Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
IMPROVEMENT OF LOW LOSS OPTICAL MATERIAL
Document Type and Number:
WIPO Patent Application WO/2003/097719
Kind Code:
A1
Abstract:
Storage stable, UV curable, NIR transparent, polycondensates and methods for the production thereof by condensation of one or more silanediols of formula (I) and/or derived precondensates thereof with one or more silanes of formula (II) and/or derived precondensates thereof. At least one of the aromatic groups Ar1 or Ar2 bears a cross-linkable functional group. The polycondensates are curable by crosslinking.

Inventors:
FRIEDRICH REINER (DE)
Application Number:
PCT/AU2003/000583
Publication Date:
November 27, 2003
Filing Date:
May 15, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNIV AUSTRALIAN (AU)
FRIEDRICH REINER (DE)
International Classes:
C08F2/48; C08G77/04; C08G77/06; C08G77/08; C08G77/18; C08G77/20; C08G77/22; C08G77/24; C08G77/26; C08G77/28; C08G77/38; C08G77/56; C08G77/58; C09D183/04; C09D183/06; C09D183/08; C09D183/14; (IPC1-7): C08G77/06; C08G77/18; C08G77/20; C08G77/22; C08G77/24; C08G77/26; C08G77/28; C09D183/04; C09D183/06; C09D183/08
Domestic Patent References:
WO2001004186A12001-01-18
WO1999037318A11999-07-29
Foreign References:
US4960847A1990-10-02
GB1448290A1976-09-02
EP0528353A11993-02-24
US4831174A1989-05-16
US6020450A2000-02-01
EP0682068A21995-11-15
EP0544257A21993-06-02
Other References:
See also references of EP 1517944A4
Attorney, Agent or Firm:
Shelston IP. (Sydney NSW 2000, AU)
Download PDF:
Claims:
THE CLAIMS OF THE INVENTION ARE AS FOLLOWS
1. A storage stable, UV curable, NIR transparent polycondensate produced by condensation of one or more silanediols of formula (I) and/or derived precondensates thereof with one or more silanes of formula (II) and/or derived precondensates thereof wherein Ar'and Ar'are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a crosslinkable functional group; and R', R2, R3 and R4 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms.
2. A polycondensate according to claim 1 wherein at least one of Rl, R2, R3 and R4 does not bear a crosslinkable functional group.
3. A polycondensate according to claim 1 or claim 2 wherein R', R2, R3 and R4 are, in combination, free from a crosslinkable functional group.
4. A polycondensate according to any one of the preceding claims wherein at least one of Ar and Ar2 is a moiety of the type.
5. A polycondensate according any one of the preceding claims wherein Ar'and Ai'are not both 4styryl.
6. A polycondensate according to any one of the preceding claims wherein the molar ratio of formula (l) : formula (II) is 1: 1.
7. A polycondensate according to any one of the preceding claims wherein at least one of Ar' and Ar2 is substituted with an epoxy group or a double bond.
8. A polycondensate according to any one of the preceding claims wherein at least one of Ar' and Ar is substituted with an acrylate.
9. A polycondensate according to any one of the preceding claims wherein at least one of Ar' and Ar2 is a moiety of the type where L is a connecting group selected from alkyl, aralkyl, or ether; n is 05; and R', R2, R3 and R4 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms.
10. A polycondensate according to claim 9 wherein L is selected from the group consisting of : CH2,(OCH2)and(OCH2CH2).
11. A polycondensate according to any one of the preceding claims wherein at least one of Ar', Ar2, R', R2, R3 and R4 bears at least one fluorine as a substituent.
12. A polycondensate according to any one of the preceding claims wherein at least one of Ar', Ar2, R', R2, R3 and R4 bears at least one substituent selected from the group consisting ofOH,SH andNH2.
13. A polycondensate according to any one of the preceding claims wherein at least one of Ar' and Ar2 is selected from the group consisting of :.
14. A polycondensate according to any one of claims 1 to 7 wherein Arl is phenyl and Ar2 is 4 styryl.
15. A polycondensate according to any one of the preceding claims wherein R'is selected from the group consisting of CF3 (CH2) 2, CH3 (CH2) 2, CF3 (CF2) 5 (CH2) 2, CH3 (CH2) 7,CH3 and phenyl.
16. A polycondensate according to any one of the preceding claims wherein R2, R3 and R4 are independently selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl.
17. A polycondensate according to any one of the preceding claims wherein up to 90 mol% of the silane of formula (II) is replaced with a cocondensable compound of boron, aluminium, silicon, germanium, titanium or zirconium.
18. A polycondensate according to any one of the preceding claims wherein up to 90 mol% of formula (I) is substituted with a noncrosslinkable compound.
19. A polycondensate according to claim 18 wherein the noncrosslinkable compound is diphenyl silane diol.
20. A method of production of a polycondensate including the step of condensing one or more silanediols of formula (I) and/or derived precondensates thereof with one or more silanes of formula (II) and/or derived precondensates thereof wherein Ar'and Ar2 are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a crosslinkable functional group; and R', R2, R3 and R4 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms.
21. A method according to claim 20 wherein at least one of R', R2, R3 and R4 does not bear a crosslinkable functional group.
22. A method according to claim 20 or 21 wherein R', R2, R3 and R4 are, in combination, free from a crosslinkable functional group.
23. A method according to any one of claims 20 to 22 wherein Ar'is phenyl and Ar2 is 4 styryl.
24. A method according to any one of claims 20 to 23 wherein up to 90 mol% of formula (I) is substituted with a noncrosslinkable compound.
25. A monomer of formula (I) when used for the preparation of a storage stable, UV curable, NIR transparent, polycondensate wherein Ar'and Ar2 are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar7 bears a crosslinkable functional group.
26. A cured polycondensate prepared by curing a polycondensate including at least one monomer of formula (I).
27. A cured polycondensate prepared by curing a polycondensate according to any one of claims 1 to 19.
28. A method of preparing a cured polycondensate including the step of treating a polycondensate according to any one of claims 1 to 19 with a curing agent.
29. A method according to claim 28 wherein the curing agent is light.
30. A method according to claim 28 or 29 wherein the curing agent is light and a photoinitiator is added.
31. A method according to claim 30 wherein the light is UV light and the photoinitiator is selected from the group consisting of : 1hydroxycyclohexylphenyl ketone, 2methyl1 [4 methylthio) phenyl]2morpholinopropan1one, 2, 2dimethoxy1, 2diphenylethan1one, 2benzyl 2dimethylamino1 (4morpholinophenyl)butanone1, 4 (dimethylamino) benzophenone, 2 <BR> <BR> <BR> hydroxy2methyl1phenylpropan1one, 1 [4 (2hydroxyethoxy)phenyl]2hydroxy2methyl1 propane1one, 4,4'bis (diethylamino) benzophenone, benzophenone, 2chlorothioxanthone, 2 methylthioxanthone, 2isopropylthioxanthone, benzoin, 4,4'dimethoxybenzoin, and mixtures thereof.
32. A method according to claim 30 wherein the light is visible light and the photoinitiator is camphorquinone.
33. A method according to any one of claims 28 to 32 wherein an initiator is added.
34. A method according to claim 33 wherein the initiator is dibenzoyl peroxide, tbutyl perbenzoate or azobisisobutyronitrile.
35. A polycondensate of the structure wherein Ar'and Ar2 are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a crosslinkable group; R'and R2 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms; and q is at least 1.
36. A polycondensate according to claim 35 wherein at least one of R'and R2 does not bear a crosslinkable functional group.
37. A polycondensate according to claim 35 or 36 wherein both R'and R2 are free from a crosslinkable functional group.
38. A polycondensate according to any one of claims 35 to 37 wherein at least one of Ar'and Ar2 is a moiety of the type.
39. A polycondensate according to any one of claims 35 to 38 wherein at least one of Ar'and Ar2 is substituted with an epoxy group or a double bond.
40. A polycondensate according to any one of claims 35 to 39 wherein at least one of Ar'and Ar2 is substituted with an acrylate.
41. A polycondensate according to any one of claims 35 to 40 wherein at least one of Ar'and Ar2 is a moiety of the type where L is a connecting group is selected from alkyl, aralkyl, or ether; n is 05; and R', R2, R'and R4 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms.
42. A polycondensate according to claim 41 wherein L is selected from the group consisting of :CH2,(OCH2)and(OCH2CH2).
43. A polycondensate according to any one of claims 35 to 42 wherein at least one of Ar', Ar2, R'and R2 bears fluorine as a substituent.
44. A polycondensate according to any one of claims 35 to 43 wherein at least one of Ar', Ar2, R'and R2 bears at least one substituent selected from the group consisting ofOH,SH andNH2.
45. A polycondensate according to any one of claims 35 to 44 wherein at least one of Ar'and Ar2 is selected from the group consisting of :.
46. A polycondensate according to any one of claims 35 to 39 wherein Ar'is phenyl and Ar2 is 4styryl.
47. A polycondensate according to any one of claims 35 to 46 wherein R'is selected from the group consisting of CF3 (CH2) 2, CH3 (CH2) 2, CF3 (CF2) 5 (CH2) 2, CH3 (CH2) 7,CH3 and phenyl.
48. A polycondensate according to any one of claims 35 to 47 wherein R2 is selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl.
49. A polycondensate according to any one of claims 35 to 48 wherein up to 90 mol% of silane of formula (II) is replaced with a cocondensable compound of boron, aluminium, silicon, germanium, titanium or zirconium.
50. A polycondensate according to any one of claims 35 to 49 wherein up to 90 mol% of formula (I) is substituted with a noncrosslinkable compound.
51. A polycondensate according to claim 50 wherein the noncrosslinkable compound is diphenyl silane diol.
52. A method of preparing a polycondensate of the structure including the step of condensing one or more silanediols of formula (I) and/or derived precondensates thereof with one or more silanes of formula (II) and/or derived precondensates thereof wherein Ar'and Ar2 are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a crosslinkable functional group; R', R2, R3 and R4 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms; and q is at least 1.
53. A method according to claim 52 wherein at least one of R', R2, R'and R4 does not bear a crosslinkable functional group.
54. A method according to claim 52 or 53 wherein R', R2, R3 and R4 are, in combination, free from a crosslinkable functional group.
55. A method according to any one of claims 52 to 54 wherein Ar'is phenyl and Ar2 is 4 styryl.
56. A method according to any one of claims 52 to 55 wherein up to 90 mol% of formula (I) is substituted with a noncrosslinkable compound.
57. A cured polycondensate prepared by curing a polycondensate according to any one of claims 35 to 51.
58. A method of preparing a cured polycondensate including the step of treating a polycondensate according to any one of claims 35 to 51 with a curing agent.
59. A method according to claim 58 wherein the curing agent is light and a photoinitiator selected from the group consisting of 1hydroxycyclohexylphenyl ketone, 2methyl1 [4 methylthio) phenyl]2morpholinopropan1one, 2, 2dimethoxy1, 2diphenylethan1one, 2benzyl 2dimethylamino1 (4morpholinophenyl)butanone1, 4 (dimethylamino) benzophenone, 2 <BR> <BR> hydroxy2methyl1phenylpropan1one, 1 [4 (2hydroxyethoxy)phenyl]2hydroxy2methyl1 propane1one, 4,4'bis (diethylamino) benzophenone, benzophenone, 2chlorothioxanthone, 2 methylthioxanthone, 2isopropylthioxanthone, benzoin, 4,4'dimethoxybenzoin, camphorquinone and mixtures thereof is added.
60. A method according to claim 58 or 59 wherein an initiator selected from dibenzoyl peroxide, tbutyl perbenzoate and azobisisobutyronitrile is added.
Description:
IMPROVEMENT OF LOW LOSS OPTICAL MATERIAL TECHNICAL FIELD The invention relates to improvements in the performance of low loss optical materials resulting from chemical modification, and to improved polymeric siloxanes.

BACKGROUND ART Organically modified siloxanes (alternating Si-O backboned polymers) have a broad range of applications. In particular, they have good light transmission properties that make them ideal targets for use in optical materials such as optical fibres and devices. They also generally possess good adhesion as well as mechanical and chemical stability over an extended temperature range.

Siloxane polymers can be divided into two broad classes- (i) polysiloxanes prepared by the sol-gel route and (ii) standard siloxane polymers of the polydiorganosiloxane type.

Polysiloxanes prepared by the sol-gel route are sometimes referred to as ORMOSILs (ORganically MOdified SILicates) or inorganic-organic hybrid polymers. These are formed from alkoxysilanes which are normally hydrolysed in the presence of base or acid to yield the corresponding silanol which then undergoes condensation to give a highly cross-linked polysiloxane.

Problematically, these polymers are difficult to process due to their high viscosity. While the condensation processes can be slowed down somewhat to assist in processing, there is always a tendency for such materials to condense so problems due to high viscosity are inevitable.

A further consequence of this unavoidable condensation is the formation of microgels.

These microgels make filtration difficult, particularly the passage through 0.2 um filters, a step which is essential in preparing optical materials to avoid scattering losses.

WO 01/04186 discloses a method for the condensation of diaryl silanediols with trialkoxy silanes. This method produces a polycondensate with the concomitant elimination of alcohol, according to the following scheme: n Ar2Si (OH) 2 + n RSi (OR') 3-- Polycondensate + 2n R'OH This synthetic route avoids the presence of large numbers of OH groups which have a high near IR absorption (3500cm'') that impacts negatively upon optical transparency at 1550nm.

Uncondensed Si-OH groups can also continue a slow reaction over the service life of the polymeric material and lead to cracking and loss of adhesion.

It is desirable to cross-link polymer chains to provide greater chemical stability for the polymer matrix and more importantly to modify the physical properties of the polymer. The most important of these is the ability to cross-link to modify rheology, which in practical terms represents the ability to cure the material from a relatively low viscosity workable polymer to a polymer matrix with sufficient mechanical rigidity to allow use in applications such as optical devices.

WO 01/04186 discloses a number of cross-linking groups such as epoxy and acrylate groups which are pendant from the trialkoxy silane, RSi (OR') 3. There was little or no attention paid to groups that might advantageously provide controlled cross-linking based around the silane diol moiety.

The trialkoxy silane RSi (OR') 3 component is typically used for introducing functionality into the polymer, with the diaryl silane diol having two reactive OH groups and two"blocking" aryl moieties.

The approach disclosed in WO 01/04186 means that, for an alternating polymer, 50% of monomer units-the trialkoxy silane units-have to bear all the desired functionalities, for example, cross-linking, refractive index tuning and fluorination for lower optical loss. This approach is limiting in terms of the synthetic approaches which can be pursued.

It is an object of the present invention to provide polycondensates and polymeric matrices based on the above synthetic route, but which are more readily controlled in terms of structure and functionality.

DESCRIPTION OF THE INVENTION According to a first aspect the invention provides a storage stable, UV curable, NIR transparent polycondensate produced by condensation of one or more silanediols of formula (I) and/or derived precondensates thereof with one or more silanes of formula (IT) and/or derived precondensates thereof wherein Ar'and Ar'are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a cross-linkable functional group; and R', R2, R3 and R4 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms.

In the present invention, Ar'and Ar2 may independently have from 4 to 20 carbon atoms, or more commonly, from 5 to 20 carbon atoms.

Preferably in the present invention the ratio of formula (1) and formula (II) is 1: 1.

Preferably, at least one of R', R2, R3 and R4 does not bear a cross-linkable functional group and even more preferably R', R2, R3 and R4 are, in combination, free from a cross-linkable functional group.

The invention also provides a polycondensate of the structure wherein Ar'and Ar2 are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a cross-linkable group; R'and R2 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms; and q is at least 1.

According to a second aspect the invention provides a method of production of a polycondensate including the step of condensing one or more silanediols of formula (I) and/or a derived precondensates thereof with one or more silanes of formula (IT) and/or derived precondensates thereof wherein Ar'and Ar2 are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a cross-linkable functional group; and R', R2, R3 and R4 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms.

Preferably the molar ratio of formula (I) : formula (II) is 1: 1.

The invention also provides a method of preparing a polycondensate of the structure including the step of condensing one or more silanediols of formula (I) and/or derived precondensates thereof

with one or more silanes of formula (II) and/or derived precondensates thereof wherein Ar'and Ar2 are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a cross-linkable functional group; R', R2, R3 and R4 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms; and q is at least 1.

According to a third aspect the invention provides a monomer of formula (I) when used for the preparation of a storage stable, UV curable, NIR transparent, polycondensate wherein Ar'and Ar2 are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a cross-linkable functional group.

According to a fourth aspect the invention provides a cured polycondensate prepared by curing a polycondensate produced according to the first aspect, or curing a polycondensate according to the second aspect, or curing a polycondensate that includes at least one monomer of the third aspect.

In the above compounds and methods, it is preferable if at least one of Ar'and Ar2 is a moiety of the type

In alternative embodiments, at least one of Ar'and Ar2 is substituted with an epoxy group or a double bond, for instance, an acrylate.

In alternative preferred embodiments, at least one of Ar1 and Ar2 is a moiety of the type

where L is a connecting group which is selected from alkyl, aralkyl, or ether; n is 0-5; and R', R2, R3 and R4 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms.

Preferably L is selected from the group consisting of :-CH2-,-(OCH2)-and-(OCH2CH2)-.

Preferably at least one of Ar', Ar2, R', R2, R3 and R4 bears at least one fluorine as a substituent.

In alternative embodiments, at least one of Ar', Ar2, R', R2, R3 and R4 additionally bears at least one substituent selected from the group consisting of-OH,-SH and-NH2.

In preferred embodiments, at least one of Ar'and Ar2 is selected from the group consisting of :

In one highly preferred embodiment, Ar'is phenyl and Ar2 is 4-styryl.

Preferably R'is selected from the group consisting of CF3 (CH2) 2-, CH3 (CH2) 2-, CF3 (CF2) s (CH2) 2-, CH3 (CH2) 7-,-CH3 and phenyl.

Preferably R2, R3 and R4 are independently selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl and octyl.

In alternative preferred embodiments, up to 90 mol% of the silane of formula (II) is replaced with a co-condensable compound of boron, aluminium, silicon, germanium, titanium or zirconium.

In another alternative embodiment, up to 90 mol% of formula (I) is substituted with a non- cross-linkable compound, for example diphenyl silane diol.

It is preferred if the polycondensates according the present invention are capable of being photo-structured in layers up to 150um in thickness.

In another aspect, the present invention provides a cured condensate and a method of preparing a cured polycondensate including the step of treating a polycondensate of the present invention with a curing agent.

In highly preferred embodiments the curing agent is light, such as visible or UV light. A photoinitiator may be added.

Other initiators may be added, or alternatively, the resin can be thermally cured using no initiator whatsoever. The curing temperature is between 80-250°C and more preferably between 170-210°C.

BEST MODES FOR CARRYING OUT THE INVENTION The storage stable, UV curable, NIR transparent, polycondensate of the present invention is produced by condensation of one or more silanediols of formula (1) and/or derived precondensates thereof with one or more silanes of formula (II) and/or derived precondensates thereof

wherein Ar'and Ar2 are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a cross-linkable functional group; and R', R2, R3 and R4 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms.

Ar'and Ar2 may independently have from 4 to 20 carbon atoms, or more commonly, from 5 to 20 carbon atoms.

Preferably, at least one of R', R2, R3 and R4 does not bear a cross-linkable functional group.

Even more preferably, R', R2, R3 and R4 are, in combination, free from a cross-linkable group.

Preferably, the molar ratio of formula (I) to formula (In is 1: 1.

The resultant polycondensate may be defined either in terms of the precondensate compounds used, or in terms of the structure of the polycondensate, which may be defined by the following structure

wherein Ar'and Ar2 are independently a group with 3 to 20 carbon atoms and at least one aromatic or heteroaromatic group and at least one of Ar'and Ar2 bears a cross-linkable group; R'and R2 are independently alkyl, aralkyl or aryl with up to 20 carbon atoms; and

q is at least 1.

In the present invention, the aromatic groups Ar'and/or Ar2 bear cross-linking functionalities, most commonly a double bond, such as that in a styrene or acrylate (where they are more reactive by conjugation), or epoxides. Each aromatic group may also bear more than one cross-linkable group, although it will be appreciated by those skilled in the art that precursors of such compounds may be difficult to process from a synthetic point of view.

The cross-linking group may be directly on the aromatic group, or any or all of the silicon atoms and the aromatic group and cross-linking functionality may be spaced apart with connecting groups, which may be inert or reactive as desired.

The cross linking group may be attached to the aromatic group by any intervening moiety.

Substitution of a hydrogen on any of the components with fluorine may take place in order to enhance the optical properties of the polycondensate and subsequently cured matrix.

Other reactive species, such as-OH,-SH and-NH2 may also be present on one or more of the substituents, to facilitate additional chemistry of the matrix, polycondensate, oligomeric or monomeric species as desired.

In one highly preferred embodiment of the present invention, Ar'is phenyl and Ar2 is 4- styryl. Preferably, to avoid excessive cross-linking and provide polymers with a suitable degree of softness, in some cases, only one of Ar'and Ar2 is substituted with cross-linkable functional groups. Preferably, Ar'and Ar2 are not both 4-styryl.

In another alternative embodiment, up to 90 mol% of formula (I) is substituted with a non- cross-linkable compound, for example diphenyl silane diol, to statistically space the number of cross-linking units on the chain. It is desirable to be able to control the cross-link density in the polycondensates, because this affects several mechanical properties including hardness, glass transition temperature and coefficient of thermal expansion. Also, these units are typically less expensive than cross-linkable units. These non-cross-linkable groups can also be used to introduce additional functionality into the polycondensate.

As mentioned above, by placing the cross-linking function on the Ar2Si (OH) 2 compound, the other 50% of monomer units (those of formula II) have one less burden to carry, leaving more of them available for other functions.

In this present improvement, the cross-linkable unit is placed on the Ar2Si (OH) 2 compound, obviating the need for the RSi (OR') 3 compound to have any cross-linkable groups. As previously mentioned, it is desirable to be able to control the cross-link density in the polycondensates, and therefore it is preferred that the RSi (OR') 3 compound does not bear any cross-linkable groups.

Also, having the cross-linking function on the Ar2Si (OH) 2 compound generally means that a more thermally stable polymer results. For example, the use of styrene groups, highly preferred

in the present invention, rather than the acrylate groups specifically recited and exemplified in WO 01/04186 results in a polymer in which the cross-links are via polystyrene type bonds. It will be appreciated by those skilled in the art that such bonds are more thermally stable than those in the corresponding polyacrylate cross-linked polymer.

The polycondensates of the present invention are described herein with reference to idealised structural representations, ie they are shown as alternating units. Those skilled in the art will appreciate that, in reality, the polymers themselves are statistical polymers and as such, will be unlikely to have strictly alternating units. It is not necessary that the monomer precursors be present in a 1: 1 ratio although this is preferred.

Because the polymers of the present invention rely on cross-linking through the aryl group of the diaryl silane diol, the RSi (OR') 3 component can be varied or substituted for any co-condensable equivalent compound. Examples of alternative compounds have been provided in WO 01/04186. For production of the polymers of the present invention, at least a portion (up to 90%) of RSi (OR') 3 can be replaced by one or more co-condensable compounds of boron or aluminium of general formula (m). These substitutions may have the advantage of increasing chemical stability and mechanical hardness.

M (OR") 3 (III) The groups R"are identical or different, M signifies boron or aluminium and R" represents an alkyl group with 1 to 4 carbon atoms. In the general formula (RI), all three alkoxy groups can condense with compounds of general formula (1), so that only 2/3 of the molar quantity is required. The replacement compounds can be quite highly branched before cross-linking.

Examples of compounds of general formula (III) are Al (OCH3) 3, Al (OC2Hs) 3, Al (O-n-C3H7) 3, Al (O-i-C3H7) 3, AlO-n-C4H9) 3, AlO-i-C4H9) 3, AI 'S'C4H9 3, B (O-n-C4H9) 3, BO-t-C4H9 3, B (O-n- C3H7) 3, B (O-i-C3H7) 3, B(OCH3)3 and B(OC2H5)3.

Alternatively, at least a portion (up to 90%) of RSi (OR) 3 can be replaced by one or more co-condensable compounds of silicon, germanium, titanium or zirconium of general formula (IV).

M' (OR") 4 (IV) The groups R"are identical or different, M'signifies silicon, germanium, titanium or zirconium and R"represents an alkyl group with 1 to 4 carbon atoms. In the general formula (IV), all four alkoxy groups can condense with compounds of general formula (I), so two molecules of compound (In may be replaced by one molecule of compound (IV). Examples of compounds of general formula (IV) include Si (OCH3) 4, Si (OC2Hs) 4, Si (O-n-C3H7) 4, Si (O-i-C3H7) 4, Si (O-n-C4H9) 4,

Si (O-i-C4Hg) 4, Si (O-s-C4Hg) 4, Ge (OCH3) 4, Ge (OC2Hs) 4, Ge (O-n-C3H7) 4, Ge (O-i-C3H7) 4, Ge (O-n- C4H9) 4, Ge (O-i-C4H9) 4, Ge (O-S-C4H9) 4, Ti (OCH3) 4, Ti (OC2Hs) 4, Ti (O-n-C3H7) 4, Ti (O-i-C3H7) 4, Ti (O-n-C4H9) 4, Ti (O-i-C4H9) 4, Ti (O-S-C4H9) 4, Zr (OCH3) 4, Zr (OCzH5) 4, Zr (O-n-C3H7) 4, Zr (O-i- C3H7) 4, Zr (O-n-C4H9) 4, Zr (O-i-C4H9) 4 and Zr (O-s-C4H9) 4.

The present invention allows for the substitution of these groups into the polycondensate without the requirement that they also provide cross-linking functionality, because this is provided via the functionalities pendant on the aromatic ring (s).

By substituting the compounds of general formula (II) by compounds of general formulae (III) or (IV), the refractive index and optical attenuation of the resultant polycondensate can be tuned to a specific application. For example at certain wavelengths, alkyl-substituted components cause a reduction in refractive index while simultaneously increasing the attenuation, while aryl- substituted components cause an increase in refractive index without significantly increasing the attenuation of the inventive polycondensates. Fluorination, by contrast, decreases both the refractive index and the attenuation of the inventive polycondensates.

Other resins, oligomers or monomers or particulate matter or other functional material may be added to the reaction mixture to modify the physical (refractive index), mechanical (hardness, thermal expansion coefficient) or chemical (introduction of reactive moieties) properties of the resulting polycondensate.

To initiate or accelerate the condensation, Lewis or Bronsted bases can be added. Some examples are amines, e. g. N-methyl imidazole, benzyldimethylamine, triethylamine, ammonium fluoride or one or more alkaline earth hydroxides. The alkaline earth hydroxide barium hydroxide is one preferred catalyst. Another preferred catalyst system is a combination of calcium hydroxide (or calcium oxide, magnesium hydroxide or magnesium oxide) and a solvent (preferably a protic solvent such as an alcohol) as disclosed in co-pending US application 10/308562. Insoluble bases are recommended because they have the advantage that they can be readily removed from the polycondensate by filtration. Aluminium or zirconium alkoxides can be used in place of the abovementioned bases for the condensation.

The polycondensates of the present invention have good storage stability, ie they do not gel or cross-link when maintained in the appropriate conditions (ie away from polymerisation sources).

The polycondensates of the present invention are UV curable and transparent in the NIR, especially at the wavelengths of 1310 nm and 1550 nm that are critical for optical applications.

Curing, i. e. cross-linking proceeds with little associated shrinkage, meaning cracking in the bulk cured material can be avoided (cracking causes discontinuities in the material, making it unsuitable for optical data transmission).

The polycondensates of the present invention are photo-structurable in layers of thickness up to 150 um without loss of quality, making them suitable for application as photoresists, negative resists, dielectrics, light guides, transparent materials, or as photo-structurable materials.

Before curing and further processing, a solvent can be added to the polycondensate if desired and, if necessary, a suitable initiator can be added. In the curing processes, the C=C double bonds or the epoxy groups are linked together, many from different polycondensate chains, and the organic polymer matrix is constructed. Because of the relatively high molecular weight of the inventive polycondensates, curing proceeds with only minimal shrinkage.

It is also possible to add further polymerisable components before curing, for example, acrylates or methacrylates, or styrene compounds (to space polymer chains) where the polymerisation proceeds across the C=C double bonds, or compounds containing ring systems that are polymerisable by cationic ring opening.

Photoinitiators or thermal initiators may be added to increase the rate of curing. Examples of commercially available photoinitiators include 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure 184), 2-methyl-1 [4-methylthio) phenyl]-2-morpholinopropan-1-one (Irgacure 907), 2,2-dimethoxy- 1, 2-diphenylethan-1-one (Irgacure 651), 2-benzyl-2-dimethylamino-l- (4-morpholinophenyl)- butanon-1 (Irgacure 369), 4- (dimethylamino) benzophenone, 2-hydroxy-2-methyl-1-phenyl- propan-l-one (Darocur 1173), benzophenone (Darocur BP), 1- [4- (2-hydroxyethoxy)-phenyl]-2- hydroxy-2-methyl-1-propane-I-one (Irgacure 2959), 4,4'-bis (diethylamino) benzophenone (DEAB), 2-chlorothioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, benzoin, 4,4'- dimethoxybenzoin etc. For curing with visible light, the initiator may be for example camphorquinone. A mixture of two or more photoinitiators may also be used. For example, Irgacure 1000 is a mixture of 80% Darocur 1173 and 20% Irgacure 184.

For thermal initiators, organic peroxides in the form of peroxides (e. g. dibenzoyl peroxide), peroxydicarbonates, peresters (t-butyl perbenzoate), perketals, hydroperoxides may also be used.

AIBN (azobisisobutyronitrile) may also be used.

Radiation cure, for example by gamma rays or electron beam, is also possible.

Other additives, such as stabilisers, plasticisers, contrast enhancers, dyes or fillers may be added to enhance the properties of the polycondensate as required.

For example, stabilisers to prevent or reduce degradation, which leads to property deterioration such as cracking, delamination or yellowing during storage or operation at elevated temperature, are advantageous additives.

Such stabilisers include UV absorbers, light stabilisers, and antioxidants. UV absorbers include hydroxyphenyl benzotriazoles such as : 2- (3', 5'-bis (l-methyl-l-phenylethyl)-2'- hydroxyphenyl) benzotriazole (Tinuvin 900); poly (oxy-1, 2-ethanediyl), a- [3- [3- (2H-benzotriazol- 2-yl)-5-(1, 1-dimethylethyl)-4-hydroxyphenyl)-1-oxopropyl)-a)-hydroxy (Tinuvin 1130); and 2 (2'-

hydroxy-3', 5'-di-tert-amylphenyl) benzotriazole (Tinuvin 328), and hydroxybenzophenones, such as 4-methoxy-2-hydroxybenzophenone and 4-n-octoxy-2-hydroxy benzophenone. Light stabilisers include hindered amines such as: 4-hydroxy-2,2, 6,6-tetramethylpiperidine ; 4-hydroxy-1, 2,2, 6,6- pentamethylpiperidine; 4-benzoyloxy-2,2, 6,6-tetramethylpiperidine ; bis (2,2, 6, 6-tetramethyl-4- piperidiyl) sebacate (Tinuvin 770); bis (1, 2,2, 6, 6-pentamethyl-4-piperidyl) sebacate (Tinuvin 292); bis (1, 2,2, 6, 6-pentamethyl4-piperidinyl) (3, 5-di-tert-butyl4-hydroxybenzyl) butylpropanedioate (Tinuvin 144); and a polyester of succinic acid with N- (3-hydroxy-ethyl-2, 2,6, 6-tetramethyl-4- hydroxy-piperidine (Tinuvin 622). Antioxidants include substituted phenols such as: 1,3, 5- trimethyl-2,4, 6-tris (3, 5-di-tert-butyl)-4-hydroxybenzyl) benzene; 1, 1, 3-tris- (2-methyl-4-hydroxy-5- tert-butyl) phenyl) butane; 4, 4'-butylidene-bis- (6-tert-butyl-3-methyl) phenol; 4, 4'-thiobis- (6-tert- butyl-3-methyl) phenol; tris- (3, 5-di-tert-butyl-4-hydroxybenzyl) isocyanurate; cetyl-3, 5-di-tert- butyl-4-hydroxybenzene (Cyasorb UV2908) ; 3, 5-di-tert-butyl-4-hydroxybenzoic acid; 1,3, 5-tris- (tert-butyl-3-hydroxy-2, 6-dimethylbenzyl) (Cyasorb 1790); octadecyl 3, 5-di-tert-butyl-4- hydroxyhydrocinnamate (Irganox 1076); tetrakis [methylene (3, 5-di-tert-butyl4- hydroxyhydrocinnamate) ] methane (Irganox 1010); and thiodiethylene bis (3, 5-di-tert-butyl4- hydroxyhydrocinnamate) (Irganox 1035).

EXAMPLES The invention will be further illustrated by the following examples that are intended to be illustrative, but not limiting.

Sample preparation and measurement.

All resins described in Examples 1-7 were filtered through a 0.2 urn filter after preparation.

The optical loss was measured with a SHIMADZU UV-VIS-NIR spectrophotometer (UV- 3101 PC) using a 0.5 cm quartz cuvette. Since the resins are colourless the absorption was calibrated using the zero absorption area < 700 nm as baseline. The absorption spectrum from the resin was measured from 3200 nm-200 nm. The lowest absorption value (usually the absorption between 700 and 550 nm is a straight line if there is no scattering as a result of particles and if the resin is colourless) is set as 0 absorption. The loss in dB/cm is calculated from the optical density of the resin at 1310 or 1550nm, multiplied by 10 and divided by the thickness of the cuvette in cm (whereas the optical density equals the log to the base 10 of the reciprocal of the transmittance).

The loss was estimated from the un-cured resin only.

The refractive index was estimated by an Abbé refractometer using daylight as the light source.

Synthesis Synthesis of 4-vinyldiphenylsilanediol A 500 ml three neck round bottom flask equipped with a nitrogen inlet, stirrer and condenser was charged with 19.00 g (0.78 mol) magnesium turnings. Under a nitrogen atmosphere

125 ml of anhydrous THF and 125 ml of anhydrous diethylether were added followed by 98.75 g (0. 71mol) of 4-chlorostyrene. The mixture was kept at 50°C for 16 h, to form the Grignard solution.

A two litre three neck round bottom flask equipped with a nitrogen inlet, dropping funnel and condenser was charged with 423.86g (2.14 mol) phenyltrimethoxysilane. The system was purged with nitrogen and the Grignard solution was transferred into the dropping funnel. The flask was heated to 50°C, then the Grignard solution was added over a period of 40 min and kept at this temperature for an additional 2 h.

The reaction was allowed to cool to room temperature, 1 litre of petroleum ether was added, the precipitated salt was separated by filtration and the solvent was distilled off.

The product was distilled under reduced pressure using 2. 00g of 2-methyl-1, 4- naphthoquinone and 2. 00g N, N-diphenylhydroxylamine as polymerisation inhibitors.

Yield: 64% = 122. 73 g (0.45 mol) 4-vinyldiphenyldimethoxysilane (bp. 112-118°C @ 2. 5*10-2 mbar).

160.00 g (0.59 mol) 4-vinyldiphenyldimethoxysilane was dissolved in 400 ml isopropanol and 125 ml 1 M acetic acid was added. The solution was stirred at room temperature for 48 h and 300 ml of the solvents were distilled off. The solution was neutralised with saturated NaHC03 and extracted twice with 200 ml ethyl acetate. The combined organic layer was dried over MgS04 and the solvents distilled off under reduced pressure. The crude product was ground and extracted with petroleum ether in a Soxhlet apparatus.

Yield: 63 % = 89.87 g (0.371 mol) 4-vinyldiphenylsilanediol.

Synthesis of resins with the general structure Example 1 (R5, R6 = CF3 (CH2) 2-, R'= H)

3.63g (15 mmol) 4-vinyldiphenylsilanediol (VDPS), 3.25g (15 mmol) of diphenylsilanediol (DPS) and 6.55 g (30 mmol) 3,3, 3-trifluoropropyltrimethoxysilane were placed in a 50 ml round bottom flask equipped with a magnetic stirrer bar and condenser. 0. 015g (0.06 mmol) Ba (OH) 2. H20 was added and the flask was placed immediately in an 80°C oilbath. A condenser was placed on the flask and the reaction mixture was stirred thoroughly.

After a few minutes the solution became clear and reflux of methanol started.

After 15 min at 80°C the flask was transferred to a rotary evaporator and the solvent distilled off at 80°C under 640 mbar pressure for 40 min. Then the pressure was reduced to 10 mbar and the resin kept at 80°C for an additional 1 h.

The product was filtered through a 0.2 um filter and used without any further purification.

Selected physical properties: Refractive index: nD22 1.5153 Optical loss: 0.15 dB/cm @1310nm, 0.30 dB/cm @1550 nm Example 2 (R5, R6 = CF3 (CF2) 5 (CH2) 2-, R7 = H) 9.69g (40 mmol) VDPS 8.65g (40 mmol) DPS 37.46g (80 mmol) 1H, 1H, 2H, 2H-Perfluorooctyltrimethoxysilane 50 mg (0.26 mmol) Ba (OH) 2. H2O Synthetic procedure was the same as for example 1.

Selected physical properties: Refractive index: nD22 1. 4510 Optical loss: 0.13 dB/cm @1310nm, 0.25 dB/cm @1550 nm Example 3 (R5, R6 = CH3 (CH2) 2-, R7 = H) 3. 63g (15 mmol) VDPS 3. 25g (15 mmol) DPS 4.94g (30 mmol) n-propyltrimethoxysilane 14 mg (0.06 mmol) Ba (OH) 2. H2O Synthetic procedure was the same as for example 1.

Selected physical properties: Refractive index: nD22 1.5481 Optical loss: 0.17 dB/cm @1310nm, 0.34 dB/cm @1550 nm Example 4 (R5, R6 = CH3-, R'= H) 4.85g (20 mmol) VDPS 4.32g (20 mmol) DPS 5.45g (40 mmol) methyltrimethoxysilane 25 mg (0.08 mmol) Ba (OH) 2. H2O

Synthetic procedure was the same as for example 1.

Selected physical properties: Refractive index: nD22 1. 5609 Optical loss: 0.17 dB/cm @1310nm, 0.43 dB/cm @1550 nm Example 5 (R5= CF3 (CF2) 5 (CH2) 2-, R6 = Ph, R'= H) 2.42g (10 mmol) VDPS 2.16g (10 mmol) DPS 4.68g (10 mmol) lH, lH, 2H, 2H-perfluorooctyltrimethoxysilane 1.98g (10 mmol) phenyltrimethoxysilane 8 mg (0.04 mmol) Ba (OH) 2. H20 Synthetic procedure was the same as for example 1.

Selected physical properties: Refractive index: nD22 1.4980 Optical loss: 0.13 dB/cm @1310nm, 0.25 dB/cm @1550 nm Example 6 (R5, R6 = CF3(CH2)2-, R7 = H2C=CH-) 5. 00g (21 mmol) VDPS 4. 50g (21 mmol) 3,3, 3-trifluoropropyltrimethoxysilane 8 mg (0.04 mmol) Ba (OH) 2.H2O Synthetic procedure was the same as for example 1.

Selected physical properties: Refractive index: nD231. 5246 Optical loss: 0.16 dB/cm@1310nm, 0.35 dB/cm@1550 nm Example 7 (R5, R6 = Ph, R7 = H2C=CH-) 7.27g (30 mmol) VDPS 5.95g (30 mmol) phenyltrimethoxysilane 25 mg (0.12 mmol) Ba (OH) 2. H20 Synthetic procedure was the same as for example 1.

Selected physical properties: Refractive index: nD25 1. 5953 Optical loss: 0.19 dB/cm @1310nm, 0.32dB/cm @1550 nm Curing The material produced in example 1 was mixed with 2wt% Irgacure 1000 as photoinitiator and stirred under the exclusion of light for 24 hours. 2ml of this mixture was spun onto a 10cm Si- wafer at 4000 rpm for 60s. The wafer was exposed to UV-light using a Hg arc lamp with 8mW/cm2 intensity for 60s under a nitrogen atmosphere. Using a Filmtek 4000 ellipsometer, the

thickness of the film was measured to be 12. Sum and its refractive index at 632nm was 1.520 (at 25°C).

A film of material produced in example 2 was prepared and treated in an identical manner.

Its thickness was 19. 5um and its refractive index at 632nm was 1.453 (at 25°C).

The invention has been described by reference to certain preferred embodiments; however, it should be understood that it may be embodied in other specific forms or variations thereof without departing from its spirit or essential characteristics. The embodiments described above are therefore considered to be illustrative in all respects and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description.