Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INFRASTRUCTURE FOR ROBOTS IN HUMAN-CENTRIC ENVIRONMENTS
Document Type and Number:
WIPO Patent Application WO/2014/066690
Kind Code:
A2
Abstract:
To improve efficient use of robots in human-centric environments, robots have to overcome a number of challenges, including mobility challenges, physical interface challenges, self-maintenance challenges, security challenges, and safety challenges. These challenges can be overcome either by adding technology to a robot or by adding infrastructure to a robot's environment.

Inventors:
STEVENS ANDREW G (US)
GETTINGS ADAM M (US)
Application Number:
PCT/US2013/066695
Publication Date:
May 01, 2014
Filing Date:
October 24, 2013
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ROBOTEX INC (US)
International Classes:
G01S1/06
Foreign References:
US20110077802A12011-03-31
US20070219667A12007-09-20
US20120303160A12012-11-29
US8285482B22012-10-09
US20110240382A12011-10-06
Attorney, Agent or Firm:
LEVINE, David A. et al. (2400 Geng Road Suite 12, Palo Alto California, US)
Download PDF:
Claims:
CLAIMS

We claim:

1. A robot beacon navigation system comprising:

a building comprising two robot navigation beacons and/or tags at different locations in the building;

a sewer;

a mobile robot configured to wirelessly communicate directly or indirectly with the server, and wherein the robot is configured to receive a signal from the beacons and/or tags; wherein the robot is configured to send tlie signal received from the beacons and/or tags to the server, and wherein the sewer is configured to send instiiiction data to the robot in response to the signal received from at least one of the beacons and/or tags.

2. A method of controlling a mobile robot comprising:

positioning the robot in a building comprising two robot navigation beacons and/or tags at different locations in the building;

transmitting beacon data from the beacons and/or tags to the robot:

transmitting robot data from the robot to a sewer, wherein tlie robot data comprises at least a portion of the beacon data; and

transniitting instruction data from the server to the robot.

3. The method of Claim 2, wherein instruction data comprises data including the location of the robot with respect to the building.

4. The method of claim 2, wherein the instruction data comprises structions for the robot to perform a task.

5. A method of moving a robot through a doorway comprising:

closing a door i the doorway, wherem the door comprises an upper partition and a lower partition;

opening the lower partition with the robot while the upper partition remains closed; and

traversing the doorway with the robot.

6. The method of Claim 5, wherein the lower partition is segmented

7. The method of Claim 5, wherein opening comprises rotating the lower partition with respect to the upper partition.

S. The method of Claim 5, wherein opening comprises sliding the lower partition up:

9. The method of Claim 8, wherein opening comprises sliding the lower partition into the upper partition.

10. The method of Claim 8, wherein opening comprises sliding the lower partition adjacent to and out side of the upper partition.

11. The method of Claim 5, wherein opening comprises shding the lower partition down.

12. The method of Claim 5, wherein opening comprises forcing the lower partition along a carved track.

13. The method of Claim 5, wherein opening comprises sensing a signal emitted from the robot.

14. The method of Claim 5, wherem opening comprises turning a key by the robot.

15. The method of Claim 5, wherem opening comprises pressing a button on the door by the robot.

1 . The method of Claim 5, wherein opening comprises pulling on a handle on the door by the robot.

17. A door comprising:

an upper partition and a rigid lower partition; wherein the lower partition is configured to rotate with respect to the upper paitition; and

an actuator configured to unlock the lower paitition, wherein the actuator is configured to be activated by a mobile robot.

18. The door of Claim 17, wherein the upper paitiiion is configured to remain closed when the lower partition opens.

19. The door of Claim 17, wherein the actuator is configured to be activated by a mobile robot moving near the door.

20. The door of Claim 17, wherein the actuator is configured to open the door.

Description:
TITLE OF THE INVENTION

INFRASTRUCTURE FOR ROBOTS IN HUMAN-CENTRIC ENVIRONMENTS

Adam M. Gettings

Andrew G. Stevens

CROSS-REFERENCE TO RELATED APPLICATION

[00013 Hie present application claims priority to U.S. Provisional App. No.

61/718,019, fied 24 October 2012 which is herein incorporated by reference in its entirety.

TECHNICAL FIELD

[0002] This invention relates generally to the robotics field and more specifically to new and useful infrastructure for mobile robots.

BACKGROUND

[0003] There is tremendous complexity and a number of challenges in operating robots in human-centric environments, e.g. office buildings, factories, and homes. Human functionality is difficult to replicate in robots.

[0004] Thus, there is a need in the robotics field to create new infra structure for robots in human-centric environments. New infra structure for such purposes is desired.

[0005] Robots in human-centric environments often have to overcome a number of challenges, including mobility challenges, physical interface challenges, self-maintenance challenges, security challenges, and safety challenges. These challenges can be overcome either by adding technology to a robot or by adding infrastructure to a robot's environment. Adding infrastructure to a robot 's environment can be a one-time and/or incremental capital investment that can be amortized over many year and can support future upgrades as robot and sensor technologies evolve, possibly allowing multiple produc t generations of robots to be used simultaneously. Temporary and semi-pemianent installations can be used for short- term deployments such as construction sites, rock concerts, sporting events, etc.

SUMMARY OF THE INVENTION

[0006] Two of the major challenges faced by robots are mobility' and sustainability.

Mobility challenges can be solved by building infrastructure which can include buildings that can have door openers, special entrances, systems or structures for the robot to interact with that assist the robot to traverse between floors, navigation markers, and machine-readable tags. Mobility challenges can be solved by physical or virtual (software) enhancements to the robot, including mobility assistance devices, improved power management systems, card access systems, manipulator a ms, sensors (optical, sonic, mechanical etc.) and any other suitable robotic enhancements. Sustainability challenges, wliich can relate to keeping a robot operating in a continuous, self-sustaining mode (such that they may or may not require human maintenance/assistance to operate), can be solved by physical enhancements to the robot and'Or building infrastruc ture, which can include charging stations, accessory changing stations, storage stations, security patrol stations/checkpoints, data transferring stations, repair stations, anning stations, waste removal stations, and cleaning stations.

[0007] A robot beacon navigation system is disclosed. The system can include a building that has at least two robot navigation beacons and/or tags at different locations in the building. The building can have three or more beacons and/or tags. The system can have a server. The system can have a mobile robot configur ed to wirelessly communicate directly or indirectly with the server. The robot can be configured to receive a signal from the beacons and/or tags. The robot can be configured to send the signal received from the beacons and/or tags to the server. The server can be configured to send instruction data to the robot in response to the signal received from at least one of the beacons and or tags,

[0008] A method of controlling a mobile robot is disclosed. The method can include positioning the robot in a building have two, three, or more robot navigation beacons and or tags at different location in the building. The method can include transmitting beacon data from the beacons and or tags to the robot. The method can include transmitting robot data from the robot to a server. At least a portion of the robot data can mclude at least some of the beacon data, transmitting instruction data from the server to the robot.

[0009] A method of moving a robot through a doorway is disclosed. The method can include closing a door in the doorway. The door can have an upper partition and a lower partition. The method also can include opening the lower partition with the robot while the upper partition remains closed. The method can also include traversing the doorway with the robot,

[0010j A door is disclosed. The door can have an upper partition and a rigid lower partition. The lower partition can be configured to rotate with respect to the upper partition. The door can have an actuator configured to unlock the lower partition, wherein the actuator is configured to be activated by a mobile robot.

BRIEF DESCRIPTION OF THE FIGURES

[0011] FIGURES l a and. lb are sim lified views of a variation of the robotic system with the utility ami in retracted and extended configurations, respectively.

[0012] FIGURES lc and Id are simplified views of a variation of the robotic system with the utility arm in various orientations. The utility arm is shown twice in both figures to illustrate its rotation.

[00133 FIGURES 2a through 2c are partial views of variations of the robotic system with the utility aim in an extended configuration.

[0014] FIGURES 3a and 3b illustrate a variation of the three-pronged gripping device in the closed and open configurations, respectively.

[00153 FIGURES 4a and 4b illustr ate a variation of the robotic system with the hooked arm in various configurations.

[0016] FIGURE 5 illustrates a variation of the building with automatic door openers.

[00173 FIGURES 6a through 6d illustrate variations of a building with door adapters in an external configuration. FIGURE 6d is a cross-sectional view taken along the line X-X in FIGURE 6a and illustrates a variation of a building with door adapters in an internal configuration.

[00183 FIGURE 7a illustrates a variat ion of a building with robot door pulls. FIGURE

7b is an alterna te view of the building with variations of the robot door pull.

[00193 FIGURES 8a and 8b illustrate a variation of a building with robot doors embedded in existing doors.

[OO203 FIGURES 8c through 8g are variations of cross-sectional views taken along the line X-X in FIGURE 8 a and illustrate variations of the embedded robot door.

[00213 FIGURE 8h is a variation of cross-sectional view taken along the line Y-Y in

FIGURE 8a and illustrates a variation of the embedded robot door.

ΟΟ223 FIGURES 9a and 9b illustrate a variation of a building with half doors having latches in external and internal configurations, respectively.

[ΟΟ233 FIGURE 9c is a variation of a building with half doors. [0024] FIGURES 10a and I Ob illustrate a variation of a building with separate robot doors.

[0025] FIGURES lOe through 1 Og are cross-sectional views taken of a. variation along the line X-X in FIGURE 10a and illustrate variations of the separate robot door.

[0026] FIGURE lOh is a cross-sectional view of a variation of a taken along the line

Y-Y in FIGURE 10a and illustrates a variation of the separate robot door.

[0027] FIGURES 11 a and 1 l illustrate a variation of a building with robot ramps and elevators.

[0028] FIGURES 12a and 12b illustrate a variation of a building with one-way glass embedded in floor and ceiling tiles, respectively.

[0029] FIGURE 13a illustra tes a variation of a building with robot cargo nets.

[0030] FIGURES 13b and 13c are views of a variation of a building with variations of robot cargo nets.

[0031] FIGURE 14 illustrates a variation of the robotic system including tracks with climb assisting features.

[0032] FIGURE 15a illustrates a variation of the building with track systems.

[0033] FIGURES 15b through I5d are views of variations of the building and variations of the tr ack system for both internal and external use on a building.

[0034] FIGURES 16a and 16c illustrate varia tions of a building with robot ramps between floors.

[0035] FIGURE 17a illustrates a variatio of a building equipped with various robot navigation beacons and machine-readable tags.

[0036] FIGURES 17a- 1 a, 17a- lb, 17a-2a, and 17a-2b illustrate a variation of a robot equipped with variations of na vigation beacon detectors.

[0037] FIGURE 17b illustrates a variation of a robot equipped with devices capable of rea ding machine-readable tags.

[0038] FIGURE 18 illustrates a variation of the robot charging station.

[0039] FIGURE 1 a illustrates a variation of the building with the robot accessory changing station.

[0040] FIGURE 1 b is an alternate view of the building with, a variation of the robot accessory changing station. 0041 ] FIGURE 20 is a schematic view of a variation of components in a robot navigation beacon.

DETAILED DESCRIPTION

[0042] As shown in Figure 1, a robotic system 10 can be equipped with a utility elongated rod, bar, or ami 30. The robot system 10 can have a robot 20. The robot 20 can have a body 24. The robot 20 can have one or more front and rear flippers 22 having tracks and rotatably extending longitudinally away from the center of the body 24.

[0043] As shown in Figures la and lb, the utility ami 30 can be telescoping and can be extended and retracted using an actuator, hydraulics, piezos, or any other suitable method of extending or retracting the arm 30. The arm 30 can swivel on its base (i.e., where the arm connects to the body 24) to change the orientation of the utility ami 30 with respect to the robot 20 and can rotate about the longitudinal axis of the arm 30 to change the orientation of any devices attached to the aim 30.

[0044] As shown in Figures lc and Id. the utility bar 30 can be rotated (as shown by arrows) to manipulate (e.g., rotate and translate) objects in front of, behind, and on either side of the robot 20 and can be raised and lowered to manipulate objects at various heights. The utility ami 30 can be used to manipulate objects in the environment; for example, in a human- centric environment the arm 30 can be used to open doors, operate door-opening

mechanisms, turn off light switches, push elevator buttons, and/or perform any other suitable function. The utility arm 30 can be made of hard plastic, steel, aluminum, carbon fiber, or combinations thereof.

[0045] As shown in Figures 2a, 2b, and 2c, a utility ami 30 can be equipped with one or more attachments that can provide additional functionality to the utilit}- ami 30. As shown in Figure 2a, the attachment can include a manipulator device 40, which can be used to manipulate objects hi the environment; for example, in a human-centric environment the manipulating device 40 can be a hook and can be used to pull down on door handles, move furniture, unplug devices, type on a keyboard, pull a fire alarm, tow payloads, deliver dry cleaning, or combinations thereof.

[0046] As shown in Figure 2b, the attachment can include an access card or other key device 50, which can be used to gain entry into controlled access areas. The robot system 10 can be configured to physically swipe the key device 50 through a card reader or against a card reader (for example, similar to a "key fob" device). The key device 50 may be a "smart key" device, such that a radio pulse generator in the key is recognized by an antenna in the access system or building. The access system may automatically unlock the door upon the robot 20 entering the area with the key device 50 or upon the robot pressing a button o pulling a lever while holding the key device 50. The ke device 50 ma be built into the robot body 24 (e.g., not attached to the arm 30).

[0047] The identifica tion card 50 can be configured to be disabled if removed from the utility arm 30, for example, to ensure that only certain robots have access to the controlled area. The access card or other key device 50 can be disabled when removed from the ami 30. For example, the access card 50 can stop working when cut off from its power source, which can be connected through the arm 30. The access card 50 can be disabled when removed from the proximity of a wireless authentication device, such as a Bluetooth device or a radio- frequency identification tag reader on a robot 20, or when cut off from a power supply on a robot 20, when removed from the proximity of a building, when removed from the proximity of a wireless network of a building, when cut off from a proximity sensor located on a robot 20, when cut off from a decryption key provided by a computer o electronic circuit on a robot 20, or combinations thereof.

[0048] As shown in Figure 2c, the attaelmieiii can include an identifier, such as a flag or pennant 60, which can function to make humans aware of the robot, to identify and or distinguish between robots having similar appearances, to differentiate between robots with different functionalities and features (e.g. cleaning robots and security robots), and to make the robot appear more human-friendly. For example, a human following up with a robot 20 at an event site can more easily distinguish robots by a number, name, color, or other identifier on a pennant 60. The pennant 60 can be made of fabric, plastic, paper, rubber, or any other suitable material. A robot can also change the flag or pennants as the robot switches fmietionaiity (e.g., a secmity-indicating pennant when the robot is in a security mode, and a delivery- indicating pennant when the robot is in a delivery mode). An mobile device, such as a mobile phone, portable television, or tablet computer or laptop computer can be attached to the robot and can be used to identify the robot and provide 2- way communication with a user, operator, or other party (e.g. , through the mobile device) that may be interfacing with the robot's environment. 0049] Figures 3a and 3b illustrate ' that the utility rod or ami 30 can be equipped with a gripping device 70. The gripping device 70 can be used to manipulate objects in a hu nan- centrie environment, e.g. open doors. The gripping -device 70 can include three prongs 71, 72, and 73 , as shown in Figure 3b. The prongs can be curved prongs 71, 72, and 73, and can be concave and/or spoon-shaped, square -shaped, triangular, convex, hexagonal, mated to a specific door knob, handle, or interlace, or combinations thereof. The gripping device 70 can be made of a rigid material. The prongs can include a layer of protective material such as rubber, felt, or combinations thereof, for example, to prevent the gripper 70 from damaging objects, and to prevent objects in the environment from damaging the gripper 70. Tlie gripping device 70 can be opened, closed, and rotated about its own longitudinal axis using actuators, sprmgs, or any other suitable method or combinations thereof for opening, closing, and twisting the gripping device 70. The gripping device 70 can be used to manipulate objects in the environment; for example, in a human-centric environment the gripper 70 can be used to pull down on door handles, twist door knobs 31 , open containers, change light bulbs, operate water faucets, tighten and loosen screws, rum on lamps, change thermostat settings, reboot computers, install hot-swappable hard drives in a server, or combinations thereof.

[0050] A robot 20 can be equipped with an second utility arm 80, which can be a jointed arm and can be made of hard plastic, steel, carbon fiber, titanium, aluminum, or combinations thereof. As shown in Figures 4a and 4b, a robotic system 10 can have the arm 80. The arm 80 can be a single rigid, semi-rigid, or flexible segment. Tlie arm 80 can be comprised of two or more rigid segments connected by hinges, rotary joints, or any other suitable connectors. The segments can be controlled using actuators, hydraulics, or any other suitable method of controlling connectors. The appropriate length of each rigid segment in the jointed ami 80 can be calculated using the dimensions of a robot 20 and the width of the opening, but any suitable dimensions unrelated to the robot size can be used. For example, the arm and/or arm segments can be sized and configured to open a door and hold the door open a sufficient amount, such that the robot may pass through the open door without the ami blocking the robot's path. Tlie hooking ami 80 can be used to manipulate objects in the environment; for example, in a building 300 including a door 310 located inside a wall 320, the arm 80 can be used to hold doors open while humans and/or a robot 20 pass through. In a human-centric environment, the hooking ami 80 can be used to determine tlie position of a robot 20 relative to walk, doors, and other potential obstacles, push elevator buttons, and ' or any other suitable function.

[0051 J As shown in Figure 5, a building 300 can be equipped with automatic door openers 8 , which can be attached to existing doors, 310 and can integrate into existing access control systems. An automatic door opener 89 can be made entirely for robots, such that humans cannot use the automatic door opener but a robot 20 can; alternatively, an automatic door opener can be made for both robot and human use. A robot 20 can use an automatic door opener 89 to open a door 310; for example, a robot 20 can press a push button, swipe a valid access card, use a wireless remote, or communicate with a remote human or robot server to open, close, lock, and unlock doors.

[0052] As shown in Figure 6, a building 300 can be equipped with door adapters 90, which a robot 20 can use to manipulate a door 310 in a human-centric environment. As shown in Figures 6a, 6b, 6c, and 6d, the door adapter 90 can include a robot interface 91 and connectors 92, 93, 94, 95, respectively. The connectors may be external to the door, internal to the door, or a combination thereof. The robot interface 91 can be a push button, pin or wafer tumbler lock, combination lock, keypad, access card reader, magnetic lock, magnet, and'or any other suitable fastening device. The connector 92, 93, 4, 95 can be made of metal, chain, springs, and ' or any other suitable materiaL and can function to connect the robot interface 1 to the latching mechanism on the door. As shown in Figures 6a, 6b, 6c and 6d. connectors 92, 93, 94, 5, respectively, can be optimized for a variety of la telling

mechanisms, which can include a door knob 31 1, a lever-operated handle 312, a crash bar 313, and a sliding latch, respectively. A robot 20 can use a handle adapter 90 to open doors; for example, a robot 20 can insert a matching key into the robot interface 91 and turn the key to pull down on the connector 92, 93, 94, 95, which can apply a torque to the knob and unlatch the door.

[0053] As shown in Figures 7a and 7b, a building 300 can be equipped with door pulls 100, which a robot 20 can use to manipulate a door 310 in a human-centric

environment . The robot door pull 100 can include a layer of protective material such as rubber, felt, or any other suitable material to prevent a robot 20 from damaging door. As shown in Figures 7a and 7b, the doo pull 100 can include a magnet, hook, post, spring, or any other device that functions to keep a robot 20 in contact with a door 31 . A robot 20 can use a door pull 100 to push or pull doors; for example, a robot 20 can touch a magnet to a door pull 100 and pull the magnet, away to open a door. A. door pull 100 can be used in combination with, a handle adapter 90 and/or a. hooking mm 80; for example, a robot 20 can use a handle adapter 90 to unlatch door, then use a door pull 100 to open the door, and then use a jointed arm 80 to hold the door open while the robot 20 passes through.

[0054J A building can be equipped with robot doors thai can he embedded in or attached to existing full doors in doorways and/or in wails. The doors can be made from wood, metal, plastic, fabric, or combinations thereof. Robot doors and door frames can be scaled to the size of robots, for example about 10 inches tall by about 20 inches wide, or more narrowly about S inches tall by about 16 inches wide, such that typical humans cannot enter through the door but a robot is able to enter. A human mil door can be divided into one or more hinged partitions, for example, such that a robot can enter through a hinged lower partition of the full door, but the lower partition would be too small for a human to enter or at least significantly hinder the human trying to enter through the lower, robot partition. A garage-type door (e.g. a segmented door on a curved and or straight track) driven by a motor or other actuator can have multiple settings to allow different types of entry. For example, a garage-type door can rise entirely for a human or automobile to enter and can also rise only 8 inches to allow a robot to enter. A robot can have access to control some or all of the open settings of such a garage door for example, a robot can be cleared only to allow robot entry or can be cleared to allow both robot and human entry. A robot door can be opened and closed using actuators, hydraulics, magnets, or any oilier suitable method of opening and closing the door. In a human-centric environment, a robot can use a robot door to pas through doors and walls.

[0055] As shown in Figures Sa and 8b, a robot door 1 Ϊ 0 can be embedded in a fell door 310 and can hinge from one side or can be split in the lateral middle (e.g., with the split extending vertically) with hinges on both lateral sides of the door. The robot door 110 can have one or more panels at the terminal bottom of the full door 310. The robot door 110 can be a lower partition of the full door 310, and the remainder of the full door can be an upper partition of the full door 310. The robot door 110 can be rigid or flexible. When the robot door 110 is opened, the robot can move through the opening, partially or completely traversing the plane of the Ml door 310.

[0056] As shown in Figures 8c and 8d, the robot door 110 can be embedded in a door

310 and can slide up into the door or down into the floor. As shown in Figures Se and 8f, a robot door 110 can be embedded in a door 310 and can hinge from the door to open by swinging up or hinge from the floor to open by swinging down. As shown in Figures 8g and 8h, a robot door 110 can be embedded in a door 310 and can roll up or to the side. A robot 20 can use robot door 110 to pass through doors without manipulating the latch on the existing door 310; for example, robot 20 can press a push button to open a robot door 110.

[0057] The robot door 110 can be opened by an actuator receiving an "open" signal from a sensor sensing an encoded wired (e.g., by insertion of an access card into a card reader slot by the door)) or wireless signal, such as RF, Bluetooth, Wi-fi signals, or combinations thereof, emitted by the robot or an access card or chip on or held by the robot, or sent from a server caused by a communication from the robot (e.g., the robot sending the server the robot's coordinates causing the server to open the door). The actuator can unlock and/or open the robot door 110. The actuator can lock and/or close the robot door 110 after the robot traverses the doorway and is clear of the robot door 110 (e.g., detected by an IR sensor) or when the robot sends a signal to close the robot door 110. The upper partition can remain closed when the robot door opens 110.

[0058] As shown in Figures 9a and 9b, half doors and/ o partial doors 120 can be built into existing doors 310 or installed into existing doorframes. The height of a half door 120 can be optimized for a robot 20, and a sub-door 120 can include an external latching mechanism 121 or an internal latching mechanism 122. A latching mechanism 121 or 122 can be a sliding lock, deadbolt, access card reader, and/or any othe suitable latching mechanism. A partial door 120 can be equipped with a robot door handle or pull 100.

[0059] As shown in Figure 9c, a robot 20 can use a partial door 120 to pass through doors without manipulating the latch on the existing door 310; for example, a robot 20 can push a sliding latch 121 in the appropriate direction to unlatch the partial door 120.

[0060] As shown in Figures 10a and 10b, separate robot doors 130 can be built into existing wails 320 and can hinge from one side or can be split in the middle with hinges on both sides. As shown in Figures 10c and lOd, a separate robot door 130 can be embedded in a wall 320 and can slide up into the wall or down into the floor. As shown in Figures l Oe and lOf, a separate robot door 130 can be embedded in a wall 320 and can hinge from the wall to open by swinging up or hinge from the floor to open by swinging down. As shown in Figures lOg and I Oh. a separate robot door 130 can be embedded in a wall 320 and can roll up or to the side. A robot 20 can use a separate robot door 130 to pass through walls without manipulating existing doors; for example, a robot.20 can insert a matching key into a separate - robot door 130 and turn fee key to unlatch the robot door 130.

[0061 J A building can be equipped with one or more robot ramps and or robot elevators to allow robots to work at a variety of heights hi a human-centric environment. As shown in Figure 1 la, a robot ramp 138 can include an inclined plane and can be optimized for use with a piece of furniture or any other suitable object; for example, a robot 20 can drive up a robot ramp 38, park on a table 331, and perform tasks alongside human workers. As shown in Figure lib, a robot elevator 139 can include an appropriately-sized platform that can be raised and lowered using actuators, hydraulics, or any other suitable method of raising and lowering a platform. A robot can use a robot elevator 139 to change its elevation; for example, a robot 20 can drive onto the elevator 139, raise the platform to a height above a table 331, and make a visual recording of a business meeting.

[0062] A building can be equipped with panels of glass, such as plexiglass, safety glass, window glass, one-way glass, mirrored glass, tinted glass, and/or any other suitable transparent material that can be installed in walls, ceilings, and/or floors and can allow a robot to tr averse the building unhindered by obstacles presented by a himian-centric

environment. Glass tiles can be installed such that a robot can have access to the entire building or only certain areas. Glass tiles can enable a robot to record visually what is

happening in an area while being possibly out of sight and can create the possibility that events happening an area will be recorded, which can affect employee and/or citizen behavior. Glass tiles can also allow robot operators to quickly observe a room (via the robot cameras) without needing to enter it. As shown in Figure 12a, panels of one-way glass 140 can be embedded in floors and a robot 20 can drive in the space below the floor to perform security checks, maintenance tasks, and other activities without being seen. As shown hi Figur e 12b, panels of safety glass 140 can be embedded hi ceilings and a robot 20 can drive in the space above the ceiling.

[0063] A building can be equipped wife cargo nets, fences, scaffolding, ladders, trestles, and/or any other suitable material that can be attached to existing walls and can allow a robot to climb the building. Cargo nets can cover the entire exterior of a building or can partially cover a building, focusing on specific areas, and can provide optimum visibility for humans inside a building, allowing them to see through windows. As shown in Figure 13a, cargo nets 148 can be designed to support a robot's weight but not a human's weight such that a robot can climb a cargo net 148 but even a small human casnot. As shown in Figures 13b and 13c, building can be equipped with cargo nets 148 thai are nearly vertical or cargo nets 148 that are angled with respect to to the building. A robot can use a cargo net 148 to climb a building, access the roof, perform, security checks, and/or perform any other suitable task.

[0064] A robot can be equipped with tracks, which can include climb assist functionality to assist a robotic system in climbing various objects. Climb assisting

nationality can include hooking protrusions extending from a robotic system track that can grab and pull on an object and also allow a robot to drive regularly on a surface without damaging it. As shown hi Figure 14, hooking protrusions 149 can be optimized to grab the threads of a cargo net or wires of a c ham- link fence 148. A robot 20 can use tracks with hooking protrusions 149 to climb cargo nets 148, ladders, rope ladders, scaffolding, fences, trestles, and or any other suitable materials.

[0065] As shown in Figures 15a to 5d, a building can be equipped with one or more robot track systems 150, which can be attached to existing walls, floors, ceilings, and/or any other suitable objects or locations and can be made for internal or external use on a building. A tr ack system 150 can include one or more parallel tr acks 151 along which a robot 20 can travel and perform tasks. A track system can be encased in a clear tube, as shown in cross section in Figures 15c and 15d. In some embodiments, the tubes may be made of glass, plexiglass, hard plastic, or any other suitable material. As shown in Figures 15a, 15b. and 15c, a robot 20 can use an external track system 150 to investigate reports of suspicious activity outside building entrances, collect current weather data, wash windows, record when personnel enter and leave the building, access the roof, and or any other suitable task. As shown in Figure 15d, a robot 20 can use an internal track system 150 to monitor building cleanliness, wash windows, record conferences, convey inter-building messages and deliveries, guide visitors to their destinations, and or any other suitable task. As shown in Figure I5d, the track may be elevated above the ground. In some embodiments, the tracks (and tubes) may ran through walls and up and down levels, thus obviating the need for special robot doors, ramps, elevators, or other access devices and systems. Alternatively, a building can be equipped with one or more veitical and/or horizontal ladders and a robot can use hooked tracks 149 to climb along the ladders. 0066] As shown in Figures 16a- 16c, a building can be equipped with one or more robot ramps 160, which a robot 20 can use to traverse between floors. As shown in Figure 16a, a robot ramp 160 can be built into an existing wall 320 such that humans cannot, access the ramp 160 but robots can. A robot ramp 160 can include openings 1 1, which can be robot doors 130 and can include any suitable latching mechanism. As shown in Figures 16b and 1 c, a ram 160 can be circular and can be optimally sized for a robot 20 to prevent or at least hinder use by humans.

[0067] A building can be equipped with robot navigation radio signal emitters or beacons and/or one or more machine-readable inductive or passive signal tags (e.g., RFID tags), which can be attached to objects or locations such as existing doors, existing walls, wall supports, ceiling tiles, underneath floor tiles or carpeting, inside power outlets or conduit, o windows, inside HVAC vents, inside lights, inside network or communicatio boxes, inside baseboards or crown molding, inside fur iture, inside file cabinets, on industrial shelving, inside waste receptacles, or combinations thereof. Protective material can be used on a robot and/or a building, wall, floor, ceiling, door and/or fiimiture to prevent scuffs and other damage to the robot and/or building, wall, floor, ceiling, door and/or furniture as a robot navigates around a building, and navigation beacons or tags can be embedded within or printed on the protective material, such as a baseboard. As shown in Figure 17a, a building 300 ca be equipped with robot navigation beacons that can provide a robot 20 with

information. For example, the information can be for determining current location, direction of tra vel, an upcoming obstacle and or turn in a hallway, speed of movement of the robot, the strength of beaco batteries, or combinations thereof.

[0068] Robot navigation beacons can include radio frequency emitters at known locations and a robot 20 can use trilateration, triangulation, and/or other suitable methods to calculate its position. For example, a navigation beacon can be a cellular base station 170, a radio broadcasting station 171, a GPS satellite, and/or any oflier suitable emitter. The robot navigation beacons can be passively emitting Radio Frequency Identification (RFID) tags, or any other suitable passively enabled circuit that requires an antenna to receive an

electromagnetic signal and power the circuit, and or re-transmit a response signal.

[0069] As shown in Figure 17a, robot navigation beacons can include sonic emitters and a robot 20 can use sonar to calculate its position; for example, a navigation beacon can be an mfrasonic emitter 172, an ultrasonic emitter 173, and or any othe suitable sonic emitter. 0070] As shown in Figure 17a, robot navigation beacons can include wireless access points and a robot . 20 can measure the received signal strength to calculate its position; for example, a navigation beacon can be a wireless router 174, a Bluetooth device, a cellular communications tower, a computer with a wireless Bluetooth or WiFi connection, a wireless repeater, a 3G/4G/LTE radio modem, any type of wireless sensor, laser signals, fibe optics, and or any other suitable device that provides a wireless connection to a wired network.

[0071 ] As shown in Figure 17a, robot navigation beacons can include light emitters and a robot 20 can use one or more suitable methods to calculate its position; for example, a navigation beacon can be a visible light emitter, an infrared (IR) emitter 175, and ' or any other suitable light emitter.

[0072] The robot can be equipped with one or more devices that can detect robot navigation beacons and can include antennas, ultrasonic sensors, WiFi radios, Bluetooth radios, cameras, IR detectors, and or any other suitable sensor. As shown in Figures 17a- 1 and Figure 17a-2, a robot 20 can be equipped with one or more sensor arrays 178, which can include one or more∑R detectors 179 and or any other suitable device, and can be used to enable direction sensitivity. For example, as shown i Figure 17a- la and Figure 17a- lb, a robot 20 can be eqmpped with a horizontal circular sensor anay 178 that can include three or more IR detec tors 179-1, 179-2, 179-3. As the robot 20 moves, different pairs of IR detectors 179-1, 179-2, 179-3 will detect wall-mounted robot navigation beacons 175-1, 175-2; the robot can use this information to determine its position and direction of tra vel. As another example, as shown in Figure 17a-2a and Figure 17a-2b, robot navigation beacons 175-3, 175- 4 can be mounted on the ceiling 330 and a robot 20 can be equipped with a vertical circular sensor array 178. The robot can be equipped with a camera and can use machine vision to process visual iiifomiation on a navigation beacon, which can include QR odes, arrows, or other coded visual cues that can direct a robot to turn left, slow down, turn right, watch for other robots crossing, or any other suitable operating instruction.

[0073] A robot can use a combination of data from imaging devices, na vigation beacons, and ' or diagrams of a building to generate a real-time map of a building as it patrols the building performing tasks. A robot can use this technique of simultaneous localization and mapping to avoid obstacles and or log data that might be important to humans occupying the building; for example, a robot can generate a real-time map of a hallway, compare the current map to a previous map of the hallway, and immediately notice an object on the ground or an area roped off for construction or remodeling . The robot can then avoid the obstacle, capture an image of the objec t, and relay the image to a remote human who can identify the object and give the robot further instructions.

[0074] A robot's interaction with navigation beacons can be recorded on a server. The robot can move from beacon to beacon according to route command from the server. For example, the robot 20 can detect robot navigation beacons 175-1, 175-2, and this interaction can be transmitted by the robot or the beacon to the server, and analyzed and recorded on a server. The robot can send additional robot performance, audio, video, environmental, and location data to the server optionally along with beacon data transmitted to or sensed by the robot from the beacon. The beacon can transmit data to the server optionally along with robot data transmitted to the beacon. The server can then send (i.e., wired or wirelessly transmit) command or instruction data to the robot, for example, instructing the robot to move to beacon 175-4. replace the battery in beacon 175-2, empty the garbage bin in a nearby room, perform another task, or combinations thereof.

[0075] Figure 20 illustrates that the robot navigation beacons can have one or more visible or infrared lights 250. The lights can turn on to indicate that a robot is nearby. The beacon lights 250 can be used in emergency situations to guide humans toward a building exit.

[0076] Robot navigation beacons can be powered using a power source 252 such as one or more batteries, AC power from the wall, and/or any other suitable power supply. The beacons can be turned on and off by the server depending on whether or not there is a robot in the area. For example, if there are no robots in an area surrounding a beacon, a server can turn the beacon off to conserve power. The server can communicate over a wireless or wired connection with the beacon. Beacons can have a wake-on activity function to conserve power. For example a robot can transmit a wafceup signal to all beacons in the vicinity, and the beacons can be awakened and respond with location information, and/or other operating instructions.

[0077] The beacons can have a CPU and/or MCU 254, a radio 256, a robot detector

258, and an emitter 260. The radio 256 can be configured to communicate with the server and/or the robots. Signals and power between the components on the beacon can travel in the directions shown by the arrows hi Figure 20. 0078] As shown in Figme 17a, a building 300 can be equipped with one or more machine-readable tags that, can provide a robot 20 with information for performing security checks, safety checks, maintenance tasks, and self-sustainability tasks, and which can include door type, room number, location, when the garbage was last emptied, and the size and layout of a room. Machine-readable tags can pro vide inputs to the robot, such as instructions for actions, identifications of people or objects, or any other suitable input. Machine-readable tags can include emitters and a robot 20 can receive a signal; for example, a machine- readable tag can be a laser/infrared emitter 181, a sonic emitter 182, and/or any other suitable emitter. (As used herein, beacons can merely be tags.)

[0079] As shown in Figure 17a, machine-readable tags ca include displays of encoded information and a robot 20 can process the displayed image; for example, a machine-readable tag can be a quick response (QR) code 183 and or any other suitable displ ay of encoded information.

[0080] As shown in Figme 7a, machine-readable tags can include devices that store passive identifications linked to a database and a robot 20 can associate the stored

identifications with corresponding entries in the database; for example, a machine-readable tag can be a radio-frequency identification (RFID) tag 184, a barcode 185, and/or any other suitable device that stores infonnation.

[0081] As shown in Figure 17b, a robot 20 can be equipped with one or more devices

186 that ca read information from machine-readable tags and can include infrared detectors, QR readers, RFID readers, and bar code scanners.

[0082] A building can be equipped with one or more robot battery charging stations, which can be disguised to look like cabinets, bookshelves, lockers, furniture, and/or any other suitable object. As shown in Figme 18, a robot charging station 190 can include an entr ance and exit ramps 191 and 193, which can be made of hard plastic, metal, and/or any other suitable material. A robot battery charging station 1 0 can include a robot battery charger 192, which can be simple, fast, inductive, solar, USB-based, or any other suitable type of battery charger. A robot 20 can use a charging station 190 to recharge its battery; for example, a robot 20 can drive up the entrance ramp 191, settle into an appropriate position above an inductive charger 192, and drive down the exit ramp 193 when its battery is folly charged. |0083] Alternatively,, a robot can be equipped with a solar charger and can park in a designated sunlit area to recharge; for example, a robot can park outside of the building, on the roof, on a balcony, next to an open window, or in any other suitable location.

[0084] Alternatively, robot batteries can be mechanically swapped out and charged separately, or a non-rechargeable battery can be replaced, and a robot can make sine it lias enough batteries in a battery magazine. I a situation where a battery magazine runs low. a robot can phone in an order for more batteries from a supplier or human maintenance worker and possibly receive the batteries from a shipping service or human worker and restock the battery magazine by itself.

[0085] A building can be equipped with one or more robot accessory changing stations, which can be disguised to look like cabinets, bookshelves, lockers, fiuniture, and/or any other suitable object. As shown in Figures 19a and 9b, a building 300 can be equipped with a robot accessory changing station 200, which can allow a robot 20 to adapt its

functionality with different payioads 202. A robot accessory changing station 200 can contain one or more accessories 202, which can include a utility arm 30, jointed arm 80. access cards, keys, and magnets. A robot payload station 200 can include a waste receptacle 203 where a robot 20 can em ty trash cans and vacuum bags. A robot payload station 200 can include a robot cleaning system 204 and a robot 20 can drive through a robot cleaner 205 to be cleaned. A robot payload station 200 can include a robot battery charger 192, and a robot 20 can park near an inductive charger to rechar ge its battery. Alternatively, a payload station 200 can include a magazine of robot ba tteries and a robot 20 can exchange and/or replace it s battery.

[0086] Robots, elements, and method described hi U.S. Patent No. 8,100,205, issued

January 24, 2012 and U.S. Patent Application No. 13/740,928, filed January 14, 2013 are incorporated by reference herein.

[0087] As a person skilled in the art will recognize from the previous detailed description and from the figures and claims, modifications, change and combinations of disclosed elements and methods can be made to the variations disclosed without departing from the scope of the disclosure.