Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
HYDROXY OR AMINO TERMINATED HYDROPHILIC POLYMERS
Document Type and Number:
WIPO Patent Application WO/1999/060029
Kind Code:
A1
Abstract:
The present invention generally relates to certain hydrophilic polymers. These polymers undergo negligible shrinkage when polymerized and are highly hydrophilic, rendering them useful in a variety of applications.

Inventors:
LAI YU-CHIN
OZARK RICHARD M
KUNZLER JAY F
Application Number:
PCT/US1999/008259
Publication Date:
November 25, 1999
Filing Date:
April 15, 1999
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAUSCH & LOMB (US)
International Classes:
C08F2/38; C08F220/56; C08F226/10; (IPC1-7): C08F2/38
Domestic Patent References:
WO1996015157A11996-05-23
WO1995012568A11995-05-11
Foreign References:
EP0205846A11986-12-30
Attorney, Agent or Firm:
Polyn, Denis A. (NY, US)
Download PDF:
Claims:
1. A polymer of the formula: X (M), (Y), wherein: X is derived from a chain transfer agent and includes a terminal hydroxyl or amino radical; Y is derived from an ethylenically unsaturated monomer that includes a terminal hydroxyl or amino radical; M is derived from a hydrophilic ethylenically unsaturated monomer; n is about 5 to 50; and p is 0 to 5.
2. The polymer of claim 1, wherein X is derived from mercaptoalcohols and aminomercaptans.
3. The polymer of claim 1, wherein X has the formula HOCH2CH2Sor H2NCH2CH2S.
4. The polymer of claim 1, wherein Y is derived from an ethylenically unsaturated monomer having a hydroxyor aminoradical.
5. The polymer of claim 4, wherein Y is derived from 2hydroxyethyl methacrylate, allyl alcohol, 2tbutylaminoethyl methacrylate, or allylamine.
6. The polymer of claim 5, wherein Y has the formula CH2C (CH3) COOCH2CH2OH,CH2C (CH3) COOCH2CH2NHC (CH3) 3,CH2CH2 CH2OH,<BR> orCH2CH2 CH2NH2.
7. The polymer of claim 1, wherein (M) n has the formula:.
8. The polymer of claim 1, wherein (M) n has the formula:.
9. The polymer of claim 1, wherein p is one.
10. A macromonomer of the formula: wherein: A and A'are independently an ethylenically unsaturated radical; M is derived from a hydrophilic ethylenically unsaturated monomer; n is about 5 to 50; and p is 0 to 5.
11. The macromonomer of claim 10, wherein p is one.
12. The macromonomer of claim 10, wherein A is derived from methacryloyl chloride and 2mercaptoethanol.
13. The macromonomer of claim 10, wherein A is derived from 2 isocyanatoethyl methacrylate and 2mercaptoethanol.
14. The macromonomer of claim 12, wherein A'is derived from methacryloyl chloride and 2hydroxyethylmethacrylate.
15. The macromonomer of claim 13, wherein A'is derived from 2 isocyanatoethyl methacrylate and 2hydroxyethylmethacrylate.
Description:
HYDROXY OR AMINO TERMINATED HYDROPHILIC POLYMERS BACKGROUND OF THE INVENTION The present invention generally relates to certain hydrophilic polymers. These polymers undergo negligible shrinkage when polymerized and are highly hydrophilic, rendering them useful in a variety of applications.

SUMMARY OF THE INVENTION This invention relates to hydrophilic polymers of the formula (I): X- (M),- (Y), wherein: X is derived from a chain transfer agent and includes a terminal hydroxyl or amino radical; Y is derived from an ethylenically unsaturated monomer that includes a terminal hydroxyl or amino radical; M is derived from a hydrophilic ethylenically unsaturated monomer; n is about 5 to 50; and p is 0 to 5, preferably 1.

The invention further provides ethylenically endcapped derivatives of the Formula (I) compounds.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS The hydroxy-or amino-terminated hydrophilic polymers of Formula (I) are derived from an ethylenically unsaturated hydrophilic monomer. Preferred hydrophilic monomeric precursors are N-vinyl pyrrolidone (NVP) and N, N-dimethyl acrylamide (DMA).

The ethylenically unsaturated hydrophilic monomer is polymerized in the presence of a chain transfer agent which serves to control the molecular weight of the resultant polymer and provides hydroxy-or amino-functionality to the resultant polymer. Suitable chain transfer agents include mercapto alcohols (also referred to as hydroxymercaptans) and aminomercaptans. Preferred chain transfer agents include 2- mercaptoethanol and 2-aminoethanethiol. Accordingly, the chain transfer agent forms a terminal end of the hydrophilic polymer, with the hydroxy radical (in the case of a mercapto alcohol) providing the resultant polymer with terminal hydroxyl functionality, and the amino radical (in the case of a aminomercaptan) providing the resultant polymer with terminal amino functionality. Generally, the molar ratio of chain transfer agent to the hydrophilic monomer precursor will be about 1: 5 to about 1: 100.

The ethylenically unsaturated hydrophilic monomer and the chain transfer agent are copolymerized with another monomer having ethylenic unsaturation and a hydroxy- or amino-radical. Accordingly, this additional monomer is also reactive with the hydrophilic monomer and also provides terminal hydroxy-or amino-functionality to the resultant polymer. Suitable monomers include alcohol esters of (meth) acrylic acid such as 2-hydroxyethylmethacrylate (Hema), allyl alcohol, amino esters of (meth) acrylic acid such as 2-t-butyl-aminoethyl methacrylate, and allylamine. Generally, this hydroxy-or amino-containing ethylenically unsaturated monomer will be at a 1: 1 molar ratio to the chain transfer agent.

Representative reaction schemes are illustrated as follows in the case where p is one: nDMA + HOCH2CH2SH + CH2=C (CH3) COOCH2CH2OH <BR> <BR> <BR> ----->HOCH, CH2S- (DMA) n-CH2C (CH3) COOCH2CHOH<BR> <BR> <BR> <BR> <BR> <BR> <BR> <BR> <BR> <BR> nDMA + H2NCH2CH2SH + CH2=C (CH3) COOCH2CH2NHC (CH3) 3 -----> H2NCH2CH2S- (DMA) n--CH2C (CH3) COOCH2CH2NH C (CH3) 3 nNVP + HOCH2CH2SH + CH, =CHCH2OH <BR> <BR> <BR> ----->HOCH2CH2S- (NVP) n-CH2 CH2CH2OH<BR> <BR> <BR> <BR> <BR> <BR> <BR> <BR> <BR> <BR> <BR> nNVP + H2NCH2CH2SH + CH2=CH CH2NH2<BR> <BR> <BR> <BR> <BR> -----> H2NCH2CH2S-(NVP) n-CH2CH2NH2 where (DMA),, is and (NVP) n is Such synthesis methods are generally known in the art, and representative detailed syntheses are described in the Examples.

The subject polymers are highly hydrophilic and are useful in a variety of applications. As a first example, the subject polymers can be used as precursors to form prepolymers useful as a contact lens material. Such materials are described more fully in copending application serial no. entitled"Thermoplastic Silicone-Containing Hydrogels" (Docket No. P01581). An example of such materials is provided in Example 5 below. As a second example, the subject polymers can be reacted with monomers containing epoxy, isocyanate, carboxylic acid, carboxylic acid chloride or anhydride functionality to form hydrophilic macromonomers useful in forming hydrogels. As yet another example, the polymers can be used to form a hydrophilic coating on an object such as a contact lens, a catheter or other biomedical devices, when such objects include functionality reactive with the hydroxy-or amino-functionality of the subj ect polymers, such as the functional groups mentioned above.

As an illustration of the present invention, several examples are provided below.

These examples serve only to further illustrate aspects of the invention and should not be construed as limiting the invention.

Example 1 Synthesis ofhydroxv-terminated polymer based on DMA (Theoretical Mn of 4000) To a dried 500-ml round bottom flask was added N, N-dimethylacrylamide (DMA, 94.78 g/0.95 mole), 2-hydroxyethylmethacrylate (Hema, 3.27 g/0.0251 mole) and anhydrous tetrahydrofuran (THF, 200 ml). The contents were flushed with nitrogen and 2-mercaptoethanol (1.97 g/0.0251 mole) and 2,2-azobisisobutyronitrile (AIBN, 0.8 g/0.5 mole% of DMA) were added. The mixture was heated at 60°C for 20 hours and poured into a beaker containing ether to precipitate the product. The product was vacuum dried to yield 92 grams. Size exclusion chromatography indicated Mn 2926 (number average molecular weight), MW 7466 (weight average molecular weight), with a polydispersity of 2.55. The hydroxy-equivalent weight as determined by titration (addition of excess isophorone diisocyanate to react with OH groups in the polymer, and then addition of excess di-n-butylamine to react with isocyanate groups, followed by titration with HCl) was 1870.

Example 2 Synthesis ofhydroxv-terminated polymer based on DMA (Theoretical Mn of 1000) A polymer was prepared as in Example 1 employing the following amounts of reactants: DMA, 79.2 g/0.799 mole; Hema, 13 g/0.0959 mole; mercaptoethanol, 7.8 g/0.0959 mole; and AIBN, 0.5 mole% of DMA. The reactants were polymerized for 5 hours, and the hydroxy-equivalent weight as determined by titration was 480.

Example 3 Synthesis of hvdroxy-terminated polymer based on NVP (Theoretical Mn of 1000) A polymer was prepared as in Example 1 employing the following amounts of reactants: N-vinylpyrrolidone (NVP), 86.43 g/0.78 mole; allyl alcohol, 5.79 g/0.0997 mole; mercaptoethanol, 7.79g/0.099 mole; and AIBN, 0.5 mole% of NVP). The reactants were polymerized for 150 hours, and the hydroxy-equivalent weight as determined by titration was 594.

Example 4 Synthesis ofhydroxvl-terminated polymer based on DMA (Theoretical Mn of 1500) A polymer was prepared as in Example 1 employing the following amounts of reactants: N, N-dimethylacrylamide (DMA, 100 g/1.009 mole); 2-hydroxyethyl methacrylate (Hema, 10.69 g/0.0841 mole); 2-mercaptoethanol (6.57 g/0.0841 mole); and 2,2-azobisisobutyronitrile (AIBN, 1.64 g/0.01 mole). The product was vacuum dried to yield 109.6 grams. Size exclusion chromatography indicated Mn 1483, MW 3416, with a polydispersity of 2.30.

Example 5 Svnthesis of thermoplastic polymer employing the hydroxy-terminated prepolvmer of Example 2 To a dried 3-neck round bottom 500-ml flask was added the hydroxyl-terminated prepolymer of Example 2 (4.8284 g/0.00504 mole) and 30 ml of dry methylene chloride.

The mixture was stirred until complete dissolution. Then, a, co-bis (hydroxybutyl) polydimethylsiloxane having an average molecular weight of about 5000 (PDMS, 20.3886 g/0.00504 mole), diethylene glycol (2.1441 g/0.0202 mole), isophorone diisocyanate (IPDI, 6.7243 g/0.03025 mole), dibuytltin dilaurate (0.1032 g) and 200 ml of methylene chloride were added. The contents were refluxed under nitrogen. Samples of the reaction product were taken periodically for measurement of IR spectrum, and the reaction was terminated after about 120 hours when the isocyanate peak (about 2270 crri ') disappeared from IR spectrum of the reaction product. The solvent was then stripped with methylene chloride under vacuum to give the polymeric product (number average molecular weight Mn 11400, molecular weight MW 43175 using polystyrene standard).

As a further example, the subject prepolymers are useful as precursors in the preparation of (meth) acrylate endcapped macromonomers having the following structure: (II) wherein: A and A'are independently an ethylenically unsaturated radical; and M, n and p are as previously defined. More specifically, the prepolymers of Formula (I), containing the hydroxy-or amino-functionality attributed to the X and Y radicals, are reacted with a compound containing an ethylenically unsaturated radical, i. e., the macromonomer/polymer is endcapped with ethylenically unsaturated radicals A and A'.

For example, reaction of the Formula (I) polymer with isocyanatoethyl (meth) acrylate or (meth) acryloyl chloride can provide a methacrylate end group, or vinyl chloro formate can provide a vinyl end group. Other combinations will be apparent to one skilled in the art. The resultant Formula (II) compounds are useful as co-monomers in forming hydrogel materials, such as hydrogel contact lens materials. The following examples illustrate preparation of various Formula (II) compounds.

Example 6 Methacrylate-capped polv (DMA ! through reaction with methacryloyl chloride To a thoroughly dried 1-liter round bottom flask equipped with a reflux condenser, dropping funnel and mechanical stirrer, were added, under nitrogen atmosphere: the poly (DMA) polymer from Example 4 (50 g); triethylamine (7.7 grams); and ethyl acetate (400 ml). The contents were cooled to below 10°C. Then methacryloyl chloride (7.8 g) was added from the dropping funnel while maintaining the temperature of the mixture below 10 °C. Then the temperature was allowed to rise to ambient and the contents were continually stirred overnight. Some precipitate was observed. The contents were diluted with chloroform until complete dissolution was obtained, then rotoevaporated and redissolved in chloroform, 70 g of basic aluminum oxide was added, and stirred overnight. Then, the contents were filtered and the filtrate was passed through 150 grams of silica gel and eluted with 50/50 methylene chloride/pentane. The combined solution was rotoevaporated to obtain a white solid. The solid was redissolved in THF and precipitated with addition of ether. The product collected was dried under vacuum. Recovered were 16 grams of final product, Mn of 3458 by size exclusion chromatography using polystyrene standards, IR (cari'): 2926,1720,1633,1495,1398, 1354,1258,1137,1095,1057,728,699.

Example 7 Methacrylate-capped poly (DMA) through reaction with isocyanatoethyl methacrylate To a thoroughly dried 500 milliliter round bottom flask equipped with a reflux condenser dropping funnel and mechanical stirrer, were added under nitrogen atmosphere: the poly (DMA) polymer of Example 4 (12 g); BHT (0.02 g); isocyanatoethyl methacrylate (2.81 g); chloroform (200 ml); and dibutyltin dilaurate (0.54 g). The contents were heated at 45°C. for 6 hours. An aliquot was checked for presence of isocyanate. The contents were heated for another 2 hours and again checked for isocyanate presence with no change in isocyanate observed. Then 1 ml of methanol was added and the contents stirred at room temperature for 1 hour. The contents were then rotoevaporated to remove 1/3 of chloroform and them poured, with vigorous stirring, into 2500 ml of ether to precipitate the product. The stirring was continued for 15 minutes and the precipitate was allowed to settle. The product was then filtered, and dried under vacuum: Mn 2550, Mw 4300 by size exclusion chromatography using polystyrene standards, IR (ci'): 3297,2927,1719,1635,1496,1398,1354,1257,1137, 1095,1058,729 and 699.

Although various preferred embodiments have been illustrated, many other modifications and variations of the present invention are possible to the skilled practitioner. It is therefore understood that, within the scope of the claims, the present invention can be practiced other than as herein specifically described.

We claim: