Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
IMPROVEMENTS TO AN ENGINE WITH VARIABLE VOLUMETRIC RATIO
Document Type and Number:
WIPO Patent Application WO/2007/082355
Kind Code:
A1
Abstract:
Four-stroke internal combustion engine comprising a case part exhibiting a first series of cylinders (2) each having an axis and a diameter and a second series of cylinders (3) each having an axis and a diameter, in which engine each cylinder (2) of the first series communicates with at least one cylinder (3) of the second series via a duct exhibited by the case part, (figure 1).

Inventors:
VAN AVERMAETE GILBERT LUCIEN C (LU)
Application Number:
PCT/BE2007/000008
Publication Date:
July 26, 2007
Filing Date:
January 15, 2007
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
VAN AVERMAETE GILBERT LUCIEN C (LU)
International Classes:
F02B75/22; F02D15/04
Domestic Patent References:
WO1994021905A11994-09-29
Foreign References:
US4876992A1989-10-31
US3961607A1976-06-08
CA2339315A12002-08-19
FR1032534A1953-07-02
Download PDF:
Claims:
Revendications

1. Moteur à combustion interne à quatre temps comprenant au moins une phase d'aspiration, une phase de compression, une phase de détente et une phase d'échappement, ledit moteur fonctionnant par auto-inflammation ou par allumage commandé comprenant :

- une pièce carter cylindre (1) présentant une première série de cylindres (2) présentant chacun un axe et un diamètre et une deuxième série de cylindres (3) présentant chacun un axe et un diamètre, les cylindres (2) de la première série présentant une cylindrée et un diamètre plus grands que la cylindrée et le diamètre des cylindres (3) de la deuxième série,

- des pistons (6,8), chaque piston étant adapté pour être animé d'un mouvement alternatif dans un cylindre et étant associé à une bielle,

- deux lignes d'arbres vilebrequins présentant des axes de rotation parallèles entre eux, une première ligne (4) présentant une manivelle avec une grande course, tandis que la deuxième ligne (5) présente une manivelle avec une petite course inférieure à la grande course de la manivelle de la première ligne d'arbre vilebrequin, lesdits arbres vilebrequins (4,5) étant adaptés pour être accouplés à même vitesse de rotation au moyen d'un train d'engrenages (14,16) et d'une transmission à calage variable (10) ;

dans lequel chaque piston étant associé à une bielle (7,9) est opéré avec une manivelle d'un vilebrequin, la manivelle de petite course de la deuxième ligne d'arbre vilebrequin (5) opérant la bielle (9) du piston (8) se déplaçant dans le petit cylindre (3), tandis que la manivelle de grande course de la première ligne d'arbre vilebrequin (4) opère la bielle (7) du piston (6) se déplaçant dans le grand cylindre (2),

dans lequel la première série de cylindres (2) est disposée au dessus de la première ligne d'arbre vilebrequin (4), tandis que la deuxième série de cylindres (3) est disposée au-dessus de la deuxième ligne d'arbre vilebrequin (5),

dans lequel chaque cylindre (2) de la première série communique avec au moins un cylindre (3) de la deuxième série via un espace mort de manière à former un

groupe de deux cylindres (2,3) communiquant entre eux pour permettre aux gaz de passer d'un cylindre à l'autre indépendamment de la position des pistons (6,8) se déplaçant dans lesdits cylindres (2,3),

caractérisé en ce que la pièce carter cylindre présente une face le long de laquelle les cylindres sont ouverts, avantageusement le long de la face du plan de joint de culasse, des canaux étant formés dans ladite face pour former des passages distincts pour chaque groupe de cylindre, un canal d'un groupe s'étendant entre un cylindre de la première série et un cylindre de la deuxième série, avantageusement avec un évidemment supplémentaire correspondant dans le joint de culasse, ledit canal présentant une largeur moyenne et/ou minimale (largeur déterminée dans le plan de joint de culasse) comprise entre 0,25 et 2 fois, avantageusement entre 0,3 et 1 fois, de préférence entre 0,5 et 0,8 fois la moyenne des diamètres des cylindres reliés par le canal considéré.

2. Moteur suivant la revendication 1, dans lequel pour chaque groupe de cylindres reliés entre eux par un canal, l'axe d'un cylindre de la première série du groupe considéré forme avec une droite parallèle à l'axe de rotation d'une ligne d'arbre vilebrequin un premier plan, tandis que l'axe du cylindre de la deuxième série du groupe considéré forme avec une droite parallèle à l'axe de rotation d'une ligne d'arbre vilebrequin un deuxième plan, caractérisé en ce que lesdits plans définissent entre eux un angle compris entre 1° et 60°, avantageusement entre 10° et 50°, de préférence entre 15° et 45°.

3. Moteur suivant la revendication 2, caractérisé en ce que les axes des cylindres d'un groupe se coupent sensiblement en un point.

4. Moteur suivant la revendication 2 ou 3, dans lequel un plan est défini par les deux axes de rotation des deux lignes d'arbre vilebrequin, et dans lequel un plan médian ou une droite médiane défini entre lesdits premier et deuxième plans ou entre lesdits axes de rotation, caractérisé en ce que le plan médian ou la droite

médiane d'un groupe de cylindres est sensiblement perpendiculaire audit plan défini par les deux axes de rotation des deux lignes d'arbre vilebrequin.

5. Moteur suivant l'une quelconque des revendications précédentes, caractérisé en ce que le volume du canal situé entre deux cylindres d'un groupe est compris entre 1% et 25% du volume mort total du groupe considéré, ledit volume mort total étant défini par le volume libre total du groupe avec les deux pistons en position point mort haut.

6. Moteur suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un arbre à cames en prise à demi-vitesse avec la première ligne d'arbre vilebrequin (4) pour assurer la communication périodique des groupes de deux cylindres (2,3) avec des conduites d'admission et d'échappement au moyen de soupapes d'admission et d'échappement à des moments prédéterminés du cycle à quatre temps.

7. Moteur suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un aménagement pour la transmission à calage variable (10), ledit aménagement étant adapté pour recevoir au moins partiellement un dispositif de commande de la différence d'angle de phase entre les première et deuxième lignes d'arbre vilebrequin.

8. Moteur suivant la revendication 7, dans lequel la première et la deuxième ligne d'arbre vilebrequin sont associées respectivement à une première roue d'entraînement et à une deuxième roue d'entraînement, caractérisé en ce qu'un moyen d'entraînement s'étend entre lesdites roues.

9. Moteur suivant la revendication 8 dans lequel un volant moteur est monté sur l'axe de l'arbre vilebrequin à grande course (4), tandis que la transmission à calage variable (10) est monté sur l'axe de l'arbre vilebrequin à petite course (5), caractérisé en ce que les axes des deux vilebrequins (4,5) sont adaptés de manière

à ce que la transmission à calage variable (10) se situe à côté du volant du moteur (26).

10. Moteur suivant la revendication 9, caractérisé en ce que la commande de la transmission à calage variable (10) comprend un vérin de pilotage en prise directe, pour contrôler la différence d'angle de phase entre l'arbre vilebrequin à petite course (5) et l'arbre vilebrequin à grande course (4).

11. Moteur suivant l'une quelconque des revendications précédentes, caractérisé en ce qu 1 il comprend une transmission à calage variable (10) comprenant un ensemble séparé de l'arbre (13) du vilebrequin à manivelle à petite course (5), en ce que la transmission à calage variable (10) est dotée d'un palier applique (15) qui se fixe par centrage dans un orifice prévu dans le carter cylindre (1), et en ce que la transmission à calage variable comprend un arbre (12) dont une extrémité présente des cannelures externes, tandis que l'arbre (13) est associé à un élément (20) ou présente une portion présentant un évidement avec des cannelures internes adaptées pour coopérer avec les cannelures externes de l'arbre (12) pour assurer un accouplement des arbres (12,13) entre eux, tout en permettant un déplacement axial entre eux.

12. Moteur suivant la revendication 11, caractérisé en ce que l'arbre (13) est associé à un tourillon de palier (20) présentant des cannelures internes coopérant avec les cannelures externes de l'arbre (12).

13. Moteur suivant la revendication 12, caractérisé en ce que pour renforcer la rigidité axiale entre le vilebrequin à petite course (5) et la transmission à calage variable (10), les arbres (12,13) sont fusionnés en un seul arbre de manière à permettre que l'arbre de transmission (35) comprenant le disque (40) et les cannelures droites (47) s'associent au vilebrequin à petite course (5), la distance de séparation entre les supports de fixation du disque (40) et le palier (15) étant avantageusement réalisée à la même distance de séparation entre la fixation du

carter cylindre (1) du palier (15) et le support de fixation du disque (40) lorsque l'arbre du vilebrequin à petite course est inséré dans les paliers du carter cylindre.

14. Moteur suivant l'une quelconque des revendications précédentes, dans lequel le joint de culasse s'étend sensiblement dans un plan, caractérisé en ce que par rapport au plan du joint de culasse, l'axe des cylindres (2) de la première série est disposé sensiblement perpendiculairement au plan de culasse (29).

15. Moteur suivant la revendication 14, caractérisé en ce que les pistons (8) des cylindres (3) de la deuxième série sont pourvus d'un bossage (30) rectificatif de la forme de la chambre de combustion (24), ledit bossage présentant au moins une face sensiblement parallèle au plan de joint de culasse.

16. Moteur suivant la revendication 15, caractérisé en ce que la face sensiblement parallèle au plan de joint de culasse est égale à au moins 25%, avantageusement au moins 40%, de préférence au moins 60% à 90% de la surface du cylindre de la deuxième série mesurée dans le plan de joint de culasse.

17. Moteur suivant la revendication 15 ou 16, caractérisé en ce que le piston (6) du cylindre (2) de la première série présente une face sensiblement parallèle au plan de joint de culasse, ladite face présentant une portion en creux adaptée pour être ouverte sur un canal (32).

18. Moteur suivant la revendication 16 ou 17, caractérisé en ce que le bossage et/ou le creux sont adaptés pour former en position mort haut du pistons un volume mort présentant au moins une portion adjacente du canal (32) s'étendant dans le cylindre sous le plan de joint de culasse sur une hauteur égale à au moins la profondeur du canal (32) sous le plan de culasse (29).

19. Moteur suivant l'une quelconque des revendications 1 à 14, caractérisé en ce qu'il présente une culasse adaptée pour recevoir pour chaque cylindre de la deuxième série une partie du piston (8) en position mort haut et pour former au

moins partiellement former pour chaque cylindre de la deuxième série, en position point mort haut du piston (8) une chambre située dans la culasse communiquant avec le canal (32).

20. Moteur suivant l'une quelconque des revendications 1 à 14 et 19, caractérisé en ce que les axes des cylindres (2) de la première série et les axes des cylindres (3) de la deuxième série ne sont pas disposés perpendiculairement au plan de culasse (29).

21. Moteur suivant la revendication 20, caractérisé en ce que les pistons (8) des cylindres (3) de la deuxième série sont tronqués de manière rectificative de la forme de la chambre de combustion (24), lesdits pistons présentant au moins une face sensiblement parallèle au plan de joint de culasse, ainsi que les pistons (6) des cylindres (2) sont tronqués de manière rectificative de la forme de la chambre de combustion (24), lesdits pistons présentant au moins une face sensiblement parallèle au plan de joint de culasse.

22. Moteur suivant l'une quelconque des revendications précédentes, en ce qu'il comprend un volant moteur (26) axé et fixé sur l'extrémité de l'arbre vilebrequin (4) des pistons des cylindres de la première série, ledit volant moteur se situant avantageusement dans un carter d'accouplement (31) .

23. Moteur suivant la revendication 22, caractérisé en ce que la transmission à calage variable (10) est axée sur l'extrémité de l'arbre du petit vilebrequin (5) a coté du volant du moteur (26).

24. Moteur suivant la revendication 23, caractérisé en ce qu'il comporte dans le carter d'accouplement (31), une transmission avec train d'engrenages entre l'arbre vilebrequin (5) des pistons de la deuxième série et le volant du moteur (26) via la transmission à calage variable (10).

25. Moteur suivant l'une quelconque des revendications précédentes, caractérisé en ce que la transmission à calage variable comporte un tube ou arbre coulissant (17) axialement par rapport à l'axe de rotation de l'arbre vilebrequin des pistons des cylindres de la deuxième série, et en ce qu'il comporte des moyens de butées pour limiter la course du mouvement de la transmission à calage variable entre un début et une fin de course.

26. Moteur suivant la revendication 25, caractérisé en ce qu'il comprend un vérin de commande commandant le déplacement axial du tube ou de l'arbre coulissant (17), ledit vérin étant associé à des moyens de butées pour limiter le déplacement entre ledit début et fin de course, ledit vérin de commande étant avantageusement fixé sur un support prévu sur un couvercle de fermeture (23) du carter d'accouplement (31) situé à côté du volant moteur (26).

27. Moteur suivant l'une quelconque des revendications précédentes, caractérisé en ce que les arbres des deux vilebrequins (4,5) sont associés à des engrenages (14,16) en prise directe, les arbres tournant en sens de rotation inverse et à même vitesse.

28. Moteur suivant la revendications précédente, caractérisé en ce que les arbres des deux vilebrequins (4,5) sont accouplés l'un à l'autre par un train de deux engrenages d'accouplement intermédiaires disposé entre les deux engrenages (14,16) montés sur les arbres afin que ces derniers tournent en sens de rotation inverse et à même vitesse.

29. Moteur suivant la revendication 28, caractérisé en ce que, les deux engrenages intermédiaires situés entre les engrenages (14,16) montés sur les arbres sont avantageusement disposés et accouplés chacun de part et d'autre d'un plan passant par les axes des deux arbres vilebrequins (4,5).

30. Moteur suivant l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un vérin de commande pour faire varier la position angulaire

entre les deux arbres vilebrequins (4,5) sans passer par l'intermédiaire du volant du moteur (26) situé à l'arrière du moteur, ou caractérisé en ce que la commande de la transmission à calage variable (10) comprend un vérin de pilotage en prise directe, pour contrôler la différence d'angle de phase entre l'arbre vilebrequin à petite course (5) et l'arbre vilebrequin à grande course (4).

31. Moteur suivant l'une quelconque des revendications précédentes, caractérisé en ce que la transmission à calage variable (10) comporte un mécanisme de commande pour faire varier angulairement le calage de la manivelle de la seconde ligne d'arbre vilebrequin (5) par rapport à la manivelle de la première ligne d'arbre vilebrequin (4), au moyen d'un amplificateur de force hydraulique comportant un vérin asservi agissant sur la transmission à calage variable (10), ladite transmission permettant de modifier en phase fin de compression du piston (6) du grand cylindre (2) le rapport volumétrique du moteur entre un rapport volumétrique minimal et un rapport volumétrique maximal, lesdits rapports volumétriques minimal et maximal étant fonction :

a) du rapport entre la cylindrée du grand cylindre (2) et la cylindrée du petit cylindre (3), et

b) du rapport entre, d'une part, le volume total du petit cylindre et du grand cylindre et, d'autre part, le volume de l'espace mort (24) et d'un volume additionnel créé dans le petit cylindre (3) en phase fin de compression du piston (6) du grand cylindre (2), la transmission à calage variable (10) réglant l'avance angulaire de la manivelle de la seconde ligne d'arbre vilebrequin (5) par rapport à la manivelle de la première ligne d'arbre vilebrequin (4) pour obtenir lesdits rapports volumétriques, ladite avance angulaire variant entre une avance angulaire maximale telle qu'au moins un angle de 90° soit formé entre la bielle (9) du piston (8) du petit cylindre (3) et la manivelle de la seconde ligne d'arbre vilebrequin (5) en phase fin de compression du piston (6) du grand cylindre (2) pour définir le rapport volumétrique minimal, et une avance angulaire minimale telle que l'angle

de l'avance angulaire correspond en phase fin de compression du piston (6) du grand cylindre (2) au positionnement du piston (8) dans le petit cylindre pour créer le volume additionnel requis pour obtenir le rapport volumétrique maximal, la manivelle de la seconde ligne d'arbre vilebrequin (5) formant un angle avec la bielle (9) du piston (8) du petit cylindre (3).

32. Moteur suivant l'une quelconque des revendications précédentes, pour lequel la manivelle du premier arbre vilebrequin (4) passe par un point mort haut et par un point mort bas lors de sa rotation , caractérisé en ce que les deux lignes d'arbre à vilebrequin (4,5) sont agencés pour définir un espace de travail minimum des deux lignes d'arbre à vilebrequin de telle sorte que soit obtenu un rapport des cylindrées de deux cylindres groupés (2,3) minimal et en ce que la transmission à calage variable présente une course de déplacement s'étendant entre un début de course et une fin de course , le rapport volumétrique minimal de deux cylindres groupés (2,3) étant obtenu en fin de course de la transmission à calage variable , ce rapport volumétrique étant calculé par la formule suivante :

Vl + [ V2 - Vr ((X maximum) ] + ve = p minimum ve + Va (q maximum)

dans laquelle

Vl : cylindrée du grand cylindre (2) des deux cylindres groupés (2,3).

V2: cylindrée du petit cylindre (3) des deux cylindres groupés (2,3).

ve: volume de l'espace mort (24) des deux cylindres groupés (2,3) permettant le transfert de gaz entre les cylindres (2,3) sans laminage excessif.

(α. maximum) : avance angulaire de la manivelle de la seconde ligne d'arbre vilebrequin (5), en fin de course de la transmission à calage variable.

Vr (çx maximum) : volume de refoulement d'air en fin de course de la transmission à calage variable, défini par l'avance angulaire de la manivelle de la seconde ligne d'arbre vilebrequin (5) lorsque la manivelle de la ligne d'arbre vilebrequin (4) se situe au point mort bas en phase fin d'admission.

Va (α maximum) : volume additionnel s'ajoutant au volume de l'espace mort (24) en fin de course de la transmission à calage variable, défini par l'avance angulaire de la manivelle de la seconde ligne d'arbre vilebrequin (5) lorsque la manivelle de la première ligne d'arbre vilebrequin (4) se situe au point mort haut, en phase fin de compression.

33. Moteur suivant la revendication 31 ou 32, caractérisé en ce que la transmission à calage variable (10) comprend trois éléments concentriques superposés, à savoir un élément interne constitué par un arbre de transmission (35), un élément externe constitué par un manchon (36) portant un engrenage (14) pour l'accouplement des deux lignes d'arbres vilebrequins (4,5), et un élément intermédiaire situé entre lesdits éléments interne et externe et constitué d'un tube coulissant (17) par rapport aux dits éléments interne et externe, le manchon (36) étant maintenu dans un palier applique (15), au moyen d'un roulement (39), en ce que la seconde ligne d'arbre vilebrequin (5) présente un arbre (13) dont une extrémité est jointive à une extrémité de l'arbre de transmission (12), lesdites extrémités présentant des cannelures droites mâles et femelles correspondantes pour permettre leur accouplement et l'auto centrage des trois éléments par rapport à l'arbre (13) de la seconde ligne d'arbre vilebrequin (5) lors de la fixation du palier applique (15) sur un orifice du carter cylindre) et pour permettre le démontage de la transmission sans démontage de la seconde ligne d'arbre vilebrequin (5), en ce qu'un palier (40) porte une bague de fixation (41) formant le logement de la bague extérieure (42) d'un roulement (43) dont la bague intérieure (44) est fixée sur le manchon (36) de manière à maintenir l'arbre de transmission (35),

en ce qu'une entretoise (45) s'étend entre la bague intérieure (44) du roulement (43) et la bague intérieure (37) du roulement (39), cette entretoise (45) compensant l'espace séparant entre lesdites bagues et maintenant axialement la bague (37) de roulement (39) contre un épaulement que présente le manchon (36), en ce qu'un seul écrou (51) assure la fixation des bagues intérieures (44) et

(37) des roulement (43) et (39) et de l'entretoise (45) sur le manchon (36), en ce que l'arbre de transmission (35) présente du côté de la bague de fixation

(46) des cannelures droites (47) sur lesquelles vient s'emmancher le tube coulissant

(17) présentant sur sa face interne des cannelures droites (48) de manière à coulisser linéairement sur l'arbre de transmission (35), en ce que le manchon (36) comporte sur sa face interne des cannelures hélicoïdales (49), en ce que le tube coulissant (17) présente une extrémité dégagée en permanence hors du manchon (36), ladite extrémité étant solidaire d'une bague intérieure d'un roulement (50) à deux rangées à contacts obliques , la bague extérieure du roulement (50) étant solidaire d'une pièce d'attache (18) au vérin

(non représenté), et en ce que les cannelures hélicoïdales sont agencées de sorte que le tube coulissant (17) en se déplaçant hors du manchon diminue l'avance angulaire de la manivelle de la seconde ligne d'arbre à vilebrequin (5) par rapport à la manivelle de la première ligne d'arbre à vilebrequin (4) ou inversement.

34. Moteur à combustion interne à quatre temps suivant l'une des revendications 31 à 33 à allumage par compression, caractérisé en ce que, le moteur comprend au moins un injecteur de carburant dans l'espace mort, l'injection du carburant est effectuée en prise à demi-vitesse avec le vilebrequin à grande course.

35. Moteur à combustion interne à quatre temps suivant l'une des revendications 31 à 34 caractérisé en ce que l'allumage est commandé et comprend au moins une bougie d'allumage dans l'espace mort (24), l'allumage étant effectué en synchronisme à demi-vitesse avec la première ligne d'arbre à vilebrequin (4).

36 Moteur à combustion interne à quatre temps suivant l'une des revendications

30 à 34, caractérisé en ce qu'il présente un rapport entre les cylindrées des deux cylindres groupés (2 et 3) entre 1/ 10 et 9/10, avantageusement entre 1/5 et 3/5.

37. Moteur à combustion interne à quatre temps suivant l'une des revendications

31 à 36, caractérisé en ce qu'il comprend un carter d'huile (27) qui englobe l'ensemble des deux vilebrequins (4,5) par le dessous du carter cylindre (1).

38. Moteur à combustion interne à quatre temps suivant l'une des revendications 31 à 37, caractérisé en ce qu' il comprend un carter d'huile (25) situé en dessous de l'arbre vilebrequin des pistons des cylindres de la première série (4), tandis que l'arbre vilebrequin des pistons des cylindres de la deuxième série (5) est enfermé dans le carter cylindre (1) au dessus d'une face du carter et à un niveau situé au dessus du carter d'huile (25), ladite face étant inclinée vers le carter d'huile (25), ladite face inclinée du carter cylindre (1) étant avantageusement équipée d'un panneau (22) d'accès à l'arbre vilebrequin des pistons des cylindres de la deuxième série (5).

39. Moteur à combustion interne à quatre temps suivant l'un des revendications de 31 à 38, caractérisé en ce qu'il comporte un vérin de commande de la transmission à calage variable, ladite transmission à calage variable (10) se situant avantageusement à l'avant du moteur.

40. Moteur à combustion interne à quatre temps suivant l'une des revendications 31 à 39, caractérisé en ce qu' il comporte deux carters distincts, à savoir un carter d'accouplement (31) et un carter cylindre (1), de telle façon que les deux éléments précités soient assemblés côte à côte, dans la direction axiale des arbres vilebrequins, avantageusement au moyen d'un emboîtement concentrique (38) axé sur l'arbre du grand vilebrequin (4).

41. Moteur suivant la revendication 40, caractérisé en ce qu'il comporte un volant moteur monté, avantageusement par l'intermédiaire d'une entretoise (19) axé, sur l'arbre du grand vilebrequin (4).

42. Moteur suivant la revendication 40 ou 41, caractérisé en ce que le carter d'accouplement (31) est mobile angulairement sur l'emboîtement concentrique (38) par rapport au carter cylindre de manière à le positionner angulairement sur le carter cylindre (1) par des moyens de fixation, en particulier prévus sur le pourtour des parties jointives des deux carters précités.

43. Moteur à combustion interne à quatre temps suivant l'une des revendications 31 à 42, caractérisé en ce qu'il comprend un carter d'accouplement (31) et un carter cylindre (1) formant un seul élément non divisible, et un carter d'huile (25) ou (27) se situant en dessous des deux carters précités et adapté pour être démonté, de manière que le démontage du dit carter d'huile libère également le dessous du carter d'accouplement.

44. Engin ou appareil ou machine comportant au moins un moteur suivant l'une quelconque des revendications 1 à 43.

Description:

Perfectionnements du moteur à rapport volumétrique variable

Le but de l'invention consiste en la régularisation de l'effort du couple moteur entre deux vilebrequins d'un moteur à rapport volumétrique variable, ainsi que de l'agencement d'une chambre de combustion par groupes de deux cylindres.

Domaine technique de l'invention

La présente invention concerne l'aménagement de la transmission à calage variable d'un moteur à rapport volumétrique variable pour perfectionner le dispositif de commande de l'angle de phase entre un premier et deuxième vilebrequins. Ce moyen est défini par une nouvelle forme d'espacement entre les deux vilebrequins, de manière à engendrer le débordement de l'accouplement de la transmission à calage variable à côté du volant du moteur. La commande de la transmission à calage variable est pourvue d'un vérin de pilotage en prise directe pour contrôler l'angle de phase entre le vilebrequin à petite course et le vilebrequin à grande course. Des moyens sont prévus pour permettre la réduction, voir de préférence la suppression des transferts d'efforts de couple moteur non régularisés par le petit vilebrequin sur la ligne d'arbre du grand vilebrequin. D'autres moyens sont aussi prévus dans le carter cylindre par une nouvelle disposition des deux cylindres groupés permettant de constituer à leur point mort haut une chambre de combustion commune à ces deux cylindres. Egalement, cette nouvelle disposition des deux cylindres groupés dans le carter cylindre autorise le désencombrement des deux attelages des deux vilebrequins, ce moyen permettant la standardisation de l'entraxe tête pied de bielle sur l'attelage du grand vilebrequin.

Le brevet EP 0689642 Bl décrit un moteur à rapport volumétrique variable, à quatre temps, conçu avec deux vilebrequins, un vilebrequin à grande course et un vilebrequin à petite course. Il est connu que la ligne d'arbre d'un vilebrequin d'un moteur à combustion interne constitue un élément susceptible de vibrer naturellement en torsion du fait de son élasticité ainsi que les masses des organes

sous efforts, qui lui sont liées directement ou indirectement. Dans la description du brevet EP 0689642 Bl précité, le vilebrequin à petite course ne comporte pas de volant régulateur d'efforts. Par conséquent, il se produit à la sortie de la transmission à calage variable un cumul de couples moteurs non régularisés qui génèrent des vibrations provoquées par le vilebrequin à petite course sur le vilebrequin à grande course. De ce fait, le calcul de résistance du vilebrequin à grande course est alors inhérent aux couples issus de ses propres cylindres, mais également aux couples issus des cylindres du vilebrequin à petite course.

Dans le brevet EP 0689642 Bl le rapprochement en parallèle des deux cylindres groupés a pour conséquence de limiter l'espace latéral nécessaire à la mobilité des deux vilebrequins; dans cette approche, l'architecture du moteur nécessite un éloignement vertical des deux vilebrequins par le moyen de bielles courtes (bielles à petit entraxe) sur le vilebrequin à petite course et de bielles longues (bielles à grand entraxe) sur le vilebrequin à grande de course, ce qui nécessite une plus grande hauteur du carter cylindre. Il est également connu que pour le même angle de manivelle entre le point mort haut et le point mort bas, le déplacement linéaire d'un piston axé sur une bielle courte est d'autant plus rapide aux environs du point mort haut qu'aux environs du point mort bas. Logiquement, on peut discerner qu'une bielle longue sur le vilebrequin à grande course, présente moins d'obliquité dans son mouvement tournant. Il s'ensuit qu'au premier quart de tour de la phase de détente des gaz, la course linéaire du piston du vilebrequin à grande course se trouve diminuée par rapport à son mouvement tournant.

La présente invention concerne le concept d'un moteur à rapport volumétrique variable qui permet de faire varier le volume de la chambre de combustion en fonction de la densité et de la température de l'air d'admission, de la vitesse de rotation et de la température du moteur, ce qui permet une hyper suralimentation du moteur, à l'appui d'une simple ou double pression de suralimentation avec inter refroidissement.

La présente invention décrit une combinaison nouvelle d'un moteur à chambre de combustion à volume variable à quatre temps. Le moteur comprend avantageusement une chaîne cinématique où les arbres des deux vilebrequins sont accouplés à même vitesse de rotation au moyen de la transmission à calage variable. La course de décalage angulaire entre les deux vilebrequins réalisée entre le début et la fin de course de la transmission à calage variable est agencée par un rapport approprié entre les deux cylindrées des deux cylindres groupés et entre le volume de ces derniers et l'espace mort, ce qui permet de moduler le rapport volumétrique du moteur par le déplacement linéaire du piston du petit cylindre par rapport aux phases du moteur.

Par définition, le principe de la suralimentation des moteurs à pistons est d'augmenter les masses d'air sans augmenter la cylindrée. Il en résulte pour les moteurs à taux de compression fixe une augmentation de la pression de combustion et une plus grande puissance volumétrique (puissance par litre de cylindrée). Cependant, quand la pression de suralimentation est augmentée, les contraintes d'efforts mécaniques et thermiques s'accroissent sur les organes du moteur. Cet inconvénient majeur provient du fait que le rapport volumétrique, engendré par la chambre de combustion et la course du piston, est non modifiable, ne pouvant s'adapter aux variations de pressions et températures de l'air d'admission et des vitesses et températures du moteur.

Dès lors, les motoristes respectent certaines règles de conception en déterminant, d'une part, une limite à l'amplitude des variations de pressions à l'admission, et d'autre part, en réalisant un rapport de compression moyen entre la pression d'aspiration atmosphérique et la pression de suralimentation. Comme la détermination du rapport de compression moyen est un compromis conciliant au mieux les différents régimes du moteur, le régime d'aspiration atmosphérique est situé à de trop basses pressions et températures, et le régime de pressions de suralimentation est situé à de trop hautes pressions et températures.

L'invention a pour objet un moteur à combustion interne à quatre temps comprenant au moins une phase d'aspiration, une phase de compression, une phase de détente et une phase d'échappement, ledit moteur fonctionnant par autoinflammation ou par allumage commandé comprenant: - une pièce carter cylindre présentant une première série de cylindres (2) présentant chacun un axe et un diamètre et une deuxième série de cylindres (3) présentant chacun un axe et un diamètre, les cylindres (2) de la première série présentant une cylindrée et un diamètre plus grands que la cylindrée et le diamètre des cylindres (3) de la deuxième série, - des pistons (6,8), chaque piston étant adapté pour être animé d'un mouvement alternatif dans un cylindre et étant associé à une bielle,

- deux lignes d'arbres vilebrequins présentant des axes de rotation parallèles entre eux, une première ligne (4) présentant une manivelle avec une grande course, tandis que la deuxième ligne (5) présente une manivelle avec une petite course inférieure à la grande course de la manivelle de la première ligne d'arbre vilebrequin, lesdits arbres vilebrequins (4,5) étant adaptés pour être accouplés à même vitesse de rotation au moyen d'un train d'engrenages (14,16) et d'une transmission à calage variable (10);

dans lequel chaque piston étant associé à une bielle (7,9) est opéré avec une manivelle d'un vilebrequin, la manivelle de petite course de la deuxième ligne d'arbre vilebrequin (5) opérant la bielle (9) du piston (8) se déplaçant dans le petit cylindre (3), tandis que la manivelle de grande course de la première ligne d'arbre vilebrequin (4) opère la bielle (7) du piston (6) se déplaçant dans le grand cylindre (2),

dans lequel la première série de cylindres (2) est disposée au-dessus de la première ligne d'arbre vilebrequin (4), tandis que la deuxième série de cylindres (3) est disposée au-dessus de la deuxième ligne d'arbre vilebrequin (5), et

dans lequel chaque cylindre (2) de la première série communique avec au moins un cylindre (3) de la deuxième série via un espace mort de manière à former un

groupe de deux cylindres (2,3) communiquant entre eux pour permettre aux gaz de passer d'un cylindre à l'autre indépendamment de la position des pistons (6,8) se déplaçant dans lesdits cylindres (2,3).

Dans le moteur selon l'invention, la pièce carter cylindre présente avantageusement une face le long de laquelle les cylindres sont ouverts avantageusement le long de la face du plan de joint de culasse, des canaux et passages étant formés dans la face du carter cylindre faisant face au plan de joint de la culasse pour former au moins un passage ou canal distinct pour chaque groupe de cylindre, un canal ou passage d'un groupe s'étendant entre un cylindre de la première série et un cylindre de la deuxième série, ledit canal présentant une largeur moyenne et/ou minimale (déterminée dans le plan de joint de culasse) comprise entre 0,25 et 2 fois, avantageusement entre 0,3 et 1 fois, de préférence entre 0,5 et 0,8 fois la moyenne des diamètres des cylindres reliés par le canal ou passage considéré.

Avantageusement, pour un moteur dans lequel pour chaque groupe de cylindres reliés entre eux par un canal ou passage, l'axe d'un cylindre de la première série du groupe considéré forme avec une droite parallèle à l'axe de rotation d'une ligne d'arbre vilebrequin un premier plan, tandis que l'axe du cylindre de la deuxième série du groupe considéré forme avec une droite parallèle à l'axe de rotation d'une ligne d'arbre vilebrequin un deuxième plan, lesdits plans définissent entre eux un angle compris entre 1° et 60°, avantageusement entre 10° et 50°, de préférence entre 15° et 45°.

De préférence, les axes des cylindres d'un groupe se coupent sensiblement en un point.

Selon une forme de réalisation dans lequel un plan est défini par les deux axes de rotation des deux lignes d'arbre vilebrequin, et dans lequel un plan médian ou une droite médiane défini entre lesdits premier et deuxième plans ou entre lesdits axes de rotation, le plan médian ou la droite médiane d'un groupe de cylindres est

sensiblement perpendiculaire audit plan défini par les deux axes de rotation des deux lignes d'arbre vilebrequin.

Selon un détail avantageux d'un moteur suivant l'invention, le volume du canal situé entre deux cylindres d'un groupe est compris entre 1% et 25%, en particulier de 2% à 15%, du volume mort total du groupe considéré, ledit volume mort total étant défini par le volume libre total du groupe avec les deux pistons en position point mort haut.

Selon un autre détail d'une forme de réalisation, le moteur comprend un arbre à cames en prise à demi-vitesse avec la première ligne d'arbre vilebrequin (4) pour assurer la communication périodique des groupes de deux cylindres (2,3) avec des conduites d'admission et d'échappement au moyen de soupapes d'admission et d'échappement à des moments prédéterminés du cycle à quatre temps.

Dans une forme de réalisation avantageuse, le moteur comporte un aménagement pour la transmission à calage variable, ledit aménagement étant adapté pour recevoir au moins partiellement un dispositif de commande de la différence d'angle de phase entre les première et deuxième lignes d'arbre vilebrequin.

De préférence, lorsque la première et la deuxième ligne d'arbre vilebrequin sont associées respectivement à une première roue d'entraînement et à une deuxième roue d'entraînement, un moyen d'entraînement s'étend entre lesdites roues.

En particulier, lorsqu' un volant moteur est monté sur l'axe de l'arbre vilebrequin à grande course , tandis que la transmission à calage variable est monté sur l'axe de l'arbre vilebrequin à petite course, la distance séparant les axes des deux vilebrequins est suffisante, de manière à ce que la transmission à calage variable se situe à côté du volant du moteur. Par exemple, la commande de la transmission à calage variable comprend un vérin de pilotage en prise directe, pour contrôler la différence d'angle de phase entre l'arbre vilebrequin à petite course et l'arbre vilebrequin à grande course.

Selon une forme de réalisation possible, le moteur comprenant une transmission à calage variable comprenant un ensemble séparé de l'arbre du vilebrequin à manivelle à petite course. La transmission à calage variable est dotée d'un palier applique qui se fixe par centrage dans un orifice prévu dans le carter cylindre. La transmission à calage variable comprend un arbre dont une extrémité présente des cannelures externes, tandis que l'arbre est associé à un élément ou présente une portion présentant un évidement avec des cannelures internes adaptées pour coopérer avec les cannelures externes de l'arbre pour assurer un accouplement des arbres entre eux, tout en permettant un déplacement axial entre eux.

De préférence, l'arbre (13) est associé à un tourillon de palier (20) présentant des cannelures internes coopérant avec les cannelures externes de l'arbre (12).

Selon une autre forme de réalisation possible, le moteur comprend des moyens pour renforcer la rigidité axiale entre le vilebrequin à petite course (5) et la transmission à calage variable (10), les arbres (12,13) sont fusionnés en un seul arbre de manière à permettre que l'arbre de transmission (35) comprenant le disque (40) et les cannelures droites (47) s'associe au vilebrequin à petite course (5). La distance de séparation entre les supports de fixation du disque (40) et le palier (15) est réalisée à la même distance de séparation entre la fixation du carter cylindre (1) du palier (15) et le support de fixation du disque (40) lorsque l'arbre du vilebrequin à petite course est inséré dans les paliers du carter cylindre. Il découle de cet assemblage une fixation axiale de l'arbre du vilebrequin à petite course (5) par le roulement (39) et une fixation radiale du manchon (36) par les paliers du vilebrequin à petite course (5).

Selon une caractéristique d'une forme de réalisation, dans lequel le joint de culasse s'étend sensiblement dans un plan, par rapport au plan du joint de culasse, l'axe des cylindres de la première série est disposé sensiblement perpendiculairement au plan de joint de culasse.

De préférence, les pistons des cylindres de la deuxième série sont pourvus d'un bossage rectificatif de la forme de la chambre de combustion, ledit bossage présentant au moins une face sensiblement parallèle au plan de joint de culasse.

En particulier, la face sensiblement parallèle au plan de joint de culasse est égale à au moins 25%, avantageusement au moins 40%, de préférence au moins 60% à 90% de la surface du cylindre de la deuxième série mesurée dans le plan de joint de culasse.

Selon une autre particularité, le piston du cylindre de la première série présente une face sensiblement parallèle au plan de joint de culasse, ladite face présentant une portion en creux adaptée pour être ouverte sur un canal.

De manière plus spécifique, le bossage et/ou le creux sont adaptés pour former en position mort haut du pistons un volume mort présentant au moins une portion adjacente du canal s'étendant dans le cylindre sous le plan de joint de culasse sans le joint de culasse sur une hauteur égale à au moins la profondeur du canal (32) sous le plan de culasse.

Selon un détail d'une autre forme de réalisation, le moteur présente une culasse adaptée pour recevoir pour chaque cylindre de la deuxième série une partie du piston en position point mort haut et pour former au moins partiellement pour chaque cylindre de la deuxième série, en position point mort haut du piston un évidement d'une partie du piston dépassant le plan de culasse ou une chambre située dans le carter cylindre communiquant avec le canal.

Selon une particularité d'une forme de réalisation particulière, les axes des cylindres de la première série et les axes des cylindres de la deuxième série ne sont pas disposés perpendiculairement au plan de culasse.

De façon avantageuse, les pistons des cylindres de la deuxième série sont tronqués de manière rectificative de la forme de la chambre de combustion, lesdits

pistons présentant au moins une face sensiblement parallèle au plan de joint de culasse, ainsi que les pistons des cylindres sont tronqués de manière rectificative de la forme de la chambre de combustion, lesdits pistons présentant au moins une face sensiblement parallèle au plan de joint de culasse.

Selon une caractéristique d'une autre forme de réalisation possible, le moteur comprend un volant moteur axé et fixé sur l'extrémité de l'arbre vilebrequin des pistons des cylindres de la première série dans un carter d'accouplement. De préférence, la transmission à calage variable (10) est axée sur l'extrémité de l'arbre du petit vilebrequin (5) à coté du volant du moteur (26).

En particulier, le moteur comporte dans le carter d'accouplement, une transmission avec train d'engrenages entre l'arbre vilebrequin des pistons de la deuxième série et le volant du moteur via la transmission à calage variable.

Selon toujours une autre caractéristique d'un moteur suivant l'invention, la transmission à calage variable comporte un tube ou arbre coulissant axialement par rapport à l'axe de rotation de l'arbre vilebrequin des pistons des cylindres de la deuxième série, tandis que le moteur comporte des moyens de butées pour limiter la course du mouvement de la transmission à calage variable entre un début et une fin de course.

En particulier, le moteur comprend un vérin de commande commandant le déplacement axial du tube ou de l'arbre coulissant, ledit vérin étant associé à des moyens de butées pour limiter le déplacement entre ledit début et fin de course, ledit vérin de commande étant avantageusement fixé sur un support prévu sur un couvercle de fermeture du carter d'accouplement situé à côté du volant moteur.

Toujours selon un détail avantageux d'une forme de réalisation possible, les arbres des deux vilebrequins sont associés à des engrenages en prise directe, les arbres tournant en sens de rotation inverse et à même vitesse.

De façon avantageuse, les arbres des deux vilebrequins sont accouplés l'un à l'autre par un train de deux engrenages d'accouplement intermédiaires disposé

entre les deux engrenages montés sur les arbres afin que ces derniers tournent en sens de rotation inverse et à même vitesse.

De préférence, les deux engrenages intermédiaires situés entre les engrenages montés sur les arbres sont avantageusement disposés et accouplés chacun de part et d'autre d'un plan passant par les axes des deux arbres vilebrequins.

Dans une forme de réalisation possible, le moteur comprend un vérin de commande pour faire varier la position angulaire entre les deux arbres vilebrequins (4,5) sans passer par l'intermédiaire du volant du moteur (26) situé à l'arrière du moteur ;

Selon une forme de réalisation préférée, la transmission à calage variable comporte un mécanisme de commande pour faire varier angulairement le calage de la manivelle de la seconde ligne d'arbre vilebrequin par rapport à la manivelle de la première ligne d'arbre vilebrequin, au moyen d'un amplificateur de force hydraulique comportant un vérin asservi agissant sur la transmission à calage variable, ladite transmission permettant de modifier en phase fin de compression du piston du grand cylindre le rapport volumétrique du moteur entre un rapport volumétrique minimal et un rapport volumétrique maximal, lesdits rapports volumétriques minimal et maximal étant fonction :

a) du rapport entre la cylindrée du grand cylindre et la cylindrée du petit cylindre, et b) du rapport entre, d'une part, le volume total du petit cylindre et du grand cylindre et, d'autre part, le volume de l'espace mort et d'un volume additionnel créé dans le petit cylindre en phase fin de compression du piston du grand cylindre , la transmission à calage variable réglant l'avance angulaire de la manivelle de la seconde ligne d'arbre vilebrequin par rapport à la manivelle de la première ligne d'arbre vilebrequin pour obtenir lesdits rapports volumétriques, ladite avance angulaire variant entre une avance angulaire maximale telle qu'au moins un angle de 90° soit formé entre la bielle du piston du petit cylindre et la

manivelle de la seconde ligne d'arbre vilebrequin en phase fin de compression du piston du grand cylindre pour définir le rapport volumétrique minimal, et une avance angulaire minimale telle que l'angle de l'avance angulaire correspond en phase fin de compression du piston du grand cylindre au positionnement du piston dans le petit cylindre pour créer le volume additionnel requis pour obtenir le rapport volumétrique maximal, la manivelle de la seconde ligne d'arbre vilebrequin formant un angle avec la bielle du piston du petit cylindre.

Selon une particularité d'un moteur pour lequel la manivelle du premier arbre vilebrequin passe par un point mort haut et par un point mort bas lors de sa rotation, les deux lignes d'arbre à vilebrequin sont agencées pour définir un espace de travail minimum des deux lignes d'arbre à vilebrequin de telle sorte que soit obtenu un rapport des cylindrées de deux cylindres groupés minimal. La transmission à calage variable présente une course de déplacement s'étendant entre un début de course et une fin de course , le rapport volumétrique minimal de deux cylindres groupés étant obtenu en fin de course de la transmission à calage variable , ce rapport volumétrique étant calculé par la formule suivante:

Vl + [ V2 - Vr (αmaximum) ] + ve = p minimum ve + Va (αmaximum)

dans laquelle

Vl : cylindrée du grand cylindre des deux cylindres groupés.

V2 : cylindrée du petit cylindre des deux cylindres groupés.

Ve : volume de l'espace mort des deux cylindres groupés permettant le transfert de gaz entre les cylindres sans laminage excessif.

(αmaximum) : avance angulaire de la manivelle de la seconde ligne d'arbre vilebrequin, en fin de course de la transmission à calage variable.

Vr (çtmaximum) : volume de refoulement d'air en fin de course de la transmission à calage variable, défini par l'avance angulaire de la manivelle de la seconde ligne d'arbre vilebrequin lorsque la manivelle de la ligne d'arbre vilebrequin se situe au point mort bas en phase fin d'admission.

Va (αmaximum) : volume additionnel s'ajoutant au volume de l'espace mort (24) en fin de course de la transmission à calage variable, défini par l'avance angulaire de la manivelle de la seconde ligne d'arbre vilebrequin lorsque la manivelle de la première ligne d'arbre vilebrequin se situe au point mort haut, en phase fin de compression.

Avantageusement, la transmission à calage variable comprend trois éléments concentriques superposés, à savoir un élément interne constitué par un arbre de transmission, un élément externe constitué par un manchon portant un engrenage pour l'accouplement des deux lignes d'arbres vilebrequins, et un élément intermédiaire situé entre lesdits éléments interne et externe et constitué d'un tube coulissant par rapport aux dits éléments interne et externe, le manchon étant maintenu dans un palier applique , au moyen d'un roulement. La seconde ligne d'arbre vilebrequin présente un arbre dont une extrémité est jointive à une extrémité de l'arbre de transmission, lesdites extrémités présentant des cannelures droites mâles et femelles correspondantes pour permettre leur accouplement et l'auto centrage des trois éléments de la transmission à calage variable par rapport à l'arbre de la seconde ligne d'arbre vilebrequin lors de la fixation du palier applique dans un orifice prévu du carter cylindre, ce moyen, suivant une forme de réalisation, permettant le montage et le démontage de la transmission à calage variable sans devoir démonter la seconde ligne d'arbre vilebrequin.

Un palier porte une bague de fixation formant le logement de la bague extérieure d'un roulement dont la bague intérieure est fixée sur le manchon de manière à

maintenir l'arbre de transmission. Une entretoise s'étend entre la bague intérieure du roulement et la bague intérieure du roulement, cette entretoise compensant l'espace séparant entre lesdites bagues et maintenant axialement la bague de roulement contre un épaulement que présente le manchon, tandis qu'un seul écrou assure la fixation des bagues intérieures du roulement et du roulement et de l'entretoise sur le manchon.

L'arbre de transmission présente du côté de la bague de fixation des cannelures droites sur lesquelles vient s'emmancher le tube coulissant présentant sur sa face interne des cannelures droites de manière à coulisser linéairement sur l'arbre de transmission le manchon comporte sur sa face interne des cannelures hélicoïdales.

Le tube coulissant présente une extrémité dégagée en permanence hors du manchon, ladite extrémité étant solidaire d'une bague intérieure d'un roulement à deux rangées à contacts obliques, la bague extérieure du roulement étant solidaire d'une pièce d'attache au vérin. Les cannelures hélicoïdales sont agencées de sorte que le tube coulissant en se déplaçant hors du manchon diminue l'avance angulaire de la manivelle de la seconde ligne d'arbre à vilebrequin par rapport à la manivelle de la première ligne d'arbre à vilebrequin.

Selon une particularité pour un moteur à allumage par compression, le moteur comprend au moins un injecteur de carburant dans l'espace mort, l'injection du carburant est effectuée en prise à demi- vitesse avec le vilebrequin à grande course.

Selon une autre particularité, l'allumage est commandé et comprend au moins une bougie d'allumage dans l'espace mort, l'allumage étant effectué en synchronisme à demi- vitesse avec la première ligne d'arbre à vilebrequin.

Par exemple, le moteur présente un rapport entre les cylindrées des deux cylindres groupés (2,3) entre 1/10 et 9/10, avantageusement entre 1/5 et 3/5.

Selon un autre détail d'une forme de réalisation, le moteur comprend un carter d'huile (27) qui englobe l'ensemble des deux vilebrequins par le dessous du carter cylindre.

Selon une particularité, le moteur à combustion interne à quatre temps comprend un carter d'huile situé en dessous de l'arbre vilebrequin des pistons des cylindres de la première série, tandis que l'arbre vilebrequin des pistons des cylindres de la deuxième série est enfermé dans le carter cylindre au dessus d'une face du carter cylindre et à un niveau situé au-dessus du carter d'huile, ladite face étant inclinée vers le carter d'huile, ladite face inclinée du carter cylindre étant avantageusement équipée d'un panneau d'accès à l'arbre vilebrequin des pistons des cylindres de la deuxième série.

Selon une autre particularité d'un moteur à combustion interne à quatre temps, le moteur comporte un vérin de commande de la transmission à calage variable, ladite transmission à calage variable se situant avantageusement à l'avant du moteur sans passer par le volant situé à l'arrière du moteur.

Selon toujours une autre particularité, le moteur à combustion interne à quatre temps comporte deux carters distincts, à savoir un carter d'accouplement et un carter cylindre, de telle façon que les deux éléments précités soient assemblés côte à côte, dans la direction axiale des arbres vilebrequins. Avantageusement, le moteur comporte un volant moteur monté au moyen d'un emboîtement concentrique axé sur l'arbre du grand vilebrequin. De préférence, le carter d'accouplement est mobile par rapport au carter cylindre de manière à le positionner angulairement sur le carter cylindre par des moyens de fixation, en particulier prévus sur le pourtour des parties jointives des deux carters précités.

Selon un détail d'une autre forme de réalisation, le moteur à combustion interne à quatre temps comprend un carter d'accouplement et un carter cylindre formant un seul élément non divisible, et un carter d'huile se situant en dessous des deux

carters précités et adapté pour être démonté, de manière que le démontage du dit carter d'huile libère également le dessous du carter d'accouplement.

L'invention a encore pour objet un engin ou un appareil ou une machine muni d'un ou de plusieurs moteurs suivant l'invention.

Des particularités et détails de formes de réalisation ressortiront de la description suivante.

DESCRIPTION DE FORMES DE REALISATION PREFEREES

La présente invention concerne des moyens mieux appropriés à la régulation des couples instantanés entre les deux vilebrequins du moteur à rapport volumétrique variable.

Pour se faire, la transmission à calage variable est accouplée au volant du moteur et placé en interposition entre le volant du moteur et l'arbre du vilebrequin à grande course.

Des moyens sont prévus pour que le déplacement du vérin hydraulique sur la commande de la transmission à calage variable fasse varier la position angulaire entre les deux arbres des deux vilebrequins pour qu'elle se réalise sans le moindre effort axial sur l'arbre du petit vilebrequin.

Selon l'invention, ce nouveau moteur comporte deux lignes d'arbres vilebrequins, l'une à manivelle à grande course, l'autre à manivelle à petite course. Les deux vilebrequins sont accouplés sur le volant du moteur à même vitesse de rotation au moyen d'un train d'engrenages et d'une transmission à calage variable dont le pignon d'accouplement faisant partie du train d'engrenages se déplace angulairement par rapport à l'arbre vilebrequin à petite course, ce qui autorise un nombre infini de calages entre les deux vilebrequins sans nécessiter l'interruption de la transmission entre ces derniers.

Selon l'invention l'accouplement de l'arbre de la transmission à calage variable est placé à l'intérieur du premier palier de l'arbre du vilebrequin à petite course, de façon à favoriser une plus grande précision axiale et un moindre encombrement du dit accouplement.

Selon l'invention, la transmission à calage variable est disposée et fixée dans le carter cylindre de telle manière que l'accouplement de la transmission à calage variable puisse déborder dans le carter d'accouplement à côté du volant du moteur. La transmission à calage variable est conçue de telle manière qu'elle puisse être séparée du carter moteur indépendamment de l'arbre du vilebrequin à petite course, de l'arbre du vilebrequin à grande course et du volant du moteur.

Il est avantageusement prévu, à côté du volant du moteur, un couvercle de fermeture sur le carter d'accouplement, le dit couvercle de fermeture servant aussi comme support de fixation du vérin de pilotage de la transmission à calage variable. Le démontage du couvercle de fermeture du carter d'accouplement rendant accessible la transmission à calage variable fixée sur le carter cylindre. Le démontage de la transmission à calage variable du carter cylindre se réalise comme un ensemble mécanique interchangeable sans que ne soit rendu nécessaire le démontage du carter d'accouplement.

Selon l'invention, les deux cylindres groupés, différenciés par leur cylindrée, sont disposés en forme de V inversé. Les deux cylindres groupés sont accolés par leur point mort haut de façon à former dans le carter cylindre une chambre de combustion commune afin de permettre aux gaz de passer de l'un à l'autre de ces cylindres indépendamment de la position des pistons. Le moteur peut disposer également de plusieurs groupes de deux cylindres dont chacun des cylindres se situe au-dessus de l'une des deux lignes d'arbres vilebrequins. La manivelle du vilebrequin à petite course opérant avec la bielle du piston du plus petit cylindre, la manivelle du vilebrequin à grande course opérant avec la bielle du piston du plus grand cylindre.

Selon l'invention, en version à allumage par compression, le moteur comprend au moins un injecteur de carburant dans l'espace mort, l'injection du carburant est effectuée en prise à demi- vitesse avec le vilebrequin à grande course.

Selon l'invention, en version à allumage commandé, le moteur comprend au moins une bougie d'allumage dans l'espace mort, l'allumage est effectué par des moyens connus en synchronisme à demi-vitesse avec le vilebrequin à grande course.

Conformément à la présente invention, la distribution est assurée au moins par un arbre à cames en prise à demi-vitesse avec le vilebrequin à grande course, mettant en communication périodique le groupe des deux cylindres avec les conduites d'admission et d'échappement (non représentées) au moyen des soupapes d'admission et d'échappement (non représentées) à des moments précis du cycle à quatre temps. La phase de détente est effectuée simultanément sur chaque piston des deux cylindres groupés faisant coopérer les deux vilebrequins à l'effort moteur. Les deux vilebrequins sont mis en liaison directe avec les organes de transmission externes du moteur, de telle sorte que la transmission à calage variable ne transmette que le couple moteur du vilebrequin à petite course sur le volant du moteur sans passer sur la ou les manivelles de l'arbre du grand vilebrequin. Les différents décalages angulaires de la transmission à calage variable entre les deux vilebrequins ont pour effet de modifier, en phase fin de compression (point mort haut du piston de la plus grande cylindrée), un espace additionnel engendré dans la plus petite cylindrée.. Cet espace additionnel étant défini avec l'espace mort, de façon à modifier le rapport volumétrique du moteur dans le sens maximal en début de course de la transmission à calage variable, et dans le sens minimal en fin de course de la transmission à calage variable.

Suivant la présente invention,, un amplificateur de force hydraulique dont le vérin asservi agit sur la transmission à calage variable, modifie le volume additionnel de la petite cylindrée proportionnellement à la pression de suralimentation, de

manière à maintenir le moteur dans des conditions de fonctionnement optimales avec le minimum de pollution.

Egalement suivant l'invention, un programme préétabli sur un moteur de présérie permet d'éliminer les contraintes excessives des pressions et des températures. Chaque régime du moteur est mémorisé dans une échelle de progression par points, de façon à englober toutes les capacités du moteur. Chaque point de mémorisation est une combinaison formée par les mesures de quatre capteurs : la pression de l'air d'admission, la température de l'air d'admission, la vitesse du moteur et la température du moteur. Chaque combinaison est enregistrée simultanément avec la position du vérin de commande de la transmission à calage variable. Ce programme permet le pilotage automatique du moteur de série identique à celui du moteur réalisé au banc d'essai. Les spécifications du carburant doivent également être identiques pour reproduire exactement les mêmes conditions de fonctionnement sur le moteur de série, grâce à une surveillance à haute fréquence des mesures des quatre capteurs.

Selon l'invention, un aménagement de la transmission à calage variable est prévu pour perfectionner le dispositif de commande de l'angle de phase entre un premier et deuxième vilebrequins. Ce moyen est défini par une nouvelle forme d'espacement entre les deux vilebrequins, de manière à engendrer le débordement de la transmission à calage variable à côté du volant du moteur. La transmission à calage variable est pourvue d'un vérin de pilotage en prise directe, pour contrôler l'angle de phase entre le vilebrequin à petite course et le vilebrequin à grande course.

Conformément à la présente invention, le rapport dimensionnel entre les deux cylindrées des deux cylindres groupés peut se situer au moins entre 1/10 et 9/10, de préférence entre 1/5 et 3/5 suivant le degré de pression de suralimentation maximal prévu pour le moteur. La configuration du moteur à rapport volumétrique variable présente les axes des deux cylindres groupés disposés sous la forme d'un V inversé asymétrique par rapport au plan de culasse. L'angle d'ouverture entre les

axes des deux cylindres groupés peut être adapté entre 1 et 60 degrés au minimum selon les exigences dues à l'encombrement des pièces fixes et mobiles des attelages des deux vilebrequins.

Suivant la présente invention, l'arrangement des axes des deux cylindres groupés dans le carter cylindre du moteur se présente sous deux options différentes: la première option du moteur dispose de deux cylindres groupés axés en forme de V inversé asymétriques mais dont seul l'axe du plus grand des deux cylindres est fixé perpendiculairement au plan de culasse, le piston du petit cylindre est pourvu d'un bossage rectificatif du contour de la chambre de combustion de manière à réaliser au point mort haut, en phase fin de compression, la forme et le volume minimum de la chambre de combustion, il est également prévu un creux sur le piston du grand cylindre axé perpendiculairement au plan de culasse. Le creux et le bossage des dits pistons sont avantageusement agencés de manière à ne pas obturer l'orifice de communication des deux cylindres groupés lorsque les dits pistons sont positionnés au point mort haut.

Il peut être également prévu dans la première option précitée, une dispense de bossage sur l'un des pistons des deux cylindres groupés lorsqu'il est prévu dans la culasse un évidemment compensatoire, de même forme et même grandeur que le dépassement du dit piston.

La deuxième option du moteur se présente avec les axes des deux cylindres groupés en forme de V inversé asymétriques non disposés perpendiculairement au plan de culasse. Il est prévu sur le haut des pistons une arête tronquée avec un jeu de tolérance parallèle au plan de culasse lorsque les dits pistons sont situés au point mort haut. L'espace compris entre les plans non tronqués des deux pistons situés au point mort haut et le plan de culasse forme la chambre de combustion.

Suivant l'invention, suivant les deux options précitées, et suivant le nombre de deux cylindres groupés axés en forme de V inversé asymétrique, le cylindre du vilebrequin à grande course et le cylindre du vilebrequin à petite course sont

accolés l'un à l'autre par leur point mort haut, de manière à créer une chambre de combustion commune à ces deux cylindres groupés. La chambre de combustion étant unifiée à ces dits cylindres par un évidement ou canal au niveau de la jointure jusqu'au plan de culasse ou au-delà du plan de culasse, de manière à ce que les gaz d'admission et de combustion puissent communiquer en permanence entre les dits cylindres et la chambre de combustion, quelle que soit la position des pistons dans le cycle à quatre temps.

Le volant du moteur est axé et fixé sur l'extrémité de l'arbre du grand vilebrequin à l'arrière du moteur; la transmission à calage variable du moteur est axée sur l'extrémité de l'arbre, du coté du volant du moteur. L'accouplement entre le petit vilebrequin et le volant du moteur s'effectue solidairement au dit volant via la transmission à calage variable permettant au dit volant du moteur de régulariser simultanément les couples de chacun des deux vilebrequins indépendamment l'un de l'autre.

Suivant la présente invention, suivant les deux options précitées, l'architecture du moteur se réalise suivant les exigences de la distance de séparation entre les deux arbres des deux vilebrequins. A moindre distance de séparation entre les deux engrenages axés sur leur vilebrequin respectif, ces derniers sont accouplés en prise directe à la même vitesse de rotation. A plus grande distance de séparation entre les deux vilebrequins, une chaîne cinématique, composée de deux engrenages d'accouplement complémentaires entre les deux engrenages axés sur leur vilebrequin respectif, est prévue pour déterminer également un accouplement à la même vitesse de rotation.

Suivant l'invention, suivant les deux options précitées, le moyen d'un vérin de commande est également valable lorsque la transmission à calage variable se situe à l'avant du moteur, de manière à pouvoir faire varier le calage angulaire entre les deux vilebrequins sans passer par l'intermédiaire du volant situé à l'arrière du moteur.

L'invention sera décrite plus en détail à l'aide de la description qui suit et au regard de 7 dessins et un schéma annexés de deux formes de réalisation spécifiques données à titre d'exemple uniquement représentant deux options du moteur. Dans ces dessins :

La figure 1 représente une vue en coupe transversale du carter cylindre (1) d'un moteur. Pour la clarté du dessin, les contrepoids (28) ne sont pas représentés sur les vilebrequins (4,5). Les deux cylindres groupés (2,3) sont axés en forme de V inversé asymétrique et dont l'axe du plus grand des deux cylindres (2) se situe perpendiculairement au plan de culasse (29). La chambre de combustion (24) commune à ces deux cylindres groupés (2,3) est située dans le carter cylindre (1). Dans la chambre de combustion (24) est inclus un orifice (32). Il est aussi prévu un creux (non représenté) sur le piston (6) du cylindre (2) situé perpendiculairement au plan de culasse. Un bossage (11) est prévu sur le piston (8) du cylindre (3). Les pistons (6,8) sont positionnés en phase de détente pour discerner les intervalles entre les deux attelages des vilebrequins (4,5). L'ouverture axiale des deux cylindres groupés (2,3) en forme de V inversé asymétrique est définie à 30 degrés. L'axe A des grands cylindres (2) est perpendiculaire au plan de joint de culasse 29. Le passage ou canal (32) est formé dans le carter pour s'étendre pour chaque groupe de cylindres (2,3), entre un petit cylindre et un grand cylindre.

La figure 2 représente une vue en plan du carter cylindre de la figure 1. On peut voir en perspective les 4 groupes de deux cylindres. La coupe ou arrachement partiel permet de voir la transmission à calage variable (10) ainsi que les engrenages (14,16) des deux vilebrequins (4,5) sans les deux engrenages de liaison intermédiaires (non représentés). Les pistons ont été représentés en phase d'échappement afin de démontrer l'espace nécessaire entre les attelages des deux vilebrequins (4,5) et les parois latérales du carter cylindre. On peut réaliser le dégagement entre la transmission à calage variable (10) et le volant du moteur (26) en fonction de l'ouverture angulaire des deux cylindres groupés (2,3) axés en forme de V inversé asymétrique située à 30 degrés. Le canal 32 a une largeur moyenne (largeur mesurée perpendiculairement à la droite passant par le point

d'intersection de l'axe du grand cylindre avec le plan de joint de culasse et par le point d'intersection de l'axe du petit cylindre avec le plan de joint de culasse) comprise entre 0,5 et 0,8 fois la moyenne des diamètres des cylindres. La largeur moyenne est déterminée avantageusement au niveau du plan de joint de culasse. De préférence, la largeur minimale du canal au niveau du plan de joint de culasse (29) est avantageusement comprise entre 0,3 fois et 1 fois, en particulier entre 0,5 et 0,8 fois la moyenne des diamètres des cylindres d'un groupe. Le volume d'un canal est compris entre 2% et 15% du volume mort minimal avec les deux pistons en position mort haut.

La figure 3 représente une vue en coupe transversale du carter cylindre (1). Pour la clarté du dessin, les contrepoids (28) ne sont pas représentés sur les vilebrequins (4,5). On peut distinguer les deux cylindres groupés (2,3) axés en forme de V inversé asymétrique dont les axes de ces cylindres ne sont pas situés perpendiculairement au plan de culasse (29). La chambre de combustion (24) commune à ces deux cylindres groupés (2,3) est située dans le carter cylindre (1) avec sur le haut de chacun de ces pistons (6,8) une arête tronquée limitée par le plan de culasse (29). Dans la chambre de combustion (24) est inclus un orifice (32). Les pistons ont été représentés en phase de détente afin de démontrer l'espace nécessaire entre les attelages des deux vilebrequins (4,5). L'ouverture axiale des deux cylindres groupés (2,3) en forme de V inversé asymétrique, a été définie sur une ouverture angulaire de 24 degrés avec une répartition de 9 degrés pour le grand cylindre et 15 degrés pour le petit cylindre par rapport au plan de culasse (29). On peut réaliser le dégagement entre la transmission à calage variable (10) et le volant du moteur (26) en fonction de l'ouverture angulaire des deux cylindres groupés (2,3) axés en forme de V inversé asymétrique située à 24 degrés.

La figure 4 représente une vue en plan du carter cylindre de la figure 3. On peut voir en perspective les 4 groupes de deux cylindres (2,3). Le crevé partiel permet de voir la transmission à calage variable (10) ainsi que les engrenages (14,16) des deux vilebrequins (4,5) sans les deux engrenages de liaison intermédiaires (non représentés). Les pistons (6,8) sont positionnés en phase d'échappement pour

représenter les intervalles entre les deux attelages des vilebrequins (4,5) et les parois latérales du carter cylindre (1). On peut réaliser le dégagement entre la transmission à calage variable (10) et le volant du moteur (26) en fonction de l'ouverture angulaire des deux cylindres groupés (2,3) axés en forme de V inversé asymétrique située à 24 degrés. Les axes des cylindres (2,3) ne sont pas perpendiculaires au plan de joint de culasse. Par rapport à une droite perpendiculaire au plan de joint de culasse, l'axe du grand cylindre (2) est avantageusement moins incliné que l'axe du petit cylindre (3).

La figure 5 représente une vue en coupe parallèle à l'axe de la transmission à calage variable. On peut voir sur l'extrémité de l'arbre (12) les cannelures externes de la transmission à calage variable.

La figure 6 représente une vue en coupe partielle de la transmission à calage variable dont l'arbre d'accouplement (12) est intégré à l'arbre du vilebrequin à petite course (5).

La figure 7 est une vue en coupe et en perspective de la transmission à calage variable intégrée à l'arbre du vilebrequin à petite course où l'on peut distinguer les canaux de lubrification.

La figure 8 est un schéma qui révèle 32 combinaisons possibles pour aménager la construction du moteur à rapport volumétrique variable.

En se référant aux figures de 1 à 7, le carter cylindre (1) comprend deux vilebrequins (4,5) disposés parallèlement, l'un à manivelle à grande course (4), l'autre à manivelle à petite course (5), les deux cylindres (2,3) munis respectivement de pistons (6,8) et respectivement de bielles (7,9) sont chacun disposés au-dessus des deux lignes d'arbres vilebrequins (4 et 5). La manivelle du vilebrequin à petite course (5) supportée par les paliers (20) opérant avec la bielle (9) du piston (8) du plus petit cylindre (3), la manivelle du vilebrequin à grande course (4) supportée par les paliers (21) opérant avec la bielle (7) du piston (6)

du plus grand cylindre (2). Les axes des deux cylindres groupés (2,3) sont disposés dans le carter cylindre (1) sous la forme d'un V inversé asymétrique par rapport au plan de la culasse ( 29). On peut constater que les deux cylindres précités sont également accolés l'un à l'autre au moyen d'un espace mort relatif à la chambre de combustion commune (24). Le passage des gaz entre les dits cylindres (2,3) est effectué par un orifice ou canal intérieur ou canal formé dans le carter cylindre (32) de la dite chambre de combustion.

Le rapport entre les cylindrées des deux cylindres groupés (2,3) sur les 4 figures est fixé à 2/5, ce qui détermine une portion de couple théorique de 2/7 pour la cylindre du petit cylindre (3) par rapport à la cylindrée totale des deux cylindres groupés (2,3). L'entraxe tête-pied des bielles par rapport à la course des pistons est fixé à 1,68. Le rapport course /alésage des cylindres est fixé à 1,21.

Les dimensionnements des autres organes des deux options de moteurs ont été instruits à partir d'un type de moteur à allumage par compression largement éprouvé de 6 cylindres en ligne, à vitesse maximum de 2200 tours/minute, d'une puissance de 400 chevaux et validé sur un parcours de 1.500.000 kilomètres.

En version à allumage par compression, le moteur comprend au moins un injecteur de carburant (non représenté) dans l'espace mort (24). L'injection du carburant est effectuée par des moyens connus (non représentés) en prise à demi- vitesse avec le vilebrequin à manivelle à grande course (4).

En version à allumage commandé, le moteur comprend au moins une bougie d'allumage (non représenté) dans l'espace mort (24). L'allumage est effectué par des moyens connus (non représentés) en synchronisme à demi-vitesse avec le vilebrequin à grande course (4).

Pour les moteurs à très grande cylindrée, un deuxième arbre à cames (non représenté) en prise à demi-vitesse avec le vilebrequin à grande course (4) peut être prévu dans la partie de la culasse (non représentée) surplombant le plus petit

cylindre (3), de façon à assurer de secondes ouverture et fermeture périodiques de l'admission et de l'échappement au même moment que l'ouverture et la fermeture du cycle à quatre temps réalisées dans le plus grand cylindre (2). Le rapport entre les cylindrées des deux cylindres groupés (2,3) se situe au moins entre 1/10 et 9/10 de préférence entre 1/5 et 3/5 permettant d'adapter le moteur à des taux de pressions de suralimentation de 1 à 7.

La transmission à calage variable (10) est formée de trois éléments concentriques superposés: le premier élément est constitué par l'arbre de transmission (35) situé dans la partie interne, le deuxième élément est constitué par le manchon (36) de l'engrenage (14) situé dans la partie externe et le troisième élément est constitué par le tube coulissant (17) situé dans la partie intermédiaire entre les deux autres éléments précités. Le dit manchon (36) est maintenu dans un palier applique (15) au moyen d'un roulement (39) à une rangées approprié entre le palier applique (15) et le manchon (36). Le dit palier applique (15) est fixé au carter cylindre (1) de manière que la transmission à calage variable (10) puisse constituer un ensemble séparé de l'arbre (13) du vilebrequin à petite course (5). A cet effet, le vilebrequin à petite course (5) et la transmission à calage variable (10) sont réalisés en liaison avec leur arbre respectif (12) et (13). La transmission à calage variable (10) est dotée d'un palier applique (15) qui se fixe par centrage dans un orifice prévu dans le carter cylindre (1) Les cannelures droites internes de l'arbre (12) situées dans le tourillon du palier (20) sont appariées avec les cannelures droites externes de l'arbre (13), afin de présenter les qualités de rigidité suffisantes de l'axe de la transmission à calage variable et un encombrement réduit de l'accouplement entre les deux arbres (12,13) ; cette disposition permettant le démontage de la transmission à calage variable hors du bloc moteur (1) sans devoir procéder au démontage du vilebrequin à petite course (5).

La substitution d'un accouplement sans support entre le vilebrequin à petite course (5) et la transmission à calage variable (10) par un accouplement avec support par le palier (20) du tourillon du vilebrequin à petite course (5) a pour avantage de

limiter le roulement (39) à une seule rangée appropriée entre le palier applique (15) et le manchon (36).

L'arbre (35) et le manchon (36) sont avantageusement maintenus concentriquement et axialement l'un par rapport à l'autre au moyen d'un palier (40) solidaire de l'arbre (35). Le palier (40) est doté d'un roulement (43) à butée axiale et radiale permettant la rotation libre de l'arbre (35) indépendamment du manchon (36). Le palier (40) fait partie intégrante de l'arbre (35) à l'endroit où se limitent les cannelures droites (12) et (47). Le palier (40) et le manchon (36) sont situés à l'intérieur du carter moteur (1). Le palier (40) est réalisé sous la forme d'un disque régulièrement transpercé d'orifices permettant le boulonnage d'une bague (41) située sur la face du côté où se limitent les cannelures droites (47) de l'arbre (35). L'application de la bague (41) sur le palier (40) est mise à profit pour former un logement permettant la fixation de la bague extérieure (42) du roulement (43) à efforts axial et radial, tandis que la bague intérieure (44) du roulement (43) est fixée sur le manchon (36) contre une entretoise (45) en forme de bague entourant le manchon (36), l'entretoise (45) est destinée à rattraper l'espace de séparation entre la bague intérieure (44) du roulement (43) et la bague intérieure(37) du roulement (39), cette dernière étant maintenue axialement contre un épaulement prévu sur le manchon (36) par la fixation de toutes les pièces précitées au moyen d'un écrou (51) sur le manchon (36).

L'engrenage (14) du manchon (36) est situé à l'extérieur du carter moteur (1) accouplé à même vitesse de rotation avec le vilebrequin à grande course (4) au moyen d'un engrenage (16) solidaire à ce dernier et de deux engrenages intermédiaires (non représentés) entre les deux engrenages précités (14,16).

L'arbre de transmission (35) comprend du côté du palier (40) faisant face au palier applique (15), des cannelures droites (47) sur lesquelles vient s'emmancher le tube coulissant (17). Ce tube coulissant (17) comporte sur sa périphérie interne des cannelures (48) appariées aux cannelures droites (47), de manière que le tube coulissant (17) puisse coulisser axialement sur l'arbre de transmission (35).

Le manchon (36) comporte sur sa périphérie interne des cannelures hélicoïdales (49) appariées aux cannelures hélicoïdales externes (52) du tube coulissant (17), de manière que ce dernier puisse coulisser hélicoïdalement dans le manchon (36) et permettre le décalage angulaire entre les dits deuxième et troisième éléments en même temps que le coulissement droit entre les premier et troisième éléments précités. Le manchon (36) est fixé solidairement en rotation avec l'arbre (17) lorsque le tube coulissant (17) n'est pas en translation axiale.

La longueur du tube coulissant (17) est préétablie à l'intérieur du manchon (36) lorsque l'extrémité du dit tube coulissant (17) se situe à la limite d'arrêt définie par l'obstruction du palier (40). L'autre extrémité du tube coulissant (17) est dégagée à l'extérieur du manchon (36) au travers de l'engrenage (14) hors du bloc moteur (1) pour permettre, par des moyens appropriés, la fixation de la bague intérieure du roulement (50) à deux rangées à contact oblique. La dite bague intérieure du roulement (50) est rendue solidaire avec le mouvement de rotation du tube coulissant (17), tandis que la bague extérieure du roulement (50), sans mouvement de rotation, est solidarisée avec la pièce d'attache (18).

Une mémoire de décision du programme des taux de compression agissant par un système de commande hydraulique permet le déplacement de la pièce d'attache (18) et du tube coulissant (17) pour modifier le calage entre les deux vilebrequins (4 et 5).

Le début de course de la transmission à calage variable est agencé de telle sorte que le tube coulissant (17) soit à la position de butée de sortie prévue sur vérin (non représentée) correspond au minimum d'avance angulaire de la manivelle du vilebrequin à petite course (5) par rapport à la manivelle du vilebrequin à grande course (4).

La fin de course de la transmission à calage variable est agencée de telle sorte que le tube coulissant (17) soit à la position de butée également prévu sur le vérin (non

représentée) correspondant au maximum d'avance angulaire de la manivelle du vilebrequin à petite course (5) par rapport à la manivelle du vilebrequin à grande course (4).

La distribution est assurée au moins par un arbre à cames (non représenté) en prise à demi- vitesse avec le vilebrequin à grande course (4). Les soupapes d'admission et d'échappement dans la culasse (non représenté), mettant en communication périodique le groupe des deux cylindres (2,3) avec les conduites d'admission et d'échappement (non représenté) à des moments précis du cycle à quatre temps.

Le rapport entre la cylindrée du cylindre (3) et la cylindrée du cylindre (2) se situe au moins entre 1/10 et 9/10 de préférence entre 1/5 et 3/5 permettant d'adapter le rapport volumétrique du moteur en fonction du taux de la pression de suralimentation.

La transmission à calage variable (10) est dotée d'un palier applique (15) qui se fixe au carter cylindre (1), de manière que la transmission à calage variable (10) puisse constituer un ensemble séparé de l'arbre (13) du vilebrequin à manivelle à petite course (5). A cet effet, la transmission à calage variable (10) et le vilebrequin à manivelle à petite course (5) sont réalisés chacun avec leur arbre respectif (12,13). L'extrémité à cannelures externes de l'arbre (12) de la transmission à calage variable (10) est réalisée de manière à faire correspondre les cannelures internes situées dans le tourillon du palier (20) et dans l'arbre (13). L'accouplement entre les deux parties jointives est prévu par un glissement axial au moment de l'application du palier applique (15) dans un orifice prévu dans le carter cylindre (1). Le palier applique (15) est axé sur l'arbre (13) du vilebrequin à manivelle à petite course (5), de manière à permettre le centrage de l'arbre (12) dans le tourillon (20) et dans ledit arbre (13), ce dernier servant avantageusement de palier rigide à l'arbre (12) lors de l'application du palier applique (15) sur le carter cylindre (1); ce moyen permettant le démontage de la transmission à calage variable (10) hors du carter cylindre et hors du carter d'accouplement(l) sans devoir procéder au démontage du vilebrequin à manivelle à petite course (5).

L'extrémité jointive mâle de l'arbre (12) de la transmission à calage variable (10) et l'extrémité jointive femelle façonnée dans l'arbre (13) au niveau du tourillon (20) du vilebrequin à manivelle à petite course (5) apportent l'avantage de diminuer l'encombrement de l'accouplement de la transmission à calage variable dans le carter moteur (1).

Suivant une forme préférée de l'invention le moteur comprend des moyens pour renforcer la rigidité axiale entre le vilebrequin à petite course (5) et la transmission à calage variable (10), les arbres (12 et 13) sont fusionnés en un seul arbre de manière à permettre que l'arbre de transmission (35) comprenant le disque (40) et les cannelures droites (47) s'associent au vilebrequin à petite course (5). La distance de séparation entre les supports de fixation du disque (40) et le palier (15) est réalisée à la même distance de séparation entre la fixation du carter cylindre (1) du palier (15) et le support de fixation du disque (40) lorsque l'arbre du vilebrequin à petite course est inséré dans les paliers (20) du carter cylindre (1). Il découle de cet assemblage une fixation axiale de l'arbre du vilebrequin à petite course (5) par le roulement (39) et une fixation radiale du manchon (36) par les paliers du vilebrequin à petite course (5).

Suivant une forme préférée de l'invention, dans le carter d'accouplement (31) il est prévu deux engrenages d'accouplement intermédiaires (non représentés) entre les engrenages (14) du vilebrequin à petite course (5) et un deuxième engrenage (16) fixé à l'entretoise (19) solidaire du volant du moteur (26) et du vilebrequin à grande course (4) de façon à obtenir des sens de rotation inverses à même vitesse des deux vilebrequins (4,5).

La transmission à calage variable (10) comprend un tube coulissant (17) du côté faisant face à l'engrenage (14), la partie externe du tube coulissant comporte sur sa périphérie externe des cannelures hélicoïdales appariées aux cannelures hélicoïdales (non représenté) de l'engrenage (14). Le tube coulissant (17) comprend également des cannelures droites internes (non représentées) appariées aux cannelures externes solidaires de l'arbre (12) (non représentées) sur lesquelles

vient s'emmancher le tube coulissant (17), de manière que le dit tube (17) en coulissant puisse réaliser le décalage angulaire entre l'arbre de transmission (12) et l'engrenage (14).

Une mémoire de décision du programme des taux de compression agissant sur le vérin de commande (non représenté) fixé sur la pièce d'attache (18) et le tube coulissant (17) afin de modifier le calage angulaire entre les deux arbres des deux vilebrequins (4,5).

Le début et la fin de course de la transmission à calage variable peuvent être agencés de telle sorte que le tube coulissant (17) ne puisse coulisser au-delà des positions de butées qui sont prévues sur le vérin de commande (non représenté). Le dit vérin de commande étant fixé sur un support prévu sur le couvercle de fermeture (23) du carter d'accouplement (31) situé à côté du volant moteur (26). Le démontage du couvercle de fermeture (23) permettant de rendre accessible l'entretien ou le démontage de la transmission à calage variable (10) sans le démontage du carter d'accouplement (31). Suivant l'invention et suivant cette disposition, l'axe du dit vérin de commande est avantageusement fixé à la pièce d'attache (18) de la commande de la transmission à calage variable (10).

Selon une forme préférée de l'invention, les rapports volumétriques minimal et maximal sélectionnés pour le type de moteur à concevoir, sont réalisés en fonction des dimensions des différents éléments du moteur, à savoir d'une part, le rapport entre la cylindrée des deux cylindres groupés (2 et 3) et d'autre part, le rapport formé par le volume total des deux cylindrées de ces cylindres (2,3) avec le volume formé par l'espace mort (24), ces derniers rapports sont agencés de telle manière, que l'avance angulaire maximale de la manivelle du vilebrequin à petite course (5) par rapport à la manivelle du vilebrequin à grande course (4), définie par la position de fin de course de la transmission à calage variable, fasse correspondre, en phase fin de compression (point mort haut du piston 6), le positionnement du piston (8) avec l'espace additionnel nécessaire à l'espace mort

(24) pour définir le dit rapport volumétrique minimal du moteur avec un angle d'au moins 90° entre la bielle (9) et la manivelle du vilebrequin à petite course (5).

Les dispositions du réglage angulaire précitées entre les deux vilebrequins dans la position de fin de course de la transmission à calage variable, en relation avec les dimensions appropriées entre les différents éléments du moteur, permettent à ce dernier de fonctionner:

- en phase de détente, avec les gaz de combustion sur le piston (8) associés au moins à partir du couple maximum instantané sur la manivelle du vilebrequin à petite course (5);

- en phase de détente, en limitant la remontée du piston (non représenté) antérieurement à l'ouverture de la soupape d'échappement (non représentée) source de contre-pressions des gaz de combustion sur le dit piston (8);

- en phase fin d'admission, en limitant la remontée du piston (non représenté) source de diminution du volume de remplissage dans le cylindre (3).

Ces fonctionnements ont pour avantage d'assurer le maintien du rendement optimal du moteur au régime de la pleine charge.

Le rapport volumétrique maximal sélectionné est réalisé sur la même base de données que les valeurs dimensionnelles définies pour le rapport volumétrique minimal, de telle manière, que l'avance angulaire minimale de la manivelle du vilebrequin à petite course (5) par rapport à la manivelle du vilebrequin à grande course (4), définie par la position de début de course de la transmission à calage variable, fasse correspondre en phase fin de compression (point mort haut du piston (6), le positionnement du piston (8) avec l'espace additionnel nécessaire à l'espace mort (24) pour définir le rapport volumétrique maximal du moteur avec la bielle (9) de la manivelle du vilebrequin à petite course (5) écartée de son point mort haut, de manière que la dite bielle (9) forme un angle avec la manivelle du vilebrequin à petite course (5).

Les dispositions du réglage angulaire précitées entre les deux vilebrequins (4,5) dans la position de début de course de la transmission à calage variable en relation avec les dimensions appropriées entre les différents éléments du moteur, permettent à ce dernier de fonctionner: - en phase fin de compression, en assurant un mouvement de translation plus important sur le piston (8) par degré unitaire de décalage angulaire entre les manivelles des deux vilebrequins (4,5).

Ce fonctionnement a pour avantage d'accélérer le processus de modifications du rapport volumétrique du moteur à faible charge.

Nature des symboles adoptés:

P = rapport volumétrique.

Vl = cylindrée du plus grand des deux cylindres groupés.

V2 = cylindrée du plus petit des deux cylindres groupés.

V1/V2 = rapport volumétrique entre les deux cylindrées des deux cylindres groupés.

α = avance angulaire de la manivelle du vilebrequin à petite course.

Ve = volume de l'espace mort des deux cylindres groupés nécessaire pour le transfert des gaz sans laminage excessif.

(α minimum) '• avance angulaire de la manivelle du vilebrequin à petite course, en début de course de la transmission à calage variable.

(α maximum) : avance angulaire de la manivelle du vilebrequin à petite course,

en fin de course de la transmission à calage variable .

Va (α minimum): volume additionnel s'ajoutant au volume de l'espace mort en début de course de la transmission à calage variable défini par l'angle minimum de l'avance angulaire de la manivelle du vilebrequin à petite course.

Va (α maximum): volume additionnel s'ajoutant au volume de l'espace mort, en fin de course de la transmission à calage variable, défini par l'angle maximum de l'avance angulaire de la manivelle du vilebrequin à petite course lorsque la manivelle du vilebrequin à grande course se situe au point mort haut, en phase fin de compression.

Vr (α . minimum): volume de refoulement d'air en début de course de la transmission à calage variable, défini par l'angle minimum de l'avance angulaire de la manivelle du vilebrequin à petite course lorsque la manivelle du vilebrequin à grande course se situe au point mort bas, en phase fin admission.

Vr (q maximum): volume de refoulement d'air en fin de course de la transmission à calage variable, défini par l'angle maximum de l'avance angulaire de la manivelle du vilebrequin à petite course lorsque la manivelle du vilebrequin à grande course se situe au point mort bas, en phase fin admission.

Caractéristiques et formules des rapports volumétriques du moteur à chambre de combustion à volume variable.

( Vl + V2 ) x nombre de groupes de 2 cylindres = cylindrée du moteur.

Vl + [ V2 - Vr (α) ] x nomb. de grp de 2 cyl. = cylindrée du moteur définie par le calage de la transmission à calage variable.

Vl + [ V2 - Vr (α) ] + ve = p. théorique ve + Va (α)

Caractéristique volumétrique théorique du moteur avec définition des rapports volumétriques agencés par le calage de la transmission à calage variable.

Vl + [ V2 - Vr (α minimum) ] + ve = p maximum ve + Va (q minimum)

Définition du rapport volumétrique maximum en début de course de la transmission à calage variable. En pratique, on peut considérer que Vr (α minimum) ne doit pas se déduire de V2 car trop négligeable.

Vl + [ V2 - Vr (α maximum) ] + ve = p minimum ve + Va (q maximum)

Définition du rapport volumétrique minimum en fin de course de la transmission à calage variable. En pratique, on peut considérer que Vr (q maximum) ne doit pas se déduire de V2 car la masse admise en Vl et V2 est tributaire de l'étalonnage mémorisé à la pression de suralimentation maximale.

On peut admettre une formule simplifiée du rapport volumétrique suivant que Va (α) se situe à n'importe quelle position angulaire entre le début et la fin de course de la transmission à calage variable soit :

Vl + V2 + ve

= P ve + Va (α)

Conformément à l'invention, le rapport volumétrique minimal sélectionné peut être réalisé entre deux limites de fin de course de la transmission à calage variable. La première limite est réalisée avec une avance angulaire maximale de la manivelle du vilebrequin à petite course (5) par rapport à la manivelle du vilebrequin à grande course (4) de façon à déterminer en fin de compression ( point mort haut du piston 6) le positionnement du piston (8) en rapport avec l'espace additionnel nécessaire à l'espace mort (24) pour définir le dit rapport volumétrique minimal avec un angle d'au moins 90° entre la bielle et la manivelle du vilebrequin à petite course (5), la deuxième limite est réalisée avec une moindre avance angulaire de la manivelle du vilebrequin à petite course (5) par rapport à la manivelle du vilebrequin à grande course (4) et ce proportionnellement à la diminution du rapport entre les deux cylindrées des deux cylindres (2,3) jusqu'à la limite de tolérance engendrée par l'espace de travail des deux vilebrequins (4,5) défini par les positions parallèles et rapprochées des deux cylindres groupés (2,3) suivant la formule du rapport volumétrique minimal ci-après:

Vl + [ V2 - Vr (q maximum) ] + ve = p minimum ve + Va (q maximum)

On peut calculer un plus grand rapport volumétrique entre les deux cylindrées des deux cylindres groupés afin de diminuer les contraintes d'efforts sur la transmission à calage variable sur les moteurs à plus petite cylindrée, à l'inverse on peut calculer un plus petit rapport volumétrique entre les deux cylindrées des deux cylindres groupés (2,3) afin d'augmenter la vitesse des moteurs à plus grande cylindrée.

En pratique, on peut considérer que Vr (q maximum) ne doit pas se déduire de V2, car la masse admise en Vl et V2 est tributaire de l'étalonnage mémorisé entre le rapport volumétrique et la pression de suralimentation.

Le rapport volumétrique maximal sélectionné est réalisé sur la base des données des valeurs dimensionnelles définies pour le rapport volumétrique minimal, de telle manière qu'en début de course de la transmission à calage variable, l'avance angulaire minimale de la manivelle du vilebrequin à petite course (5) par rapport à la manivelle du vilebrequin à grande course (4) détermine, en fin de compression (point mort haut du piston 6), le positionnement du piston (8) en rapport avec l'espace additionnel nécessaire à l'espace mort (24) pour définir un rapport volumétrique maximal avec la bielle (9) de la manivelle du vilebrequin à petite course (5) écartée de son point mort haut, afin que la dite bielle (9) forme un angle avec la manivelle du vilebrequin à petite course (5). On peut donc définir le rapport volumétrique maximal suivant la formule:

Vl + [ V2 - Vr (q minimum) ] + ve = P maximum ve + Va (q minimum)

En pratique, on peut considérer que Vr (çtminimum) ne doit pas se déduire de V2, car la masse d'air admise en Vl et V2 est tributaire de l'étalonnage mémorisé entre le rapport volumétrique et la dépression atmosphérique dans la pipe d'admission.

Les diagrammes sont établis à partir de la formule ci-après : a = point mort haut du petit cylindre (3) b = sommet du petit piston (8) s = surface du petit piston (8)

1 = longueur de la petite bielle (9) r = longueur du petit vilebrequin (5)

A = point mort haut du grand cylindre (2) B = sommet du grand piston (6) S = surface du grand piston (6) L = longueur de la grande bielle (7)

R = longueur du grand vilebrequin (4)

Vm = volume de l'espace mort (24)

A = rotation angulaire (0° au point mort haut) (sens anti-trigonométrique)

A = avance angulaire du petit vilebrequin (5) par rapport au grand vilebrequin (4)

Exemple pour rendre le moteur fonctionnel et performant suivant l'une des nombreuses applications .

V ≈ abx s + AB x S + Vm = s [r (t - cos(α 4- φ ) + i (l - 4 1 - (r/ 1) 2 sîπ 2 (α + φ)} }

+ S [R (l- cos α )H (l - π - (R/ L) 2 sîrr α ) ]

-t Vm

La formule ci-dessus enregistrée dans une feuille de calcul de l'ordinateur permet de générer les valeurs dimensionnelles entre les différents éléments du moteur, c'est à dire, les rapports volumétriques entre les deux cylindrées des deux cylindres groupés (2,3) et le rapport formé par le volume total des deux cylindrées de ces cylindres (2,3) avec le volume formé par l'espace mort (24), le calcul est établi de manière que les spécifications qui ont été prévues pour les rapports volumétriques maxima et minima du moteur puissent coïncider avec les degrés correspondants des avances angulaires minima et maxima de la manivelle du vilebrequin à petite course par rapport à la manivelle du vilebrequin à grande course respectivement du début et de fin de course de la transmission à calage variable.

Avantages pour le moteur à quatre temps à allumage par compression.

- augmentation du rendement volumétrique ;

- augmentation de la puissance massique ;

- diminution des pertes par frottements mécaniques ;

- adaptation du moteur à l'indice de cétane ;

- définition avec précision d'une température de fin de compression idéale pour l'auto-inflammation du carburant dans toutes les circonstances envisageables ( du démarrage à froid jusqu'aux hautes pressions de suralimentation) ;

- Meilleure performance du moteur en altitude ;

- minimisation des rejets d'oxyde d'azote et d'hydrocarbures imbrûlés.

Avantages pour le moteur à quatre temps à allumage commandé.

- augmentation du rendement volumétrique ;

- augmentation de la puissance massique ;

- diminution des pertes par frottements mécaniques et par pompages ; - augmentation du rendement du moteur en charges partielles, du fait de l'augmentation du taux de compression proportionnellement à la dépression dans la pipe d'admission. ( fermeture du papillon des gaz )

- adaptation du moteur à l'indice d'octane ; - meilleures performances du moteur en altitude ;

- meilleure homogénéité du mélange ;

- minimisation des rejets de monoxyde de carbone, d'oxydes d'azote et d'hydrocarbures imbrûlés.

Avantages et conditions d'utilisation du moteur à quatre temps à allumage par compression à haut taux de pression de suralimentation sur les véhicules tracteurs routiers.

La réduction de la cylindrée de chaque cylindre du moteur suivant le critère de la vitesse moyenne des pistons, permet une augmentation du régime moteur et une diminution cohérente des basses fréquences. Il sera prévu une plus grande démultiplication sur l'ensemble boîte de vitesses-arbre de transmission jusqu'à la

deuxième réduction du pont moteur. Comme le frottement mécanique est proportionnel à la cylindrée et peu sensible à la charge, le rendement s'en trouve amélioré. Le frein moteur pourra être maintenu en envisageant une augmentation de la puissance du moteur à l'appui d'un limiteur de vitesse sur le véhicule.

Dans la forme de la figure 6, la rigidité radiale entre le vilebrequin à petite course (5) et la transmission à calage variable (10) est renforcée.

Les arbres (12,13) sont fusionnés en un arbre unique de manière que l'arbre de transmission (35) portant le disque (40) soit associé au vilebrequin à petite course (5). Lorsque le vilebrequin à petite course est monté dans les paliers du carter cylindre, le manchon (36) équipé de ses pièces mécaniques (15,36,39,41,43,45,51) est fixé sur le disque (40) de l'arbre de transmission (35), en même temps que la fixation du palier (15) à travers l'orifice prévu dans le carter cylindre (1). Il découle d'un tel montage que l'arbre du vilebrequin à petite course est fixé axialement par le roulement (39), tandis que le manchon (36) est maintenu radialement par l'ensemble des paliers du vilebrequin à petite course par rapport au roulement (39).

En ce que les multiples parois d'enfermement du liquide de refroidissement entre les deux cylindres groupés en forme de V inversé se terminent par une simple paroi au niveau de la jonction des points morts hauts de ces dits cylindres, la dite paroi étant mise à profit pour être élargie en forme de canal sensiblement rectangulaire jusqu'au plan de culasse. Le passage des gaz entre les deux cylindres groupés par le dit canal permet aussi de concrétiser une chambre de combustion commune à ces dits cylindres.

Dans des formes de réalisation préférées et représentées, les canaux (32) sont situés uniquement dans le corps du carter cylindre et partiellement dans le joint de culasse ou dans l'épaisseur dudit joint de culasse.