Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ILLUMINATION DEVICE FOR VEHICLES
Document Type and Number:
WIPO Patent Application WO/2016/151024
Kind Code:
A1
Abstract:
The invention relates to an illumination device (1) for vehicles comprising a semi-conductor based light source (2) for emitting an electromagnetic primary radiation and comprising a luminescence conversion element (3) which is arranged in the main direction of radiation upstream of the semi-conductor light source (2). Said luminescence conversion element (4) comprises a luminous substance for converting at least one part of the primary radiation into secondary radiation, which has a different wavelength from the primary radiation. A light beam emitted by the frequency converter (3) is coupled in a lens, at least one light sensor (4) for analyzing the light beam (4) coupled in the lens (5) being provided.

Inventors:
FISCHER BERND (DE)
SCHÄFER SÖREN (DE)
Application Number:
PCT/EP2016/056402
Publication Date:
September 29, 2016
Filing Date:
March 23, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HELLA KGAA HUECK & CO (DE)
International Classes:
F21S8/10
Domestic Patent References:
WO2013068063A12013-05-16
WO2014072227A12014-05-15
Foreign References:
DE102012220481A12014-05-15
US20150023032A12015-01-22
EP2297827A22011-03-23
US20060087860A12006-04-27
JP2013101887A2013-05-23
Download PDF:
Claims:
Beleuchtungsvorrichtung für Fahrzeuge

Patentansprüche

1. Beleuchtungsvorrichtung (1 ) für Fahrzeuge mit einer halbleiterbasierten

Lichtquelle (2) zur Abgabe einer elektromagnetischen Primärstrahlung und mit einem in Hauptabstrahlrichtung vor der halbleiterbasierten Lichtquelle (2) angeordneten Lumineszenzkonversionselement (3), wobei das

Lumineszenzkonversionselement (4) einen Leuchtstoff zur Konvertierung zumindest eines Teils der Primärstrahlung in eine Sekundärstrahlung, die eine andere Wellenlänge aufweist als die Primärstrahlung, umfasst, wobei eine vom Frequenzkonverter (3) abgegebene Lichtstrahlung in eine Optik (5) eingekoppelt wird,

dadurch gekennzeichnet, dass zumindest ein Lichtsensor (7) zur Analyse der in die Optik (5) eingekoppelten Lichtstrahlung (4) vorgesehen ist.

2. Beleuchtungsvorrichtung (1) nach dem vorherigen Anspruch, dadurch

gekennzeichnet, dass die Optik eine TIR-Optik oder ein verspiegelter Optikkörper ist.

3. Beleuchtungsvorrichtung (1) nach einem der vorherigen Ansprüche,

gekennzeichnet durch eine Auswerteeinheit (8) zur Auswertung der von dem zumindest einen Lichtsensor (7) erfassten Lichtstrahlung (4) im Hinblick auf mögliche Beschädigungen der Beleuchtungsvorrichtung (1).

4. Beleuchtungsvorrichtung (1) nach einem der vorherigen Ansprüche,

dadurch gekennzeichnet, dass der Lichtsensor (7) eingerichtet ist, das in der Lichtstrahlung (4) enthaltene Frequenzspektrum zu erfassen und einer Auswertung zuzuführen.

5. Beleuchtungsvorrichtung (1) nach einem der vorherigen Ansprüche, gekennzeichnet durch eine Anordnung (9) einer Vielzahl von Lichtsensoren (7) zur Erfassung von an unterschiedlichen Positionen der Optik

verlaufenden Lichtstrahlung (4).

6. Beleuchtungsvorrichtung (1) nach einem der vorherigen Ansprüche,

gekennzeichnet durch zumindest ein optisches Auskoppelelement (6), welches zumindest teilweise in der Optik (5) angeordnet ist und zumindest Teile der in der Optik (5) verlaufenden Lichtstrahlung (4) in Richtung auf einen, insbesondere außerhalb, der Optik (5) angebrachten Lichtsensor (7') umlenkt.

7. Beleuchtungsvorrichtung (1 ) nach einem der vorherigen Ansprüche,

dadurch gekennzeichnet, dass in der Optik (5) oder unmittelbar an der Optik (5) ein Lichtsensor (7") angebracht ist, der Teile der in der Optik (5) verlaufenden Lichtstrahlung (4) erfassen kann.

8. Verfahren zur Überwachung einer Beleuchtungsvorrichtung nach einem der vorherigen Ansprüche, wobei die durch den zumindest einen Lichtsensor (7) erfasste Lichtstrahlung (4) im Hinblick auf mögliche Beschädigungen von Teilen der Beleuchtungsvorrichtung (1), insbesondere von Teilen der Lichtquelle (2) und/oder des Lumineszenzkonversionselement (4), ausgewertet werden und im Bedarfsfall eine Sicherheitsabschaltung der Lichtquelle (2) durchgeführt wird.

9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass das in der erfassten Lichtstrahlung (4) enthaltene Frequenzspektrum ausgewertet wird.

10. Überwachungseinheit für eine Beleuchtungseinrichtung (1 ) nach einem der

Ansprüche 1 bis 7 oder zur Durchführung des Verfahrens nach einem der Ansprüche 8 oder 9.

Description:
Beleuchtungsvorrichtung für Fahrzeuge

Beschreibung

Die Erfindung betrifft eine Beleuchtungsvorrichtung für Fahrzeuge mit einer halbleiterbasierten Lichtquelle, insbesondere einem Laser zur Abgabe einer elektromagnetischen Primärstrahlung und mit einem in Hauptabstrahlrichtung vor der halbleiterbasierten Lichtquelle angeordneten Lumineszenzkonversionselement, das insbesondere eine Lichteinkoppelfläche zur Einkopplung der Primärstrahlung auf weist, das einen Leuchtstoff zur Konvertierung eines Teils der Primärstrahlung in eine Sekundärstrahlung aufweist, die eine andere Wellenlänge aufweist als die

Primärstrahlung, und das insbesondere eine Lichtauskoppelfläche zur Auskopplung der Primärstrahlung und der Sekundärstrahlung aufweist und wobei dem

Lumineszenzkonversionselement ein Kühlkörper zur Kühlung zugeordnet ist.

STAND DER TECHNIK

In verschiedensten Anwendungen der Beleuchtungsindustrie werden neue

Lichtquellen eingesetzt, um Bauraum, Effizienz, Lebensdauer und viele weitere Kriterien zu optimieren. Die neuesten Innovationen beschäftigen sich derzeit stark mit LASER-Dioden als neue Halbleiterlichtquelle. Diese zeichnet sich neben einer langen Lebensdauer, kleinem Bauraum, der Eigenschaft als Punktlichtquelle und hohen Leistungseigenschaften durch eine Emission von monochromatischer Strahlung aus. Speziell bei der Erzeugung von breitbandigem Licht (weiß) ist eine Abstrahlung von energiereicher Strahlung (kurzwellig) mit geringer Halbwertsbreite der Wellenlängen von Vorteil.

Über das Prinzip der Frequenzkonvertierung wird z.B. mit heutigen Phosphoren unterschiedlicher Ausprägung (Pulver, Keramik, Verguss etc.) eine Veränderung des Spektrums und damit der elektromagnetischen Energie je Spektralanteil

vorgenommen. Die derzeitige Einordnung einer solchen Lichtquelle erfolgt äquivalent zu LEDs. Insbesondere durch die mechanischen Belastungen im automobilen Sektor kann es jedoch zur Beschädigung des Phosphors kommen (Bruch, Splitterung, Abfall etc.). Im Fall der Beschädigung kann es gleichfalls zu einem Austritt kohärenter LASER- Strahlung kommen, die wiederum der Laserschutzbestimmung und damit der

Laserschutzklassen unterliegt.

In der WO 2014 / 072227 A1 ist eine Beleuchtungsvorrichtung für Kraftfahrzeuge beschrieben. Eine Laserlichtquelle dient zur Ausstrahlung eines Laserlichtbündels in ein Photolumineszenzelement. Durch das in dem Photolumineszenzelement auftreffende Licht wird ein Sekundärlicht in einer spezifischen Lichtverteilung erzeugt. Eine Abstrahloptikeinrichtung formt das Sekundärlicht in eine Abstrahlverteilung um. Lichtbündel, die in einem Primärraumwinkelbereich um die Primärabstrahlrichtung verlaufen, werden durch ein Abstrahlungshemmungsmittel unterdrückt. Hierdurch soll verhindert werden, dass bei einer Beschädigung des Photolumineszenzelements unkonvertiertes Laserlicht aus der Beleuchtungsvorrichtung austritt.

Insbesondere in der automobilen Beleuchtungsindustrie werden Lichtquellen genutzt, welche hohe Lichtstärken bei kleinen Dimensionen erzeugen müssen. Um die optischen Abbildungseigenschaften zu optimieren, ist die Eigenschaft der

„Punktlichtquelle" favorisiert. Im Zuge dessen werden oft Halbleiterelemente (LED) vor ein frequenzkonvertierendes Element geschaltet.

Derzeit wird vor allem der Einsatz von Keramiken zur Strahlungskonvertierung untersucht (Granate z. B. Y3AI5O12:Ce3+ Verbindungen). Teilchenphysikalisch wird der energiereiche, kurzwellige Strahlung beim Durchdringen des Phosphors vom Kristallgitter absorbiert, innerhalb der atomaren Energieniveaus in energieärmere Zustände transformiert und vom Kristallgitter in Form kurzwelliger Strahlung isotrop emittiert. Die emittierte Strahlung ist breitbandiger Natur und wird vom Menschen in Überlagerung mit der nicht absorbierten energiereichen Strahlung als weißes Licht empfunden.

Dadurch, dass es sich bei dem Phosphor um eine kristalline Struktur handelt, ist die Betrachtung der Möglichkeit der Beschädigung, des Bruchs etc. vorhanden. Derzeit existieren in einzelnen Modulen diverse Möglichkeiten zur Vorhersage einer

Veränderung der Strahlungseigenschaften und somit die Feststellung, ob eine

Gefährdung durch Laserstrahlung vorliegt. Gängige Verfahren sind die Bestimmung des reflektierten Anteils von Strahlungskomponenten in/aus einem Lichtleiter oder auch der Detektion von austretenden Strahlungskomponenten aus der

Gesamtlichtverteilung der Lichtquelle durch partielle Messung im Lichtkegel, Messung eines reflektierten Anteils aus dem Lichtkegel etc.

Solche Techniken sind durchführbar, jedoch nicht für alle Lichtsysteme (Reflexion, Projektion) nutzbar und weisen zum Teil eine hohe Justageanforderung an den Sensor und die Lichtquelle, bzw. Einkoppelstelle auf. Hinsichtlich der Nutzung von „Blendenstrukturen" bei einer reflexionsbasierten Lösung sind auch Veränderungen im Reflektor vorhanden, die sich auf die Abbildungsgenauigkeit auswirken können.

Außerdem ist zu gewährleisten, dass alle Fehlerfälle detektierbar sind, was derzeit nicht der Fall ist.

Derzeit existiert keine allgemeingültige technische Lösung für laserbasierte

Scheinwerfersysteme verschiedener Ausprägung, die eine Lasersicherheit unterstützt und das Abschalten des Lichtsystems im Gefahrenfall durchführt.

OFFENBARUNG DER ERFINDUNG

Aufgabe der vorliegenden Erfindung ist es, eine Beleuchtungsvorrichtung für

Fahrzeuge mit einer halbleiterbasierten Lichtquelle derart weiterzubilden, dass betriebssicher Licht über eine relativ kleine Lichtauskoppelflächen bei hoher

Leuchtdichte mit hoher Konversionseffizienz abgestrahlt werden kann.

Zur Lösung dieser Aufgabe ist die Erfindung in Verbindung mit dem Oberbegriff des Patentanspruchs 1 dadurch gekennzeichnet, dass zumindest ein Lichtsensor zur Analyse der in die Optik eingekoppelten Lichtstrahlung vorgesehen ist. Die erfasste Lichtstrahlung kann nun durch eine Auswerteeinheit im Hinblick auf mögliche

Beschädigungen der Beleuchtungsvorrichtung ausgewertet werden. Dabei wird insbesondere der das in der Lichtstrahlung enthaltene Frequenzspektrum zu erfasst und analysiert. Die Erfindung macht es sich zunutze, dass in einem System mit optisch abbildenden Einheiten (Primär-, Sekundäroptiken etc.) der„eingesammelte" Lichtstrom der

Lichtquelle durch die Optik geleitet und anschließend abgebildet wird. Bisher werden oftmals symmetrische Optiken eingesetzt. Der Trend hinsichtlich Design, Effizienz, neuen Materialien und Produktionsverfahren sowie dem Gewichtsvorteil durch

Materialeinsparung folgend, können beschnittene Optiken eingesetzt werden. In diesem Fall können die optisch, für die Abbildung nicht relevanten Flächen entfernt werden. Oftmals fallen damit auch teilweise im optischen System vorhandene

Strahlungsanteile (Streustrahlung, internal reflections, nicht hauptsächlich relevante Strahlungsanteile etc.) weg; diese sind aber für eine Analyse der Strahlung im optisch abbildenden System der Lichtquelle relevant und können für die Analyse genutzt werden.

Für die hier beschriebene Erfindung soll eine Modifikation des abbildenden Systems genutzt werden, um aus der emittierten und gelenkten Strahlung eine Aussage darüber treffen zu können, ob das Lasermodul (Laser und konvertierende Einheit) noch wie gewünscht arbeitet, oder einen Defekt aufweist und somit die

Sicherheitsmerkmale zur Zulassung nicht erfüllt. Es ist sowohl eine Modifikation des abbilden Systems als auch des nichtabbildenden Systems (Lichtleitkörper) möglich.

Derzeit finden für die Herstellung der Optiken einzelne Materialien vermehrt Einsatz (z. B. Glas, Thermoplaste wie PMMA & PC, Elaste wie Silikone). Jedes dieser

Materialien verfügt über einen bestimmten Brechungsindex, der in Verbindung mit Erfindungsinhalten genutzt werden kann, um emittierte Strahlung der Lichtquelle mittels Totaler Innerer Reflexion (TIR) zu einem Analysesensor zu leiten.

Vorzugsweise umfasst die Beleuchtungsvorrichtung eine Anordnung mit einer Vielzahl von Lichtsensoren zur Erfassung von an unterschiedlichen Positionen der Optik verlaufenden Lichtstrahlung. Alternativ kann in der Optik oder unmittelbar an der Optik ein Lichtsensor angebracht sein, der Teile der in der Optikverlaufenden Lichtstrahlung erfassen kann. Vorzugsweise ist zumindest ein optisches Auskoppelelement vorgesehen, welches zumindest teilweise in der Optik angeordnet ist und zumindest Teile der in der Optik verlaufenden Lichtstrahlung in Richtung auf einen, insbesondere außerhalb, der Optik angebrachten Lichtsensor umlenkt.

So können in einigen Regionen der Optik, vorzugsweise jene, welche für eine

Abbildung von Strukturen nicht notwendig sind (z. B. siehe die oben beschriebenen Bereiche), einzelne definierte geometrische Strukturen eingebracht werden z. B.

Bohrungen, in welche anschließend eine z. B. eine lichtleitende optische Einheit eingebracht wird, welche sich durch einen höheren Brechungsindex als das

umgebende Linsenmaterial auszeichnet und ggf. durch eine (z. B. 45°-)

Winkeleintrittsfläche für das emittierte Licht, der Lichtquelle zugewandt ist.

In einer weiteren bevorzugten Ausführungsform können in einem

Produktionsverfahren auch Reflektorstrukturen, insbesondere Prismenstrukturen in die Linse so eingebracht werden, die einen auf diese einfallenden Strahlungsanteil auf die positionierte Analyseeinheit reflektieren.

In einer weiteren bevorzugten Ausführungsform können bereits einzelne Anteile des Detektionsmaterials (z. B. Materialien Silizium, welche dem Spektrum des

kurzwelligen Peaks der frequenzkonvertierten Strahlung entsprechen) in die Optik, speziell bei Silikon, eingebracht werden, um insbesondere sofort eine Analyse der Strahlung zu ermöglichen.

Die vorliegende Erfindung so ermöglicht die Analyse von„weißer" Strahlung gemäß den Automotive-Anforderungen für Scheinwerfer direkt an der

Beleuchtungsvorrichtung. Somit sind keine komplexen Aufbauten für das Abgreifen der Strahlungsanteile aus den emittierenden und optischen Bestandteilen des

Gesamtsystems nötig, was zu einer Vereinfachung des Aufbaus führt. Weiterhin ergeben sich folgende Vorteile, der Bauraumoptimierung, der Reduktion von

Komplexität gegenüber anderen Lösungen, der Möglichkeit der Einzelüberwachung der Laserelemente bei Multi-Laserdioden-Aufbauten sowie der Sicherheitselemente und der Nutzung von Flächen und Sensorelementen die bereits im Scheinwerfer verbaut sind. Eine Echtzeitabschaltung wird möglich.

AUSFÜHRUNGSBEISPIEL DER ERFINDUNG

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1 Eine erfindungsgemäße Beleuchtungsvorrichtung in einer ersten

Ausgestaltung,

Fig. 2 eine erfindungsgemäße Beleuchtungsvorrichtung in einer zweiten

Ausgestaltung,

Fig. 3 eine erfindungsgemäße Beleuchtungsvorrichtung in einer dritten

Ausgestaltung,

Fig. 4 eine erfindungsgemäße Beleuchtungsvorrichtung in einer vierten

Ausgestaltung,

Die Unterfiguren a) zeigen jeweils die Beleuchtungsvorrichtungen im Querschnitt, die Unterfiguren b) zeigen jeweils die Beleuchtungsvorrichtungen im Längsschnitt.

Die erfindungsgemäße Beleuchtungsvorrichtung 1 nach Figur umfasst als Lichtquelle einen kurzwelligen Halbleiterlaser 2, welcher hinter einem

Lumineszenzkonversionselement 3 mit einer frequenzkonvertierenden Schicht, beispielsweise einer Phosphorkeramik, sitzt. Durch diese Einheit aus Halbleiterlaser und Lumineszenzkonversionselement 3 wird Licht 4 in eine Auskoppelelement 6', in diesem Fall eine TIR (total internal reflection) Optik 6' eingekoppelt, welche einen bestimmten Brechungsindex n1 besitzt. Durch die gegebene Form (Figur 1a) wird gleichzeitig eine für das Fahrzeug typische Abblendlicht Hell-Dunkel-Grenze gebildet, welche auch durch eine Sekundäroptik in das Vorfeld des Fahrzeugs projiziert werden kann. Es ist eine Anordnung 9 mit einer Mehrzahl von Strahlungsdetektoreinheiten T vorgesehen, die Hinsichtlich der Sicherheit und der Wirkketten die Strahlungsdetektoreinheit allerdings so nahe wie möglich an der Lichtquelle 2 positioniert sein sollten. Die in diesem Fall in die TIR Primäroptik 5 eingekoppelte Strahlung 4 verfügt bei Inbetriebnahme über ein spezifisches Muster (Spektrum) welches sich durch ein Verhältnis von kurzwelliger und langwelliger Strahlung genau beschreiben lässt. Dies Strahlung wird durch die interne Reflexion an den

Mantelfläche der Optik 5 totalreflektiert und gelangt zum optischen Ausgang, ebenso wie in die .Auskoppelfalle" mit dem Lichtleitkörper 6', welcher in die Optik 4 über einen Kanal oder dergleichen eingebracht ist, über einen höheren Brechungsindex n2>n1 verfügt und spezielle Einkoppelflächenneigung verfügt. Über einen Prismenwinkel des Lichtleitkörpers 6 wird durch die Totalreflexion ein Teil der emittierten Strahlung 4 zu der Strahlungsdetektoreinheit 7' geleitet und dort detektiert. Auch hier wird die

Strahlung 4 an den optischen Trennflächen zur Umgebung totalreflektiert und auf den Sensor 7' abgestrahlt. Diese Einheit T vergleicht die empfangenen Strahlungsanteile bzw. die Anteile der kurzwelligen Strahlung mit einem Referenzwert. Sollte ein

Positionierfehler des Halbleiterlasers 2 zum Phosphor, ein Phosphorriss, ein

Abspringen des Phosphors oder eine sonstige Beschädigung auftreten, wird sich das Istsignal von einem in der Auswerteeinheit hinterlegten Sollsignal unterscheiden und eine Sicherheitsschaltung kann den Laser deaktivieren.

Bei der Ausgestaltung nach Figur 2 wird auf einen auf dem TIR-Prinzip arbeitenden Auskoppelelement verzichtet. Über spezielle Produktionsverfahren können optische Elemente 6" in die Optik 5 so eingebracht werden, dass eine Strahlungsreflexion derart erfolgt, dass eine Teilstrahlung auf ein Sensorelement 7 ausgekoppelt wird. Dies verringert den Bauraum und die Störung des Strahlengangs von der Lichtquelle 2 zum Ausgang der Primäroptik 4. Im Übrigen stimmt die Ausgestaltung der Figur 2 mit derjenigen nach Figur 1 überein.

Bei der Ausgestaltung nach Figur 3 werden Auskoppelstrukturen 6"' in die

Grenzfläche zwischen dem Material der Optik 5 und der Umgebung eingebracht (z.B. Strahlungsauskoppelprismen), die die Strahlung 4 auf den Lichtsensor 7 lenken. Im Übrigen stimmt die Ausgestaltung der Figur 3 mit derjenigen nach Figur 1 überein. Bei der Ausgestaltung nach Figur 4 wird auf eine optische Strahlungsumlenkung und eine Auskopplung verzichtet. Es werden einzelne Bahnen von strahlungssensitivem Material 7" (Silizium, z.B. a-SiC:H pin structures) als Lichtsensoren auf die Primäroptik 5 aufgebracht oder in das Material der Primäroptik 5 eingebracht, um ein sofortiges Signal für die Auswerteeinheit 8 zu erhalten. Dies minimiert die Abschattung durch optische Elemente in der Primäroptik 5 sowie die Anzahl der optischen Teile und Komponenten als auch ggf. den Aufwand für das Produktionsverfahren. Eine Netz- /Matrixstruktur kann genutzt werden. Im Übrigen stimmt die Ausgestaltung der Figur 4 mit derjenigen nach Figur 1 überein.

Bezugszeichen liste

1 Beleuchtungsvorrichtung

2 Laser

3 Frequenzkonverter

4 Lichtstrahlung

5 Optik

6 Auskoppelelement

7 Lichtsensor

8 Auswerteeinheit

9 Anordnung von Lichtsensoren