Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
IMPROVED SEPARATORS WITH FIBROUS MAT, LEAD ACID BATTERIES, AND METHODS AND SYSTEMS ASSOCIATED THEREWITH
Document Type and Number:
WIPO Patent Application WO/2018/147866
Kind Code:
A1
Abstract:
A separator is provided with a fibrous mat for retaining the active material on an electrode of a lead-acid battery. Batteries, and methods and systems associated therewith are also provided.

Inventors:
MILLER ERIC H (US)
KRISHNAMOORTHY AHILA (IN)
PERRY JAMES P (US)
WHEAR J KEVIN (US)
Application Number:
PCT/US2017/017418
Publication Date:
August 16, 2018
Filing Date:
February 10, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
DARAMIC LLC (US)
International Classes:
H01M10/12; H01M50/414; H01M50/417; H01M50/42; H01M50/437; H01M50/451; H01M50/454; H01M50/489; H01M50/491
Domestic Patent References:
WO2015148305A12015-10-01
WO2008036332A22008-03-27
WO2016003462A12016-01-07
Foreign References:
US8722231B22014-05-13
EP2858142A12015-04-08
EP1079448A12001-02-28
Attorney, Agent or Firm:
HAMMER, Robert, H., III et al. (US)
Download PDF:
Claims:
Claims

What is claimed is:

1. A lead-acid battery separator assembly comprising:

a separator layer;

a nonwoven fibrous mat;

said fibrous mat being disposed adjacent to said separator layer; and

wherein said fibrous mat has an electrical resistance in the range of approximately 6 mQ.cm2to approximately 14 mO.cm2; and

wherein said fibrous mat has an average pore size of less than about 5 μπι.

2. The lead-acid battery separator assembly of claim 1, wherein said separator layer and fibrous mat are laminated together.

3. The lead-acid battery separator assembly of claims 1 or 2, wherein said fibrous web has a thickness of between about 350 μπι to 450 μπι.

4. The lead-acid battery separator assembly of claims 1-3, wherein said fibrous web has an air permeability in the range of approximately 1500 l/m2s to approximately 2500 l/m2s.

5. The lead-acid battery separator assembly of claims 1-4, wherein said fibrous web has an electrical resistance less than approximately 11 mQ.cm2

6. The lead-acid battery separator assembly of claims 1-5, wherein said fibrous web has an area weight in the range of approximately 60 g/m2 to approximately 80 g/m2.

7. The lead-acid battery separator assembly of claims 1-6, wherein said fibrous web has a preferred binder content in the range of approximately 15% to approximately 21%.

8. The lead-acid battery separator assembly of claims 1-7, wherein said fibrous web has tensile strength in the machine direction of approximately 200 N/50mm.

9. The lead-acid battery separator assembly of claims 1-8, wherein said fibrous web has tensile strength in the cross-machine direction of approximately 150 N/50mm.

10. The lead-acid battery separator assembly of claims 1-9, wherein said fibrous web

comprises a fiber thickness of approximately 7.2 μπι.

11. The lead-acid battery separator assembly of claims 1-10, wherein said fibrous web comprises fibers selected from the group consisting of: glass fibers, synthetic fibers, and combinations thereof.

12. The lead-acid battery separator assembly of claim 11, wherein said synthetic fibers are selected from the group consisting of: polypropylene, polyethylene terephthalate ("PET"), acrylic, other plastics, polymer, homopolymer, copolymer, and any combination thereof.

13. The lead-acid battery separator assembly of claims 1-12, wherein said fibrous web

comprises an additive selected from the group consisting of: rubber, silica, soluble fibers, a gelling agent, a surfactant, and combinations thereof.

14. The lead-acid battery separator assembly of claim 13, wherein said additive is selected from the group consisting of: applied as a coating, impregnated into said fibrous web, dispersed within said fibrous web, added in the manufacture of said porous membrane, and any combination thereof.

15. The lead-acid battery separator assembly of claims 1-14, wherein said separator layer and said fibrous web are leaves.

16. The lead-acid battery separator assembly of claims 1-14, wherein said separator layer and said fibrous web are sleeves.

17. The lead-acid battery separator assembly of claims 1-14, wherein said separator layer and said fibrous web are envelopes.

18. The lead-acid battery separator assembly of claim 17, wherein said envelopes are hybrid envelopes.

19. The lead-acid battery separator assembly of claims 1-18, wherein said separator layer is a polyolefin microporous membrane;

wherein said separator layer comprises polyethylene, preferably, ultrahigh molecular weight polyethylene, a particle-like filler, and a processing plasticizer; wherein said separator layer comprises the particle-like filler in an amount of 40% of more by weight of said separator layer; and wherein said polyethylene comprises polymer in a shish-kebab formation comprising a plurality of extended chain crystals (the shish formations) and a plurality of folded chain crystals (the kebab formations) and wherein the average repetition or periodicity of the kebab formations is from 1 nm to 150 nm, preferably less than 120 nm.

20. The lead-acid battery separator assembly of claim 19, wherein said filler is selected from the group consisting of: silica, precipitated silica, fumed silica, and precipitated amorphous silica, and any combination thereof; and wherein the molecular ratio of OH to Si groups within said filler, measured by 29Si-NMR, is within a range of from approximately 21 : 100 to 27: 100 or more.

21. The lead-acid battery separator assembly of claim 19, wherein said processing plasticizer is selected from the group consisting of: processing oil, paraffin-based mineral oil, mineral oil, and any combination thereof.

22. The lead-acid battery separator assembly of claim 19, wherein said particle-like filler is present at the kebab formations of the polymer.

23. The lead-acid battery separator assembly of claims 1-22, wherein said separator layer is selected from the group consisting of: polyolefin, polyethylene, polypropylene, rubber, polyvinyl chloride, phenolic resins, cellulosic, synthetic wood pulp, glass fibers, synthetic fibers, and combinations thereof.

24. The lead-acid battery separator assembly of claims 1-23, wherein said separator layer comprises one from the group consisting of: a filler, a surfactant, and combinations thereof.

25. The lead-acid battery separator assembly of claims 13 or 24, wherein said surfactant is selected from the group consisting of: a non-ionic surfactant, an ionic surfactant, and an anionic surfactant.

26. The lead-acid battery separator assembly of claims 1-25, wherein said separator layer comprises one from the group consisting of: ribs, broken ribs, serrated ribs, embattlemented ribs, embossed ribs, negative cross ribs, and any combination thereof.

27. The lead-acid battery separator assembly of claims 1-25, wherein said separator layer comprises a plurality of broken ribs, wherein said plurality of broken ribs are defined by an angular orientation.

28. The lead-acid battery separator assembly of claim 27, wherein said angular orientation is relative to a machine direction of said separator layer, and said angular orientation is an angle chosen from the group consisting of: between greater than zero degrees (0°) and less than 180 degrees (180°), and between greater than 180 degrees (180°) and less than 360 degrees (360°).

29. The lead-acid battery separator assembly of claim 25, wherein said separator layer

comprises one or more sets of ribs within said plurality of broken ribs; wherein a first set of ribs within said one or more sets of ribs have a first angular orientation; and wherein a second set of ribs within said one or more sets of ribs have a second angular orientation.

30. The lead-acid battery separator assembly of claim 1, wherein said separator layer

comprises a rubber.

31. The lead-acid battery separator assembly of claim 30, wherein said rubber is selected from the group consisting of: latex, methyl rubber, polybutadiene, chloropene rubbers, butyl rubber, bromobutyl rubber, polyurethane rubber, epichlorhydrin rubber, polysulphide rubber, chlorosulphonyl polyethylene, polynorbornene rubber, acrylate rubber, fluorine rubber, silicone rubber, copolymer rubbers, and combinations thereof.

32. The lead-acid battery separator assembly of claim 31, wherein said copolymer rubbers is selected from the group consisting of: styrene/butadiene rubbers,

acrylonitrile/butadiene rubbers, ethylene/polypropylene rubbers (EPM and EPDM), ethylene/vinyl acetate rubbers, and combinations thereof.

33. The lead-acid battery separator assembly of claim 30, wherein said rubber is cross-linked or uncross-linked.

34. The lead-acid battery separator assembly of claim 30, wherein said rubber is coated on at least one face of said separator layer.

35. The lead-acid battery separator assembly of claim 30, wherein said rubber is impregnated into said separator layer.

36. The lead-acid battery separator assembly of claim 30, wherein said rubber is blended with a polymer used to form the separator layer.

37. A lead-acid battery comprising the lead-acid battery separator assembly of claims 1-36.

38. The lead-acid battery of claim 37, wherein said battery comprises an alternating series of positive electrodes and negative electrodes; wherein said positive electrodes comprise an active material.

39. The lead-acid battery of claim 38, wherein said separator layer and said fibrous web are interleafed between said positive electrodes and negative electrodes.

40. The lead-acid battery of claim 38, wherein said separator layer and said fibrous web are an envelope that envelopes said positive electrodes.

41. The lead-acid battery of claim 40, wherein said envelope is a hybrid envelope

42. The lead-acid battery of claim 37, wherein said separator layer and said fibrous web are laminated as a single unit.

43. The lead-acid battery of claim 37, wherein said separator layer and said fibrous web are adjacent to one another.

44. The lead-acid battery of claim 39, wherein said fibrous web is positioned between said separator layer and said positive electrode.

45. The lead-acid battery of claim 39, wherein said fibrous web is compresses against said active material.

46. The lead-acid battery of claim 39, wherein said fibrous web is incorporated in said active material.

47. The lead-acid battery of claim 39, wherein said fibrous web is incorporated in a pasting paper.

48. The lead-acid battery of claim 37, wherein said fibrous web has an average pore size that is smaller than the average grain size of said active material.

49. The lead-acid battery of claim 37, wherein said battery is a tubular battery.

50. The lead-acid battery of claim 37, wherein said battery is a flat-plate battery.

51. The lead-acid battery of claim 37, wherein said battery is a golf cart battery.

52. The lead-acid battery of claim 37, wherein said battery is an inverter battery.

53. The lead-acid battery of claim 37, wherein said battery is an SLI battery.

54. The lead-acid battery of claim 37, wherein said battery is a flooded lead-acid battery.

55. The lead-acid battery of claim 37, wherein said battery is a deep cycle battery.

56. The lead-acid battery of claim 37, wherein said battery operates in a partial state of charge.

57. A vehicle comprising the lead-acid battery of claim 37.

58. The vehicle of claim 57, wherein said vehicle is an automobile.

59. The vehicle of claim 57, wherein said vehicle is a truck.

60. The vehicle of claim 57, wherein said vehicle is a forklift

61. The vehicle of claim 57, wherein said vehicle is a golf cart.

62. The vehicle of claim 57, wherein said vehicle is an e-rickshaw.

63. The vehicle of claim 57, wherein said vehicle is a hybrid-electric vehicle (HEV).

64. The vehicle of claim 57, wherein said vehicle is subject to a motion characterized by a stop-start motion.

65. The lead-acid battery separator assembly of claims 1-9, wherein said fibrous web has a thickness of approximately 0.3 mm.

66. The lead-acid battery separator assembly of claims 1-9, wherein said fibrous web has a thickness of approximately 0.2 mm.

67. The lead-acid battery separator assembly of claims 1-9, wherein said fibrous web has a thickness of approximately 0.4 mm.

68. The lead-acid battery separator assembly of claims 1-9, wherein said fibrous web has a thickness of approximately 0.1 to 0.5 mm.

69. A lead-acid battery separator comprising:

a porous membrane;

a nonwoven fibrous mat;

said fibrous mat being disposed adjacent to said porous membrane; and

wherein said fibrous mat has an electrical resistance in the range of approximately 6 mQ.cm2to approximately 14 mO.cm2; and

wherein said fibrous mat has an average pore size of less than about 5 μπι.

70. Novel or improved separators, battery separators, enhanced flooded battery separators, fibrous mats, batteries, cells, and/or methods of manufacture and/or use of such separators, battery separators, fibrous mats, enhanced flooded battery separators, cells, and/or batteries as shown or described herein.

Description:
IMPROVED SEPARATORS WITH FIBROUS MAT, LEAD ACID BATTERIES, AND

METHODS AND SYSTEMS ASSOCIATED THEREWITH

Field

[0001] In accordance with at least selected embodiments, the present disclosure or invention is directed to novel or improved separators, battery separators, enhanced flooded battery separators, fibrous mats, batteries, cells, and/or methods of manufacture and/or use of such separators, battery separators, fibrous mats, enhanced flooded battery separators, cells, and/or batteries. In accordance with at least certain embodiments, the present disclosure or invention is directed to novel or improved enhanced flooded lead acid battery separators for starting lighting ignition ("SLI") batteries, fibrous mats, flooded batteries for deep cycle applications, and/or enhanced flooded batteries, and/or systems, vehicles, and/or the like including such separators, mats or batteries, and/or improved methods of making and/or using such improved separators, mats, cells, batteries, systems, vehicles, and/or the like. In accordance with at least certain embodiments, the present disclosure or invention is directed to an improved separator for enhanced flooded batteries and/or improved methods of making and/or using such batteries having such improved separators. In accordance with at least selected embodiments, the present disclosure or invention is directed to separators, particularly separators for enhanced flooded batteries having reduced electrical resistance and/or increased cold cranking amps. In addition, disclosed herein are methods, systems and battery separators for enhancing battery life, reducing water loss, reducing internal resistance, increasing wettability, reducing acid stratification, improving acid diffusion, improving cold cranking amps and/or improving uniformity in at least enhanced flooded batteries. In accordance with at least particular embodiments, the present disclosure or invention is directed to an improved separator for enhanced flooded batteries wherein the separator includes one or more performance enhancing additives or coatings, increased porosity, increased void volume, amorphous silica, higher oil absorption silica, higher silanol group silica, retention and/or improved retention of active material on electrodes, and/or any combination thereof.

[0002] In accordance with at least selected embodiments, the present disclosure or invention is directed to separators for lead acid batteries, in particular flooded lead acid batteries, and various lead acid batteries, such as flooded lead acid batteries or enhanced flooded lead acid batteries, comprising the same. In accordance with at least selected embodiments, the present disclosure or invention is directed to novel or improved separators, cells, batteries, and/or methods of manufacture and/or use of such separators, cells, and/or batteries. In accordance with at least certain embodiments, the present disclosure or invention is directed to an improved separator for lead acid batteries and/or improved methods of using such batteries having such improved separators. In addition, disclosed herein are methods, systems and battery separators for enhancing battery life, reducing battery failure, reducing water loss, improving oxidation stability, improving, maintaining, and/or lowering float current, improving end of charge (EOC) current, decreasing the current and/or voltage needed to charge and/or fully charge a deep cycle battery, minimizing internal electrical resistance increases, lowering electrical resistance, increasing wettability, lowering wet out time with electrolyte, reducing time of battery formation, reducing antimony poisoning, reducing acid stratification, improving acid diffusion, and/or improving uniformity in lead acid batteries. In accordance with at least particular embodiments, the present disclosure or invention is directed to an improved separator for lead acid batteries wherein the separator includes one or more improved performance enhancing additives and/or coatings. In accordance with at least certain embodiments, the disclosed separators are useful for deep-cycling applications, for instance in motive machines or vehicles and/or stationary machines or vehicles, such as golf carts, fork trucks, inverters, renewable energy systems and/or alternative energy systems, by way of example only, solar power systems and wind power systems; in particular, the disclosed separators are useful in battery systems wherein deep cycling and/or partial state of charge operations are part of the battery life, even more particularly, in battery systems where additives and/or alloys (antimony being a key example) are added to the battery to enhance the life and/or performance of the battery and/or to enhance the deep cycling and/or partial state of charge operating capability of the battery.

003] In accordance with at least selected embodiments, the present disclosure is directed to improved lead acid batteries, such as flooded lead acid batteries, improved systems that include a lead acid battery, and/or a battery separator, improved battery separators, improved vehicles including such systems, methods of manufacture or use, or combinations thereof. In accordance with at least certain embodiments, the present disclosure or invention is directed to improved flooded lead acid batteries, improved battery separators for such batteries, and/or methods of manufacturing, testing, or using such improved flooded lead acid batteries, or combinations thereof. In addition, disclosed herein is a method, system, battery, and/or battery separator for reducing acid stratification, enhancing battery life and performance in a flooded lead acid battery, and in such batteries that operate in a partial state of charge. Background

[0004] Enhanced flooded batteries ("EFBs") and absorbent glassmat ("AGM") batteries have been developed to meet the expanding need for electric power sources in idle start stop applications. EFB systems have similar architecture to traditional flooded lead acid batteries, in which positive and/or negative electrodes are surrounded by a microporous separator and submerged in a liquid electrolyte. AGM systems, on the other hand, do not contain free liquid electrolyte. Instead, the electrolyte is absorbed into a glass fiber mat which is then layered on top of the electrodes. Historically, AGM systems have been associated with higher discharge power, better cycle life, and greater cold cranking amps than flooded battery systems.

However, AGM batteries are significantly more expensive to manufacture and are more sensitive to overcharging. As such, EFB systems remain an attractive option for mobile power sources as well as stationary power sources for various markets and applications.

[0005] EFB systems can include one or more battery separators which divides, or

"separates," the positive electrode from the negative electrode within a lead acid battery cell. A battery separator may have two primary functions. First, a battery separator should keep the positive electrode physically apart from the negative electrode in order to prevent any electronic current passing between the two electrodes. Second, a battery separator should permit an ionic current between the positive and negative electrodes with the least possible resistance. A battery separator can be made out of many different materials, but these two opposing functions have been met well by a battery separator being made of a porous nonconductor. With this structure, pores contribute to ionic diffusion between electrodes, and a non-conducting polymeric network prevents electronic shorting.

[0006] An EFB with increased discharge rate and cold cranking amperes or amps ("CCA") would be able to displace AGM batteries. It is known that cold cranking amps are correlated with the internal resistance of the battery. It is therefore expected that lowering internal resistance of an enhanced flooded battery will increase the cold cranking amps rating. As such, there is a need for new battery separator and/or battery technology to meet and overcome the challenges arising from current lead acid battery systems, especially to lower internal resistance and increase cold cranking amps in enhanced flooded batteries.

[0007] In order to reduce fuel consumption and generation of tail pipe emissions, auto manufacturers have implemented varying degrees of electrical hybridization. One form of Hybrid Electric Vehicle (HEV) is sometimes referred as the "Micro HEV" or "micro-hybrid." In such Micro HEVs or similar vehicles, an automobile may have an idle start/stop (ISS) function in which the engine may shut off at various points during idle start/stop and/or regenerative braking. Although this increases the fuel economy of the vehicle, it also increases strain on the battery, which must power auxiliary devices (such as air conditioning, media players and the like) while the vehicle is not in motion.

[0008] Conventional vehicles (such as automobiles without start/stop capability) may use conventional flooded lead acid batteries such as starting lighting ignition (SLI) lead acid batteries. Because the engine never shuts off during use, power is only drawn from the battery when the engine is cranked. As such, the battery typically exists in a state of overcharge, not in a partial state of charge. For example, such a conventional flooded lead acid battery may exist in a state of charge that is greater than 95% charged, greater than 96%, greater than 97%, greater than 98%, greater than 99%, or even greater than 100% charged, as it is often in a state of overcharge. At overcharge, gas bubbles (for example hydrogen gas bubbles) are generated within the conventional lead acid battery, and these circulating gas bubbles serve to mix the liquid electrolyte (the acid) within the battery.

[0009] Start/stop vehicles, on the other hand, continuously draw power from the battery, which is therefore constantly in a state of partial charge. At partial charge, gas bubbles are not generated, and the internal mixing of the electrolyte is substantially reduced, leading to acid stratification within the battery. Thus, acid stratification is a problem within start/stop flooded lead acid batteries and various enhanced flooded batteries, whereas acid stratification simply was not a problem for more conventional or traditional flooded lead acid batteries, which operated in a state of overcharge or total (or close-to-total) charge.

[0010] Acid stratification is a term for the process in which denser sulfuric acid is

concentrated at the bottom of the battery, leading to a corresponding higher water

concentration at the top of the battery. Acid stratification is undesirable within a flooded lead acid battery, such as an enhanced flooded lead acid battery or a start/stop flooded lead acid battery. The reduced levels of acid at the top of the electrode may inhibit uniformity and charge acceptance within the battery system and may increase the variation of internal resistance from top to bottom along the height of the battery. Increased acid levels at the bottom of the battery artificially raise the voltage of the battery, which can interfere with battery management systems, possibly sending unintended/erroneous state of health signals to a battery management system. Overall, acid stratification causes higher resistance along parts of the battery, which may lead to electrode issues and/or shorter battery life. Given that start/stop batteries and/or other enhanced flooded lead acid batteries are expected to become more and more prevalent with hybrid and fully electric vehicles to increase vehicle fuel efficiency and reduce C0 2 emissions, solutions for reducing acid stratification and/or for improving acid mixing are greatly needed.

[0011] In some instances, acid stratification can be avoided using VRLA (valve regulated lead acid) technology where the acid is immobilized by either a gelled electrolyte and/or by an absorbent glass mat (AGM) battery separator system. In contrast to the freely-fluid electrolyte in flooded lead acid batteries, in VRLA AGM batteries, the electrolyte is absorbed on a fiber or fibrous material, such as a glass fiber mat, a polymeric fiber mat, a gelled electrolyte, and so forth. However, VRLA AGM battery systems are substantially more expensive to manufacture than flooded battery systems. VRLA AGM technology in some instances, may be more sensitive to overcharging, may dry out in high heat, may experience a gradual decline in capacity, and may have a lower specific energy. Similarly, in some instances, gel VRLA technology may have higher internal resistance and may have reduced charge acceptance.

[0012] Thus, there is a need to further develop enhanced flooded lead acid batteries, such as enhanced flooded start/stop batteries, that do not undergo acid stratification while in use and/or that exhibit reduced or significantly reduced levels of acid stratification while in use. There is a need for improved enhanced flooded lead acid batteries with improved uniformity and performance in comparison to what has been previously available, and with performance capability that rivals, or even exceeds, what may be found in certain VRLA AGM batteries.

[0013] A battery separator is used to separate the battery's positive and negative electrodes or plates in order to prevent an electrical short. Such a battery separator is typically

microporous so that ions may pass therethrough between the positive and negative electrodes or plates. Separators can be fashioned from polyolefins, such as polyethylene and

polypropylene, wood, paper, rubber, PVC, and fiberglass. In lead acid storage batteries, such as automotive batteries and/or industrial batteries and/or deep cycle batteries, the battery separator is typically a microporous polyethylene separator; in some cases, such a separator may include a backweb and a plurality of ribs standing on one or both sides of the backweb. See:

Besenhard, J. O., Editor, Handbook of Battery Materials, Wiley- VCH Verlag GmbH,

Weinheim, Germany (1999), Chapter 9, pp. 245-292. Some separators for automotive batteries are made in continuous lengths and rolled, subsequently folded, and sealed along the edges (or certain edges) to form pouches or envelopes or sleeves or pockets that receive the electrodes for the batteries. Certain separators, for example, for industrial (or traction or deep cycle storage) batteries are cut to a size about the same as an electrode plate (pieces or leaves).

[0014] Separators made from polyolefins, such as polyethylene, typically contain silica to facilitate separator wetting with the hydrophilic electrolyte. In some instances, a hydrophilic material, such as a glass mat, is attached to the separator to assist with wetting and to retain active material coated on the positive electrode.

[0015] The electrodes in a lead acid battery are often made up of a lead alloy having a relatively high antimony content. Lead/antimony alloys have advantages both during the manufacturing process of the electrode frames (by way of example only, improvement of the flow characteristics of the molten metal in the molds, greater hardness of the cast electrode frame, etc.) and during use of the battery; particularly in the case of cyclical loads, a good contact between terminal and active material is ensured at the positive electrode in addition to mechanical stability, so that a premature drop in capacity does not occur ("antimony-free" effect) and provides improved cyclability. Additionally, for deep cycle batteries, antimony is often present in the positive grid of the battery.

[0016] However, antimony-containing positive electrodes have the disadvantage that antimony can be dissolved in the electrolyte ionically, which then migrates through the separator. Because antimony is nobler than lead, it can be deposited on the negative electrode. This process is described as antimony poisoning. Through a reduction of the overvoltage for hydrogen, antimony poisoning leads to increased water consumption, and thus the battery requires more maintenance. In particular, antimony can catalyze the decomposition of water, lowering charge voltage and increasing the energy necessary to fully recharge the battery, since the water decomposition may consume some of the energy needed to fully recharge that battery. Attempts have already been made to completely or partially replace the antimony in the lead alloy with other alloy components, which, however, has not led to satisfactory results. Overall, the presence of antimony in the positive grid of a deep cycle battery may present a source of reduced cycle life.

[0017] U.S. Patent 5,221,587, which is incorporated herein by reference in its entirety, discloses a battery separator containing both plastic and rubber. The rubber was found to delay the rate of antimony poisoning. The 5,221,587 patent discloses coating or incorporating rubber on or in a sheet.

[0018] For at least certain applications or batteries, there remains a need for improved separators providing for improved cycle life, reduced antimony poisoning, reduced water consumption, reducing float charge current, and/or reduced voltage required to fully recharge the battery. More particularly, there remains a need for improved separators, and improved batteries (such as golf car or golf cart batteries) comprising an improved separator, which provides for enhancing battery life, reducing battery failure, reducing water loss, improving oxidation stability, improving, maintaining, and/or lowering float current, improving end of charge (EOC) current, decreasing the current and/or voltage needed to charge and/or fully charge the battery, such as a deep cycle battery, minimizing internal electrical resistance increases, lowering electrical resistance, increasing wettability, lowering wet out time with electrolyte, reducing time of battery formation, reducing antimony poisoning, reducing acid stratification, improving acid diffusion, and/or improving uniformity in lead acid batteries.

[0019] In EFB systems, the electrodes are comprised of a lead alloy. During the

manufacturing process of such an EFB, a paste is applied and cured on a grid to form the electrodes. The paste may comprise one or more of carbon black, barium sulfate,

lignosulfonate, sulfuric acid, and water. The curing process changes the paste to a mixture of lead sulfates, which upon the initial charging of the battery becomes an electrochemically active material. The paste on positive electrodes is known as positive active material ("PAM"). Similarly, active material on the negative electrode is known as negative active material ("NAM"). During charging and discharging cycles of the batteries, the electrodes undergo expansion and contraction. Over time, this distortion of the electrodes causes the active material to shed and physically separate from the electrode. As more and more active material sheds from the electrode, that electrode becomes less effective and the battery's performance and life are reduced. As such, there is a need for new battery separator and/or battery technology to meet and overcome the challenges arising from current lead acid battery systems, especially to prevent or impede the shedding of active material from the electrodes in enhanced flooded lead acid batteries.

Summary

[0020] The details of one or more embodiments are set forth in the descriptions below. Other features, objects, and advantages will be apparent from the description and from the claims. In accordance with at least selected embodiments, the present disclosure or invention may address the above issues or needs. In accordance with at least certain objects, aspects, or embodiments, the present disclosure or invention may provide an improved separator and/or battery which overcomes the aforementioned problems, for instance by providing batteries having improved retention of active material on electrodes, such improved retention of active material, in certain embodiments, provided by an improved separator comprising an improved retention mat, such as an improved PAM retention mat.

[0021] One embodiment of the present invention provides a lead acid battery separator having a porous membrane, with the membrane or web having a plurality of ribs thereon. The ribs may be on one or both of the positive electrode facing surface and the negative electrode facing surface. The inventive separator is further provided with a fibrous mat on the positive electrode facing surface.

[0022] In accordance with at least selected embodiments, aspects or objects, the present disclosure or invention is directed to or may provide novel or improved separators, battery separators, enhanced flooded battery separators, fibrous mats, batteries, cells, and/or methods of manufacture and/or use of such separators, battery separators, fibrous mats, enhanced flooded battery separators, cells, and/or batteries. In accordance with at least certain

embodiments, the present disclosure or invention is directed to novel or improved enhanced flooded lead acid battery separators for starting lighting ignition ("SLI") batteries, fibrous mats, flooded batteries for deep cycle applications, and/or enhanced flooded batteries, and/or systems, vehicles, and/or the like including such separators, mats or batteries, and/or improved methods of making and/or using such improved separators, mats, cells, batteries, systems, vehicles, and/or the like. In accordance with at least certain embodiments, the present disclosure or invention is directed to an improved separator for enhanced flooded batteries and/or improved methods of making and/or using such batteries having such improved separators. In accordance with at least selected embodiments, the present disclosure or invention is directed to separators, particularly separators for enhanced flooded batteries having reduced electrical resistance and/or increased cold cranking amps. In addition, disclosed herein are methods, systems and battery separators for enhancing battery life, reducing water loss, reducing internal resistance, increasing wettability, reducing acid stratification, improving acid diffusion, improving cold cranking amps and/or improving uniformity in at least enhanced flooded batteries. In accordance with at least particular embodiments, the present disclosure or invention is directed to an improved separator for enhanced flooded batteries wherein the separator includes one or more performance enhancing additives or coatings, increased porosity, increased void volume, amorphous silica, higher oil absorption silica, higher silanol group silica, retention and/or improved retention of active material on electrodes, and/or any combination thereof.

Brief Description of the Drawings

[0023] FIGS. 1 A and IB are photographs of an exemplary fibrous mat as described in the present disclosure. FIGS. 1C and ID are higher resolution photographs of the mat of FIGS. 1A and IB, with FIG. ID taken at an oblique angle to the mat lying flat. FIG. IE shows SEM images at a low magnification comparing an exemplary fibrous mat to that of a conventional glass mat. FIGS. 1F-1H are SEM images of an exemplary fibrous mat as described in the present disclosure.

[0024] FIGS. 2A and 2B are views of flooded lead acid batteries incorporating exemplary embodiments of separator assemblies with an exemplary fibrous mat.

[0025] FIGS. 3A-3F depict variables of broken rib patterns according to exemplary

embodiments of the present disclosure.

[0026] FIGS. 4A-4G illustrate battery separators with broken ribs according to exemplary embodiments of the present disclosure and as defined in the patterns shown therein.

[0027] FIG. 5A details a separator having three zones of varying broken rib patterns. FIG.

5B depicts broken rib variables for a three-zoned broken rib separator. FIG. 5C depicts broken rib variables for a single-zoned broken rib separator.

[0028] FIGS. 6A-6H depict variations of singled-zoned and multiple-zoned broken rib patterned separators.

[0029] FIG. 7 depicts an exemplary inventive spacer having a pattern of broken ribs that may be placed, for example, between a flat separator and an electrode.

[0030] FIGS. 8 and 9 depict profile prototypes of exemplary inventive acid mixing profiles.

[0031] FIG. 10 depicts an exemplary embodiment of a rib having one, or both, tapered longitudinal ends, or a rib, a serrated or broken rib, or an angled serrated or broken rib, with a particular end face angle (or angle in a particular range of angles).

[0032] FIG. 11 depicts an exemplary embodiment of a separator layer having one or more ribs having one or more tapered longitudinal ends at a particular angle (or at an angle within a particularly preferred range). The patterned separator layer depicted in Figures 10-12, for example, provides a significant amount of acid mixing (e.g., acid turbulence, reduced acid stratification, etc.) to a flooded lead acid battery, such as an enhanced flooded lead acid battery. In addition, the angled design(s) of the separator layers depicted in Figures 10-12, for example, allow for optimal surface area of the separator layer, optimal mixing, as well as optimal manufacturability and/or machinability and/or envelopeability (particularly in view of improved stiffness ratio between stiffness in the MD (machine direction) and stiffness in the cross machine direction (CMD). In addition, the patterned separator layer depicted in Figures 10-12 may be a robust separator layer that is more or even significantly more robust than conventional microporous separator layers conventionally known.

[0033] FIG. 12 depicts two exemplary embodiments of separator layers, Separator Layer A and Separator Layer B, both according to various embodiments of the present disclosure, which are microporous membranes made having one or more broken rib patterns thereon, with Separator Layer B having one or more ribs having one or more tapered longitudinal ends at a particular angle (or angle within a particularly preferred range).

Detailed Description

[0034] With reference now to FIGS. 1 A and IB, photographs of an exemplary embodiment of a fibrous mat are shown. FIGS. 1C and ID are higher resolution photographs of an exemplary embodiment of a fibrous mat. The fibrous mat may be nonwoven, a fleece, a mesh, or any combination of layers thereof. The fibrous mat may be a single layer, double layer, or other multi-layer mat. An exemplary nonwoven mat may have a thickness in the range of approximately 100 μπι to approximately 900 μπι, and preferably in the range of approximately 200 μπι to approximately 450 μπι. FIGS. 1C and ID show a pattern of bundled fibers. This may be accomplished during the forming of the mat, as the fiber carrier fluid is drained away, the fibers may collect at certain low points in the draining mesh. In addition, the mat may possess combed fibers.

[0035] A preferred fibrous mat composition may be, for example, glass fiber, synthetic fiber, or any combination thereof. An exemplary embodiment of a fibrous mat may be 5% to 25% synthetic fiber, with the remainder being glass and/or binder. However, the mat may be entirely glass or entirely synthetic. Such examples of synthetic fibers may be polypropylene, polyester, such as polyethylene terephthalate ("PET"), acrylic, other plastics, or any combination thereof. Further, the fiber composition may be a polymer, homopolymer, or copolymer, or a mix of fibers having a combination of these compositions. Whatever the composition of the fibrous mat, it is preferable that it be resistant to the acid electrolyte of the lead acid battery. These materials tend to be hydrophobic, thus causing gas entrapment. Therefore, a surfactant coating as generally described herein may be added.

[0036] The fibrous mat may further have fillers, such as particulate silica to increase the surface area and reduce pore size. The fibrous mat composition may further have soluble fibers. The fibrous mat may also include a gelling agent to assist in resisting acid stratification. In addition, the fibrous mat may include a wetting agent additive or coating as generally described hereinbelow.

[0037] An exemplary fibrous mat may have a fiber thickness or diameter of approximately 7.2 μπι (± 0.5 μπι) with confidence limits of ± 95%. Table 1, below, compares fiber diameter in μπι of a fibrous mat in accordance with the present invention to that of a conventional glass mat. Exemplary Fibrous Mat of

Conventional Glass Mat the Invention

Mean 7.2408 μιη 13.83 μπι

Standard Deviation 1.9741 μιη 1.2103 μιη

Sample Size 66 37

Table 1. Fiber Diameter

[0038] An exemplary fibrous mat may have a preferred air permeability in the range of approximately 1500 l/m 2 s to approximately 2500 l/m 2 s.

[0039] An exemplary fibrous mat may have a pore size that is preferably less than

approximately 4.0 μπι to 5.0 μπι (as measured as an effective diameter). The fibrous mat pore size is preferably smaller than the grain size of the active material used on the associated electrode. Table 2, below, compares pore size in μπι 2 of a fibrous mat in accordance with the present invention to that of a conventional glass mat.

Table 2. Pore Area

[0040] An exemplary fibrous mat may have a preferred electrical resistance ("ER") in the range of approximately 6 mQ.cm 2 to approximately 14 mO.cra 2 , and preferably less than 14, or less than 13, or less than 12, or less than 11 mQ.cm 2 .

[0041] An exemplary fibrous mat may have a preferred area weight or basis weight in the range of approximately 50 gsm (grams per square meter) to about 100 gsm, in some embodiments, 60 g/m 2 to approximately 80 g/m 2 .

[0042] An exemplary fibrous mat may have a preferred binder content in the range of approximately 15% to approximately 21%.

[0043] An exemplary fibrous mat may have a preferred thickness in the range of

approximately 200 microns to about 450 microns, in certain embodiments, about 350 μπι to approximately 450 μπι.

[0044] An exemplary fibrous mat may have a preferred tensile strength in the machine direction (MD) of approximately 200 N/50mm, and a preferred tensile strength in the cross- machine direction (CMD) of approximately 150 N/50mm.

[0045] Furthermore, the fibers may be solid or hollow, and the cross-sectional shape of the fibers may be round, circular, oval or oblong, kidney-shaped, dog-bone shaped, race-track shaped, polygonal shaped, or any combination thereof. In addition, exemplary fibers may have multiple components in a side-by-side configuration, or a sheath and core configuration, or an islands-in-the-sea configuration. Moreover, the sheath and core configuration may take on any of the above shapes, and the core may be centered or eccentric.

[0046] Turning now to FIG. IE shows four SEM images at a low magnification taken from two separate locations of an exemplary fibrous mat and two separate locations of a

conventional glass mat. The images show that the exemplary fibrous mat possesses a more densely packed web of fibers than the conventional glass mat. Further, the fibers and open areas of the exemplary fibrous mat are smaller than that of a conventional glass mat.

[0047] In FIG. IF, SEM images were acquired from samples taken from two separate locations and then two separate areas from each sample location. This was done to avoid any area bias. The images were taken at a higher magnification than that of FIG. IE. These images further show the packing density of the fibers and also show some bundling of the fibers, likely due to the binder used and its content. Fibrous mats useful in various embodiments described herein may include bunches or bundles of fibers, such as bunches or bundles of glass fibers and/or synthetic fibers. Such bunches or bundles, in certain embodiments, may be twisted before the fibers are bonded together. In such embodiments, the twisting may occur and binder may be applied to hold such twisting in place. In such embodiments, separators comprising fibrous mats comprising bunches or bundles of fibers may exhibit increased strength compared to separators comprising conventional mats; similarly, where fibers are twisted, such separators comprising such fibrous mats may exhibit even more significant increases in strength compared with separators comprising conventional mats. When a wet-laid process is used to make such a fibrous mat according to various preferred embodiments defined herein, composite fiber bundles may be produced, where such composite fiber bundles comprise glass fiber as well as synthetic polymer fiber, by way of example only, polyester fiber or PET fiber.

[0048] Additionally, the fibrous mat may be formed with bundled fibers either prior to forming the mat or while forming the mat. The bundles may be combed or twisted with multiple fibers having different material compositions, different cross-sectional shapes, different fiber diameters, and any combination thereof. The bundles may be laid in a patterned orientation, randomly deposited, or a combination thereof. The bundled fibers may be laid on and/or within a randomly laid nonwoven or fibrous mat layer. The resulting fibrous mat may therefore have a corrugated surface or a non-corrugated surface, or a combination

thereof. FIGS. 1C and ID are photographs of an exemplary fibrous mat having a corrugated surface. The bundles may also form during production of the mat. The bundles may form simply by the profile of the carrier wires or surfaces used in the mat production. Further, the mat may be laid in two separate processes. For instance, the bundles may be formed with a water insoluble binder and then a second layer of nonwoven fibers may be laid down to hold the fibers together. The bundles may be deposited on either or both surfaces of the mat.

[0049] FIG. 1G shows an image used to measure fiber diameter of an exemplary fibrous mat, as taken by the linear distance across individual fibers, fibers in bundles were not measured and two diameters were taken of each measured fiber (if possible). The data from FIG. 1G is shown in Table 1, above. FIG. 1H is an image used to measure pore size of the fibrous mat. The data from FIG. 1H is shown in Table 2, above.

[0050] An exemplary flooded lead acid battery may typically be composed of one or more battery cells, with each cell in turn typically having one or more positive and negative electrodes. The electrodes may be configured as a cast or stamped plate or grid. The electrodes may even be configured as cylinders or tubes. A separator is further spaced between each positive and negative electrode(s). In the present disclosure, a separator and fibrous mat is interposed between each electrode. As an example, FIG. 2A depicts a battery 100 having a single cell and a single negative electrode 102a and a single positive electrode 104a. However, it is appreciated that a typical lead acid battery contains multiple electrodes with an alternating series of positive and negative electrodes. The negative electrode 102a is electrically coupled to a negative battery terminal or post 102b. Likewise, the positive electrode 104a is electrically coupled to a positive battery terminal or post 104b. FIG. 2B is similar to FIG. 2A, except it possesses two negative electrodes 202a. The electrodes 102a, 104a, 202b, 204b are typically lead or a lead alloy. Exemplary lead alloys typically contain antimony (Sb), calcium (Ca), tin (Sn), copper (Cu), bismuth (Bi), combinations thereof, and the like.

[0051] Turning to FIG. 2A, an exemplary flooded lead acid battery 100 is depicted with a single negative electrode 102a and a single positive electrode 104a, each of which are electrically coupled to a negative terminal or post 102b and a positive terminal or post 104b, respectively. The terminals 102b, 104b are disposed on an outer surface of the battery 100 and typically extend from the top of the battery 100. It is appreciated that a typical flooded lead acid battery 100 will possess more than two electrodes. However, only two are shown in this example for the sake of simplicity. The exemplary battery 100 is further provided with and substantially filled with an electrolyte 101, with the dashed line indicating the fill line of the electrolyte 101. In the exemplary embodiments, the electrodes and separator assembly are substantially submerged within the electrolyte. The electrolyte 101 is typically a sulphuric acid (H2SO4) with a specific gravity of between approximately 1.20 - 1.30, and preferably between approximately 1.26 - 1.28. It is appreciated that any preferred range of the specific gravity depends upon the application of the battery.

[0052] Remaining with FIG. 2A, an exemplary separator assembly is disposed between the electrode(s) and is provided with a separator layer 106 (such as a microporous membrane separator layer) and an exemplary fibrous mat 108, with the separator layer 106 adjacent to the negative electrode 102a and the fibrous mat 108 disposed adjacent to the positive electrode 104a. For the purposes of explaining the invention, the separator layer 106 and the fibrous mat 108 together may collectively be referred to as a separator assembly however it is appreciated that they may or may not be joined together or laminated. It is also appreciated that the fibrous mat 108 may be unattached to anything, or may be attached or mounted to an electrode on the outer surface of the active material or incorporated in a pasting paper applied to an electrode, or may be pressed against the electrode active material in some fashion, or any combination thereof. It is further appreciated that the fibrous mat 108 may alternatively be disposed between the negative electrode 102a and the separator layer 106, or there may be a fibrous mat on both sides of the separator layer 106. It is envisioned by the inventors that the fibrous mat will prevent or slow the process of shedding or detaching of the active material from the electrode that it is adjacent to, whether the active material is PAM or NAM.

[0053] As shown in FIG. 2A, the separator layer 106 and fibrous mat 108 may be provided as leaves interlaid between electrodes. The separator layer 106 is preferably larger in lateral and longitudinal dimensions than that of the electrodes 102a, 104a, (i.e., the separator layer 106 is wider and taller than the electrodes 102a, 104a). The fibrous mat 108 may extend from lateral end to lateral end of the separator layer 106, or from end rib to end rib (ribs not shown). Furthermore, the separator layer 106 may simply be flat and possess no ribs, or may be embossed.

[0054] Turning to FIG. 2B, an exemplary flooded lead acid battery 200 is depicted with two negative electrodes 202a and a single positive electrode 204a disposed therebetween, each of which are electrically coupled to a negative terminal or post 202b and a positive terminal post 204b, respectively. It is appreciated that a typical flooded lead acid battery will possess more than three electrodes. However, only three are shown in this example for the sake of simplicity. The exemplary flooded lead acid battery 200 is further provided with and substantially filled with an electrolyte 201 as generally described herein. The dashed line indicates the fill line of the electrolyte 201, with the electrodes and separator assembly substantially submerged therein. [0055] Remaining with FIG. 2B, an exemplary separator assembly comprising an

envelopable separator layer 206 and envelopable fibrous mat 208 are illustrated enveloping the positive electrode 204a, with the separator layer 206 enveloping the fibrous mat 208. The separator layer 206 is preferably adjacent to both negative electrodes 202a, with the fibrous mat 208 preferably adjacent to the positive electrode 204a and between the separator layer 206 and positive electrode 204a. It is appreciated that the separator layer 206 and fibrous mat 208 may or may not be joined together or laminated as one unit. It is further appreciated that the fibrous mat 208 may be unattached to anything, or may be attached or mounted to the electrode on the outer surface of the active material or incorporated in a pasting paper applied to the electrode. It is also appreciated that the fibrous mat 208 may alternatively be disposed between the negative electrodes 202a and the separator layer 206, with the fibrous mat 208 enveloping the separator layer 206. There may also be a fibrous mat on both sides of the separator layer 206. It is envisioned by the inventors that the fibrous mat will prevent or slow the process of shedding or detaching of the active material from the electrode that it is adjacent to, whether the active material is PAM or NAM.

[0056] As stated, an exemplary separator assembly comprising the separator layer 206 and fibrous mat 208 combination may be envelopable. The lateral sides of the combination may be sealed together as a continuous or intermittent seam. Such means of sealing are well known to those skilled in the art. In addition, the bottom fold of the envelope may be closed, or have one or more openings of a length less than that of the envelope width. The fibrous mat 208 may extend from lateral end to lateral end of the separator layer 206, or from end rib to end rib (ribs not shown). Furthermore, the enveloping separator layer 206 may simply be flat and possess no ribs.

[0057] Some other exemplary embodiments of separator assembly configurations include: a negative or positive electrode envelope; a negative or positive electrode sleeve, a negative or positive electrode hybrid envelope (a variation on a standard envelope); both plates could be enveloped or sleeved, and any combination thereof. In addition, various separators of the present disclosure may include a separator layer (such as separator layer 106), a fibrous mat (such as fibrous mat 108), as well as a glassmat (not shown).

[0058] The fibrous mat 108, 208 may simply be disposed adjacent to the separator layer 106,

206, or it may be joined, attached, or laminated to the separator layer 106, 206 in some fashion.

Several means of attaching the fibrous mat 108, 208 to the separator layer 106, 206 are known to those skilled in the art. Such means may include, for example, bonding the various layers together by adhesive, ultrasonic welding or sealing, or ultrasonic sewing. Preferably an adhesive such as an acrylate or polyethylene hot melt is used to improve bonding between the microporous polymer layer and the fibrous layer. The adhesive is preferably applied between the layers of the separator in the form of individual spots or continuous stripes. If the separator layer 106 and fibrous mat 108 are laminated, then the rib (not shown) spacing may be farther apart as compared to a separator layer not laminated with a fibrous mat as the fibrous mat will provide extra support to the separator layer thus providing more room for an electrolyte.

However, the separator layer 106 and fibrous mat 108 need not be laminated together, and may otherwise be simply disposed adjacent to one another.

[0059] The inventive separator preferably includes a porous membrane (such as a

microporous membrane having pores less than about 1 micron, mesoporous, or a macroporous membrane having pores greater than about 1 micron) made of natural or synthetic materials, such as polyolefin, polyethylene, polypropylene, phenolic resin, natural or synthetic rubber, latex, synthetic wood pulp (SWP), glass fibers, synthetic fibers, cellulosic fibers, or

combinations thereof, more preferably separator embodiments comprise a microporous membrane made from thermoplastic polymers. The preferred microporous membranes may have pore diameters of about 0.1 micron (100 nanometers) and porosities of about 60%. The thermoplastic polymers may, in principle, include all acid-resistant thermoplastic materials suitable for use in lead acid batteries. The preferred thermoplastic polymers include polyvinyls and polyolefins. The polyvinyls include, for example, polyvinyl chloride (PVC). The polyolefins include, for example, polyethylene, including ultrahigh molecular weight polyethylene (UHMWPE), and polypropylene. One preferred embodiment may include UHMWPE and a filler (e.g., silica). In general, the preferred membrane may be made by mixing, in an extruder, filler, thermoplastic polymer, such as UHMWPE, latex and/or rubber (if so desired), and processing plasticizer (e.g., processing oil).

[0060] The microporous membrane layer may include a polyolefin, such as polypropylene, ethylene-butene copolymer, and preferably polyethylene, more preferably high molecular weight polyethylene, (e.g., polyethylene having a molecular weight of at least 600,000), even more preferably ultra-high molecular weight polyethylene, (e.g., polyethylene having a molecular weight of at least 1,000,000, in particular more than 4,000,000, and most preferably 5,000,000 to 8,000,000 (measured by viscosimetry and calculated by Margolie's equation)), a standard load melt index of substantially zero (0) (measured as specified in ASTM D 1238 (Condition E) using a standard load of 2,160 g) and a viscosity number of not less than 600 ml/g, preferably not less than 1,000 ml/g, more preferably not less than 2,000 ml/g, and most preferably not less than 3,000 ml/g (determined in a solution of 0.02 g of polyolefm in 100 g of decalin at 130° C).

[0061] In certain selected embodiments, the membrane can be prepared by combining, by weight, about 5-15% polymer, in some instances, about 10% polymer, about 10-75%) filler, in some instances, about 30%> filler, and about 10-85% processing oil, in some instances, about 60%) processing oil. In other embodiments, the filler content is reduced, and the oil content is higher, for instance, greater than about 61%, 62%, 63%, 64%, 65%, 66%, 67%, 68%, 69% or 70%) by weight. The fillenpolymer ratio (by weight) can be about (or can be between about these specific ranges) such as 2: 1, 2.5: 1, 3 : 1, 3.5: 1, 4.0: 1. 4.5: 1, 5.0: 1, 5.5: 1 or 6: 1. The fillenpolymer ratio (by weight) can be from about 1.5: 1 to about 6: 1, in some instances, 2: 1 to 6: 1, from about 2: 1 to 5: 1, from about 2: 1 to 4: 1, and in some instances, from about 2: 1 to about 3 : 1. The amounts of the filler, the oil, the polymer (such as polyethylene), and the rubber and/or latex (if so desired) are all balanced for runnability and desirable separator properties, such as electrical resistance (ER), porosity, physical strength, tortuosity, and so forth.

[0062] In accordance with at least one embodiment, the porous membrane can include an ultrahigh molecular weight polyethylene (UHMWPE) mixed with a processing oil and precipitated silica. In accordance with at least one embodiment, the microporous membrane can include an ultrahigh molecular weight polyethylene (UHMWPE) mixed with a processing oil, additive and precipitated silica. The mixture may also include minor amounts of other additives or agents as is common in the separator arts (such as wetting agents, colorants, antistatic additives, and/or the like). In certain instances, the microporous polymer layer can be a homogeneous mixture of 8 to 100 vol. %> of polyolefm, 0 to 40 vol. %> of a plasticizer and 0 to 92 vol. % of inert filler material. The filler may be dry, finely divided silica. The preferred plasticizer is petroleum oil. Since the plasticizer is the component which is easiest to remove from the polymer-filler-plasticizer composition, it is useful in imparting porosity to the battery separator.

[0063] In some embodiments, the porous membrane may be made by mixing, in an extruder, about 30%) by weight silica with about 10%> by weight UHMWPE, and about 60%> processing oil. The microporous membrane can be made by passing the ingredients through a heated extruder, passing the extrudate generated by the extruder through a die and into a nip formed by two heated calender rolls to form a continuous web, extracting a substantial amount of the processing oil from the web by use of a solvent, drying the extracted web, slitting the web into lanes of predetermined width, and winding the lanes into rolls. The calender rolls may be engraved with various groove patterns to impart ribs, serrations, embossments and the like to the membrane. Alternatively, or additionally, ribs and the like may be imparted to the porous membrane by passing the extruded membrane through additional appropriately grooved calender rolls or presses.

[0064] Suitable fillers include silica, alumina, talc, and/or a combination thereof. Silica with relatively high levels of oil absorption and relatively high levels of affinity for mineral oil becomes desirably dispersible in the mixture of polyolefin (such as polyethylene) and mineral oil when forming a lead acid battery separator of the type shown herein. Additionally, the silica used herein may be precipitated silica and/or amorphous silica. In some selected embodiments, the filler has an average particle size no greater than 25 μπι, in some instances, no greater than 22 μπι, 20 μπι, 18 μπι, 15 μπι, or 10 μπι. In some instances, the average particle size of the filler particles (such as silica) is 15-25 μπι. The particle size of the silica filler contributes to the oil absorption of the silica and/or the surface area of the silica filler. Silica particles in the final product or separator may fall within the sizes described above. However, the initial silica used as raw material may come as one or more agglomerates and/or aggregates and may have sizes around 200 μπι or more. In some embodiments, the final separator sheet has a residual or final oil content in a range of about 0.5% to about 40%, in some embodiments, about 10 to about 30%) residual processing oil, and in some instances, about 20 to about 30%> residual processing oil or residual oil, per the weight of the separator sheet product. Regarding pore size of the separator membrane (containing polyolefin, such as polyethylene, and latex and/or rubber, if desired, in certain embodiments), the pore size may be submicron up to 100 μπι, in certain embodiments, between about 0.1 and 10 μπι. Porosity of the separator membrane described herein may be greater than 50%> in certain embodiments.

[0065] A microporous membrane made in accordance with the present invention, comprising polyethylene, filler (such as silica) and latex and/or rubber typically has a residual oil content; in some embodiments, such residual oil content is from about 0.5% up to about 40% of the total weight of the separator membrane (in some instances, about 10-30% of the total weight of the separator membrane, and in some instances, about 20-30% of that total weight). In certain selected embodiments herein, some to all of the residual oil content in the separator may be replaced by the addition of more of a performance enhancing additive, such as a surfactant, such as a surfactant with an HLB less than 6, or such as a nonionic surfactant. For example, a performance enhancing additive such as a surfactant, such as a nonionic surfactant, may comprise up to 0.5 % all the way up to all of the amount of the residual oil content (e.g., all the way up to 20 or 30 or even 40%) of the total weight of the microporous separator membrane, thereby partially or completely replacing the residual oil in the separator membrane. [0066] The separators disclosed herein contain latex and/or rubber, which can be a natural rubber, synthetic rubber, or a mixture thereof. Natural rubbers may include one or more blends of polyisoprenes, which are commercially available from a variety of suppliers. Exemplary synthetic rubbers include methyl rubber, polybutadiene, chloropene rubbers, butyl rubber, bromobutyl rubber, polyurethane rubber, epichlorhydrin rubber, polysulphide rubber, chlorosulphonyl polyethylene, polynorbornene rubber, acrylate rubber, fluorine rubber and silicone rubber and copolymer rubbers, such as styrene/butadiene rubbers,

acrylonitrile/butadiene rubbers, ethylene/propylene rubbers (EPM and EPDM) and

ethylene/vinyl acetate rubbers. The rubber can be a crosslinked rubber or an uncrosslinked rubber; in certain preferred embodiments, the rubber is uncrosslinked rubber. In certain embodiments, the rubber can be a blend of crosslinked and uncrosslinked rubber. The rubber can be present in the separator in an amount that is at least about 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, or 10% by weight relative to the final separator weight (the weight of the polyolefin separator sheet or layer containing rubber and/or latex). In certain embodiments, the rubber can be present in an amount from about 1-20%, 2-20%, 2.5-15%, 2.5-12.5%, 2.5-10%, or 5-10%) by weight.

[0067] For manufacturing the separators according to the invention, the rubber and/or latex may be incorporated into the extruder along with the polymer (e.g., polyethylene), the filler (e.g., silica), and the processing oil and/or plasticizer. In other embodiments, a microporous membrane, such as a polyethylene membrane, can be coated on one or both sides, preferably on the side facing the negative electrode, with a liquid slurry comprising the rubber and/or latex, optionally, silica, and water, and then dried and/or wherein a film of this material is formed upon the surface of the mentioned microporous membrane, such as a polyethylene membrane. For better wettability of this layer, known wetting agents can be added to the slurry for use in lead acid batteries. In certain embodiments, the slurry can also contain one or more performance enhancing additives (e.g., surfactants) described in detail below. After drying, a porous layer and/or film forms on the surface of the separator, which adheres very well to the microporous membrane and increases electrical resistance only insignificantly if at all. After the rubber is added to give a separator, it can be further compressed using either a machine press or calender stack or roll. The press or calender may be engraved to impart ribs, grooves, serrations, serrated ribs, embossments and the like into the separator.

[0068] A further embodiment of the present invention involves depositing rubber onto the membrane by impregnation and drying. For this purpose, glass mats, fleeces or fabrics made from synthetic fibers or mixtures with synthetic fibers, such as those described in the fibrous mat above can be used as carrier materials. By way of example, the fibrous mat may be the carrier of a performance enhancing additive, such as an antimony suppressing additive, and it may be impregnated into or included within the fibrous mat or coated on one or more surfaces of the fibrous mat. The slurry and/or coating and/or material included in the fibrous mat and/or on the fibrous mat, in such embodiments, may include the rubber and/or latex, optionally silica, water, and/or one or more performance enhancing additive, such as various additives described herein, wherein a film of the material, in surface embodiments, may form on one or more surfaces of the treated fibrous mat. Bonding can be carried out by compression or adhesion.

[0069] In various embodiments of the present invention, the porous and/or microporous membrane comprising polyolefin (such as polyethylene), latex and/or rubber, filler (such as silica), any residual oil and/or plasticizer, and performance enhancing additive in the form of a coating (such as a coating of surfactant) is laminated to another layer, such as the fibrous mat described above or a fibrous mat having enhanced wicking properties and/or enhanced wetting or holding of electrolyte properties. Such a fibrous mat may have a thickness that is at least 100 μπι, in some embodiments, at least about 250 μπι, at least about 400 μπι, at least about 500 μπι, at least about 600 μπι, at least about 1.3 mm, at least about 2 mm, and so forth. The subsequent laminated separator may be cut into pieces. In certain embodiments, the fibrous mat is laminated to a ribbed surface of the microporous membrane separator layer. In certain embodiments, handling and/or assembly advantages are provided to the battery maker with the improved separator described herein, as it can be supplied in roll form and/or cut piece form. And as mentioned previously, the improved separator may be a standalone separator sheet or layer without the addition of one or more fibrous mats or retention mats or the like.

[0070] In some embodiments, the rubber and/or latex can be mixed with polymer, filler and processing oil (optionally with further additives) and extruded together to give a blended separator. In this way, a homogenous separator having rubber evenly dispersed throughout the membrane may be obtained. In some embodiments, the porous membrane can be impregnated with a rubber latex and subsequently dried.

[0071] The mixture may also include minor amounts of other additives or agents as is common in the separator arts (such as surfactants, wetting agents, colorants, antistatic additives, antioxidants, and/or the like). The mixture is extruded into the shape of a flat sheet, or a sheet having ribs or other protrusions on one or both sides of the sheet. After the membrane is extruded, it can be further compressed using either a machine press or calender stack or roll. [0072] The press or calender may be engraved to impart ribs, grooves, textured areas, serrations, serrated ribs, battlement ribs, embossments, and/or the like into the microporous membrane. In some embodiments, the separator membrane can have a backweb of at least about 50 μπι, at least about 75 μπι, at least about 100 μπι, at least about 125 μπι, at least about 150 μπι, at least about 175 μπι, at least about 200 μπι, at least about 225 μπι, at least about 250 μπι, at least about 275 μπι, at least about 300 μπι, at least about 325 μιη at least about 350 μπι, at least about 375 μπι, at least about 400 μπι, at least about 425 μπι, at least about 450 μπι, at least about 475 μπι, or at least about 500 μιη (though in certain embodiments, a very thin flat sheet less than 50 μιη thick is provided, for example, between 10 μιη and 50 μιη thick). In certain embodiments, the porous membrane can have a backweb from about 50 μιη - 1,000 μπι, about 50 μιη - 750 μπι, about 100 μιη - 750 μπι, about 200 μιη - 750 μπι, about 200 μιη - 500 μπι, about 150 μιη - 500 μπι, about 250 μιη - 500 μπι, about 250 μιη - 400 μπι, or about 250 μπι - 350 μιη.

[0073] In various possibly preferred embodiments, the porous membrane contains ribs, such as serrated, embattlemented, angled ribs, or broken ribs, or combinations thereof. The preferred ribs may be 8 μιη to 1 mm tall and may be spaced 1 μιη to 20 mm apart, while the preferred backweb thickness of the microporous polyolefin separator layer (not including the ribs or embossments) may be about 0.05 mm to about 0.50 mm (for instance, in certain embodiments, about 0.25 mm). For example, the ribs can be 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2.0 mm, 2.25 mm, 2.5 mm, 2.75 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, or 10 mm apart. In some embodiments, the ribs may be in a pattern such as they may be on one side of the separator layer or on both sides of the polyolefin separator, from 0°-90° in relation to each other. In some embodiments, the acid mixing ribs may be front, positive or positive side ribs. Various patterns including ribs on both sides of the separator or separator layer may include positive ribs and negative longitudinal or cross-ribs on the second side or back of the separator, such as smaller, more closely spaced negative longitudinal or cross-ribs or mini-ribs. Such negative longitudinal or cross-ribs may, in some instances, be about 0.025 mm to about 0.1 mm in height, and preferably about 0.075 mm in height, but may be as large as 0.25 mm. Other patterns may include ribs on both sides of the separator layer with negative mini-ribs on the second side or back of the separator (mini-ribs that extend in the same direction, versus a cross- direction, compared with the major ribs on the other side of the separator). Such negative mini- ribs may, in some instances, be about 0.025 mm to about 0.25 mm in height, and preferably be about 0.050 mm to about 0.125 in height. [0074] The ribs may be serrated in certain preferred embodiments. The serrations or serrated ribs may have an average tip length of from about 0.05 mm to about 1 mm. For example, the average tip length can be greater than or equal to 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, or 0.9 mm; and/or less than or equal to 1.0 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm.

[0075] The serrations or serrated ribs may have an average base length of from about 0.05 mm to about 1 mm. For example, the average base length can be greater than or equal to about 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, or 0.9 mm; and/or less than or equal to about 1.0 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm.

[0076] If serrations or serrated ribs are present, they may have an average height of from about 0.05 mm to about 4 mm. For example, the average height can be greater than or equal to about 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, or 0.9 mm; and/or less than or equal to about 1.0 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm. For embodiments in which the serration height is the same as the rib height, the serrated ribs may also be referred to as protrusions. Such ranges may apply to separators for industrial traction-type start/stop batteries, where the total thickness of the separator may typically be about 1 mm to about 4 mm, as well as automotive start/stop batteries, where the total thickness of the separator may be a little less (e.g., typically about 0.3 mm to about 1mm).

[0077] The serrations or serrated ribs can have an average center-to-center pitch of from about 0.1 mm to about 50 mm. For example, the average center-to-center pitch can be greater than or equal to about 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm, 1.25 mm, or 1.5 mm; and/or less than or equal to about 1.5 mm, 1.25 mm, 1.0 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, or 0.2 mm.

[0078] The serrations or serrated ribs can have an average height to base width ratio of from about 0.1 : 1 to about 500: 1. For example, the average height to base width ratio can be greater than or equal to about 0.1 : 1, 25: 1, 50: 1, 100: 1, 150: 1, 200: 1, 250: 1, 300: 1, 350: 1, or 450: 1; and/or less than or equal to about 500: 1, 450: 1, 400: 1, 350: 1, 300: 1, 250: 1, 200: 1, 150: 1, 100: 1, 50: 1, or 25: 1.

[0079] The serrations or serrated ribs can have average base width to tip width ratio of from about 1000: 1 to about 0.1 : 1. For example, the average base width to tip width ratio can be greater than or equal to about 0.1 : 1, 1 : 1, 2: 1, 3 : 1, 4: 1, 5: 1, 6: 1, 7: 1, 8: 1, 9: 1, 10: 1, 15: 1, 20: 1,

25: 1, 50: 1, 100: 1, 150: 1, 200: 1, 250: 1, 300: 1, 350: 1, 450: 1, 500: 1, 550: 1, 600: 1, 650: 1, 700: 1, 750:1, 800:1, 850:1, 900:1, 950:1, and/or less than or equal to about 1000:1, 950:1, 900:1, 850:1, 800:1, 750:1, 700:1, 650:1, 600:1, 550:1, 500:1, 450:1, 400:1, 350:1, 300:1, 250:1, 200:1, 150:1, 100:1, 50:1, 25:1, 20:1, 15:1, 10:1, 9:1, 8:1, 7:1, 6:1, 5:1, 4:1, 3:1, 2:1, or 1:1.

[0080] In some embodiments, the separator can be dimpled. Dimples are typically

protrusion-type features or nubs on one or more surfaces of the separator. The thickness of the dimples can be from 1-99% the thickness of the separator. For example, the average thickness of the dimples can be less than about 95%, 90%, 85%, 80%, 75%, 70%, 65%, 60%, 55%, 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, or 5% that of the separator. Dimples may be arranged in rows along the separator. The rows or lines may be spaced about 1 μιη to about 10 mm apart. For example, the rows can be about 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2.0 mm, 2.25 mm, 2.5 mm, 2.75 mm, 3 mm, 4 mm, 5 mm, 6 mm, 7 mm, 8 mm, 9 mm, or 10 mm apart. Conversely, the dimples may be arranged in a random array or random manner.

[0081] The dimples may have an average dimple length of from about 0.05 mm to about 1 mm. For example, the average dimple length can be greater than or equal to about 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, or 0.9 mm; and/or less than or equal to about 1.0 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm.

[0082] The dimples may have an average dimple width of from about 0.01 mm to about 1.0 mm. For example, the average dimple width can be greater than or equal to about 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, or 0.9 mm; and/or less than or equal to about 1.0 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm.

[0083] The dimples can have an average center-to-center pitch of from about 0.10 mm to about 50 mm. For example, the average center-to-center pitch can be greater than or equal to about 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, 1.0 mm, 1.25 mm, or 1.5 mm; and/or less than or equal to about 1.5 mm, 1.25 mm, 1.0 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, or 0.2 mm.

[0084] The dimples can be quadrangular in shape, for instance, square and rectangles. The dimples can have an average dimple length to dimple width ratio of from about 0.1 : 1 to about

100:1. For example, the average length to base width ratio can be greater than or equal to about

0.1:1, 1:1, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1, 9:1, 10:1, 15:1, 20:1, 25:1, 50:1, 100:1, 150:1, 200:1,

250:1, 300:1, 350:1, 450:1, 500:1, 550:1, 600:1, 650:1, 700:1, 750:1, 800:1, 850:1, 900:1,

950:1, and/or less than or equal to about 1000:1, 950:1, 900:1, 850:1, 800:1, 750:1, 700:1, 650: 1, 600: 1, 550: 1, 500: 1, 450: 1, 400: 1, 350: 1, 300: 1, 250: 1, 200: 1, 150: 1, 100: 1, 50: 1, 25: 1, 20: 1, 15: 1, 10: 1, 9: 1, 8: 1, 7: 1, 6: 1, 5: 1, 4: 1, 3 : 1, 2: 1, or 1 : 1.

[0085] In some embodiments, the dimples can be substantially circular. Circular dimples can have a diameter from about 0.05 to about 1.0 mm. For example, the average dimple diameter can be greater than or equal to about 0.05 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, or 0.9 mm; and/or less than or equal to about 1.0 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm, or 0.1 mm.

[0086] Various other shapes for the dimples may be included as well. By way of example only, such dimples might be triangular, pentagonal, hexagonal, heptagonal, octagonal, oval, elliptical, and combinations thereof.

[0087] In some embodiments, the separator can feature a combination of ribs, serrations or serrated ribs, dimples, or combinations thereof. For instance, a separator can have a series of serrated ribs running top to bottom along the separator, and a second series of serrated ribs running horizontally along the separator. In other embodiments, the separator can have an alternating sequence of serrated ribs, dimples, continuous, interrupted, or broken solid ribs, or combinations thereof.

[0088] Table 3 includes several specific embodiments of separators, presented by way of example only and not meant to be limiting, having serrations and/or dimples and various parameters that may be used in forming such separators so as to prevent acid stratification and enhance acid mixing with a flooded lead-acid battery (sometimes referred to as an enhanced flooded battery).

Table 3

[0089] Certain uses for various embodiments undergo start/stop cycles, such as those utilized in vehicles. This represents the fact that vehicles, and their associated batteries, will be in motion with intermittent periods of stopping, thus effectively shaking the battery. The separators disclosed herein preferably provide enhanced electrolyte mixing and/or acid circulation compared with conventional separators. In certain embodiments, the separators provide for less acid stratification, as measured by electrolyte density at the top and bottom of the cell. The density differential may be less than 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%), 10%), 5%), 2.5%), or 1%, after the cell has undergone 30, 60, 90 or more start/stop events or cycles. In certain selected embodiments, the density differential may be less than 50%, 45%, 40%, 35%, 30%, 25%, 20%, 15%, 10%, 5%, 2.5%, or 1%, after the cell has remained still for 24, 48, 72, or more hours.

[0090] Turning now to FIGS. 3 A-3F, several exemplary embodiments depict broken rib arrangements with variables that define various broken rib patterns for various battery separator embodiments. FIGS. 4A-4G illustrate battery separators with broken ribs according to exemplary embodiments of the present disclosure and as defined in the patterns or arrangements of FIGS. 3A-3F. Exemplary battery separators are shown in FIGS. 4A-4G;

additionally, exemplary battery separators disclosed herein may have any number of columns 406, such as columns 406 1 - 406 n .

[0091] FIG. 5A details a separator having three zones of varying broken rib patterns, with the zones changing in a lateral direction along the cross-machine direction of the separator. It is noted that the zones may also be spread in the machine direction of the separator, or in both the machine and cross-machine directions of the separator. It is further appreciated that there may be any number of zones in either or both directions. In addition, the edges of the separator themselves may be their own zone(s), such that the edges are optimized with a distinct design and/or ribbed pattern and/or broken rib pattern or the like for even better results. In certain preferred embodiments herein, the zones of the separator (for a multi-zoned separator) are formed such that the mass of the patterning in each zone is relatively consistent and/or such that the patterned separator runs well on battery formation equipment and/or such that batter formation is faster because of efficiency in acid filling.

[0092] FIG. 5B depicts broken rib pattern variables for the zoned separator. The subscript numbers "1" and "2" relate to two different broken rib patterns. In certain embodiments, zone 1 and zone 3 (subscript "1") incorporate identical patterns, such as broken rib patterns, with zone 2 (subscript "2") having a pattern, such as a broken rib pattern, that varies from that in zones 1 and 3. FIG. 5C depicts broken rib variables for a single-zoned broken rib separator.

[0093] FIGS. 6A-6H depict variations of zoned or multi-zoned or three-zoned broken rib patterned separators.

[0094] FIG. 7 depicts an exemplary inventive spacer 700 having a pattern of broken ribs 702 that may be placed between a separator and an electrode. As can be seen the broken ribs 702 are held in place by a network of thin stringers 704. The stringers 704 are shown in a vertical and horizontal arrangement, however it is appreciated that other angles may be incorporated.

[0095] FIGS. 8 and 9 depict profile prototypes of exemplary inventive acid mixing profiles for various separator layers to be used herein.

[0096] The separator may include negative longitudinal or cross-ribs or mini-ribs, such as negative ribs having a height of about 25 to 250 microns, possibly preferably about 50 to 125 microns, and more preferably about 75 microns.

[0097] In certain embodiments, the protrusions can include ribs, wherein each rib has a longitudinal axis disposed at an angle from 0° to less than 180° relative to the top edge of the separator. In some instances, all the ribs in the separator can be disposed at the same angle, whereas in other embodiments, there can be ribs disposed at different angles. For instance, in some embodiments, the separator can include rows of ribs, wherein at least some of the rows have ribs at an angle Θ relative to the top edge of the separator. All the ribs in a single row can have the same approximate angle, although in other cases a single row can contain ribs at differing angles.

[0098] In certain cases, an entire face of the separator will contains rows of protrusions or broken ribs, while in other embodiments, certain fragments of the separator face will not include protrusions or broken ribs. These fragments may occur along any edge of the separator, including top, bottom or sides, or may occur towards the middle of the separator, wherein the fragment is surround on one or more sides with portions having protrusions.

[0099] FIG. 8 includes a depiction of a separator 800 including a top edge 803, and a first set of rows Rl and second sets of rows R2. In certain embodiments, ribs 801 in the first row Rl are disposed at an angle from 0° to less than 180°, and ribs 802 in the second rows R2 are disposed an angle 0 2 from 0° to less than 180°, which may be the same or different than the angle for the ribs 801 in the first set of rows Rl . Though not shown, the angles 6>i, 0 2 may further vary throughout their respective rows Rl, R2 at each individual rib 801, 802. In addition, the sets of broken ribs can just as easily be patterned by column.

[00100] FIG. 9 includes a depiction of a separator 900 including a top edge 901 having a central first portion 902 and outer second portions 903. In certain embodiments, the central first portion 902 may contain one or more sets of rows. As shown in FIG. 9, the first row Rl, and the second row R2 are similarly patterned as that shown in FIG. 8, with ribs in the first row Rl disposed at an angle from 0° to less than 180°, and ribs in the second row R2 disposed an angle from 0° to less than 180°, which may be the same or different than the angle for the ribs in the first row Rl .

[00101] Remaining with FIG. 9, the outer second portions 903 may include a third set of rows R3 having ribs at an angle 6> 3 relative to the top edge of the backweb, wherein 6> 3 is from 0° to 90°, from 30° to 85°, from 45° to 85°, from 60° to 85°, from 60° to 80°, or from 60° to 75° One preferred value for 6> 3 is 90°. The outer second portions 903 may also include a fourth set of rows R4 having ribs at an angle 6> 4 relative to the top edge of the backweb, wherein 6> 4 is from 90° to less than 180°, from 95° to 150°, from 95° to 120°, from 100° to 120°, or from 105° to 120°. One preferred value for 6> 4 is 90°. The ribs in different rows can have the same or different dimensions as the other rows and ribs may have the same or different dimensions within the row. The distance between adj acent rows can be from -5 mm to +5 mm, wherein negative numbers indicate the degree of overlap of the rows. The distance can be measured center-rib to center-rib. [00102] When different rows are present, the rows may occur in a repeating pattern. The simplest repeating pattern -R3-R4-, may be seen in separator 900. Other patterns include -R3- R3-R4-; -R3-R3-R3-R4-; -R3-R3-R4-R4-; -R3-R3-R3-R3-R4-; -R4-R3-R3-R3-R4-; -R3-R3- R3-R4-R4-; and the like. In addition, the sets of broken ribs can just as easily be patterned by column.

[00103] In some selected embodiments, the porous separator can have negative longitudinal or cross-ribs on the opposite face of the membrane as the protrusions. The negative or back rib can be parallel to the top edge of the separator, or can be disposed at an angle thereto. For instance, the cross ribs can be oriented about 90°, 80°, 75°, 60°, 50°, 45°, 35°, 25°, 15° or 5° relative to the top edge. The cross-ribs can be oriented about 90-60°, 60-30°, 60-45°, 45-30°, or 30-0° relative to the top edge. Typically the cross ribs are on the face of the membrane facing the negative electrode. In some embodiments of the present invention, the ribbed membrane can have a transverse cross-rib height of at least about 0.005 mm, 0.01 mm, 0.025 mm, 0.05 mm, 0.075 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, or 1.0 mm. In some embodiments of the present invention, the ribbed membrane can have a transverse cross-rib height of no greater than about 1.0 mm, 0.5 mm, 0.25 mm, 0.20 mm, 0.15 mm, 0.10 mm or 0.05 mm.

[00104] In some embodiments of the present invention, the ribbed membrane can have a transverse cross-rib width of at least about 0.005 mm, 0.01 mm, 0.025 mm, 0.05 mm, 0.075 mm, 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm, 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm, or 1.0 mm. In some embodiments of the present invention, the ribbed membrane can have a transverse cross-rib width of no greater than about 1.0 mm, 0.5 mm, 0.25 mm, 0.20 mm, 0.15 mm, 0.10 mm or 0.05 mm.

[00105] In certain selected embodiments the porous membrane can have a transverse cross-rib height of about 0.10-0.15 mm, and a longitudinal rib height of about 0.10-0.15 mm. In some embodiments, the porous membrane can have a transverse cross-rib height of about 0.10-0.125 mm, and a longitudinal rib height of about 0.10-0.125 mm.

[00106] The microporous membrane can have a backweb thickness that is at least 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm, 0.5 mm 0.6 mm, 0.7 mm, 0.8 mm, 0.9 mm or 1.0 mm. The ribbed separator can have a backweb thickness that is no more than about 1.0 mm, 0.9 mm, 0.8 mm, 0.7 mm, 0.6 mm, 0.5 mm, 0.4 mm, 0.3 mm, 0.2 mm or 0.1 mm. In some embodiments, the microporous membrane can have a backweb thickness between about 0.1-1.0 mm, 0.1-0.8 mm, 0.1-0.5 mm, 0.1-0.5 mm, 0.1-0.4 mm, 0.1-0.3 mm. In some embodiments, the microporous membrane can have a backweb thickness of about 0.2 mm. [00107] FIG. 10 depicts a side profile of a separator 1000 having a broken rib 1004 extending out from a surface of a porous membrane 1002 that has a tapered longitudinal end 1006 identified by angle Θ.

[00108] It is appreciated that any of the rib patterns described herein may have a spacing between columns to allow for gas to rise during over-charging events. Further, the broken rib pattern may have no spacing in the machine direction between the rows of broken ribs to provide strength if the separator is folded to form an envelope. In addition, the broken rib separators may further be embossed. It is further appreciated that any of the rib patterns or other protrusions may be disposed on any interior surface of the battery case or on any surface on either or both of the positive and negative electrodes. For batteries placed in vehicles, a preferred embodiment may place the separators in an orientation that is generally parallel to the motion of the vehicle so as to take advantage of the starting and stopping motion of that vehicle.

[00109] It is believed that the improved separators described herein, such as the broken rib separators described herein, may further help to prevent the formation of sulfation crystals, and may also assist in providing a more uniform thermal distribution and/or thermal mixing and/or thermal or heat dissipation (dissipating heat in a lower amount of time, compared with known separators, such as solid ribbed separators, for flooded lead acid batteries) across the separator. It is also believed that the exemplary broken rib separators described herein may also provide improved or faster or more efficient filling of flooded lead acid batteries, gel batteries, and/or enhanced flooded batteries.

[00110] In various embodiments of the present disclosure, the disclosed separator provides for reduced acid stratification, or even the complete elimination of acid stratification altogether, such that the mixing level or volume uniformity of the acid or electrolyte within the flooded lead acid battery is 1.0 or nearly approaches 1.0. In various embodiments, the separator disclosed herein is also a low electrical resistance (ER) separator. In such embodiments, the separator may contain improvements, such as improved fillers, which increase the porosity, pore size, internal pore surface area, wettability and/or the surface area of the separator. In some embodiments, the improved fillers have high structural morphology and/or reduced particle size and/or a different amount of silanol groups than previously known fillers and/or are more hydroxylated than previously known fillers. The improved fillers may absorb more oil and/or may permit incorporation of a greater amount of processing oil during separator formation, without concurrent shrinkage or compression when the oil is removed after extrusion. By way of example, the improved separator may be formed using a silica having an intrinsic oil absorption value of about 175-350 ml/100 g, in some embodiments, 200-350 ml/100 g, in some embodiments, 250-350 ml/100 gm, and in some further embodiments, 260- 320 ml/100 g, though other oil absorption values are possible as well.

[00111] The fillers may further reduce what is called the hydration sphere of the electrolyte ions, enhancing their transport across the membrane, thereby once again lowering the overall electrical resistance or ER of the battery, such as an enhanced flooded battery or system.

[00112] The filler or fillers may contain various species (such as polar species, such as metals) that facilitate the flow of electrolyte and ions across the separator. Such also leads to decreased overall electrical resistance as such a separator is used in a flooded battery, such as an enhanced flooded battery.

[00113] The low ER microporous separators herein further may comprise a novel and improved pore morphology and/or novel and improved fibril morphology such that the separator contributes to significantly decreasing the electrical resistance in a flooded lead acid battery when such a separator is used in such a flooded lead acid battery. Such improved pore morphology and/or fibril morphology may result in a separator whose pores and/or fibrils approximate a shish-kebab (or shish kabob) type morphology. Another way to describe the novel and improved pore shape and structure is a textured fibril morphology in which silica nodes or nodes of silica are present at the kebab-type formations on the polymer fibrils (the fibrils sometimes called shishes) within the battery separator. Additionally, in certain embodiments, the silica structure and pore structure of a separator according to the present invention may be described as a skeletal structure or a vertebral structure or spinal structure, where silica nodes on the kebabs of polymer, along the fibrils of polymer, appear like vertebrae or disks (the "kebabs"), and sometimes are oriented substantially perpendicularly to, an elongate central spine or fibril (extended chain polymer crystal) that approximates a spinal column-like shape (the "shish").

[00114] In some instances, the improved battery comprising the improved separator with the improved pore morphology and/or fibril morphology may exhibit 20% lower, in some instances, 25% lower, in some instances, 30% lower electrical resistance, and in some instances, even more than a 30% drop in electrical resistance ("ER") (which may reduce battery internal resistance) while such a separator retains and maintains a balance of other key, desirable mechanical properties of lead acid battery separators. Further, in certain

embodiments, the separators described herein have a novel and/or improved pore shape such that more electrolyte flows through or fills the pores and/or voids as compared to known separators. The ultrahigh molecular weight polyethylene in the separator may comprise polymer in a shish-kebab formation comprising a plurality of extended chain crystals (the shish formations) and a plurality of folded chain crystals (the kebab formations), wherein the average repetition or periodicity of the kebab formations is from 1 nm to 150 nm, preferably, from 10 nm to 120 nm, and more preferably, from 20 nm to 100 nm (at least on portions of the rib side of the separator). In certain of these low ER embodiments of the present separator, the separator for a lead acid battery described herein comprises a filler selected from the group consisting of silica, precipitated silica, fumed silica, and precipitated amorphous silica; wherein the molecular ratio of OH to Si groups within said filler, measured by 29Si- MR, is within a range of from 21 : 100 to 35: 100, in some embodiments, 23 : 100 to 31 : 100, in some

embodiments, 25: 100 to 29: 100, and in certain preferred embodiments, 27: 100 or higher.

[00115] In certain selected embodiments, the disclosed separators exhibit decreased electrical resistance, for instance, an electrical resistance no greater than about 200 mO.cm 2 , 180 mOxra 2 , 160 mQ.cm 2 , 140 mQ.cm 2 , 120 mOxra 2 , 100 mQ.cm 2 , 80 mQ.cm 2 , 60 mOxra 2 , 50 mO.cra 2 , 40 mQ.cm 2 , 30 mQ.cm 2 , or 20 mQ.cm 2 . In various embodiments, the separators described herein exhibit about a 20% or more reduction in ER compared with a known separator of the same thickness. For example, a known separator may have an ER value of 60 mQ.cm 2 ; thus, a separator according to the present invention at the same thickness would have an ER value of less than about 48 mQ.cm 2 . The separators described herein having low ER may have any or all of the features set forth in U.S. Provisional Patent Application No.

62/319,959, owned by Daramic, LLC and filed April 8, 2016, which provisional application is hereby incorporated by reference in its entirety.

[00116] In accordance with at least selected embodiments, the present disclosure is directed to improved lead-acid batteries, such as flooded lead-acid batteries, improved systems that include a lead-acid battery, and/or a battery separator, improved battery separators, improved vehicles including such systems, methods of manufacture or use, or combinations thereof. In accordance with at least certain embodiments, the present disclosure is directed to improved flooded lead-acid batteries, improved battery separators for such batteries, and/or methods of manufacturing, testing, or using such improved flooded lead-acid batteries, or combinations thereof. In addition, disclosed herein is a method, system, battery, and/or battery separator for reducing acid stratification, enhancing battery life and performance in a flooded lead-acid battery.

[00117] Exemplary separators as disclosed herein may preferably be characterized by having or by providing improved conductance over time. Conductance may be determined as cold- cranking amps (CCA), measured for instance in a Midtronics tester. For instance, a lead-acid battery equipped with the inventive separator can exhibit a decrease of less than 10%, less than 9%, less than 8%, less than 7%, less than 6%, less than 5%, less than 4%, less than 3%, less than 2%, less than 1%, or less than 0.5% CCA over a period of 30 days as measured by a Midtronics CCA tester.

[00118] The porous membrane can be provided in various ways with the additive, surfactant, agents, fillers, or additives. For example, the additive or additives may be applied to the porous membrane when it is finished (e.g., after the extraction) and/or added to the mixture used to produce the membrane. According to a preferred embodiment, the additive or a solution of the additive is applied to the surface of the porous membrane. This variant is suitable in particular for the application of non-thermostable additives and additives which are soluble in the solvent used for the subsequent extraction. Particularly suitable as solvents for the additives according to the invention are low-molecular-weight alcohols, such as methanol and ethanol, as well as mixtures of these alcohols with water. The application can take place on the side facing the negative electrode, the side facing the positive electrode or on both sides of the microporous membrane.

[00119] The application may also take place by dipping the microporous membrane in the additive or a solution of the additive and subsequently optionally removing the solvent, e.g. by drying. In this way the application of the additive can be combined for example with the extraction often applied during separator production.

[00120] Another preferred option is to mix the additive or additives into the mixture of thermoplastic polymer and optionally fillers and other additives which is used to produce the porous membrane. The additive-containing homogeneous mixture is then formed into a web- shaped material.

[00121] The inventive separator may be a Low ER separator, a Low Water Loss separator, and/or can have at least a portion including protrusions, broken ribs, serrated ribs,

discontinuous ribs, and/or the like (rather than solid ribs) to improve the acid mixing or conductance of the separator. Protrusions include features such as short rib segments, nubs, embossments, and the like. The protrusions can be on either face, or both faces of the separator. Typically, the protrusions will at least be on the side facing the positive plate (the positive active material or PAM). The protrusions can be arranged in rows, the protrusions in each row being spaced apart from each other and from the protrusions in adjacent rows. In some instances, the protrusions can be located on the side of the separator facing the positive active material, the side of the separator facing the negative active material (or NAM), or both sides of the separator. [00122] The separators of the present invention can be provided either in sheet form or in the form of a piece separator, a wrap, sleeve, pocket, an envelope, a hybrid envelope, a plate wrap, a plate sliver wrap (for example, a plate sliver wrap under a plate wrap, for example, in a five- point battery system, for example, a system that comprises a positive plate, the fibrous mat described herein used as a sliver wrap, a plate wrap, a boot, and a separator around the plate wrap and/or around an adjacent negative plate), and so forth. In some embodiments, a microporous membrane, which may be covered on at least one side with at least one fibrous layer, is provided as a pocket or envelope. When the fibrous layer is present, it is preferred that the microporous membrane has a larger surface area than the fibrous layers. Thus, when combining the microporous membrane and the fibrous layers, the fibrous layers do not completely cover the microporous layer. It is preferred that at least two opposing edge regions of the membrane layer remain uncovered to provide edges for heat sealing which facilitates the formation of pockets or envelope. The separators can be processed to form hybrid envelopes. The hybrid envelope can be formed by forming one or more slits or openings before, during or after, folding the separator sheet in half and bonding edges of the separator sheet together so as to form an envelope. The sides are bonded together using welds or mechanical seals to form seams that bring one side of the separator sheet into contact with another side of the separator sheet. Welds can be accomplished, for instance, using heat or ultrasonic processes. This process results in an envelope shape having a bottom folded edge and two lateral edges.

[00123] Separators disclosed herein in the form of an envelope may be a hybrid envelope and have one or more slits or openings along the folded or sealed creases of the envelope. The length of the openings can be at least l/50th, l/25th, l/20th, l/15th, 1/lOth, l/8th, l/5th, l/4th, or l/3rd the length of the entire edge. The length of the openings can be l/50th to l/3rd, l/25th to l/3rd, l/20th to l/3rd, l/20th to l/4th, l/15th to l/4th, l/15th to 1 /5th or 1/lOth to 1 /5th the length of the entire edge. The hybrid envelope can have 1-5, 1-4, 2-4, 2-3 or 2 openings, which may or may not be equally disposed along the length of the bottom edge. It is preferred that no opening is in the corner of the envelope. The slits may be cut after the separator has been folded and sealed to give an envelope, or the slits may be formed prior to shaping the porous membrane into the envelop.

[00124] Separators as disclosed herein may be characterized by improved conductance over time. Conductance may be determined as cold-cranking amps (CCA), measured for instance in a Midtronics tester. For instance, a lead-acid battery equipped with the inventive separator can exhibit a decrease of less than 10%, less than 9%, less than 8%, less than 7%, less than 6%, less than 5%), less than 4%, less than 3%, less than 2%, less than 1%, or less than 0.5% CCA over a period of 30 days as measured by a Midtronics CCA tester. In contrast, the CCA decrease observed for conventional batteries under similar conditions is often much greater.

[00125] The separators provided herein permit the production of batteries with reduced water loss and float currents in batteries compared to batteries made from conventional separators. In some embodiments, water loss can be reduced by more than 10%, 20%, 30%>, 40%, 50%, 60%>, 70%) or 80%). In some embodiments, float current can be reduced by more than 10%>, 20%, 30%), 40%), 50%), 60%), 70%) or 80%. Batteries prepared using the disclosed separators exhibit reduced internal resistance increase over time, and in some cases exhibit no increased internal resistance.

[00126] Besides lowering water loss and leading to extended battery life, possibly preferred separators are also designed to bring other benefits. With regard to assembly, the separators have the negative cross rib design to maximize bending stiffness and ensure highest manufacturing productivity. To prevent shorts during high speed assembly and later in life, the separators have superior puncture and oxidation resistance when compared to standard PE separators.

[00127] In accordance with at least selected embodiments, the present disclosure or invention is directed to improved battery separators, Low ER or high conductance separators, improved lead-acid batteries, such as flooded lead-acid batteries, high conductance batteries, and/or, improved vehicles including such batteries, and/or methods of manufacture or use of such separators or batteries, and/or combinations thereof. In accordance with at least certain embodiments, the present disclosure or invention is directed to improved lead acid batteries incorporating the improved separators and which exhibit increased conductance.

[00128] It is believed that the improved separators described herein, such as the broken rib separators described herein, may further help to prevent the formation of sulfation crystals, and may also assist in provided a more uniform thermal distribution and/or thermal mixing and/or thermal or heat dissipation (dissipating heat in a lower amount of time, compared with known separators, such as solid ribbed separators, for flooded lead acid batteries) across the separator. It is also believed that the exemplary broken rib separators described herein may also provide improved or faster or more efficient filling of flooded lead acid batteries, gel batteries, and/or enhanced flooded batteries.

[00129] In various embodiments, the separator disclosed herein is also a low electrical resistance ("ER") separator. In such embodiments, the separator may contain improvements, such as improved fillers, which increase the porosity, pore size, internal pore surface area, wettability and/or the surface area of the separator. In some embodiments, the improved fillers have high structural morphology and/or reduced particle size and/or a different amount of silanol groups than previously known fillers and/or are more hydroxylated than previously known fillers. The improved fillers may absorb more oil and/or may permit incorporation of a greater amount of processing oil during separator formation, without concurrent shrinkage or compression when the oil is removed after extrusion. By way of example, the improved separator is formed using a silica having an intrinsic oil absorption value of about 175-350 ml/100 g, in some embodiments, 200-350 ml/100 g, in some embodiments, 250-350 ml/100 gm, and in some further embodiments, 260-320 ml/100 g, though other oil absorption values are possible as well.

[00130] The separator contains one or more performance enhancing additives. The

performance enhancing additive can be a surfactant. Certain suitable surfactants are non-ionic while other suitable surfactants are anionic. The additive can be a single surfactant or a mixture of two or more surfactants, for instance two or more anionic surfactants, two or more non-ionic surfactants, or at least one ionic surfactant and at least one non-ionic surfactant. The use of these certain suitable surfactants in conjunction with the inventive separators described herein can lead to even further improved separators that, when used in a lead acid battery, lead to reduced water loss, reduced antimony poisoning, improved cycling, reduced float current, reduced float potential, and/or the like for that lead acid battery. Suitable surfactants include surfactants such as salts of alkyl sulfates; alkylarylsulfonate salts; alkylphenol-alkylene oxide addition products; soaps; alkyl-naphthalene-sulfonate salts; one or more sulfo-succinates, such as an anionic sulfo-succinate; dialkyl esters of sulfo-succinate salts; amino compounds (primary, secondary or tertiary amines; quaternary amines; block copolymers of ethylene oxide and propylene oxide; various polyethylene oxides; and salts of mono and dialkyl phosphate esters. The additive can include a non-ionic surfactant such as polyol fatty acid esters, polyethoxylated esters, polyethoxylated alcohols, alkyl polysaccharides such as alkyl polyglycosides and blends thereof, amine ethoxylates, sorbitan fatty acid ester ethoxylates, organosilicone based surfactants, ethylene vinyl acetate terpolymers, ethoxylated alkyl aryl phosphate esters and sucrose esters of fatty acids.

[00131] The battery separators can be combined in various ways with the additive(s), agent(s), and/or filler(s). The additive or additives can for example be applied to the separator when it is finished (e.g., after the extraction and/or rubber introduction) and/or added to the mixture used to extrude and ultimately produce the separator. According to certain preferred embodiments, the additive or a solution (such as an aqueous solution) of the additive is applied to one or more surfaces of the separator. This variant is suitable in particular for the application of non-thermostable additives and additives which are soluble in the solvent used for the extraction of processing oil. Particularly suitable as solvents for the additives according to the invention are low-molecular-weight alcohols, such as methanol and ethanol, as well as mixtures of these alcohols with water. The application can take place on the side facing the negative electrode, the side facing the positive electrode or on both sides of the separator. Application can also take place during the extraction of the pore forming agent while in a solvent bath. In some embodiments, the additive can be combined with the microporous membrane using any of the aforementioned methods, prior to or after introduction of the rubber component. In certain select embodiments, some portion of a performance enhancing additive, such as a surfactant coating or a performance enhancing additive added to the extruder before the separator is made (or both) may combine with the antimony in the battery system and may inactivate it and/or form a compound with it and/or cause it to drop down into the mud space of the battery and/or prevent it from depositing onto the negative electrode.

[00132] In certain embodiments, the additive (such as a non-ionic surfactant, an anionic surfactant, or mixtures thereof) can be present at a density or add-on level of at least 0.5 g/m 2 , 1.0 g/m 2 , 1.5 g/m 2 , 2.0 g/m 2 , 2.5 g/m 2 , 3.0 g/m 2 , 3.5 g/m 2 , 4.0 g/m 2 , 4.5 g/m 2 , 5.0 g/m 2 , 5.5 g/m 2 , 6.0 g/m 2 , 6.5 g/m 2 , 7.0 g/m 2 , 7.5 g/m 2 , 8.0 g/m 2 , 8.5 g/m 2 , 9.0 g/m 2 , 9.5 g/m 2 or 10.0 g/m 2 or even up to about 20.0 g/m 2 . The additive can be present on the separator at a density or addon level between 0.5-15 g/m 2 , 0.5-10 g/m 2 , 1.0-10.0 g/m 2 , 1.5-10.0 g/m 2 , 2.0-10.0 g/m 2 , 2.5- 10.0 g/m 2 , 3.0-10.0 g/m 2 , 3.5-10.0 g/m 2 , 4.0-10.0 g/m 2 , 4.5-10.0 g/m 2 , 5.0-10.0 g/m 2 , 5.5-10.0 g/m 2 , 6.0-10.0 g/m 2 , 6.5-10.0 g/m 2 , 7.0-10.0 g/m 2 , 7.5-10.0 g/m 2 , 4.5-7.5 g/m 2 , 5.0-10.5 g/m 2 , 5.0-11.0 g/m 2 , 5.0-12.0 g/m 2 , or 5.0-15.0 g/m 2 .

[00133] The application may also take place by dipping the battery separator in the additive or a solution of the additive (solvent bath addition) and removing the solvent if necessary, e.g., by drying. In this way the application of the additive can be combined for example with the extraction often applied during membrane production. Other preferred methods are to spray the surface with additive, dip coat, roller coat, or curtain coat the one or more additives on the surface of separator.

[00134] Another preferred option is to mix the additive or additives into the mixture of thermoplastic polymer and optionally fillers and other agents or additives which is used to produce the membrane. The additive-containing mixture is then formed into a web-shaped material.

[00135] In certain embodiments described herein, a reduced amount of anionic or non-ionic surfactant is added to the inventive separator. In such instances, a desirable feature may include lowered total organic carbons (TOCs) and/or lowered volatile organic compounds (VOCs) (because of the lower amount of surfactant) may produce a desirable separator according to such embodiment.

[00136] In certain embodiments, the additive can be represented by a compound of

Formula (I)

R{OR 1 ) n {COOM† x ) m (/)

in which:

• R is a non-aromatic hydrocarbon radical with 10 to 4200 carbon atoms, preferably 13 to 4200, which can be interrupted by oxygen atoms;

• R 1 = H,— (CH 2 )kCOOM x+ i/ x or— (CH 2 ) k — S0 3 M x+ i/ x , preferably H, where k = 1 or 2;

• M is an alkali metal or alkaline-earth metal ion, H + or H 4 + , where not all the variables M simultaneously have the meaning H + ;

• n = 0 or 1 ;

• m = 0 or an integer from 10 to 1400; and

• x = 1 or 2.

[00137] The ratio of oxygen atoms to carbon atoms in the compound according to Formula (I) being in the range from 1 : 1.5 to 1 :30 and m and n not being able to simultaneously be 0.

However, preferably only one of the variables n and m is different from 0.

[00138] By non-aromatic hydrocarbon radicals is meant radicals which contain no aromatic groups or which themselves represent one. The hydrocarbon radicals can be interrupted by oxygen atoms, (e.g., contain one or more ether groups).

[00139] R is preferably a straight-chain or branched aliphatic hydrocarbon radical which can be interrupted by oxygen atoms. Saturated, uncross-linked hydrocarbon radicals are quite particularly preferred.

[00140] Through the use of the compounds of Formula (I) for the production of battery separators, they can be effectively protected against oxidative destruction.

[00141] Battery separators are preferred which contain a compound according to Formula (I) in which:

• R is a hydrocarbon radical with 10 to 180, preferably 12 to 75 and quite particularly preferably 14 to 40 carbon atoms, which can be interrupted by 1 to 60, preferably 1 to 20 and quite particularly preferably 1 to 8 oxygen atoms, particularly preferably a hydrocarbon radical of formula R 2 — [(OC 2 H 4 )p(OC 3 H 6 ) q ]— , in which: o R 2 is an alkyl radical with 10 to 30 carbon atoms, preferably 12 to 25,

particularly preferably 14 to 20 carbon atoms;

o P is an integer from 0 to 30, preferably 0 to 10, particularly preferably 0 to 4; and

o q is an integer from 0 to 30, preferably 0 to 10, particularly preferably 0 to 4; o compounds being particularly preferred in which the sum of p and q is 0 to 10, in particular 0 to 4;

• n = 1 ; and

• m = 0.

[00142] Formula R 2 — [(OC2H4)p(OC3H 6 )q]— is to be understood as also including those compounds in which the sequence of the groups in square brackets differs from that shown. For example according to the invention compounds are suitable in which the radical in brackets is formed by alternating (OC2H4) and (OC3¾) groups.

[00143] Additives in which R 2 is a straight-chain or branched alkyl radical with 10 to 20, preferably 14 to 18 carbon atoms have proved to be particularly advantageous. OC2H4 preferably stands for OCH2CH2, OC 3 H 6 for OCH(CH 3 ) 2 and/or OCH 2 CH 2 CH 3 .

[00144] As preferred additives there may be mentioned in particular alcohols (p=q=0; m=0) primary alcohols being particularly preferred, fatty alcohol ethoxylates (p=l to 4, q=0), fatty alcohol propoxylates (p=0; q=l to 4) and fatty alcohol alkoxylates (p=l to 2; q=l to 4) ethoxylates of primary alcohols being preferred. The fatty alcohol alkoxylates are for example accessible through reaction of the corresponding alcohols with ethylene oxide or propylene oxide.

[00145] Additives of the type m=0 which are not, or only difficulty, soluble in water and sulphuric acid have proved to be particularly advantageous.

[00146] Also preferred are additives which contain a compound according to Formula (I), in which:

R is an alkane radical with 20 to 4200, preferably 50 to 750 and quite particularly preferably 80 to 225 carbon atoms;

M is an alkali metal or alkaline-earth metal ion, H + or H 4 + , in particular an alkali metal ion such as Li + , Na + and K + or H + , where not all the variables M simultaneously have the meaning H + ;

n = 0;

m is an integer from 10 to 1400; and • x = 1 or 2.

[00147] As suitable additives there may be mentioned here in particular polyacrylic acids, polymethacrylic acids and acrylic acid-methacrylic acid copolymers, whose acid groups are at least partly (e.g., preferably 40%, particularly preferably 80%) neutralized. The percentage refers to the number of acid groups. Quite particularly preferred are poly(meth)acrylic acids which are present entirely in the salt form. Suitable salts include Li, Na, K, Rb, Be, Mg, Ca, Sr, Zn, and ammonium (NR 4 , wherein R is either hydrogen or a carbon functional group). By poly(meth)acrylic acids are meant polyacrylic acids, polymethacrylic acids and acrylic acid- methacrylic acid copolymers. Poly(meth)acrylic acids are preferred and in particular polyacrylic acids with an average molar mass M w of 1,000 to 100,000 g/mol, particularly preferably 1,000 to 15,000 g/mol and quite particularly preferably 1,000 to 4,000 g/mol. The molecular weight of the poly(meth)acrylic acid polymers and copolymers is ascertained by measuring the viscosity of a 1% aqueous solution, neutralized with sodium hydroxide solution, of the polymer (Fikentscher's constant).

[00148] Also suitable are copolymers of (meth)acrylic acid, in particular copolymers which, besides (meth)acrylic acid contain ethylene, maleic acid, methyl acrylate, ethyl acrylate, butyl acrylate and/or ethylhexyl acrylate as comonomer. Copolymers are preferred which contain at least 40 wt.-%, preferably at least 80 wt.-% (meth)acrylic acid monomer, the percentages being based on the acid form of the monomers or polymers.

[00149] To neutralize the polyacrylic acid polymers and copolymers, alkali metal and alkaline-earth metal hydroxides such as potassium hydroxide and in particular sodium hydroxide are particularly suitable. In addition, a coating and/or additive to enhance the separator may include, for example, a metal alkoxide, wherein the metal may be, by way of example only (not intended to be limiting), Zn, Na, or Al, by way of example only, sodium ethoxide.

[00150] In some embodiments, the microporous polyolefin separator layer may include a coating on one or both sides of such layer. Such a coating may include a surfactant or other material. In certain embodiments, the coating is combined with the membrane prior to rubber addition, the coating is combined after rubber addition, or the coating is combined both before and after rubber addition. In some embodiments, the coating may include one or more materials described, for example, in U.S. Patent Publication No. 2012/0094183, which is incorporated by reference herein. Such a coating may, for example, reduce the overcharge voltage of the battery system, thereby extending battery life with less grid corrosion and preventing dry out and/or water loss. [00151] The improved separators are useful in a variety of battery, particularly lead acid battery, applications. The battery can be a flooded battery, which may be a tubular or flat plate battery. The batteries can be used in motive applications such as golf cart (sometimes referred to as golf car) batteries, or other deep-cycling applications such as solar or wind power battery.

[00152] Batteries, in particular, flooded lead acid batteries, in particular, deep cycle batteries, having the improved separators disclosed herein can be characterized by lower float current (in Amps) after charging a 12 Volt battery at a float voltage of 14.4 volts (or 2.4 volts per cell, where the 12 Volt battery has six cells) for a given time, such as 21 days, and testing may extend out to 84 days, measuring at 21 -day intervals.

[00153] In addition, the inventive battery separators disclosed and described herein provide the improved deep cycle batteries in which they are used with a more consistent, and lower, end of charge (EOC) current. Maintaining lower EOC current reveals that the improved batteries described herein are exhibiting Sb poisoning suppression. By way of example, as a new deep cycle lead acid battery ages, more Sb is in the battery, meaning that the EOC current may increase over the life of the battery, thereby increasing the water consumption of the battery and thereby reducing the overall life cycle performance of the battery. The inventive separators described herein mean that the EOC current is maintained more consistently throughout the cycle life of the battery, thereby showing reduction in Sb poisoning.

[00154] End of charge current may sometimes be referred to as the float current necessary to maintain fixed voltage for a lead acid battery during idle periods. In a lead acid battery with antimony, typical behavior is illustrated with conventional lead acid battery separators;

antimony poisoning occurs and is observed by measuring an increase in end of charge current over life cycle. And the antimony suppressing battery separators that are currently on the market, or the current best available technology, reduces antimony poisoning to some extent. However, the separators discovered in accordance with this invention can meet or even surpass the current best available technology. The separators herein disclosed provide at a minimum a level of antimony suppression that is equivalent to, but often better than, the known best available technology while also further reducing end of charge current below today's best available technology.

[00155] In short, the improved, flexible battery separators described and claimed herein, which include at least one performance enhancing additive and/or coating, when used in a flooded lead acid battery, such as a deep cycle flooded lead acid battery, result in an improved and even significantly improved deep cycle flooded lead acid battery in terms of: enhanced antimony suppression relative to a battery made using a separator made completely of rubber and relative to a battery made using a separator that does not include a rubber and/or latex component (measured via end of charge (EOC) voltage and shown by improved EOC voltage suppression). Regarding antimony suppression, antimony poisoning can occur from the outset of operation of a lead acid battery, such as a flooded lead acid battery, such as a deep cycling flooded lead acid battery. However, over the life of the battery, more antimony is released from repeated operation of the battery, meaning that the antimony suppression becomes even more critical later in the life of the battery. The improved separators described herein address the same in that they work to suppress antimony, even toward the end of the life of the battery, for example, past 50% of the built-in or intended life of the battery.

[00156] In addition, the improved, flexible battery separators described herein also provide a deep cycle flooded lead acid battery that exhibits a decreased float charge current at a steady state potential relative to batteries made using previously known separators; a reduction in the voltage and/or energy required to return the deep cycle operated battery to full charge, relative to a deep cycle battery made using a previously known separator; overall improved voltage control relative to a battery made using a previously known separator; and/or reduced grid corrosion relative to a battery made lusing a previously known separator.

[00157] In addition, it has been found in experiments using separators of the present

invention, that Sb poisoning is reduced for batteries using the same. Sb poisoning manifests itself as a reduction of the hydrogen evolution overpotential, or an increase in the rate of hydrogen evolution by electrochemically reducing water. One can measure this overpotential by measuring the hydrogen evolution current at a fixed potential, and such experiments showed that separators according to the present invention performed better than known separators. In similar experimentation, it was also determined that a difference can be seen for the large anodic (positive current) peak associated with CV curves for batteries containing separators according to the present invention. Such a peak is attributed to the oxidation of Pb to PbS04 on the surface of the lead working electrode. And for conventional, comparative separators, the peak position was shown to shift positively, by 40 - 60 mV, which can be attributed to the presence of Sb on the surface changing the chemistry of the Pb to PbS04. For batteries containing a separator according to the present invention, a smaller shift in peak position is observed, which is indicative of the suppression of Sb on the lead surface. This observation, taken with the clear reduction in the rate of hydrogen evolution indicates that the separators according to the present invention is mitigating the deposition of Sb on the negative (lead) electrode. [00158] Disclosed herein are improved separators for lead acid batteries. The separators may include a porous membrane, rubber and/or latex, and at least one performance enhancing additive or surfactant.

[00159] In accordance with at least selected embodiments, aspects or objects, disclosed herein or provided are novel or improved separators, battery separators, enhanced flooded battery separators, batteries, cells, and/or methods of manufacture and/or use of such separators, battery separators, enhanced flooded battery separators, cells, and/or batteries. In accordance with at least certain embodiments, the present disclosure or invention is directed to novel or improved battery separators for enhanced flooded batteries. In addition, disclosed herein are methods, systems and battery separators for enhancing battery life, reducing internal electrical resistance, increasing cold cranking amps, and/or improving uniformity in at least enhanced flooded batteries. In accordance with at least particular embodiments, the present disclosure or invention is directed to an improved separator for enhanced flooded batteries wherein the separator has performance enhancing additives or coatings, improved fillers, decreased tortuosity, increased wettability, reduced oil content, reduced thickness, decreased electrical resistance, and/or increased porosity, and where the use of such a separator in a battery reduces the water loss of the battery, lowers acid stratification of the battery, lowers the voltage drop of the battery, and/or increases the CCA of the battery. In accordance with at least certain embodiments, separators are provided that include or exhibit performance enhancing additives or coatings, increased porosity, increased void volume, amorphous silica, higher oil absorption silica, higher silanol group silica, resistance to antimony poisoning, electrolyte mixing, retention of active material on electrodes, and any combination thereof.

[00160] In accordance with at least selected embodiments, aspects or objects, the present disclosure or invention is directed to or may provide novel or improved separators, battery separators, enhanced flooded battery separators, fibrous mats, batteries, cells, and/or methods of manufacture and/or use of such separators, battery separators, fibrous mats, enhanced flooded battery separators, cells, and/or batteries. In accordance with at least certain

embodiments, the present disclosure or invention is directed to novel or improved enhanced flooded lead acid battery separators for starting lighting ignition ("SLI") batteries, fibrous mats, flooded batteries for deep cycle applications, and/or enhanced flooded batteries, and/or systems, vehicles, and/or the like including such separators, mats or batteries, and/or improved methods of making and/or using such improved separators, mats, cells, batteries, systems, vehicles, and/or the like. In accordance with at least certain embodiments, the present disclosure or invention is directed to an improved separator for enhanced flooded batteries and/or improved methods of making and/or using such batteries having such improved separators. In accordance with at least selected embodiments, the present disclosure or invention is directed to separators, particularly separators for enhanced flooded batteries having reduced electrical resistance and/or increased cold cranking amps. In addition, disclosed herein are methods, systems and battery separators for enhancing battery life, reducing water loss, reducing internal resistance, increasing wettability, reducing acid stratification, improving acid diffusion, improving cold cranking amps and/or improving uniformity in at least enhanced flooded batteries. In accordance with at least particular embodiments, the present disclosure or invention is directed to an improved separator for enhanced flooded batteries wherein the separator includes one or more performance enhancing additives or coatings, increased porosity, increased void volume, amorphous silica, higher oil absorption silica, higher silanol group silica, retention and/or improved retention of active material on electrodes, and/or any combination thereof.

[00161] The present invention may be embodied in other forms without departing from the spirit and the essential attributes thereof, and, accordingly, reference should be made to the appended claims, rather than to the foregoing specification, as indicating the scope of the invention.

[00162] The foregoing written description of structures and methods has been presented for purposes of illustration only. Examples are used to disclose exemplary embodiments, including the best mode, and also to enable any person skilled in the art to practice the invention, including making and using any devices or systems and performing any incorporated methods. These examples are not intended to be exhaustive or to limit the invention to the precise steps and/or forms disclosed, and many modifications and variations are possible in light of the above teaching. Features described herein may be combined in any combination. Steps of a method described herein may be performed in any sequence that is physically possible. The patentable scope of the invention is defined by the appended claims, and may include other examples that occur to those skilled in the art. Such other examples are intended to be within the scope of the claims if they have structural elements that do not differ from the literal language of the claims, or if they include equivalent structural elements with insubstantial differences from the literal language of the claims.

[00163] The compositions and methods of the appended claims are not limited in scope by the specific compositions and methods described herein, which are intended as illustrations of a few aspects of the claims. Any compositions and methods that are functionally equivalent are intended to fall within the scope of the claims. Various modifications of the compositions and methods in addition to those shown and described herein are intended to fall within the scope of the appended claims. Further, while only certain representative compositions and method steps disclosed herein are specifically described, other combinations of the compositions and method steps also are intended to fall within the scope of the appended claims, even if not specifically recited. Thus, a combination of steps, elements, components, or constituents may be explicitly mentioned herein or less, however, other combinations of steps, elements, components, and constituents are included, even though not explicitly stated.

[00164] As used in the specification and the appended claims, the singular forms "a," "an," and "the" include plural referents unless the context clearly dictates otherwise. Ranges may be expressed herein as from "about" or "approximately" one particular value, and/or to "about" or "approximately" another particular value. When such a range is expressed, another

embodiment includes from the one particular value and/or to the other particular value.

Similarly, when values are expressed as approximations, by use of the antecedent "about," it will be understood that the particular value forms another embodiment. It will be further understood that the endpoints of each of the ranges are significant both in relation to the other endpoint, and independently of the other endpoint. "Optional" or "optionally" means that the subsequently described event or circumstance may or may not occur, and that the description includes instances where said event or circumstance occurs and instances where it does not.

[00165] Throughout the description and claims of this specification, the word "comprise" and variations of the word, such as "comprising" and "comprises," means "including but not limited to," and is not intended to exclude, for example, other additives, components, integers, or steps. The terms "consisting essentially of and "consisting of can be used in place of "comprising" and "including" to provide for more specific embodiments of the invention and are also disclosed. "Exemplary" means "an example of and is not intended to convey an indication of a preferred or ideal embodiment. Similarly, "such as" is not used in a restrictive sense, but for explanatory or exemplary purposes.

[00166] Other than where noted, all numbers expressing geometries, dimensions, and so forth used in the specification and claims are to be understood at the very least, and not as an attempt to limit the application of the doctrine of equivalents to the scope of the claims, to be construed in light of the number of significant digits and ordinary rounding approaches.

[00167] Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of skill in the art to which the disclosed invention belongs. Publications cited herein and the materials for which they are cited are specifically incorporated by reference.

168] Additionally, the invention illustratively disclosed herein suitably may be practiced in the absence of any element which is not specifically disclosed herein.