausreichen, um dem dortigen kleineren Drehmoment entgegen zu wirken. Der Antrieb 55 umfasst ferner einer elektrisch ansteuerbare Arretierungseinheit, welche mit 553 bezeichnet und so ausgelegt ist, dass sie in einem ersten Zustand die Drehbewegung des Antriebstranges komplett unterbinden und in einem zweiten Zustand die Drehbewegung komplett freigeben kann, wobei der erste Zustand eingenommen wird, wenn die Arretierungseinheit 553 ein elektrisches Signal empfängt, und der zweite Zustand eingenommen wird, wenn kein elektrisches Signal vorliegt. Bezüglich der Lage der Arretierungseinheit 553 gilt analog das bezüglich der Bremse 552 Gesagte. Es gibt viele mögliche Ausführungsformen, die für die Arretierungseinheit 553 geeignet sind. So kann es sich beispielsweise um eine ansteuerbare Bremse handeln, deren Bremskraft im geschlossen ersten Zustand so groß ist, dass die Gewichtskraft des Gewichts 54 nicht ausreicht um die Haftreibung der Bremse zu überwinden. Es könnte sich beispielsweise um eine Klinkenkonstruktion handeln, die in ein entsprechendes Zahnrad (z.B. im Getriebe) eingreift, um die Drehbewegung des Antriebstranges komplett zu unterbinden. Oder es könnte eine Vorrichtung mit einem ein- und ausfahrbaren Pin sein, der in eine entsprechende Öffnung z.B. in der Antriebswelle des Stranges, wie in Figur 3 angedeutet, oder in einem Rad des Getriebes 554 eingreift. Die beschriebene Funktionsweise der Ansteuerung der Arretierungseinheit 553 kann dabei beispielsweise jeweils durch das Zusammenspiel von Elektromagneten, Permanentmagneten und/oder mechanischen Federn erreicht werden. Der Zweck der Arretierungseinheit 553 besteht darin, dass im geöffneten Zustand des Einlaufventils 5, der Antrieb 55 blockiert werden kann, so dass der Motor 551 ausgeschaltet werden kann. Da sich das Einlaufventil 5 die meiste Zeit in diesem Zustand befindet, kann so Energie gespart werden, da die Arretierungseinheit 553 im blockierten ersten Zustand nur wenig elektrische Energie verbraucht. Andererseits ist durch die beschriebene Schaltlogik sichergestellt, dass bei einem Stromausfall die Arretierungseinheit 553 den zweiten Zustand einnimmt und dadurch den Antriebsstrang freigibt, so dass sich das Einlaufventil mit der über die Bremse eingestellten Schließzeit schließen kann. Im Gegensatz zum bekannten Antrieb aus der JPH02259283(A) erlaubt der Antrieb der vorliegenden Erfindung ein Arretieren des Ventilkörpers (51) in nahezu jeder beliebigen Drehstellung desselben. So kann z.B. das Einlaufventil auch im Geschlossen -Zustand blockiert werden, was z.B. die Sicherheit bei Wartungsarbeiten erhöht.

Beim Öffnen des Einlaufventils 5 wird die Zeit für das Öffnen durch die Drehzahl des Motors 551 geregelt. In der Regel wird dabei der Motor 551 mit konstanter Drehzahl laufen. Falls die Bremse 552 permanent hemmend in den Antriebsstrang eingreift, arbeitet der Motor dabei gegen die Bremskraft an. Optional kann der Energieverbrauch beim Öffnen reduziert werden, indem die Bremse 552 elektrisch gesteuert deaktiviert werden kann, d.h. in einem ersten Zustand greift die Bremse 552 mit der voreingestellten Bremskraft in den Antriebsstrang hemmend ein und in einem zweiten Zustand gibt die Bremse 552 den Antriebsstrang komplett frei. Dabei ist die Bremse 552 so gestaltet, dass der zweite Zustand eingenommen wird, wenn ein elektrisches Steuersignal anliegt, und der erste Zustand eingenommen wird, wenn kein elektrisches Steuersignal anliegt. Dadurch wird gewährleistet, dass auch bei einem Stromausfall das Schließen des Einlaufventils 5 mit der eingestellten Schließzeit sicher erfolgen kann. Alternativ kann die Bremse 552 auch so ausgeführt sein, dass sie nur in einer Drehrichtung des Antriebsstrangs hemmend in diesen eingreift. D.h. nur wenn sich der Antriebsstrang in Schließen-Richtung dreht (wobei sich das Gewicht 54 senkt) greift die Bremse 552 hemmend in den Antriebsstrang ein, und in der Öffnen- Richtung (wobei das Gewicht 54 gehoben wird) kann sich der Antriebsstrang ungehindert drehen.

Das Schließen des Einlaufventils 5 kann auf zwei Arten bewerkstelligt werden. Einmal durch Strom los-Schalten des Motors 551 bei aktiver Bremse 552, oder durch Einfahren des Spindelgewindetriebs mit Hilfe des Motors 551. In beiden Fällen muss natürlich die Arretierungseinheit 553 den Antriebsstrang freigegen. Im zweiten Fall wird die Schließzeit über die Drehzahl des Motors 551 geregelt und die Bremse 552 kann ggf. deaktiviert sein, um Energie zu sparen.

Aus dem Gesagten wird klar, dass die Bremse 552 immer dann deaktiviert werden kann, wenn der Motor 551 arbeitet, d.h. unter Strom steht. Daher ist es besonders zweckmäßig, wenn eine ggf. steuerbare Bremse 552 in den Motor 551 integriert wird, da die Steuerung der Bremse 552 über die Stromversorgung des Motors 551 erfolgen kann. So werden weniger Bauteile benötigt und der Aufbau des Antriebs weiter vereinfacht.

Für den Spindelgewindetrieb 555 können Kugelgewindetriebe oder Planetenrollengewindetriebe verwendet werden, da diese über keine Selbsthemmung verfügen.

Es ist noch zu erwähnen, dass die Anordnung der einzelnen Komponenten in Figur 3 nur beispielhaft zu verstehen ist. Z.B. kann durch die Verwendung von geeigneten Kegelzahnrädern oder dergleichen der Antriebsstrang umgelenkt werden und so die Länge des Antriebs 55 verkürzt ausgeführt werden kann. Es ist jedoch immer die folgende Reihenfolge im Antriebsstrang gegeben: Motor 551, Getriebe 554, Spindelgewindetrieb 555.