Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
IMPROVED PROCESS FOR THE PREPARATION OF CERTAIN TRIARYL RHAMNOSE CARBAMATES
Document Type and Number:
WIPO Patent Application WO/2014/158640
Kind Code:
A1
Abstract:
Triaryl rhamnose carbamate insecticides are prepared from triaryl carbamates and the tetrahydropyran-2-ols in good yield without the use of a hydride base.

Inventors:
RENGA JAMES M (US)
WILSON ANNE M (US)
CROUSE GARY D (US)
Application Number:
PCT/US2014/018977
Publication Date:
October 02, 2014
Filing Date:
February 27, 2014
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DOW AGROSCIENCES LLC (US)
International Classes:
A61K31/67; A01N57/00
Foreign References:
US20090209476A12009-08-20
US20070244178A12007-10-18
US20080255389A12008-10-16
US20120172218A12012-07-05
US20120122805A12012-05-17
US20100204165A12010-08-12
US20120053216A12012-03-01
Attorney, Agent or Firm:
ADDISON, Bradford G. (11 South Meridian StreetIndianapolis, Indiana, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:

1. A process for preparing triaryl rhamnose carbamates of the Formula (I),

wherein

Ri represents (C -C ) haloalkyl or (C -C ) haloalkoxy, and R2 represents (C -C ) alkyl, (C3-C6) alkenyl or (C3-C6) alkynyl, which comprises contacting a triaryl carbamate of Formula (II)

wherein Ri is as previously defined, and

R3 represents a phenyl group substituted with one or more substituents selected from the group consisting of F, CI, Br, I, N02 or CN, with a tetrahydropyran-2-ol of Formula (III)

wherein

R2 is as previously defined, in an inert organic solvent in the presence of a tertiary amine base and an inorganic base at a temperature from about 20 °C to about 100 °C.

2. The process of Claim 1 in which \ is a (Ci-C2) fluoroalkoxy group.

3. The process of Claim 1 in which R2 is CH2CH2CH3 or CH2CH=CH2.

4. The process of Claim 1 in which R3 is /?ara-N02 phenyl.

5. The process of Claim 1 in which the tertiary amine base ethyl diisopropylamine.

6. The process of Claim 1 in which the inorganic base is cesium carbonate.

7. The process of Claim 1 in which the inorganic base is potassium phosphate (tribasic).

8. The process of Claim 1 in which the inert organic solvent is acetonitrile.

Description:
IMPROVED PROCESS FOR THE PREPARATION OF CERTAIN TRIARYL RHAMNOSE

CARBAMATES

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Patent Application Serial No. 61/778,470 filed March 13, 2013, the entire disclosure of which is hereby expressly

incorporated by reference.

BACKGROUND OF THE INVENTION

The present invention concerns an improved process for preparing certain triaryl rhamnose carbamates. U.S. Patent No. 8,178,658 describes, inter alia, certain triaryl rhamnose carbamates and their use as insecticides. One of the methods used to prepare such triaryl compounds is by way of a the following 2 step process

in which a triaryl amine is reacted with an aryl or substituted aryl chloroformate with a good leaving group to provide a triaryl carbamate followed by reaction with a tetrahydropyran-2-ol to give the triaryl rhamnose carbamate pesticide. However, the reaction of the triaryl carbamate with the tetrahydropyran-2-ol requires the use of a strong hydride base. It would be desirable to have a process in which the triaryl carbamate and the tetrahydropyran-2-ol could be coupled in good yield without the use of a hydride base.

SUMMARY OF THE INVENTION

The present invention provides such conditions. Thus, the present invention concerns a 5 process for preparing certain triaryl rhamnose carbamates of the Formula (I),

wherein

Ri represents (CrC 6 ) haloalkyl or (CrC 6 ) haloalkoxy, and

R 2 represents (C -C ) alkyl, (C 3 -C 6 ) alkenyl, or (C 3 -C 6 ) alkynyl, l o which comprises contacting a triaryl carbamate of Formula (II)

wherein

Ri is as previously defined, and

R 3 represents a phenyl group substituted with one or more substituents selected from 15 the group consisting of F, CI, Br, I, N0 2 and CN,

with a tetrahydropyran-2-ol of Formula (III) wherein

R 2 is as previously defined, in an inert organic solvent in the presence of a tertiary amine base and an inorganic base at a 5 temperature from about 20 °C to about 100 °C.

DETAILED DESCRIPTION OF THE INVENTION

Throughout this document, all temperatures are given in degrees Celsius, and all percentages are weight percentages of isolated products unless otherwise stated.

The term "alkyl", as well as derivative terms such as "haloalkyl" and "haloalkoxy", as o used herein, include within their scope straight chain, branched chain and cyclic moieties.

Thus, typical alkyl groups are methyl, ethyl, propyl, butyl, pentyl, hexyl, 1-methylethyl, 1,1-dimethylethyl, 1-methylpropyl, 2-methylpropyl, cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The term "alkenyl", as used herein, means an acyclic, unsaturated (at least one carbon-carbon double bond), branched or unbranched substituent consisting of carbon and

5 hydrogen, for example, allyl, butenyl, pentenyl or hexenyl. The term "alkynyl", as used herein, means an acyclic, unsaturated (at least one carbon-carbon triple bond), branched or unbranched substituent consisting of carbon and hydrogen, for example, propargyl, butynyl, pentynyl or hexynyl. The terms "haloalkyl" and "haloalkoxy" includes alkyl or alkoxy groups substituted with from one to the maximum possible number of halogen atoms, all combinations of halogens o included. The term "halogen" or "halo" includes fluorine, chlorine, bromine and iodine, with fluorine being preferred.

The present invention concerns a process for preparing certain triaryl rhamnose carbamates of the Formula (I), wherein

Ri represents (CrC 6 ) haloalkyl or (CrC 6 ) haloalkoxy, and R 2 represents (CrC 6 ) alkyl, (C 3 -C 6 ) alkenyl or (C 3 -C 6 ) alkynyl, by reacting a triaryl carbamate of Formula (II)

wherein

Ri is as previously defined, and

R 3 represents a phenyl group substituted with one or more substituents selected from the group consisting of F, CI, Br, I, N0 2 and CN, with a tetrahydropyran-2-ol of Formula (III)

wherein

R 2 is as previously defined, in good yield without having to use a hydride base. This is accomplished by performing the reaction in an inert organic solvent in the presence of a tertiary amine base and an inorganic base at a temperature from about 20 °C to about 100 °C. The tetrahydropyranols of Formula III consist of approximately a 3: 1 mixture of C2 anomers, with the 2R anomer predominating. The initial carbamate product, therefore, consists of a mixture of C2-anomers, formed in the same ratio. Under the conditions described above, this initially formed isomeric mixture undergoes equilibration, leading ultimately to a product that is almost exclusively the (25) configuration.

Ri is preferably a (CrC 2 ) fluoroalkoxy group; R 2 is preferably CH 2 CH 2 CH 3 or

CH 2 CH=CH 2 ; and R 3 is preferably /?ara-N0 2 phenyl.

The triaryl carbamates of Formula I are known from U.S. Patent No. 8,178,658.

Approximately a 1: 1 molar ratio of the triaryl carbamate and the tetrahydropyran-2-ol may be used, however, molar ratios of about 1.2: 1 to about 1: 1.2 may also be used. Suitable examples of tetrahydropyran-2-ols include (3R,4R,5 l S',6 l S , )-3,4,5-trimethoxy-6-methyltetrahydro-2H-pyran- 2-ol, (SR^R^^^^^-ethoxy-S^-dimethoxy-G-methyltetrahydro^H-pyran^-o l, (3R,4R,55,65)- 3,5-dimethoxy-6-methyl-4-propoxytetrahydro-2H-pyran-2-ol, and (3R,4R,55,65)-4-(allyloxy)- 3,5-dimethoxy-6-methyltetrahydro-2H-pyran-2-ol. Currently, it is preferred if (3R,4R,55,65)- 3,5-dimethoxy-6-methyl-4-propoxytetrahydro-2H-pyran-2-ol or (3R,4R,55,65)-4-(allyloxy)-3,5- dimethoxy-6-methyltetrahydro-2H-pyran-2-ol is used.

The reaction is conducted in a wide variety of organic solvents including, for example, halogenated hydrocarbons, e.g. dichloromethane (CH 2 C1 2 ) and dichloroethane (DCE); aromatic hydrocarbons, e.g., benzene, toluene, or xylenes; polar aprotic solvents, e.g., tetrahydrofuran (THF), acetonitrile (MeCN), methyl iert-butyl ether (MTBE), and mixtures thereof. Currently, it is preferred if MeCN is used.

The reaction requires at least one equivalent of a tertiary amine base, but a 2- to 3-fold excess of tertiary amine base is often recommended. Preferred tertiary amine bases include triethylamine (TEA) and ethyl diisopropylamine (DIPEA).

In addition to the tertiary amine base, the reaction requires the presence of an inorganic base. Typical inorganic bases that can be used include alkali metal and alkaline earth metal carbonates, sulfates and phosphates. Preferred inorganic bases include cesium carbonate (CS 2 CO 3 ), potassium carbonate (K 2 CO 3 ) and potassium phosphate (K 3 PO 4 ). From 0.1 to 0.5 equivalents of inorganic base is usually sufficient.

The reaction is conducted at a temperature from about 20 °C to about 100 °C, with a temperature from about room temperature to about 50 °C being preferred.

In a typical reaction, the triaryl carbamate -hydrochloride (HCI), the tetrahydropyran-2- ol and 0.2 equivalents of inorganic base are mixed in MeCN. About 2 equivalents of tertiary amine base are added and the mixture stirred at ambient temperature until the reaction is completed. The reaction mixture is partitioned between water and a water immiscible solvent such as MTBE. The solvent is evaporated and the isolated product purified by conventional techniques such as flash chromatography.

The following examples are presented to illustrate the invention.

EXAMPLES

Example 1: Preparation of 4-nitrophenyl (4-(l-(4-(perfluoroethoxy)-phenyl)-lH-l,2,4- triazol-3-yl)phenyl)carbamate, HCI

To a round bottomed flask equipped with a magnetic stir bar under nitrogen was added 4-nitrophenyl chloroformate (0.544 g, 2.70 mmol) and THF (15 mL) To a separate round bottomed flask under nitrogen was added 4-(l-(4-(perfluoroethoxy)phenyl)-lH-l,2,4-triazol-3- yl)aniline (1 g, 2.70 mmol) and THF (15 mL). The aniline solution was added via syringe to the chloroformate solution, and after a small amount of bubbling (no heat generation) a thick white precipitate began to form within 5 minutes (min). After stirring the reaction mixture for 1 hour (h) at room temperature, the off-white solid was filtered, washed with hexanes and air- dried to give the title compound (1.48 g, 96%): mp 170-174 °C; 1H NMR (400 MHz, DMSO- d 6 ) δ 10.71 (s, 1H), 9.39 (s, 1H), 8.39 - 8.25 (m, 2H), 8.16 - 8.00 (m, 4H), 7.67 (d, J = 8.6 Hz, 2H), 7.64 - 7.51 (m, 4H); 13 C NMR (101 MHz, DMSO- 6 ) δ 161.77, 155.41, 150.49, 146.06, 144.62, 143.71, 139.50, 135.82, 126.92, 125.23, 125.13, 123.13, 122.93, 121.07, 118.69, 118.66, 99.48; ESIMS m/z 534 ([M+]).

Example 2: Preparation of (2 t S , ,3R,4R,5 t S',6 t S')-3,5-dimethoxy-6-methyl-4- propoxytetrahydro-2H-pyran-2-yl (4-(l-(4-(perfluoroethoxy)phenyl)-lH-l,2,4-triazol-3- yPphenyPcarbamate

To a magnetically stirred solution of (3R,4R,5S,6S)-3,5-dimethoxy-6-methyl-4- propoxytetrahydro-2H-pyran-2-ol (4.12 g, 17.6 mmol) and 4-nitro-phenyl (4-(l-(4- (perfluoroethoxy)phenyl)-lH-l,2,4-triazol-3-yl)phenyl)carbam ate, HC1 (10.05 g, 17.57 mmol) in MeCN (100 mL) was added freshly ground potassium phosphate, tribasic (K 3 P0 4 ; 0.746 g, 3.51 mmol). To the resulting off-white mixture was added DIPEA (6.12 mL, 35.1 mmol) and the resulting bright yellow mixture was stirred at room temperature for 6 h. The mixture was partitioned between MTBE (400 mL) and water (100 mL), and the phases were separated. The organic phase was successively washed with water (3 x 100 mL), aqueous sodium hydroxide (NaOH, 1 N, 100 mL), and water (100 mL). The organic phase was dried over magnesium sulfate (MgS0 4 ), filtered, and concentrated to give an orange foam. The foam was purified by flash column chromatography (3:3:3: 1 hexane:ethyl acetate (EtOAc):CH 2 Cl 2 :acetone) to give product fractions that were orange in color. The combined fractions were treated with decolorizing charcoal, filtered, and concentrated to give the title compound as a yellow solid

(7.01 g, 63.3%): mp 152 - 154°C; 1H NMR (400 MHz, CDC1 3 ) δ 8.57 (s, 1H), 8.23 - 8.11 (m, 2H), 7.86 - 7.76 (m, 2H), 7.54 (d, J = 8.3 Hz, 2H), 7.43 - 7.36 (m, 2H), 6.85 (s, 1H), 6.20 (d, J = 2.0 Hz, 1H), 3.74 - 3.48 (m, 13H), 3.21 (t, J = 9.4 Hz, 1H), 1.75 - 1.64 (m, 3H), 1.37 - 1.30 (m, 3H), 1.30 - 1.22 (m, 2H), 0.99 (t, J = 1.4 Hz, 3H); 19 F NMR (376 MHz, CDC1 3 ) δ -85.90, - 87.86; ESIMS m/z 631 ([M+]).

Example 3: Preparation of (2S, 3R,4R,5 t S',6 t S')-3,5-dimethoxy-6-methyl-4- propoxytetrahvdro-2H-pyran-2-yl (4-(l-(4-(perfluoroethoxy)phenyl)-lH- 2,4-triazol-3- vPphenvPcarbamate.

To a magnetically stirred solution of (3R,4R,5S,6S)-3,5-dimethoxy-6-methyl-4- propoxytetrahydro-2H-pyran-2-ol (0.434 g, 1.85 mmol) and 4-nitro-phenyl (4-(l-(4- (perfluoroethoxy)phenyl)-lH-l,2,4-triazol-3-yl)phenyl)carbam ate, HC1 (0.992 g, 1.85 mmol) in MeCN (8.5 mL) was added Cs 2 C0 3 , (0.103 g, 0.315 mmol). To the resulting mixture was added DIPEA (0.645 mL, 3.70 mmol) and the resulting yellow mixture was stirred at room temperature for 1.5 h. The mixture was partitioned between CH 2 C1 2 and water, and the phases were separated. The organic phase was washed with saturated aqueous sodium bicarbonate (NaHC0 3 , 3 x 30 mL), dried over MgS0 4 , filtered, and concentrated to give a yellow foam. The foam was purified by flash column chromatography (3:3:3: 1

hexane:EtOAc:CH 2 Cl 2 : acetone) to give the title compound as a yellow solid (0.843 g, 72%): 1H

NMR (400 MHz, CDC1 3 ) δ 8.57 (s, 1H), 8.23 - 8.11 (m, 2H), 7.86 - 7.76 (m, 2H), 7.54 (d, J = 8.3 Hz, 2H), 7.43 - 7.36 (m, 2H), 6.85 (s, 1H), 6.20 (d, J = 2.0 Hz, 1H), 3.74 - 3.48 (m, 13H), 3.21 (t, J = 9.4 Hz, 1H), 1.75 - 1.64 (m, 3H), 1.37 - 1.30 (m, 3H), 1.30 - 1.22 (m, 2H), 0.99 (t, J = 1.4 Hz, 3H); ESIMS m/z 631 ([M+]). Example 4: Preparation of (IS, 3R,4R,5 t S , ,6 t S , )-3,5-dimethoxy-6-methyl-4- propoxytetrahvdro-2H-pyran-2-yl (4-(l-(4-(trifluoromethyl)phenyl)-lH-l,2,4-triazol-3- yPphenyPcarbamate.

Step 1. 4-[l-(4-Trifluoromethylphenyl)- lH-[l,2,4]triazol-3-yl]aniline was prepared by coupling l-(4-nitrophenyl) 1,2,4-triazole with 4-iodobenzotrifluoride according to conditions described in Crouse, et. ah , U.S. Patent No. 8, 178,658, to generate 3-(4-nitrophenyl)- l-(4- (trifluoromethyl)phenyl)- lH- 1,2,4-triazole as a tan solid: mp 161-162 °C; 1H NMR (300 MHz, CDC1 3 ) δ 8.60 (s, 1H), 8.40-8.35 (m, 4H), 7.91 (d, J = 7.8 Hz, 2H), 7.83 (d, J = 8.6 Hz, 2H); EIMS m/z 335 ([M+1] + ). Catalytic hydrogenation of the nitro group using palladium on carbon (Pd/C, 5%) in methanol (MeOH) provided the corresponding aniline as a light tan solid: mp 178-180 °C; 1H NMR (400 MHz, CDC1 3 ) δ 8.60 (s, 1H), 8.00 (d, J = 8.6 Hz, 1H), 7.87 (d, J = 7.8 Hz, 2H), 7.80 - 7.73 (m, 2H), 6.76 (d, J = 8.6 Hz, 1H), 3.88 (s, 2H); EIMS m/z 304.3 ([M+]). Step 2. (IS, 3R,4R,5 t S',6 t S')-3,5-dimethoxy-6-methyl-4-propoxytetrahvdro-2H-pyra n-2-yl

(4-(l-(4-(trifluoromethyl)phenyl)-lH-l,2,4-triazol-3-yl)p henyl)-carbamate: To a magnetically stirred solution of 4-(l-(4-(trifluoromethyl)phenyl)- lH-l,2,4-triazol-3-yl)aniline (5.0 g, 16.4 mmol) in THF (20 mL) was added 4-nitrophenyl carbonochloridate (3.31 g, 16.4 mmol). A solid formed rapidly, and this was filtered and air-dried to give 4-nitrophenyl (4-(l- (4- (trifluromethyl)-phenyl)- lH-l,2,4-triazol-3-yl)phenyl)carbamate- HCl (6.76 g, 81%). A portion of this salt (2.10 g, 4.16 mmol) was slurried in dry MeCN (20 mL) and stirred magnetically while (3R,4R,5 l S , ,65 , )-3,5-dimethoxy-6-methyl-4-propoxytetrahydro-2H-pyran- 2-ol (1.05 g, 4.47 mmol) was added, followed by CS 2 CO 3 (0.25 g, 0.77 mmol). To the resulting mixture was added DIPEA (1.20 g, 9.28 mmol) and the solution was allowed to stir at ambient temperature for 4 h. The mixture was partitioned between diethyl ether (50 mL) and a saturated aqueous NaHCC" 3 solution (50 mL). The organic layer was dried and concentrated to a yellow gum, which was crystallized by stirring in ether-hexanes (1:3) to furnish the title compound (2.18 g, 82%): mp 188-191 °C; 1H NMR (400 MHz, CDC1 3 ) δ 8.65 (s, 1H), 8.17 (d, J= 8.7 Hz, 2H), 7.95 - 7.85 (m, 2H), 7.80 (d, J= 8.5 Hz, 2H), 7.61 - 7.47 (m, 2H), 6.85 (s, 1H), 6.20 (d, J = 2.0 Hz, 1H), 3.76-3.44 (m, 11H), 3.22 (t,J=9.4 Hz, 1H), 1.75- 1.60 (m, 2H), 1.33 (d,J=6.2 Hz, 3H), 0.98 (t, J =1.4 Hz, 3H); ESIMS m/z 565 ([M+]).