Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INHIBITION OF RAF KINASE USING SYMMETRICAL AND UNSYMMETRICAL SUBSTITUTED DIPHENYL UREAS
Document Type and Number:
WIPO Patent Application WO/1999/032436
Kind Code:
A1
Abstract:
This invention relates to the use of a group of aryl ureas in treating raf mediated diseases, and pharmaceutical compositions for use in such therapy.

Inventors:
MILLER SCOTT
OSTERHOUT MARTIN
DUMAS JACQUES
KHIRE UDAY
LOWINGER TIMOTHY BRUNO
RIEDL BERND
SCOTT WILLIAM J
SMITH ROGER A
WOOD JILL E
GUNN DAVID
RODRIGUEZ MARELI
WANG MING
Application Number:
PCT/US1998/026081
Publication Date:
July 01, 1999
Filing Date:
December 22, 1998
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BAYER AG (US)
International Classes:
A61K31/17; A61K31/357; A61K31/36; A61K31/38; A61K31/381; A61K31/428; C07C275/28; A61K31/44; A61K31/4402; A61K31/4406; A61K31/4409; A61K31/4412; A61K31/4418; A61K31/4427; A61K31/4433; A61K31/4436; A61K31/4439; A61K31/47; A61K31/505; A61P35/00; A61P43/00; C07C275/24; C07C275/30; C07C275/32; C07C275/36; C07C275/38; C07C275/40; C07C323/44; C07D213/02; C07D213/04; C07D213/32; C07D213/40; C07D213/50; C07D213/60; C07D213/65; C07D213/68; C07D213/69; C07D213/70; C07D213/74; C07D213/75; C07D213/81; C07D213/89; C07D215/20; C07D239/24; C07D239/38; C07D241/12; C07D277/32; C07D277/68; C07D307/20; C07D317/48; C07D317/64; C07D319/08; C07D333/02; C07D401/04; C07D401/12; C07D409/12; C07D209/00; C07D213/00; (IPC1-7): C07C275/24; C07D213/02; C07D333/02; A61K31/17; A61K31/38; A61K31/44
Domestic Patent References:
WO1996025157A11996-08-22
Foreign References:
US5429918A1995-07-04
US5470882A1995-11-28
Other References:
See also references of EP 1049664A4
Attorney, Agent or Firm:
Traverso, Richard J. (White Zelano & Braniga, P.C. Arlington Courthouse Plaza 1 Suite 1400 2200 Clarendon Boulevard Arlington VA, US)
Download PDF:
Claims:
WHAT IS CLAIMED IS:
1. A compound of formula I: wherein A is R3, R4, R'and R'are each, independently, H, halogen, NO2, C110 alkyl, optionally substituted by halogen up to perhaloalkyl, Cl l0alkoxy, optionally substituted by halogen up to perhaloalkoxy, C6 2 aryl, optionally substituted by C110 alkyl or C110 alkoxy, or C512 hetaryl, optionally substituted by C110 alkyl or CI10 alkoxy, and one of R3R6 can beXY; or two adjacent R3R6 can together be an aryl or hetaryl ring with 512 atoms, optionally substituted by C110alkyl, C110alkoxy, C310cycloalkyl, C210alkenyl, C512hetaryl;C612aralkyl,C612alkaryl,halogen;NR1R1;C110alkanoyl,C612aryl, NO2;CF3 ; COOR1; NHCOR1; CN; CONR1R1; SO2R2; SO2; SR2 ; in which R' is H or C,., oalkyl and R2 is C110alkyl, optionally substituted by halogen, up to perhalo withS (O2) optionally incorporated in the aryl or hetaryl ring; W"W, Ans are independently H, halogen, C,C, o alkyl, optionally substituted by halogen up to perhaloalkyl, C,C, o alkoxy optionally substituted by halogen up to perhaloalkoxy or XY, and either one of R4', R5' or R6' is XY or two adjacent of R4, R5 and R6 together are a hetaryl ring with 512 atoms optionally substituted by alkoxy,C310cycloalkyl,C210alkenyl,C110alkanoyl,C110 hetarylorC612aralkyl;C612aryl,C512 R6'is additionallyNHCOR',NR'COR'or NO2; R'is C110alkyl optionally substituted by halogen up to perhalo; R3 is H, halogen, C,C,,, alkyl optionally substituted by halogen up to perhaloalkyl, C,C, o alkoxy, optionally substituted by halogen up to perhaloalkoxy; X isCH2,S,N (CH3),NHC (O) CH2S,SCH2,C (O), or0 ; and X is additionally a single bond where Y is pyridyl; and Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodiaxane, benzopyridine or benzothiazole, each optionally substituted by C110alkyl, C110alkoxy, halogen, OH,SCH3, NO2 or, where Y is phenyl, by or a pharmaceutically acceptable salt thereof, with the proviso that if X is O or S, R3' and R6' are H, and Y is phenyl unsubstituted by OH, then R6 is alkoxy.
2. A compound according to claim 1, having a pKa greater than 10.
3. A compound according to claim 1, wherein R3 is halogen or C,, 0alkyl, optionally substituted by halogen, up to perhaloalkyl; R4 is H, halogen or NO2; W is H, halogen or C110 alkyl ; R6 is H, C110 alkoxy, thiophene, pyrole or methyl substituted pyrole, R3'is H, halogen, CH3, or CF3 and Rs is H, halogen CH3, CF3 orOCH3.
4. A compound according to claim 1, wherein R3 is C4C10alkyl, Cl, F or CF3; R4 is H, Cl, F or NO2; Rs is H, Cl, F or C¢, oalkyl; and R6 is H or OCH3.
5. A compound according to claim 4, wherein R3 or Rs is tbutyl.
6. A compound according to claim 1, wherein X isCH2,N (CH3) or NHC (O).
7. A compound according to claim 6, wherein Y is phenyl or pyridyl.
8. A compound according to claim 1, wherein X is0.
9. A compound according to claim 8, wherein Y is phenyl, pyridyl pyridone or benzothiazole.
10. A compound according to claim 1, wherein X isS.
11. A compound according to claim 10, wherein Y is phenyl or pyridyl.
12. A compound of the formula.
13. A pharmaceutical composition comprising a compound of claim 1, and a physiologically acceptable carrier.
14. A pharmaceutical composition comprising a compound of claim 12, and a physiologically acceptable carrier.
15. A method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of formula II: wherein A is B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6member aromatic structure containing 04 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted it is substituted by one or more substituents selected from the group consisting of halogen, up to perhalo, and Wn, wherein n is 03 and each W is <BR> <BR> <BR> independently selected from the group consisting ofCN,CO2R',C (O) NR7R7,<BR> <BR> <BR> <BR> <BR> C (O)R',N02,OR',SR',NR'R',NR'C (O) OR',NR'C (O) R', ClCl0 alkyl C1C10alkoxy,C3C10cycloalkyl,C6C14aryl,C7C24alkaryl,C3C13C2C10alkenyl, heteroaryl, C4C23 alkheteroaryl, substituted ClClo alkyl, substitutedC2Clo alkenyl, substituted ClCl0 alkoxy, substituted C3Clo cycloalkyl, substituted C4C23 alkheteroaryl and QAr; wherein if W is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of CN, CO2R7, C (O) R7, C (O) NR7R7, OR7, SR7, NR7R7, N02,NR7C (O) R',NR'C (O) OR' and halogen up to perhalo; wherein each R7 is independently selected from H, C1C10 alkyl, C2C10 alkenyl, C6C14aryl,C3C13hetaryl,C7C24alkaryl,C4C23cycloalkyl, alkheteroaryl, up to perhalosubstituted ClCl0 alkyl, up to perhalo substituted C2 Cl0 alkenyl, up to perhalosubstituted C3Cl0 cycloalkyl, up to perhalosubstituted C6C, 4 aryl and up to perhalosubstituted C3CI3 hetaryl, wherein Q isO,S,N (R7), (CH2)m, C(O), CH(OH), (CH2)mO, NR7C(O),C(O)NR7,(CH2)mS,(CH2)mN(R7),O(CH2)m,NR7C(O)NR7R7, S(CH2)mandN(R7)(CH2)m,CHxa,CXa2, m = 13, and Xa is halogen; and Ar is a 510 member aromatic structure containing 02 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by halogen up to perhalo and optionally substituted byznl, wherein nl is 0 to 3 and each Z is independently selected from the group consisting of of CN, CO2R7, C (O) NR7R7,C (O) NR',NO2,OR7,SR7,NR'R',NR'C (O) OR',C (O) R', NR'C (O) R', C1C10 alkyl, C3C10 cycloalkyl, C6C14 aryl, C3C13 hetaryl, C7C24 alkaryl, C4C23 alkheteroaryl, substituted C1C10 alkyl, substituted C3C10 cycloalkyl, substituted C7C24 alkaryl and substituted C4C23 alkheteroaryl ; wherein the one or more substituents of Z is selected from the group consisting ofCN,CO2R', C (O) NR7R7,OR7,SR7,NO2,NR7R7,NR7C (O) R' andNR'C (O) OR7, R4', R5'and R6'are each independently H, halogen, C110alkyl, optionally substituted by halogen up to perhaloalkyl, C,C, o alkoxy, optionally substituted by halogen up to perhaloalkoxy orXY, and either one ,R5'orR6'isXYortwoadjacentofR4',R5'andR6'R4' together are a hetaryl ring with 512 atoms optionally substituted by C110 alkyl, C110 alkoxy, C31 o cycloalkyl, C210 alkenyl, C110 alkanoyl, C612 aryl, C512 hetaryl or C6, z aralkyl; additionallyNHCOR1,NR1COR1orNO2;R6'is R'is C,, 0 alkyl optionally substituted by halogen up to perhalo; R3 is independently H, halogen, C110 alkyl, optionally substituted by halogen up to perhaloalkyl, Cl alkoxy, optionally substituted by halogen up to perhaloalkoxy; X isCH2,S N (CH3), NHC (O),CH2S,C (O), or0 ; X is additionally a single bond where Y is pyridyl; and Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodioxane, benzopyridine or benzothiazole, each optionally substituted by C,.alkyl, C,., oalkoxy, halogen, OH,SCH3, or N02 or, where Y is phenyl, by or a pharmaceutically acceptable salt thereof.
16. A method according to claim 15, comprising administering a compound of formula IIa: wherein A is R3, R4 ,R5 and R6 are each independently H, halogen, NO2, C"0alkyl, optionally substituted by halogen up to perhaloalkyl, or C110alkoxy, optionally substituted by halogen up to perhaloalkoxy, C612 aryl, optionally substituted by C, l0 alkyl or CI10 alkoxy, or cl hetaryl, optionally substituted by C110 alkyl or C110 alkoxy, and one of R3R6 can beXY; or two adjacent R3R6 can together be an aryl or hetaryl ring with 512 atoms, optionally substituted by C110alkyl, C110alkoxy, C310cycloalkyl, C210alkenyl, C512hetaryl,C612alkaryl,halogen;NR1R1;NO2;CF3;C110alkanoyl;C612aryl, COOR1; NHCOR1; CN; CONR1R1; SO2R2; SOR2; SR2 ; in which R'is H or C110alkyl, optionally substituted by halogen, up to perhalo and W is C110alkyl, optionally substituted by halogen, up to perhalo, withSO2optionally incorporated in the aryl or hetaryl ring, and R3R6 are as defined in claim 15.
17. A method according to claim 16, wherein R3 is halogen or C110 alkyl, optionally substituted by halogen, up to perhaloalkyl; R4 is H, halogen or NO2; W is H, halogen or C110 alkyl ; R6 is H [or] C,, 0alkoxy, thiophene, pyrole or methylsubstituted pyrole R3' is H, halogen, CH3, or CF3 and H,halogen,CH3,CF3orOCH3.R6'is.
18. A method according to claim 16, wherein X isCH2, [or]S, N (CH2) or NHC(O) and Y is phenyl or pyridyl.
19. A method according to claim 16, wherein X is0and Y is phenyl, pyridone, pyrimidine, pyridyl or benzothiazole.
Description:
INHIBITION OF RAF KINASE USING SYMMETRICAL AND UNSYMMETRICAL SUBSTITUTED DIPHENYL UREAS Field of the Invention This invention relates to the use of a group of aryl ureas in treating raf mediated diseases, and pharmaceutical compositions for use in such therapy.

Background of the Invention The p21ra5 oncogene is a major contributor to the development and progression of human solid cancers and is mutated in 30% of all human cancers (Bolton et al. Ann.

Rep. Med. Chem. 1994,29,165-74; Bos. Cancer Res. In its normal, unmutated form, the ras protein is a key element of the signal transduction cascade directed by growth factor receptors in almost all tissues (Avruch et al. Trends Biochem. Sci. Biochemically, ras is a guanine nucleotide binding protein, and cycling between a GTP-bound activated and a GDP-bound resting form is strictly controlled by ras'endogenous GTPase activity and other regulatory proteins.

In the ras mutants in cancer cells, the endogenous GTPase activity is alleviated and, therefore, the protein delivers constitutive growth signals to downstream effectors such as the enzyme raf kinase. This leads to the cancerous growth of the cells which carry these mutants (Magnuson et al. Semin. Cancer Biol. It has been shown that inhibiting the effect of active ras by inhibiting the raf kinase signaling pathway by administration of deactivating antibodies to raf kinase or by co- expression of dominant negative raf kinase or dominant negative MEK, the substrate of raf kinase, leads to the reversion of transformed cells to the normal growth phenotype (see: Daum et al. Trends Biochem. Sci. Fridman et al. J.

Biol. Chem. 1994,269,30105-8. Kolch et al. (Nature have further indicated that inhibition of raf expression by antisense RNA blocks cell proliferation

in membrane-associated oncogenes. Similarly, inhibition of raf kinase (by antisense oligodeoxynucleotides) has been correlated in vitro and in vivo with inhibition of the growth of a variety of human tumor types (Monia et al., Nat. Med. 1996,2,668-75).

Summary of the Invention The present invention provides compounds which are inhibitors of the enzyme raf kinase. Since the enzyme is a downstream effector of p21=, the instant inhibitors are useful in pharmaceutical compositions for human or veterinary use where inhibition of the raf kinase pathway is indicated, e. g., in the treatment of tumors and/or cancerous cell growth mediated by raf kinase. In particular, the compounds are useful in the treatment of human or animal cancers, e. g., murine, solid cancers, since the progression of these cancers is dependent upon the ras protein signal transduction cascade and therefore susceptible to treatment by interruption of the cascade, i. e., by inhibiting raf kinase. Accordingly, the compounds of the invention are useful in treating solid cancers, such as, for example, carcinomas (e. g., of the lungs, pancreas, thyroid, bladder or colon), myeloid disorders (e. g., myeloid leukemia) or adenomas (e. g., villous colon adenoma).

The present invention, therefore, provides compounds generally described as aryl ureas, including both aryl and heteroaryl analogues, which inhibit the raf pathway.

The invention also provides a method for treating a raf mediated disease state in humans or mammals. Thus, the invention is directed to compounds and methods for the treatment of cancerous cell growth mediated by raf kinase, comprising administering a compound of Formula I wherein wherein A is

R3, R4, R5 and R6 are each, independently, H, halogen, NO2, C1-10- alkyl, optionally substituted by halogen up to perhaloalkyl, C1-10-alkoxy, optionally substituted by halogen up to perhaloalkoxy, C6, 2 aryl, optionally substituted by C,-, o alkyl or C1-10 alkoxy, or C5-12 hetaryl, optionally substituted by C1-10 alkyl or C,, 0 alkoxy, and one of R3-R6 can be-X-Y; or two adjacent R3-R6 can together be an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C1-10-alkyl, C1-10-alkoxy, C3-10-cycloalkyl, C2-10-alkenyl, C5-12-hetaryl;C6-12-aralkyl,C6-12-alkaryl,halogen;NR1R1;C1-1 0-alkanoyl,C6-12-aryl, -COOR1;-NHCOR1;-CN;-CONR1R1;-SO2R2;-SOR2;-SR2;inwhichR1-NO2; -CF3; is H or C1-10-alkyl and R2 is C,., o-alkyl, optionally substituted by halogen, up to perhalo with-S (02)-optionally incorporated in the aryl or hetaryl ring; R4', R5' and R6' are independently H, halogen, C,-C, o alkyl, optionally substituted by halogen up to perhaloalkyl, or by C,-C, o alkoxy optionally substituted by halogen up to perhaloalkoxy or-X-Y, and either one of R4', Rs or R6 is-X-Y or two adjacent of R4, R5' and R6' together are a hetaryl ring with 5-12 atoms optionally substituted by C1-10alkyl,

C3-10cycloalkyl,C2-10alkenyl,C1-10alkanoyl,C6-12aryl,C5-12C1 -10alkoxy, hetaryl or C6, 2 aralkyl; R6'is additionally-NHCOR',-NR'COR'or NO2; R'is C, lo alkyl optionally substituted by halogen up to perhalo; R3 is H, halogen, C,-C, o alkyl optionally substituted by halogen up to perhaloalkyl, C1-C10 alkoxy, optionally substituted by halogen up to perhaloalkoxy; X is-CH2-,-S--N (CH3)-,-NHC (O)--CH2-S-,-S-CH2-,-C (O)-, or-0- ; and X is additionally a single bond where Y is pyridyl; and Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodioxane, benzopyridine or benzothiazole, each optionally substituted by C, _, o-alkyl, C1-10-alkoxy, halogen, OH,-SCH3, NO2 or, where Y is phenyl, by or a pharmaceutically acceptable salt thereof, with the proviso that if X is-0-or-S-, R3 and R6 are H, and Y is phenyl unsubstituted by OH, then R6 is alkoxy.

Preferably, R3 is halogen or C1-10- alkyl, optionally substituted by halogen, up to perhaloalkyl; R4 is H, halogen or NO2; R5 is H, halogen or C1-10- alkyl ; and R6 is H or C1-10- alkoxy. More preferably, R'is C4-,,,-alkyl, Cl, F or CF3; R4 is H, Cl, F or NO2; R5 is H, Cl, F or C4_, o-alkyl; and R6 is H or OCH3. Still more preferably, R3 or R4 is t- butyl. X is preferably-CH2-or-S-and Y is phenyl or pyridyl, or X is-0-and Y is preferably phenyl, pyridyl or benzthiazole.

The invention is also directed to a compound of the formula The invention is further directed to a method for the treatment of a cancerous cell growth mediated by raf kinase, comprising administering a compound of Formula II: wherein A is

B is a substituted or unsubstituted, up to tricyclic aryl or heteroaryl moiety of up to 30 carbon atoms with at least one 6-member aromatic structure containing 0-4 members of the group consisting of nitrogen, oxygen and sulfur, wherein if B is substituted it is substituted by one or more substituents selected from the group consisting of halogen, up to per-halo, and Wn, wherein n is 0-3 and each W is independently selected from the group consisting of-CN,-C02R,-C (O) NR7R7, -C (O)-R',-NO2,-OR',-SR',-NR'R',-NR'C (O) OR',-NR'C (O) R7, Cl-C, o alkyl, C1-C10alkoxy,C3-C10cycloalkyl,C6-C14aryl,C7-C24alkaryl,C3-C1 3C2-C10alkenyl, heteroaryl, substitutedC1-C10alkyl,substitutedC3-C10alkheteroaryl, cycloalkyl, alkenyl,substitutedC1-C10alkoxy,substitutedC4-C23C2-C10 alkheteroaryl and Q-Ar; wherein if W is a substituted group, it is substituted by one or more substituents independently selected from the group consisting of-CN,-CO2R', -C (O) R7,-C (O) NR7R7, -OR7, -SR7, -NR7R7, N02,-NR7C (O) R7,-NR7C (O) OR' and halogen up to per-halo; wherein each R7 is independently selected from H, C2-Clo alkenyl, C1-C10 alkyl, Cj-Ctocycloalkyi,Ce-Caryl,C-Chetaryl,C-Calkaryl,C-C alkheteroaryl, up to per-halosubstituted C1-C10 alkyl, up to per-halosubstituted C2- <BR> <BR> Clo alkenyl, up to per-halosubstituted C3-CIo cycloalkyl, up to per-halosubstituted<BR> <BR> C6-C14 aryl and up to per-halosubstitutedC3-C, 3hetaryl, wherein Q is-O-,-S-,-N (R')-,-(CH2)-m,-C (O)-,-CH (OH)-,-(CH2) mO-,

-C(O)NR7-,-(CH2)mS-,-(CH2)mN(R7)-,-O(CH2)m-,-NR7C(O)NR7R7-,- NR7C(O)-, -S-(CH2)m-and-N(R7)(CH2)m-,-CHXa,-CXa2-, m = 1-3, and Xa is halogen; and Ar is a 5-10 member aromatic structure containing 0-2 members of the group consisting of nitrogen, oxygen and sulfur, which is unsubstituted or substituted by <BR> <BR> <BR> <BR> halogen up to per-halo and optionally substituted by Zn,, wherein n1 is 0 to 3 and each Z is independently selected from the group consisting of -CN, -CO2R7, -C (O) NR7R7, -C (O)- NR',-N02,-OR',-SR7,-NR'R',-NR'C (O) OR',-C (o) R', alkyl,C3-C10cycloalkyl,C6-C14aryl,C3-C13hetaryl,C7-C24-NR7C( O)R7,C1-C10 alkaryl, C4-C23 alkheteroaryl, substituted C1-C10 alkyl, substituted C3-C10 cycloalkyl, substituted C7-C24 alkaryl and substituted C4 C23 alkheteroaryl; wherein the one or more substituents of Z is selected from the group consisting of-CN,-CO2R', -C(O)NR7R7,-NO2,-NR7R7,-NR7C(O)R7and-NR7C(O)OR7,-SR7, R4, R5 and R6 are each independently H, halogen, C1-10- alkyl, optionally substituted by halogen up to perhaloalkyl, C1-C10 alkoxy, optionally substituted by halogen up to perhaloalkoxy or-X- Y, and either one of R4, R5 or R6 is-X-Y or two adjacent of R4, R5 and R6 together are a hetaryl ring with 5-12 atoms optionally substituted by Cl. 0 alkyl, C1-10 alkoxy, C2-10alkenyl,C1-10alkanoyl,C6-12aryl,C5-12hetarylorC6-12cycl oalkyl, aralkyl; R6'is additionally-NHCOR',-NR'COR'or NO2; R'is Cl-, o alkyl optionally substituted by halogen up to perhalo;

R3 is independently H, halogen, C1-10 alkyl, optionally substituted by halogen up to perhaloalkyl, C,. optionally substituted by halogen up to perhaloalkoxy; X is-CH2-,-S-,-N (CH3)-,-NHC (O)-,-CH2-S-,-C (O)-, or-0- ; X is additionally a single bond where Y is pyridyl; and Y is phenyl, pyridyl, naphthyl, pyridone, pyrazine, pyrimidine, benzodioxane, benzopyridine or benzothiazole, each optionally substituted by C, _, o-alkyl, C,, 0-alkoxy, halogen, OH,-SCH3, or NOZ or, where Y is phenyl, by

or a pharmaceutically acceptable salt thereof.

Preferably, compounds of formula II are of formula IIa:

wherein R3, R4, R5 and R6 are each independently H, halogen, NO2, C1-10- alkyl, optionally substituted by halogen, up to perhaloalkyl, or C1-10-alkoxy, optionally substituted by halogen, up to perhalo; and one of R3-R6 can be-X-Y; or two adjacent R3-R6 can together be an aryl or hetaryl ring with 5-12 atoms, optionally substituted by C1-10- alkyl, C2-10-alkenyl,C1-C10-alkanoyl;C6-12-aryl,C5-12-C3-C10-cycloa lkyl, hetaryl, -NR1;-NO2;-CF3;-COOR1;-NHCOR1;-CN;halogen; -CONR1R1; -SO2R2; -SOR2; -SR2 ; in which R'is H or C1-10-alkyl, optionally substituted by halogen, up to perhalo, and R2 is C1-10-alkyl, optionally substituted by halogen, up to perhalo.

In formula I, suitable hetaryl groups B include, but are not limited to, 5-12 carbon- atom aromatic rings or ring systems containing 1-3 rings, at least one of which is aromatic, in which one or more, e. g., 1-4 carbon atoms in one or more of the rings can be replaced by oxygen, nitrogen or sulfur atoms. Each ring typically has 3-7 atoms.

For example, B can be 2-or 3-furyl, 2-or 3-thienyl, 2-or 4-triazinyl, 1-, 2-or 3- pyrrolyl, 1-, 2-, 4-or 5-imidazolyl, 1-, 3-, 4-or 5-pyrazolyl, 2-, 4-or 5-oxazolyl, 3-, 4- or 5-isoxazolyl, 2-, 4-or 5-thiazolyl, 3-, 4-or 5-isothiazolyl, 2-, 3-or 4-pyridyl, 2-, 4-, 5-or 6-pyrimidinyl, 1,2,3-triazol-1-,-4-or-5-yl, 1,2,4-triazol-1-,-3-or-5-yl, 1-or 5- tetrazolyl, 1,2,3-oxadiazol-4- or-5-yl, 1,2,4-oxadiazol-3- or-5-yl, 1,3,4-thiadiazol-2- <BR> <BR> <BR> <BR> or-5-yl, 1,2,4-oxadiazol-3- or-5-yl, 1,3,4-thiadiazol-2- or-5-yl, 1,3,4-thiadiazol-3- or-5-yl, 1,2,3-thiadiazol-4- or-5-yl, 2-, 3-, 4-, 5-or 6-2H-thiopyranyl, 2-, 3-or 4-4H- thiopyranyl, 3-or 4-pyridazinyl, pyrazinyl, 2-, 3-, 4-, 5-, 6-or 7-benzofuryl, 2-, 3-, 4-, 5-, 6-or 7-benzothienyl, 1-, 2-, 3-, 4-, 5-, 6-or 7-indolyl, 1-, 2-, 4-or 5- benzimidazolyl, 1-, 3-, 4-, 5-, 6-or 7-benzopyrazolyl, 2-, 4-, 5-, 6-or 7-benzoxazolyl, 3-, 4-, 5-6-or 7-benzisoxazolyl, 1-, 3-, 4-, 5-, 6-or 7-benzothiazolyl, 2-, 4-, 5-, 6-or 7-benzisothiazolyl, 2-, 4-, 5-, 6-or 7-ben-1,3-oxadiazolyl, 2-, 3-, 4-, 5-, 6-, 7-or 8- quinolinyl, 1-, 3-, 4-, 5-, 6-, 7-, 8-isoquinolinyl, 1-, 2-, 3-, 4-or 9-carbazolyl, 1-, 2-, 3-, 4-, 5-, 6-, 7-, 8-or 9-acridinyl, or 2-, 4-, 5-, 6-, 7-or 8-quinazolinyl, or additionally optionally substituted phenyl, 2-or 3-thienyl, 1,3,4-thiadiazolyl, 3-pyrryl, 3-pyrazolyl, 2-thiazolyl or 5-thiazolyl, etc. For example, B can be 4-methyl-phenyl, 5-methyl-2- thienyl, 4-methyl-2-thienyl, 1-methyl-3-pyrryl, 1-methyl-3-pyrazolyl, 5-methyl-2- thiazolyl or 5-methyl-1,2,4-thiadiazol-2-yl.

Suitable alkyl groups and alkyl portions of groups, e. g., alkoxy, etc. throughout include methyl, ethyl, propyl, butyl, etc., including all straight-chain and branched isomers such as isopropyl, isobutyl, sec-butyl, tert-butyl, etc.

Suitable aryl groups include, for example, phenyl and 1-and 2-naphthyl.

Suitable cycloalkyl groups include cyclopropyl, cyclobutyl, cyclohexyl, etc. The term "cycloalkyl", as used herein, refers to cyclic structures with or without alkyl <BR> <BR> <BR> substitutents such that, for example,"C4 cycloalkyl"includes methyl substituted

cyclopropyl groups as well as cyclobutyl groups. The term"cycloalkyl"also includes saturated heterocyclic groups.

Suitable halogen groups include F, Cl, Br, and/or I, from one to per-substitution (i. e., all H atoms on a group replaced by a halogen atom) being possible where an alkyl group is substituted by halogen, mixed substitution of halogen atom types also being possible on a given moiety.

The present invention is also directed to pharmaceutically acceptable salts of Formula I. Suitable pharmaceutically acceptable salts are well known to those skilled in the art and include basic salts of inorganic and organic acids, such as hydrochloric acid, hydrobromic acid, phosphoric acid, methanesulphonic acid, trifluoromethanesulfonic acid, sulphonic acid, acetic acid, trifluoroacetic acid, malic acid tartaric acid, citric acid, lactic acid, oxalic acid, succinic acid, fumaric acid, maleic acid, benzoic acid, salicylic acid, phenylacetic acid, and mandelic acid. In addition, pharmaceutically acceptable salts include acid salts of inorganic bases, such as salts containing alkaline cations (e. g., Li+ Na+ or K+), alkaline earth cations (e. g., Mg+2, Ca+2 or Ba+2), the ammonium cation, as well as acid salts of organic bases, including aliphatic and aromatic substituted ammonium, and quaternary ammonium cations such as those arising from protonation or peralkylation of triethylamine, N, N-diethylamine, N, N- dicyclohexylamine, pyridine, N, N-dimethylaminopyridine (DMAP), 1,4- diazabicyclo [2.2.2] octane (DABCO), 1,5-diazabicyclo [4.3.0] non-5-ene (DBN) and 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU).

A number of the compounds of Formula I possess asymmetric carbons and can therefore exist in racemic and optically active forms. Methods of separation of enantiomeric and diastereomeric mixtures are well known to one skilled in the art.

The present invention encompasses any isolated racemic or optically active form of compounds described in Formula I which possess Raf kinase inhibitory activity.

The compounds of Formula I may be prepared by use of known chemical reactions and procedures. Nevertheless, the following general preparative methods are presented to aid one of skill in the art in synthesizing the inhibitors, with more

detailed examples being presented in the experimental section describing the working examples.

General Preparative Methods The compounds of Formula I may be prepared by the use of known chemical reactions and procedures, some from starting materials which are commercially available. Nevertheless, general preparative methods are provided below to aid one skilled in the art in synthesizing these compounds, with more detailed examples being provided in the experimental section which follows.

Substituted anilines may be generated using standard methods (March. Advanced <BR> <BR> <BR> Organic Chemistry, 3rd Ed.; John Wiley: New York (1985). Larock. Comprehensive Organic Transformations; VCH Publishers: New York (1989)). As shown in Scheme I, aryl amines are commonly synthesized by reduction of nitroaryls using a metal catalyst, such as Ni, Pd, or Pt, and H2 or a hydride transfer agent, such as formate, cyclohexadiene, or a borohydride (Rylander. Hydrogenation Methods; Academic Press: London, UK (1985)). Nitroaryls may also be directly reduced using a strong hydride source, such as LiAlH4 (Seyden-Penne. Reductions by the Alumino-and Borohydrides in Organic Synthesis; VCH Publishers: New York (1991)), or using a zero valent metal, such as Fe, Sn or Ca, often in acidic media. Many methods exist <BR> <BR> <BR> for the synthesis of nitroaryls (March. Advanced Organic Chemistry, 3 Ed.; John Wiley: New York (1985). Larock. Comprehensive Organic Transformations; VCH Publishers: New York (1989)). H2/catalyst / (eg. Ni, Pd, Pt) \ ArNO2 1H-l o ArNH2 nnco) (eg. Fe, Sn, Ca) Scheme I Reduction of Nitroaryls to Aryl Amines Nitroaryls are commonly formed by electrophilic aromatic nitration using HNO3, or an alternative NO2+ source. Nitroaryls may be further elaborated prior to reduction.

Thus, nitroaryls substituted with

potential leaving groups (eg. F, Cl, Br, etc.) may undergo substitution reactions on treatment with nucleophiles, such as thiolate (exemplified in Scheme II) or phenoxide.

Nitroaryls may also undergo Ullman-type coupling reactions (Scheme II). 02N ARSH ArSH X\9FXBase I S-air Bu-air /9 2 Cu0/base 3

Scheme II Selected Nucleophilic Aromatic Substitution using Nitroaryls Nitroaryls may also undergo transition metal mediated cross coupling reactions. For example, nitroaryl electrophiles, such as nitroaryl bromides, iodides or triflates, undergo palladium mediated cross coupling reactions with aryl nucleophiles, such as arylboronic acids (Suzuki reactions, exemplified below), aryltins (Stille reactions) or arylzincs (Negishi reaction) to afford the biaryl (5).

Either nitroaryls or anilines may be converted into the corresponding arenesulfonyl chloride (7) on treatment with chlorosulfonic acid. Reaction of the sulfonyl chloride with a fluoride source, such as KF then affords sulfonyl fluoride (8). Reaction of sulfonyl fluoride 8 with trimethylsilyl trifluoromethane in the presence of a fluoride source, such as tris (dimethylamino) sulfonium difluorotrimethylsiliconate (TASF) leads to the

corresponding trifluoromethylsulfone (9). Alternatively, sulfonyl chloride 7 may be reduced to the arenethiol (10), for example with zinc amalgum. Reaction of thiol 10 with CHC1F2 in the presence of base gives the difluoromethyl mercaptam (11), which may be oxidized to the sulfone (12) with any of a variety of oxidants, including CrO3-acetic anhydride (Sedova et al. Zh. Org. Khim. 1970,6, (568). S02CI R CIS03H, R----- \ ; R 7 6 K ; n (Hg) X S02F SH [-Ji-D 0!-JLL-D SR 8 S R 10 (Me2N) 3S Me3SiF2 CHCIF2 Me3SiCF3 base SCHF2 / i 9 w R 11 2r [°] S02CHF2 "67L-R 12

Scheme III Selected Methods of Fluorinated Aryl Sulfone Synthesis As shown in Scheme IV, non-symmetrical urea formation may involve reaction of an aryl isocyanate (14) with an aryl amine (13). The heteroaryl isocyanate may be synthesized from a heteroaryl amine by treatment with phosgene or a phosgene equivalent, such as trichloromethyl chloroformate (diphosgene), bis (trichloromethyl) carbonate (triphosgene), or N, N'-carbonyldiimidazole (CDI). The isocyanate may also be derived from a heterocyclic carboxylic acid derivative, such as an ester, an acid halide or an anhydride by a Curtius-type rearrangement. Thus, reaction of acid derivative 16 with an azide source, followed by rearrangement affords the isocyanate. The corresponding carboxylic acid (17) may also be subjected to Curtius-type rearrangements using diphenylphosphoryl azide (DPPA) or a similar reagent.

Scheme IV Selected Methods of Non-Symmetrical Urea Formation Finally, ureas may be further manipulated using methods familiar to those skilled in the art.

The invention also includes pharmaceutical compositions including a compound of Formula I, and a physiologically acceptable carrier.

The compounds may be administered orally, dermally, parenterally, by injection, by inhalation or spray, or sublingually rectally or vaginally in dosage unit formulations.

The term'administration by injection'includes intravenous, intraarticular, intramuscular, subcutaneous and parenteral injections, as well as use of infusion techniques. Dermal administration may include topical application or transdermal administration. One or more compounds may be present in association with one or more non-toxic pharmaceutically acceptable carriers and if desired other active ingredients.

Compositions intended for oral use may be prepared according to any suitable method known to the art for the manufacture of pharmaceutical compositions. Such compositions may contain one or more agents selected from the group consisting of

diluents, sweetening agents, flavoring agents, coloring agents and preserving agents in order to provide palatable preparations. Tablets contain the active ingredient in admixture with non-toxic pharmaceutically acceptable excipients which are suitable for the manufacture of tablets. These excipients may be, for example, inert diluents, such as calcium carbonate, sodium carbonate, lactose, calcium phosphate or sodium phosphate; granulating and disintegrating agents, for example, corn starch, or alginic acid; and binding agents, for example magnesium stearate, stearic acid or talc. The tablets may be uncoated or they may be coated by known techniques to delay disintegration and adsorption in the gastrointestinal tract and thereby provide a sustained action over a longer period. For example, a time delay material such as glyceryl monostearate or glyceryl distearate may be employed. These compounds may also be prepared in solid, rapidly released form.

Formulations for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.

Aqueous suspensions containing the active materials in admixture with excipients suitable for the manufacture of aqueous suspensions may also be used. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydroxypropyl-methylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethylene oxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol such as polyoxyethylene sorbitol monooleate, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan monooleate. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n-propyl p-hydroxybenzoate, one or more coloring agents, one

or more flavoring agents, and one or more sweetening agents, such as sucrose or saccharin.

Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above. Additional excipients, for example, sweetening, flavoring and coloring agents, may also be present.

The compounds may also be in the form of non-aqueous liquid formulations, e. g., oily suspensions which may be formulated by suspending the active ingredients in a vegetable oil, for example arachis oil, olive oil, sesame oil or peanut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.

Pharmaceutical compositions of the invention may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or arachis oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate. The emulsions may also contain sweetening and flavoring agents.

Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a demulcent, a preservative and flavoring and coloring agents.

The compounds may also be administered in the form of suppositories for rectal or vaginal administration of the drug. These compositions can be prepared by mixing the drug with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature or vaginal temperature and will therefore melt in the rectum or vagina to release the drug. Such materials include cocoa butter and polyethylene glycols.

Compounds of the invention may also be administrated transdermally using methods known to those skilled in the art (see, for example: Chien;"Transdermal Controlled Systemic Medications" ; Marcel Dekker, Inc.; 1987. Lipp et al. W094/04157 3Mar94). For example, a solution or suspension of a compound of Formula I in a suitable volatile solvent optionally containing penetration enhancing agents can be combined with additional additives known to those skilled in the art, such as matrix materials and bacteriocides. After sterilization, the resulting mixture can be formulated following known procedures into dosage forms. In addition, on treatment with emulsifying agents and water, a solution or suspension of a compound of Formula I may be formulated into a lotion or salve.

Suitable solvents for processing transdermal delivery systems are known to those skilled in the art, and include lower alcohols such as ethanol or isopropyl alcohol, lower ketones such as acetone, lower carboxylic acid esters such as ethyl acetate, polar ethers such as tetrahydrofuran, lower hydrocarbons such as hexane, cyclohexane or benzene, or halogenated hydrocarbons such as dichloromethane, chloroform, trichlorotrifluoroethane, or trichlorofluoroethane. Suitable solvents may also include mixtures of one or more materials selected from lower alcohols, lower ketones, lower carboxylic acid esters, polar ethers, lower hydrocarbons, halogenated hydrocarbons.

Suitable penetration enhancing materials for transdermal delivery system are known to those skilled in the art, and include, for example, monohydroxy or polyhydroxy alcohols such as ethanol, propylene glycol or benzyl alcohol, saturated or unsaturated Ca-C, 8 fatty alcohols such as lauryl alcohol or cetyl alcohol, saturated or unsaturated C8-C, 8 fatty acids such as stearic acid, saturated or unsaturated fatty esters with up to 24 carbons such as methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl,

tertbutyl or monoglycerin esters of acetic acid, capronic acid, lauric acid, myristinic acid, stearic acid, or palmitic acid, or diesters of saturated or unsaturated dicarboxylic acids with a total of up to 24 carbons such as diisopropyl adipate, diisobutyl adipate, diisopropyl sebacate, diisopropyl maleate, or diisopropyl fumarate. Additional penetration enhancing materials include phosphatidyl derivatives such as lecithin or cephalin, terpenes, amides, ketones, ureas and their derivatives, and ethers such as dimethyl isosorbid and diethyleneglycol monoethyl ether. Suitable penetration enhancing formulations may also include mixtures of one or more materials selected from monohydroxy or polyhydroxy alcohols, saturated or unsaturated C8-Cl8 fatty alcohols, saturated or unsaturated Cg-Cjg fatty acids, saturated or unsaturated fatty esters with up to 24 carbons, diesters of saturated or unsaturated discarboxylic acids with a total of up to 24 carbons, phosphatidyl derivatives, terpenes, amides, ketones, ureas and their derivatives, and ethers.

Suitable binding materials for transdermal delivery systems are known to those skilled in the art and include polyacrylates, silicones, polyurethanes, block polymers, styrenebutadiene copolymers, and natural and synthetic rubbers. Cellulose ethers, derivatized polyethylenes, and silicates may also be used as matrix components.

Additional additives, such as viscous resins or oils may be added to increase the viscosity of the matrix.

For all regimens of use disclosed herein for compounds of Formula I, the daily oral dosage regimen will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily dosage for administration by injection, including intravenous, intramuscular, subcutaneous and parenteral injections, and use of infusion techniques will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily vaginal dosage regime will preferably be from 0.01 to 200 mg/Kg of total body weight. The daily topical dosage regimen will preferably be from 0.1 to 200 mg administered between one to four times daily. The transdermal concentration will preferably be that required to maintain a daily does of from 0.01 to 200 mg/Kg. The daily inhalation dosage regimen will preferably be from 0.01 to 10 mg/Kg of total body weight.

It will be appreciated by those skilled in the art that the particular method of administration will depend on a variety of factors, all of which are considered routinely when administering therapeutics. It will also be understood, however, that the specific dose level for any given patient will depend upon a variety of factors, including, the activity of the specific compound employed, the age of the patient, the body weight of the patient, the general health of the patient, the gender of the patient, the diet of the patient, time of administration, route of administration, rate of excretion, drug combinations, and the severity of the condition undergoing therapy. It will be further appreciated by one skilled in the art that the optimal course of treatment, i. e., the mode of treatment and the daily number of doses of a compound of Formula I or a pharmaceutically acceptable salt thereof given for a defined number of days, can be ascertained by those skilled in the art using conventional treatment tests.

The compounds of Figure I are producible from known compounds (or from starting materials which, in turn, are producible from known compounds), e. g., through the general preparative methods shown above. The activity of a given compound to inhibit raf kinase can be routinely assayed, e. g., according to procedures disclosed below. The following examples are for illustrative purposes only and are not intended, nor should they be construed to limit the invention in any way.

The entire disclosure of all applications, patents and publications cited above and below, are hereby incorporated by reference, including provisional application (Attorney Docket Number Bayer 6 V1), filed on December 22,1997, as SN 08/996,344 and converted on December 22,1998.

EXAMPLES All reactions were performed in flame-dried or oven-dried glassware under a positive pressure of dry argon or dry nitrogen, and were stirred magnetically unless otherwise indicated. Sensitive liquids and solutions were transferred via syringe or cannula, and introduced into reaction vessels through rubber septa. Unless otherwise stated, the term'concentration under reduced pressure'refers to use of a Buchi rotary evaporator at approximately 15 mmHg.

All temperatures are reported uncorrected in degrees Celsius (°C). Unless otherwise indicated, all parts and percentages are by weight.

Commercial grade reagents and solvents were used without further purification. Thin- layer chromatography (TLC) was performed using Whatmane pre-coated glass-backed silica gel 60A F-254 250 um plates. Visualization of plates was effected by one or more of the following techniques: (a) ultraviolet illumination, (b) exposure to iodine vapor, (c) immersion of the plate in a 10% solution of phosphomolybdic acid in ethanol followed by heating, (d) immersion of the plate in a cerium sulfate solution followed by heating, and/or (e) immersion of the plate in an acidic ethanol solution of 2,4-dinitrophenylhydrazine followed by heating. Column chromatography (flash chromatography) was performed using 230-400 mesh EM Sciences silica gel.

Melting points (mp) were determined using a Thomas-Hoover melting point apparatus or a Mettler FP66 automated melting point apparatus and are uncorrected. Fourier transform infrared sprectra were obtained using a Mattson 4020 Galaxy Series spectrophotometer. Proton ('H) nuclear magnetic resonance (NMR) spectra were measured with a General Electric GN-Omega 300 (300 MHz) spectrometer with either <BR> <BR> <BR> <BR> Me4Si (d 0.00) or residual protonated solvent (CHC13 6 7.26; MeOH 8 3.30; DMSO 8 2.49) as standard. Carbon ("C) NMR spectra were measured with a General Electric GN-Omega 300 (75 MHz) spectrometer with solvent (CDCL, 8 77.0; MeOD-d3; 8 49.0; DMSO-d6 8 39.5) as standard. Low resolution mass spectra (MS) and high resolution mass spectra (HRMS) were either obtained as electron impact (EI) mass spectra or as fast atom bombardment (FAB) mass spectra. Electron impact mass spectra (EI-MS) were obtained with a Hewlett Packard 5989A mass spectrometer equipped with a Vacumetrics Desorption Chemical Ionization Probe for sample introduction. The ion source was maintained at 250 °C. Electron impact ionization was performed with electron energy of 70 eV and a trap current of 300 uA. Liquid- cesium secondary ion mass spectra (FAB-MS), an updated version of fast atom bombardment were obtained using a Kratos Concept 1-H spectrometer. Chemical ionization mass spectra (CI-MS) were obtained using a Hewlett Packard MS-Engine

(5989A) with methane or ammonia as the reagent gas (lx104 torr to 2.5x 104 torr).

The direct insertion desorption chemical ionization (DCI) probe (Vaccumetrics, Inc.) was ramped from 0-1.5 amps in 10 sec and held at 10 amps until all traces of the sample disappeared (-1-2 min). Spectra were scanned from 50-800 amu at 2 sec per scan. HPLC-electrospray mass spectra (HPLC ES-MS) were obtained using a Hewlett-Packard 1100 HPLC equipped with a quaternary pump, a variable wavelength detector, a C-18 column, and a Finnigan LCQ ion trap mass spectrometer with electrospray ionization. Spectra were scanned from 120-800 amu using a variable ion time according to the number of ions in the source. Gas chromatography -ion selective mass spectra (GC-MS) were obtained with a Hewlett Packard 5890 gas chromatograph equipped with an HP-1 methyl silicone column (0.33 mM coating; 25 m x 0.2 mm) and a Hewlett Packard 5971 Mass Selective Detector (ionization energy 70 eV). Elemental analyses are conducted by Robertson Microlit Labs, Madison NJ.

All compounds displayed NMR spectra, LRMS and either elemental analysis or HRMS consistant with assigned structures.

List of Abbreviations and Acronyms: AcOH acetic acid anh anhydrous BOC tert-butoxycarbonyl conc concentrated dec decomposition DMPU 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H)-pyrimidinone DMF N, N-dimethylformamide DMSO dimethylsulfoxide DPPA diphenylphosphoryl azide EtOAc ethyl acetate EtOH ethanol (100%) EtO diethyl ether Et3N triethylamine m-CPBA 3-chloroperoxybenzoic acid MeOH methanol

pet. ether petroleum ether (boiling range 30-60 °C) THF tetrahydrofuran TFA trifluoroacetic acid Tf trifluoromethanesulfonyl A. General Methods for Synthesis of Substituted Anilines Al. Synthesis of 2, 5-Dioxopyrrolidinylanilines

Step To a solution of 4-tert-butyl-2-nitroaniline (1.04 g, 5.35 mmol) in xylene (25 mL) was added succinic anhydride (0.0535 g, 5.35 mmol) and triethylamine (0.75 mL, 5.35 mmol). The reaction mixture was heated at the reflux temp. for 24 h, cooled to room temp. and diluted with Et2O (25 mL). The resulting mixture was sequentially washed with a 10% HCl solution (50 mL), a saturated NH4Cl solution (50 mL) and a saturated NaCl solution (50 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was purified by flash cromatography (60% EtOAc/40% hexane) to yield the <BR> <BR> <BR> succinimide as a yellow solid (1.2 g, 86%): mp 135-138 °C;'H NMR (CHCL) 8 1.38 (s, 9H), 2.94-2.96 (m, 4H), 7.29-7.31 (m, 1H), 7.74-7.78 (m, 1H), 8.18-8.19 (m, 1H).

Step 2.5-tert-Butyl-2- (2, 5-dioxo-1-pyrrolidinyl) aniline : To a solution of 4-tert- butyl-l- (2, 5-dioxo-l-pyrrolidinyl)-2-nitrobenzene (1.1 g, 4.2 mmol) in EtOAc (25 mL) was added a 10% Pd/C (0.1 g). The resulting slurry was placed under a H2

atmosphere using 3 cycles of an evacuate-quench protocol and was allowed to stir under a H2 atmosphere for 8 h. The reaction mixture was filtered through a pad of Celites and the residue was washed with CHC13. The combined filtrate was concentrated under reduced pressure to yield the desired aniline as an off-white solid (0.75 g, 78%): mp 208-211 °C;'H-NMR (DMSO-d6) 8 1.23 (s, 9H), 2.62-2.76 (m, 4H), 5.10 (br s, 2H), 6.52-6,56 (m, 1H), 6.67-6.70 (m, 2H).

A2. General Method for the Synthesis of Tetrahydrofuranyloxyanilines

Step To a solution of 4- tert-butyl-2-nitrophenol (1.05 g, 5.4 mmol) in anh THF (25 mL) was added 3- hydroxytetrahydrofuran (0.47 g, 5.4 mmol) and triphenylphosphine (1.55 g, 5.9 mmol) followed by diethyl azodicarboxylate (0.93 ml, 5.9 mmol) and the mixture was allowed to stir at room temp. for 4 h. The resulting mixture was diluted with Et2O (50 mL) and washed with a saturated NH4Cl solution (50 mL) and a saturated NaCl solution (50 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was purified by flash cromatography (30% EtOAc/70% hexane) to yield the desired ether as a yellow solid (1.3 g, 91%):'H-NMR (CHC13) 8 1.30 (s, 9H), 2.18- 2.24 (m, 2H), 3.91-4.09 (m, 4H), 5.00-5.02 (m, 1H), 6.93 (d, J=8.8 Hz, 1H), 7.52 (dd, J=2.6,8.8 Hz, 1H), 7.81 (d, J=2.6 Hz, 1H).

Step 2. 5-tert-Butyl-2- (3-tetrahydrofuranyloxy) aniline: To a solution of 4-tert- butyl-l- (3-tetrahydrofuranyloxy)-2-nitrobenzene (1.17 g, 4.4 mmol) in EtOAc (25 mL) was added 10% Pd/C (0.1). The resulting slurry was placed under a H2 atmosphere using 3 cycles of an evacuate-quench protocol and was allowed to stir under a H2 atmosphere for 8 h. The reaction mixture was filtered through a pad of Celitet and washed with CHCl3. The combined filtrate was concentrated under reduced pressure to yield of the desired aniline as a yellow solid (0.89 g, 86%): mp 79-82 °C;'H-NMR (CHC13) 8 1.30 (s, 9H), 2.16-2.20 (m, 2H), 3.78 (br s, 2H), 3.85- 4.10 (m, 4H), 4.90 (m, 1H), 6.65-6.82 (m, 3H).

A3. General Method for the Synthesis of Trifluoromethanesulfonylanilines

Step 1.2-Methoxy-5- (fluorosulfonyl) acetanilide: Acetic anhydride (0.90 mL, 9.6 mmol) was added to a solution of 4-methoxymetanilyl fluoride (1.0 g, 4.8 mmol) in pyridine (15 mL). After being stirred at room temp. for 4 h, the reaction mixture was concentrated under reduced pressure. The resulting residue was dissolved in CH2C12 (25 mL), washed with a saturated NaHC03 solution (25 mL), dried (Na2SO4), and concentrated under reduced pressure to give a foam which was triturated with a Et20/hexane solution to provide the title compound (0.85 g):'H-NMR (CDCl3) 8 2.13 (s, 3H), 3.98 (s, 3H), 7.36 (d, J=8.5 Hz, 1H), 7.82 (dd, J=2.6,8.8 Hz, 1H), 8.79 (d, J=2.2 Hz, 1H), 9.62 (br s, 1H).

Step To an ice-cooled suspension of tris (dimethylamino) sulfonium difluorotrimethylsiliconate (0.094 g, 0.34 mmol) in THF (4 mL) was added a solution of (trifluoromethyl) trimethylsilane (1.0 mL, 6.88 mmol) in THF (3 mL) followed by a solution of 2-methoxy-5- (fluorosulfonyl) acetanilide (0.85 g, 3.44 mmol) in THF (3 mL). The reaction mixture was stirred for 2 h on an ice bath, then was allowed to warm to room temp. and was

then concentrated under reduced pressure. The resulting residue was dissolved in CH2C12 (25 mL), washed with water (25 mL), dried (Na2SO4), and concentrated under reduced pressure. The resulting material was purified by flash chromatography (3% MeOH/97% CH2C12) to provide the title compound as a white solid (0.62 g):'H-NMR (CDC13) 8 2.13 (s, 3H) 4.00 (s, 3H), 7.42 (d, J=8. 8 Hz, 1H), 7.81 (dd, J=2.6,8.8 Hz, 1H), 8.80 (d, J=2.2 Hz, 1H), 9.64 (br s, 1H); FAB-MS mlz 298 ( (M+1) +).

Step A solution of 2-methoxy- 5- (trifluoromethanesulfonyl) acetanilide (0.517 g, 1.74 mmol) in EtOH (5 mL) and a 1 N HC1 solution (5 mL) was heated at the reflux temp. for 4 h and the resulting mixture was concentrated under reduced pressure. The residue was dissolved in CH2C12 (30 mL), washed with water (30 mL), dried (Na2SO4), and concentrated under reduced <BR> <BR> pressure to afford the title compound as a gum (0.33 g):'H-NMR (CDC13) 8 3.90 (s, 3H) 5.57 (br s, 2H), 7.11-7.27 (m, 3H); FAB-MS m/z 256 ((M+1)+). This material was used in urea formation without further purification. A4. General Method for Aryl Amine Formation via Phenol Nitration Followed by Ether Formation and Reduction

Step A mixture of fuming nitric acid (3.24 g, 77.1 mmol) in glacial HOAc (10 mL) was added dropwise to a solution of m-tert- butylphenol (11.58 g, 77.1 mmol) in glacial HOAc (15 mL) at 0 °C. The mixture was allowed to stir at 0 °C for 15 min then warmed to room temp. After 1 h the mixture was poured into ice water (100 mL) and extracted with Et2O (2 x 50 mL). The organic layer was washed with a saturated NaCl solution (100 mL), dried (MgSO4) and <BR> <BR> <BR> concentrated in vacuo. The residue was purified by flash chromatography (30% EtOAc/70% hexane) to give the desired phenol (4.60 g, 31%) :'H-NMR (DMSO-d6) 8 1.23 (s, 9H), 7.00 (dd, J=1.84,8.83 Hz, 1H), 7.07 (d, J=1.84 Hz, 1H), 7.82 (d, J=8.83 Hz, 1H), 10.74 (s, 1H).

Step A slurryof2-nitro-5-tert-butylphenol (3.68 g, 18.9 mmol) and K2CO3 (3.26 g, 23.6 mmol) in anh DMF (100 mL) was stirred at room temp with stirring for 15 min then treated with iodomethane (2.80 g, 19.8 mmol) via syringe. The reaction was allowed to stir at room temp for 18 h., then was treated with water (100 mL) and extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with a saturated NaCl solution (50 mL), dried (MgSO4) and concentrated in vacuo to give the desired ether (3.95 g, 100%):'H-NMR (DMSO-d6) 8 1.29 (s, 9H), 3.92 (s, 3H), 7.10 (dd, J=1.84,8.46 Hz, 1H), 7.22 (d, J=1.84 Hz, 1H), 7.79 (d, J=8. 46 Hz, 1H). This material was used in the next step without further purification.

Step A solution of 2-nitro-5-tert-butylanisole (3.95 g, 18.9 mmol) in MeOH (65 mL) and added to a flask containing 10% Pd/C in MeOH (0.400 g), then placed under a H2 atmosphere (balloon). The reaction was allowed to stir for 18 h at room temp, then filtered through a pad of Celitet and <BR> <BR> <BR> concentrated in vacuo to afford the desired product as a dark sitcky solid (3.40 g, 99%):'H-NMR (DMSO-d6) 8 1.20 (s, 9H), 3.72 (s, 3H), 4.43 (br s, 2H), 6.51 (d, J=8.09 Hz, 1H), 6.64 (dd, J=2.21,8.09 Hz, 1H), 6.76 (d, J=2.21 Hz, 1H).

A5. General Method for Aryl Amine Formation via Carboxylic Acid Esterification Followed by Reduction

Step 1. Methyl 2-Nitro-4- (trifluoromethyl) benzoate: To a solution of 2-nitro-4- (trifluoromethyl) benzoic acid (4.0 g, 17.0 mmol) in MeOH (150 mL) at room temp was added conc H2SO4 (2.5 mL). The mixture was heated at the reflux temp for 24 h., cooled to room temp and concentrated in vacuo. The residue was diluted with water (100 mL) and extracted with EtOAc (2 x 100 mL). The combined organic layers were <BR> <BR> <BR> washed with a saturated NaCl solution, dried (MgSO4), concentrated in vacuo. The residue was purified by flash chromatography (14% EtOAc/86% hexane) to give the <BR> <BR> <BR> desired ester as a pale yellow oil (4.17 g, 98%):'H-NMR (DMSO-d6) 8 3.87 (s, 3H), 8.09 (d, J=7.72 Hz, 1H), 8.25 (dd, J=l. ll, 8.09 Hz, 1H), 8.48 (d, J=1. 11 Hz, 1H).

Step 2. Methyl 2-Amino-4- (trifluoromethyl) benzoate: A solution of methyl 2-nitro- 4- (trifluoromethyl) benzoate (3.90 g, 15.7 mmol) in EtOAc (100 mL) and added to a flask containing 10% Pd/C (0.400 mg) in EtOAc (10 mL), then placed under a H2 atmosphere (balloon). The reaction was allowed to stir for 18 h at room temp, then was filtered through Celite and concentrated in vacuo to afford the desired product as a white crystalline solid (3.20 g, 93%):'H-NMR (DMSO-d6) 8 3.79 (s, 3H), 6.75 (dd, J=1.84,8.46 Hz, 1H), 6.96 (br s, 2H), 7.11 (d, J=0.73 Hz, 1H), 7.83 (d, J=8.09 Hz, 1H). A6. General Method for Aryl Amine Formation via Ether Formation Followed Ester Saponification, Curtius Rearrangement, and Carbamate Deprotection

Step 1. Methyl 3-Methoxy-2-naphthoate: A slurry of methyl 3-hydroxy-2- naphthoate (10.1 g, 50.1 mmol) and K2CO3 (7.96 g, 57.6 mmol) in DMF (200 mL) was stirred at room temp for 15 min, then treated with iodomethane (3.43 mL, 55.1 mmol). The mixture was allowed to stir at room temp overnight, then was treated with water (200 mL). The resulting mixture was extracted with EtOAc (2 x 200 mL).

The combined organic layers were washed with a saturated NaCl solution (100 mL), dried (MgSO4), concentrated in vacuo (approximately 0.4 mmHg overnight) to give the desired ether as an amber oil (10.30 g):'H-NMR (DMSO-d6) 8 2.70 (s, 3H), 2.85 (s, 3H), 7.38 (app t, J=8.09 Hz, 1H), 7.44 (s, 1H), 7.53 (app t, J=8.09 Hz, 1H), 7.84 (d, J=8.09 Hz, 1H), 7.90 (s, 1H), 8.21 (s, 1H).

Step 2.3-Methoxy-2-naphthoic Acid: A solution of methyl 3-methoxy-2- naphthoate (6.28 g, 29.10 mmol) and water (10 mL) in MeOH (100 mL) at room temp was treated with a 1 N NaOH solution (33.4 mL, 33.4 mmol). The mixture was heated at the reflux temp for 3 h, cooling to room temp, and made acidic with a 10% citric acid solution. The resulting solution was extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with a saturated NaCl solution, dried (MgSO4) and concentrated in vacuo. The residue was triturated with hexanes and washed several times with hexanes to give the desired carboxylic acid as a white crystalline <BR> <BR> <BR> solid (5.40 g, 92%):'H-NMR (DMSO-d6) 8 3.88 (s, 3H), 7.34-7.41 (m, 2H), 7.49-7.54 (m, 1H), 7.83 (d, J=8.09 Hz, 1H), 7.91 (d, J=8.09 Hz, 1H), 8.19 (s, 1H), 12.83 (br s, 1H).

Step 3.2- (N-(Carbobenzyloxy) amino-3-methoxynaphthalene : A solution of 3- methoxy-2-naphthoic acid (3.36 g, 16.6 mmol) and Et3N (2.59 mL, 18.6 mmol) in anh toluene (70 mL) was stirred at room temp. for 15 min., then treated with a solution of

diphenylphosphoryl azide (5.12 g, 18.6 mmol) in toluene (10 mL) via pipette. The resulting mixture was heated at 80 °C for 2 h. After cooling the mixture to room temp. benzyl alcohol (2.06 mL, 20 mmol) was added via syringe. The mixture was then warmed to 80 °C overnight. The resulting mixture was cooled to room temp., quenched with a 10% citric acid solution, and extracted with EtOAc (2 x 100 mL).

The combined organic layers were washed with a saturated NaCl solution, dried (MgSO4), and concentrated in vacuo. The residue was purified by flash chromatography (14% EtOAc/86% hexane) to give the benzyl carbamate as a pale yellow oil (5.1 g, 100%):'H-NMR (DMSO-d6) 8 3.89 (s, 3H), 5.17 (s, 2H), 7.27-7.44 (m, 8H), 7.72-7.75 (m, 2H), 8.20 (s, 1H), 8.76 (s, 1H).

Step 4.2-Amino-3-methoxynaphthalene: A slurry of 2-(N-(carbobenzyloxy) amino- 3-methoxynaphthalene (5.0 g, 16.3 mmol) and 10% Pd/C (0.5 g) in EtOAc (70mL) was maintained under a H2 atmospheric (balloon) at room temp. overnight. The resulting mixture was filtered through Celtes and concentrated in vacuo to give the desired amine as a pale pink powder (2.40 g, 85%):'H-NMR (DMSO-d6) 8 3.86 (s, 3H), 6.86 (s, 2H), 7.04-7.16 (m, 2H), 7.43 (d, J=8.0 Hz, 1H), 7.56 (d, J=8.0 Hz, 1H); EI-MS m/z 173 (M+).

General Method for the Synthesis of Aryl Amines via Metal-Mediated Cross Coupling Followed by Reduction

Step 1. 5-tert-Butyl-2-(trifluoromethanesulfonyl) oxy-1-nitrobenzene (trifluoromethanesulfonyl) oxy-1-nitrobenzene To an ice cold solution of 4-tert-butyl-2-nitrophenol (6.14 g, 31.5 mmol) and pyridine (10 mL, 125 mmol) in CH2C12 (50 mL) was slowly added trifluoromethanesulfonic anhydride (10 g, 35.5 mmol) via syringe. The reaction mixture was stirred for 15 min, then

allowed to warm up to room temp. and diluted with CH2Cl2 (100 mL). The resulting mixture was sequentially washed with a 1M NaOH solution (3 x 100 mL), and a 1M HC1 solution (3 x 100 mL), dried (MgSO4), and concentrated under reduced pressure to afford the title compound (8.68 g, 84%):'H-NMR (CDC13) 8 1.39 (s, 9H), 7.30- 8.20 (m, 3H).

Step 2. 5-tert-Butyl-2- (3-fluorophenyl)-1-nitrobenzene: A mixture of 3- fluorobenzeneboronic acid (3.80 g, 27.5 mmol), KBr (2.43 g, 20.4 mmol), K3P04 (6.1 g, 28.8 mmol), and Pd (PPh3) 4 (1. 0 g, 0.9 mmol) was added to a solution of 5-tert- butyl-2-(trifluoromethanesulfonyl) oxy-1-nitrobenzene(trifluoromethanesulfonyl) oxy-1-nitrobenzene (6.0 g, 18.4 mmol) in dioxane (100 mL). The reaction mixture was heated at 80 °C for 24 h, at which time TLC indicated complete reaction. The reaction mixture was treated with a saturated NH4Cl solution (50 mL) and extracted EtOAc (3 x 100 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure. The residue was purified by flash chromatography (3% EtOAc/97% hexane) to give the title compound (4.07 g, 81%) :'H-NMR (CDC13) â 1.40 (s, 9H), 6.90-7.90 (m, 7H).

Step 3. 5-tert-Butyl-2- (3-fluorophenyl) aniline: To a solution of 5-tert-butyl-2-(3- fluorophenyl)-l-nitrobenzene (3.5 g, 12.8 mmol) and EtOH (24 mL) in EtOAc (96 mL) was added 5% Pd/C (0.350 g) and the resulting slurry was stirred under a H2 atmosphere for 24 h, at which time TLC indicated complete consumption of starting material. The reaction mixture was filtered through a pad of Celie# to give the desired product (2.2 g, 72%): IH-NMR (CDC13) å 1.35 (s, 9H), 3.80 (br s, 2H), 6.90- 7.50 (m, 7H).

A8. General Method for the Synthesis of Nitroanilines Step 1.4- (4- (2-Propoxycarbonylamino) phenyl) methylaniline: A solution of di-tert- butyl dicarbonate (2.0 g, 9.2 mmol) and 4,4'-methylenedianiline (1.8g, 9.2 mmol) in DMF (100 mL) was heated at the reflux temp. for 2 h, then cooled to room temp.

This mixture was diluted with EtOAc (200 mL) sequentially washed with a saturated NH4C1 (200 mL) and a saturated NaCl solution (100 mL), and dried (MgS04). The residue was purified by flash chromatography (30% EtOAc/70% hexane) to give the desired carbamate (1.3 g, 48%):'H-NMR (CDCl3) 8 1.51 (s, 9H), 3.82 (s, 2H), 6.60- 7.20 (m, 8H).

Step To an ice cold solution of 4- (4- (2-propoxycarbonylamino) phenyl) methylaniline (1.05 g, 3.5 mmol) in CH2C12 (15 mL) was added m-CPBA (1.2 g, 7.0 mmol). The reaction mixture was slowly allowed to warm to room temp. and was stirred for 45 min, at which time TLC indicated disappearance of starting material. The resulting mixture was diluted with EtOAc (50 mL), sequentially washed with a 1M NaOH solution (50 mL) and a saturated NaCl solution (50 mL), and dried (MgSO4). The residue was purified by flash chromatography (20% EtOAc/80% hexane) to give the desired nitrobenzene (0.920 g): FAB-MS m/z 328 (M+).

Step 3. 4- (4-Nitrophenyl) methylaniline: To a solution of 4- (4- (2- propoxycarbonylamino) phenyl) methyl-l-nitrobenzene (0.920 g, 2.8 mmol) in dioxane (10 mL) was added a conc. HC1 solution (4.0 mL) and the resulting mixture was heated at 80 °C for 1 h at which time TLC indicated disappearance of starting

material. The reaction mixture was cooled to room temp. The resulting mixture was diluted with EtOAc (50 mL), then washed with a 1M NaOH solution (3 x 50 mL), and <BR> <BR> dried (MgSO4) to give the desired aniline (0.570 mg, 89%):'H-NMR (CDC13) 8 3.70<BR> <BR> (br s, 2H), 3.97 (s, 2H), 6.65 (d, J=8.5 Hz, 2H), 6.95 (d, J=8.5 Hz, 2H), 7.32 (d, J=8.8<BR> <BR> Hz, 2H), 8.10 (d, J=8.8 Hz, 2H).

A9. General Method for Synthesis of Aryl Anilines via Alkylation of a Nitrophenol Followed by Reduction Step To an ice cold solution of morpholine (2.17 g, 24.9 mmol) and diisopropylethylamine (3.21 g, 24.9 mmol) in CH2C12 (70 mL) was added a solution of bromoacetyl bromide (5.05 g, 25 mmole) in CH2C12 (8 mL) via syringe. The resulting solution was kept at 0 °C for 45 min, then was allowed to warm to room temp. The reaction mixture was diluted with EtOAc (500 mL), sequentially washed with a 1M HC1 solution (250 mL) and a saturated NaCl solution (250 mL), and dried (MgSO4) to give the desired product (3.2 g, 62%):'H-NMR (DMSO-d6) 8 3.40-3.50 (m, 4H), 3.50-3.60 (m, 4H), 4.11 (s, 2H).

Step 2.2- (N-Morpholinylcarbonyl) methoxy-5-tert-butyl-1-nitrobenzene : A slurry of 4-tert-butyl-2-nitrophenol (3.9 g, 20 mmol) and K2CO3 (3.31 g, 24 mmol) in DMF (75 mL) was stirred at room temp. for 15 minutes, then a solution of 4- (a- bromoacetyl) morpholine (4.16 g, 20 mmol) in DMF (10 mL) was added. The reaction was allowed to stir at room temp. overnight, then was diluted with EtOAc (500 mL) and sequentially washed with a saturated NaCl solution (4 x 200 mL) and a 1M NaOH solution (400 mL). The residue was purified by flash chromatography (75% EtOAc/25% hexane) to give the nitrobenzene (2.13 g, 33%):'H-NMR (DMSO-d6) 8 1.25 (s, 9H), 3.35-3.45 (m, 4H), (m, 4H), 5.00 (s, 2H), 7.12 (d, J=8.8 Hz, 1H), 7.50-7.80 (m, 2H).

Step 3.2- (N-Morpholinylcarbonyl) methoxy-5-tert-butylaniline : To a solution of 2- (N-morpholinylcarbonyl) methoxy-5-tert-butyl-1-nitrobenzene (2.13 g, 6.6 mmol) and EtOH (10 mL) in EtOAc (40 mL) was added 5% Pd/C (0.215 g). The resulting slurry was stirred under a H2 atmosphere for 6 h, at which time TLC indicated complete consumption of starting material. The reaction mixture was filtered through a pad of Celites to give the desired product (1.9 g, 98%):'H-NMR (DMSO-d6) 8 1.18 (s, 9H), 3.40-3.50 (m, 4H), 3.50-3.60 (m, 4H), 4.67 (br s, 2H), 4.69 (s, 2H), 6.40-6.70 (m, 3H).

A10. General Method for Aryl Amine Formation via Nitrophenol Alkylation Followed by Reduction

Step 1.5-tert-Butyl-2- (2-hydroxyethoxy)-1-nitrobenzene : A solution of 4-tert- butyl-2-nitrophenol (30 g, 0.15 mol) and tetra-n-butylammonium fluoride (0. 771 g, 3.0 mmol) in ethylene carbonate (10.24 mL. 0.15 mol) was heated at 150 °C for 18 h, then cooled to room temp. and separated between water (50 mL) and CH2Cl2 (50 mL).

The organic layer was dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (20% EtOAc/80% hexane) to afford the desired product as a brown oil (35.1 g, 90%):'H-NMR (DMSO-d6) 8 1.25 (s, 9H), 3.66-3.69 (m, 2H), 4.10-4.14 (t, J=5.0 Hz, 2H), 4.85 (t, J=5.0 Hz, 1H), 7.27 (d, J=8.8 Hz, 1H), 7.60-7.64 (m, 1H), 7.75 (d, J=2.6 Hz, 1H).

Step 2.5-tert-Butyl-2- (2-tert-butoxycarbonyloxy) ethoxy)-1-nitrobenzene : A solution of 5-tert-butyl-2- (2-hydroxyethoxy)-1-nitrobenzene (0.401 g, 1.68 mmol), di- tert-butyl dicarbonate (0.46 mL, 2.0 mmol) and dimethylaminopyridine (0.006 g, 0.05 mmol) in CH2Cl2 (15 mL) was stirred at room temp. for 30 min, at which time TLC indicated consumption of starting material. The resulting mixture was washed with water (20 mL), dried (MgSO4) and concentrated under reduced pressure. The residue was purified by column chromatography (3% MeOH/97% CH2C12) to give the desired product as a yellow oil (0.291 g, 51%):'H-NMR (DMSO-d6) 8 1.25 (s, 9H), 1.38 (s, 9H), 4.31 (br s, 4H), 7.27 (d, J=9. 2 Hz, 1H) 7.64 (dd, J=2.6,8.8 Hz, 1H) 7.77 (d, J=2.6 Hz, 1H). Step 3. 5-tert-Butyl-2- (2-tert-butoxycarbonyloxy) ethoxy) aniline: To a mixture of 5-tert-butyl-2-(2-tert-butoxycarbonyloxy) ethoxy)-1-nitrobenzene(2-tert-butoxycarbonyloxy) ethoxy)-1-nitrobenzene (0.290 g, 0.86 mmol) and 5% Pd/C (0.058 g) in MeOH (2 mL) was ammonium formate (0.216 g, 3.42 mmol), and the resulting mixture was stirred at room temp. for 12 h, then was filtered through a pad of Celtes with the aid of EtOH. The filtrate was concentrated under reduced pressure and the residue was purified by column chromatography (2% MeOH/98% CH2C12) tp give the desired product as a pale yellow oil (0.232 g, 87%): TLC (20% EtOAc/80% hexane) Rf 0.63;'H-NMR (DMSO-d6) 8 1.17 (s, 9H), 1.39 (s, 9H), 4.03-4.06 (m, 2H), 4.30-4.31 (m, 2H), 4.54 (br s, 2H), 6.47 (dd, J=2.2,8.1 Hz, 1H) 6.64-6.67 (m, 2H).

All. General Method for Substituted Aniline Formation via Hydrogenation of a Nitroarene

4- (4-Pyridinylmethyl) aniline: To a solution of 4- (4-nitrobenzyl) pyridine (7.0 g, 32.68 mmol) in EtOH (200 mL) was added 10% Pd/C (0.7 g) and the resulting slurry was shaken under a H2 atmosphere (50 psi) using a Parr shaker. After 1 h, TLC and 'H-NMR of an aliquot indicated complete reaction. The mixture was filtered through a short pad of Celite@. The filtrate was concentrated in vacuo to afford a white solid (5.4 g, 90%):'H-NMR (DMSO-d6) 8 3.74 (s, 2H), 4.91 (br s, 2H), 6.48 (d, J=8.46 Hz, 2H), 6.86 (d, J=8.09 Hz, 2H), 7.16 (d, J=5.88 Hz, 2H), 8.40 (d, J=5.88 Hz, 2H); EI- MS m/z 184 (M+). This material was used in urea formation reactions without further purification. A12. General Method for Substituted Aniline Formation via Dissolving Metal Reduction of a Nitroarene

4- (2-Pyridinylthio) aniline: To a solution of 4- (2-pyridinylthio)-l-nitrobenzene (Menai ST 3355A; 0.220 g, 0.95 mmol) and H20 (0.5 mL) in AcOH (5 mL) was added iron powder (0.317 g, 5.68 mmol) and the resulting slurry stirred for 16 h at room temp. The reaction mixture was diluted with EtOAc (75 mL) and H20 (50 mL), <BR> <BR> <BR> <BR> basified to pH 10 by adding solid K2CO3 in portions (Caution: foaming). The organic layer was washed with a saturated NaCl solution, dried (MgSO4), concentrated in vacuo. The residual solid was purified by MPLC (30% EtOAc/70% hexane) to give the desired product as a thick oil (0.135 g, 70%): TLC (30% EtOAc/70% hexanes) Rf 0.20.

21i13a. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction Step 1.1-Methoxy-4- (4-nitrophenoxy) benzene: To a suspension of NaH (95%, 1.50 g, 59 mmol) in DMF (100 mL) at room temp. was added dropwise a solution of 4-methoxyphenol (7.39 g, 59 mmol) in DMF (50 mL). The reaction was stirred 1 h, then a solution of l-fluoro-4-nitrobenzene (7.0 g, 49 mmol) in DMF (50 mL) was added dropwise to form a dark green solution. The reaction was heated at 95 °C overnight, then cooled to room temp., quenched with H20, and concentrated in vacuo.

The residue was partitioned between EtOAc (200 mL) and H2O (200 mL). The organic layer was sequentially washed with H20 (2 x 200 mL), a saturated NaHC03 solution (200 mL), and a saturated NaCl solution (200 mL), dried (Na2SO4), and concentrated in vacuo. The residue was triturated (Et20/hexane) to afford 1- methoxy-4- (4-nitrophenoxy) benzene (12.2 g, 100%):'H-NMR (CDC13) 8 3.83 (s, 3H), 6.93-7.04 (m, 6H), 8.18 (d, J=9.2 Hz, 2H); EI-MS m/z 245 (M+).

Step To a solution of 1-methoxy-4- (4- nitrophenoxy) benzene (12.0 g, 49 mmol) in EtOAc (250 mL) was added 5% Pt/C (1.5 g) and the resulting slurry was shaken under a H2 atmosphere (50 psi) for 18 h.

The reaction mixture was filtered through a pad of Celite with the aid of EtOAc and concentrated in vacuo to give an oil which slowly solidified (10.6 g, 100%):'H-NMR (CDC13) 8 3.54 (br s, 2H), 3.78 (s, 3H), 6.65 (d, J=8.8 Hz, 2H), 6.79-6.92 (m, 6H); EI- MS m/z 215 (M+).

A13b. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction Step 1.3- (Trifluoromethyl)-4- (4-pyridinylthio) nitrobenzene: A solution of 4- mercaptopyridine (2.8 g, 24 mmoles), 2-fluoro-5-nitrobenzotrifluoride (5 g, 23.5 mmoles), and potassium carbonate (6.1 g, 44.3 mmoles) in anhydrous DMF (80 mL) was stirred at room temperature and under argon overnight. TLC showed complete

reaction. The mixture was diluted with Et2O (100 mL) and water (100 mL) and the aqueous layer was back-extracted with Et2O (2 x 100 mL). The organic layers were washed with a saturated NaCl solution (100 mL), dried (MgSO4), and concentrated under reduced pressure. The solid residue was triturated with Et2O to afford the desired product as a tan solid (3.8 g, 54%): TLC (30% EtOAc/70% hexane) Rif 0.06; 'H-NMR (DMSO-d6) 8 7.33 (dd, J=1.2,4.2 Hz, 2H), 7.78 (d, J=8.7 Hz, 1H), 8.46 (dd, J=2.4,8.7Hz, 1H), 8.54-8.56 (m, 3H).

Step A slurry of 3- trifluoromethyl-4- (4-pyridinylthio) nitrobenzene (3.8 g, 12.7 mmol), iron powder (4.0 g, 71.6 mmol), acetic acid (100 mL), and water (1 mL) were stirred at room temp. for 4 h. The mixture was diluted with Et2O (100 mL) and water (100 mL). The aqueous phase was adjusted to pH 4 with a 4 N NaOH solution. The combined organic layers were washed with a saturated NaCl solution (100 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was filtered through a pad of silica (gradient from 50% EtOAc/50% hexane to 60% EtOAc/40% hexane) to afford the desired product (3.3 g): TLC (50% EtOAc/50% hexane) Rf0. 10;'H-NMR (DMSO-d6) 8 6.21 (s, 2H), 6.84-6.87 (m, 3H), 7.10 (d, J=2.4 Hz, 1H), 7.39 (d, J=8.4 Hz, 1H), 8.29 (d, J=6.3 Hz, 2H). A13c. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step A solution of 2-mercapto-4- phenylthiazole (4.0 g, 20.7 mmoles) in DMF (40 mL) was treated with 1-fluoro-4- nitrobenzene (2.3 mL, 21.7 mmoles) followed by K2CO3 (3.18 g, 23 mmol), and the mixture was heated at approximately 65 °C overnight. The reaction mixture was then diluted with EtOAc (100 mL), sequentially washed with water (100 mL) and a saturated NaCl solution (100 mL), dried (MgSO4) and concentrated under reduced pressure. The solid residue was triturated with a Et2O/hexane solution to afford the desired product (6.1 g): TLC (25% EtOAc/75% hexane) Rf 0.49;'H-NMR (CDC'3) 5 7.35-7.47 (m, 3H), 7.58-7.63 (m, 3H), 7.90 (d, J=6.9 Hz, 2H), 8.19 (d, J=9.0 Hz, 2H). Step 4- (2- (4-Phenyl) thiazolyl) thio-l-nitro- benzene was reduced in a manner analagous to that used in the preparation of 3- (trifluoromethyl)-4- (4-pyridinylthio) aniline: TLC (25% EtOAc/75% hexane) Rif 0.18; 'H-NMR (CDC13) 8 3.89 (br s, 2H), 6.72-6.77 (m, 2H), 7.26-7.53 (m, 6H), 7.85-7.89 (m, 2H).

A13d. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction Step 1.4- (6-Methyl-3-pyridinyloxy)-1-nitrobenzene : To a solution of 5-hydroxy- 2-methylpyridine (5.0 g, 45.8 mmol) and 1-fluoro-4-nitrobenzene (6.5 g, 45.8 mmol) in anh DMF (50 mL) was added K2CO3 (13.0 g, 91.6 mmol) in one portion. The mixture was heated at the reflux temp. with stirring for 18 h and then allowed to cool to room temp. The resulting mixture was poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined organics were sequentially washed with water (3 x 100 mL) and a saturated NaCI solution (2 x 100 mL), dried (Na2SO4), and concentrated in vacuo to afford the desired product (8.7 g, 83%). The this material was carried to the next step without further purification. Step 2.4- (6-Methyl-3-pyridinyloxy) aniline: A solution of 4- (6-methyl-3- pyridinyloxy)-l-nitrobenzene (4.0 g, 17.3 mmol) in EtOAc (150 mL) was added to

10% Pd/C (0.500 g, 0.47 mmol) and the resulting mixture was placed under a H2 atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celites and concentrated in vacuo to afford the desired product as a tan solid (3.2 g, 92%): EI-MS m/z 200 (M). A13e. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step To a solution of 3,4- dimethoxyphenol (1.0 g, 6.4 mmol) and 1-fluoro-4-nitrobenzene (700 pL, 6.4 mmol) in anh DMF (20 mL) was added K2CO3 (1.8 g, 12.9 mmol) in one portion. The mixture was heated at the reflux temp with stirring for 18 h and then allowed to cool to room temp. The mixture was then poured into water (100 mL) and extracted with EtOAc (3 x 100 mL). The combined organics were sequentially washed with water (3 x 50 mL) and a saturated NaCl solution (2 x 50 mL), dried (Na2SO4), and concentrated in vacuo to afford the desired product (0.8 g, 54%). The crude product was carried to the next step without further purification.

Step aniline: A solution of 4- (3,4-dimethoxy- phenoxy)-l-nitrobenzene (0.8 g, 3.2 mmol) in EtOAc (50 mL) was added to 10% Pd/C (0.100 g) and the resulting mixture was placed under a H2 atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celite and concentrated in vacuo to afford the desired product as a white solid (0.6 g, 75%): EI-MS m/z 245 (M). A13f. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step To a solution of 3-hydroxypyridine (2.8 g, 29.0 mmol), 1-bromo-3-nitrobenzene (5.9 g, 29.0 mmol) and copper (I) bromide (5.0 g, 34.8 mmol) in anh DMF (50 mL) was added K2CO3 (8.0 g, 58.1 mmol) in one portion. The resulting mixture was heated at the reflux temp. with stirring for 18 h and then allowed to cool to room temp. The mixture was then poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined organics were sequentially washed with water (3 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (Na2SO4), and concentrated in vacuo. The resulting oil was purified by flash chromatography (30% EtOAc/70% hexane) to afford the desired product (2.0 g, 32 %). This material was used in the next step without further purification.

Step A solution of 3- (3-pyridinyloxy)-l- nitrobenzene (2.0 g, 9.2 mmol) in EtOAc (100 mL) was added to 10% Pd/C (0.200 g) and the resulting mixture was placed under a H2 atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celites and concentrated in vacuo to afford the desired product as a red oil (1.6 g, 94%): EI-MS m/z 186 (M+).

A13g. General Method for Substituted Aniline Formation via Nitroarene Formation

Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step 1. 3-(5-Methyl-3-pyridinyloxy)-1-nitrobenzene (5-Methyl-3-pyridinyloxy)-1-nitrobenzene To a solution of 3-hydroxy- 5-methylpyridine (5.0 g, 45.8 mmol), 1-bromo-3-nitrobenzene (12.0 g, 59.6 mmol) and copper (I) iodide (10.0 g, 73.3 mmol) in anh DMF (50 mL) was added K2CO3 (13.0 g, 91.6 mmol) in one portion. The mixture was heated at the reflux temp. with stirring for 18 h and then allowed to cool to room temp. The mixture was then poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined organics were sequentially washed with water (3 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (Na2SO4), and concentrated in vacuo. The resulting oil was purified by flash chromatography (30% EtOAc/70% hexane) to afford the desired product (1.2 g, 13%).

Step 2. 3-(5-Methyl-3-pyridinyloxy)-1-nitrobenzene : A solution of 3- (5-methyl-3- pyridinyloxy)-l-nitrobenzene (1.2 g, 5.2 mmol) in EtOAc (50 mL) was added to 10% Pd/C (0.100 g) and the resulting mixture was placed under a H2 atmosphere (balloon) and was allowed to stir for 18 h at room temp. The mixture was then filtered through a pad of Celite and concentrated in vacuo to afford the desired product as a red oil (0.9 g, 86%): CI-MS m/z 201 ( (M+H) +).

General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction Step To a solution of 2-chloro-5- nitropyridine (6.34 g, 40 mmol) in DMF (200 mL) were added of 4-methylphenol (5.4 g, 50 mmol, 1.25 equiv) and K2CO3 (8.28 g, 60 mmol, 1.5 equiv). The mixture was stirred overnight at room temp. The resulting mixture was treated with water (600 mL) to generate a precipitate. This mixture was stirred for 1 h, and the solids were separated and sequentially washed with a 1 N NaOH solution (25 mL), water (25 mL) and pet ether (25 mL) to give the desired product (7.05 g, 76%): mp 80-82 °C; TLC (30% EtOAc/70% pet ether) Rf 0.79;'H-NMR (DMSO-d6) 8 2.31 (s, 3H), 7.08 (d, J=8.46 Hz, 2H), 7.19 (d, J=9.20 Hz, 1H), 7.24 (d, J=8.09 Hz, 2H), 8.58 (dd, J=2.94, 8.82 Hz, 1H), 8.99 (d, J=2.95 Hz, 1H); FAB-MS m/z (rel abundance) 231 ( (M+H) +), 100%).

Step 2.5-Amino-2- (4-methylphenoxy) pyridine Dihydrochloride: A solution 5- nitro-2- (4-methylphenoxy) pyridine (6.94 g, 30 mmol, 1 eq) and EtOH (10 mL) in EtOAc (190 mL) was purged with argon then treated with 10% Pd/C (0.60 g). The reaction mixture was then placed under a H2 atmosphere and was vigorously stirred for 2.5 h. The reaction mixture was filtered through a pad of Celite#. A solution of HC1 in Et2O was added to the filtrate was added dropwise. The resulting precipitate was separated and washed with EtOAc to give the desired product (7.56 g, 92%): mp 208-210 °C (dec); TLC (50% EtOAc/50% pet ether) Rf 0.42;'H-NMR (DMSO-d6) 8 2.25 (s, 3H), 6.98 (d, J=8.45 Hz, 2H), 7.04 (d, J=8.82 Hz, 1H), 7.19 (d, J=8. 09 Hz, 2H), 8.46 (dd, J=2.57,8.46 Hz, 1H), 8.63 (d, J=2.57 Hz, 1H); EI-MS mlz (rel abundance) (M+, 100%). A13i. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

Step To a solution of 4-nitrothiophenol (80% pure; 1.2 g, 6.1 mmol), 3-bromothiophene (1.0 g, 6.1 mmol) and copper (II) oxide (0.5 g, 3.7 mmol) in anhydrous DMF (20 mL) was added KOH (0.3 g, 6.1 mmol), and the resulting mixture was heated at 130 °C with stirring for 42 h and then allowed to cool to room temp. The reaction mixture was then poured into a mixture of ice and a 6N HC1 solution (200 mL) and the resulting aqueous mixture was extracted with EtOAc (3 x 100 mL). The combined organic layers were sequentially washed with a 1M NaOH solution (2 x 100 mL) and a saturated NaCl solution (2 x <BR> <BR> <BR> 100 mL), dried (MgSO4), and concentrated in vacuo. The residual oil was purified by MPLC (silica gel; gradient from 10% EtOAc/90% hexane to 5% EtOAc/95% hexane) to afford of the desired product (0.5 g, 34%). GC-MS m/z 237 (M+).

Step 4- (3-Thienylthio)-l-nitrobenzene was reduced to the aniline in a manner analogous to that described in Method B 1. A13j. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction

4- (5-Pyrimininyloxy) aniline: 4-Aminophenol (1.0 g, 9.2 mmol) was dissolved in DMF (20 mL) then 5-bromopyrimidine (1.46 g, 9.2 mmol) and K2C03 (1. 9 g, 13.7 mmol) were added. The mixture was heated to 100 °C for 18 h and at 130 °C for 48 h at which GC-MS analysis indicated some remaining starting material. The reaction mixture was cooled to room temp. and diluted with water (50 mL). The resulting solution was extracted with EtOAc (100 mL). The organic layer was washed with a <BR> <BR> saturated NaCl solution (2 x 50 mL), dried (MgSO4), and concentrated in vacuo. The residular solids were purified by MPLC (50% EtOAc/50% hexanes) to give the desired amine (0.650 g, 38%).

11S13k. General Method for Substituted Aniline Formation via Nitroarene Formation Through Nucleophilic Aromatic Substitution, Followed by Reduction Step 1.5-Bromo-2-methoxypyridine: A mixture of 2,5-dibromopyridine (5.5 g, 23.2 mmol) and NaOMe (3.76g, 69.6 mmol) in MeOH (60 mL) was heated at 70 °C in a sealed reaction vessel for 42 h, then allowed to cool to room temp. The reaction mixture was treated with water (50 mL) and extracted with EtOAc (2 x 100 mL). The combined organic layers were dried (Na2S04) and concentrated under reduced pressure to give a pale yellow, volatile oil (4.1g, 95% yield): TLC (10% EtOAc/90% hexane) Rf 0.57.

Step 2. 5-Hydroxy-2-methoxypyridine: To a stirred solution of 5-bromo-2- methoxypyridine (8.9 g, 47.9 mmol) in THF (175 mL) at-78 °C was added an n- butyllithium solution (2.5 M in hexane; 28.7 mL, 71.8 mmol) dropwise and the resulting mixture was allowed to stir at-78 °C for 45 min. Trimethyl borate (7.06

mL, 62.2 mmol) was added via syringe and the resulting mixture was stirred for an additional 2 h. The bright orange reaction mixture was warmed to 0 °C and was treated with a mixture of a 3 N NaOH solution (25 mL, 71.77 mmol) and a hydrogen peroxide solution (30%; approx. 50 mL). The resulting yellow and slightly turbid reaction mixture was warmed to room temp. for 30 min and then heated to the reflux temp. for 1 h. The reaction mixture was then allowed to cool to room temp. The aqueous layer was neutralized with a IN HCI solution then extracted with Et2O (2 x 100 mL). The combined organic layers were dried (Na2SO4) and concentrated under reduced pressure to give a viscous yellow oil (3.5g, 60%).

Step To a stirred slurry of NaH (97%, 1.0 g, 42 mmol) in anh DMF (100 mL) was added a solution of 5-hydroxy-2- methoxypyridine (3.5g, 28 mmol) in DMF (100 mL). The resulting mixture was allowed to stir at room temp. for 1 h, 4-fluoronitrobenzene (3 mL, 28 mmol) was added via syringe. The reaction mnixture was heated to 95 °C overnight, then treated with water (25 mL) and extracted with EtOAc (2 x 75 mL). The organic layer was dried (MgSO4) and concentrated under reduced pressure. The residual brown oil was crystalized EtOAc/hexane) to afford yellow crystals (5.23 g, 75%).

Step 4.4- (5- (2-Methoxy) pyridyl) oxyaniline: 4- (5- (2-Methoxy) pyridyl) oxy-l- nitrobenzene was reduced to the aniline in a manner analogous to that described in Method B3d, Step2.

A14a. General Method for Substituted Aniline Synthesis via Nucleophilic Aromatic

Substitution using a Halopyridine 3- (4-Pyridinylthio) aniline: To a solution of 3-aminothiophenol (3.8 mL, 34 mmoles) in anh DMF (90mL) was added 4-chloropyridine hydrochloride (5.4 g, 35.6 mmoles) followed by K2CO3 (16.7 g, 121 mmoles). The reaction mixture was stirred at room

temp. for 1.5 h, then diluted with EtOAc (100 mL) and water (lOOmL). The aqueous layer was back-extracted with EtOAc (2 x 100 mL). The combined organic layers were washed with a saturated NaCl solution (100 mL), dried (MgSO4), and concentrated under reduced pressure. The residue was filtered through a pad of silica (gradient from 50% EtOAc/50% hexane to 70% EtOAc/30% hexane) and the resulting material was triturated with a Et2O/hexane solution to afford the desired product (4.6 g, 66%): TLC (100 % ethyl acetate) Rf 0.29;'H-NMR (DMSO-d,) 8 5.41 (s, 2H), 6.64-6.74 (m, 3H), 7.01 (d, J=4.8,2H), 7.14 (t, J=7.8 Hz, 1H), 8.32 (d, J=4.8,2H).

1A14b. General Method for Substituted Aniline Synthesis via Nucleophilic Aromatic Substitution using a Halopyridine

4- (2-Methyl-4-pyridinyloxy) aniline: To a solution of 4-aminophenol (3.6 g, 32.8 mmol) and 4-chloropicoline (5. 0 g, 39.3 mmol) in anh DMPU (50 mL) was added potassium tert-butoxide (7.4 g, 65.6 mmol) in one portion. The reaction mixture was heated at 100 °C with stirring for 18 h, then was allowed to cool to room temp. The resulting mixture was poured into water (200 mL) and extracted with EtOAc (3 x 150 mL). The combined extracts were sequentially washed with water (3 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (Na2SO4), and concentrated in vacuo.

The resulting oil was purified by flash chromatography (50 % EtOAc/50% hexane) to afford the desired product as a yellow oil (0.7 g, 9%): CI-MS m/z 201 ( (M+H) +). A14c. General Method for Substituted Aniline Synthesis via Nucleophilic Aromatic Substitution using a Halopyridine

Step 1. Methyl (4-nitrophenyl)-4-pyridylamine: To a suspension of N-methyl-4- nitroaniline (2.0 g, 13.2 mmol) and K2CO3 (7.2 g, 52.2 mmol) in DMPU (30mL) was added 4-chloropyridine hydrochloride (2.36 g, 15.77 mmol). The reaction mixture

was heated at 90 °C for 20 h, then cooled to room temperature. The resulting mixture was diluted with water (100 mL) and extracted with EtOAc (100 mL). The organic layer was washed with water (100 mL), dried (Na2SO4) and concentrated under reduced pressure. The residue was purified by column chromatography (silica gel, gradient from 80% EtOAc/20% hexanes to 100% EtOAc) to afford methyl (4- nitrophenyl)-4-pyridylamine (0.42 g)

Step 2. Methyl (4-aminophenyl)-4-pyridylamine: Methyl (4-nitrophenyl)-4- pyridylamine was reduced in a manner analogous to that described in Method B 1.

A15. General Method of Substituted Aniline Synthesis via Phenol Alkylation Followed by Reduction of a Nitroarene

Step To a solution of 4- (4-nitrophenyl- thio) phenol (1.50 g, 6.07 mmol) in anh DMF (75 ml) at 0 °C was added NaH (60% in mineral oil, 0.267 g, 6.67 mmol). The brown suspension was stirred at 0 °C until gas evolution stopped (15 min), then a solution of iodobutane (1.12 g,. 690 ml, 6.07 mmol) in anh DMF (20 mL) was added dropwise over 15 min at 0 °C. The reaction was stirred at room temp. for 18 h at which time TLC indicated the presence of unreacted phenol, and additional iodobutane (56 mg, 0.035 mL, 0.303 mmol, 0.05 equiv) and NaH (13 mg, 0.334 mmol) were added. The reaction was stirred an additional 6 h room temp., then was quenched by the addition of water (400 mL). The resulting mixture was extracted with Et2O (2 x 500 mL). The combibed organics were washed with water (2 x 400 mL), dried (MgSO4), and concentrated under reduced pressure to give a clear yellow oil, which was purified by silica gel chromatography (gradient from 20% EtOAc/80% hexane to 50% EtOAc/50% hexane) to give the product as a yellow solid (1.24 g, 67%): TLC (20% EtOAc/80% hexane) Rf 0.75;'H- <BR> <BR> NMR (DMSO-d6) 8 0.92 (t, J= 7. 5 Hz, 3H), 1.42 (app hex, J=7. 5 Hz, 2H), 1.70 (m, 2H), 4.01 (t, J= 6.6 Hz, 2H), 7.08 (d, J=8.7 Hz, 2H), 7.17 (d, J=9 Hz, 2H), 7.51 (d, J= 8.7 Hz, 2H), 8.09 (d, J= 9 Hz, 2H).

Step 4- (4-Butoxyphenyl) thio-l-nitrobenzene was reduced to the aniline in a manner analagous to that used in the preparation of 3- (trifluoromethyl)-4- (4-pyridinylthio) aniline (Method B3b, Step 2): TLC (33% EtOAc/77% hexane) Rf 0.38.

A16. General Method for Synthesis of Substituted Anilines by the Acylation of Diaminoarenes 4- (4-tert-Butoxycarbamoylbenzyl) aniline: To a solution of 4,4'-methylenedianiline (3.00 g, 15.1 mmol) in anh THF (50 mL) at room temp was added a solution of di- tert-butyl dicarbonate (3.30 g, 15.1 mmol) in anh THF (10 mL). The reaction mixture was heated at the reflux temp. for 3 h, at which time TLC indicated the presence of unreacted methylenedianiline. Additional di-tert-butyl dicarbonate (0.664 g, 3.03 mmol, 0.02 equiv) was added and the reaction stirred at the reflux temp. for 16 h. The resulting mixture was diluted with Et2O (200 mL), sequentially washed with a saturated NaHC03 solution (100 ml), water (100 mL) and a saturated NaCl solution (50 mL), dried (MgS04), and concentrated under reduced pressure. The resulting white solid was purified by silica gel chromatography (gradient from 33% EtOAc/67% hexane to 50% EtOAc/50% hexane) to afford the desired product as a white solid (2.09 g, 46%): TLC (50% EtOAc/50% hexane) Rf 0.45;'H-NMR (DMSO-d6) 8 1.43 (s, 9H), 3.63 (s, 2H), 4.85 (br s, 2H), 6.44 (d, J=8.4 Hz, 2H), 6.80 (d, J=8.1 Hz, 2H), 7.00 (d, J=8.4 Hz, 2H), 7.28 (d, J=8.1 Hz, 2H), 9.18 (br s, 1H); FAB-MS m/z 298 (M+).

General Method for the Synthesis of Aryl Amines via Electrophilic Nitration Followed by Reduction

Step A solution of 3-benzylpyridine (4.0 g, 23.6 mmol) and 70% nitric acid (30 mL) was heated overnight at 50 °C. The resulting mixture was allowed to cool to room temp. then poured into ice water (350 mL). The aqueous mixture then made basic with a 1N NaOH solution, then extracted with Et2O (4 x 100 mL). The combined extracts were sequentially washed with water (3 x 100 mL) and a saturated NaCl solution (2 x 100 mL), dried (Na2SO4), and concentrated in vacuo. The residual oil was purified by MPLC (silica gel; 50 % EtOAc/50% hexane) then recrystallization (EtOAc/hexane) to afford the desired product (1.0 g, 22%): GC- MS m/z 214 (M+).

Step 3- (4-Nitrobenzyl) pyridine was reduced to the aniline in a manner analogous to that described in Method B 1. lA18. General Method for Synthesis of Aryl Amines via Substitution with Nitrobenzyl Halides Followed by Reduction

Step To a solution of imidazole (0.5 g, 7.3 mmol) and 4-nitrobenzyl bromide (1.6 g, 7.3 mmol) in anh acetonitrile (30 mL) <BR> <BR> <BR> was added K2C03 (1.0 g, 7.3 mmol). The resulting mixture was stirred at rooom temp. for 18 h and then poured into water (200 mL) and the resulting aqueous solution wasextracted with EtOAc (3 x 50 mL). The combined organic layers were sequentially washed with water (3 x 50 mL) and a saturated NaCl solution (2 x 50 mL), dried (MgSO4), and concentrated in vacuo. The residual oil was purified by MPLC (silica gel; 25% EtOAc/75% hexane) to afford the desired product (1.0 g, 91%): EI-MS m/z 203 (M+).

Step 2. 4-(1-Imidazolylmethyl)aniline : 4- (l-Imidazolylmethyl)-l-nitrobenzenewas reduced to the aniline in a manner analogous to that described in Method B2.

A19. Formation of Substituted Hydroxymethylanilines by Oxidation of Nitrobenzyl Compounds Followed by Reduction

Step 1. 4-(1-Hydroxy-1-(4-pyridyl)methyl-1-nitrobenzene : To a stirred solution of 3- (4-nitrobenzyl) pyridine (6.0 g, 28 mmol) in CH2Cl2 (90 mL) was added m-CPBA (5.80 g, 33.6 mmol) at 10 °C, and the mixture was stirred at room temp. overnight.

The reaction mixture was successively washed with a 10% NaHS03 solution (50 mL), a saturated K2CO3 solution (50 mL) and a saturated NaCl solution (50 mL), dried (MgSO4) and concentrated under reduced pressure. The resulting yellow solid (2.68 g) was dissolved in anh acetic anhydride (30 mL) and heated at the reflux temperature overnight. The mixture was concentrated under reduced pressure. The residue was dissolved in MeOH (25 mL) and treated with a 20% aqueous NH3 solution (30 mL).

The mixture was stirred at room temp. for 1 h, then was concentrated under reduced pressure. The residue was poured into a mixture of water (50 mL) and CH2Ck (50 mL). The organic layer was dried (MgSO4), concentrated under reduced pressure, and purified by column chromatography (80% EtOAc/20% hexane) to afford the desired product as a white solid. (0.53 g, 8%): mp 110-118 °C; TLC (80% EtOAc/20% hexane) Rf0. 12; FAB-MS m/z 367 ( (M+H)', 100%).

Step 4- (l-Hydroxy-l- (4-pyridyl)- methyl-1-nitrobenzene was reduced to the aniline in a manner analogous to that described in Method B3d, Step2.

A20. Formation of 2- (N-methylcarbamoyl) pyridines via the Menisci reaction

Step 1.2- (N-methylcarbamoyl)-4-chloropyridine. (Caution: this is a highly hazardous, potentially explosive reaction.) To a solution of 4-chloropyridine (10.0 g) in N-methylformamide (250 mL) under argon at ambient temp was added conc. H2SO4 (3.55 mL) (exotherm). To this was added H202 (17 mL, 30% wt in H20) followed by FeS04-7H20 (0.55 g) to produce an exotherm. The reaction was stirred in the dark at ambient temp for lh then was heated slowly over 4 h at 45 °C. When bubbling subsided, the reaction was heated at 60 °C for 16 h. The opaque brown solution was diluted with H20 (700 mL) fol. lowed by a 10% NaOH solution (250 mL). The aqueous mixture was extracted with EtOAc (3 x 500 mL) and the organic layers were washed separately with a saturated NaCl solution (3 x 150 mIL. The combined organics were dried (MgS04) and filtered through a pad of silica gel eluting with EtOAc. The solvent was removed in vacuo and the brown residue was purified by silica gel chromatography (gradient from 50% EtOAc/50% hexane to 80% EtOAc/ 20% hexane). The resulting yellow oil crystallized at 0 °C over 72 h to give 2- (N methylcarbamoyl)-4-chloropyridine in yield (0.61 g, 5.3%): TLC (50% EtOAc/50% hexane) Rf 0.50; MS;'H NMR (CDC13): d 8.44 (d, 1 H, J = 5.1 Hz, CHN), 8.21 (s, IH, CHCCO), 7.96 (b s, IH, NH), 7.43 (dd, 1H, J = 2.4,5.4 Hz, C1CHCN), 3.04 (d, 3H, J = 5.1 Hz, methyl); CI-MS m/z 171 ( (M+H) +).

A21. Generalmethod for the Synthesis of o-Sulfonylphenyl Anilines Step To a solution of 4- (4- methylthiophenoxy)-l-ntirobenzene (2 g, 7.66 mmol) in CH2C12 (75 mL) at 0 °C was slowly added mCPBA (57-86%, 4 g), and the reaction mixture was stirred at room temperature for 5 h. The reaction mixture was treated with a 1 N NaOH solution (25 mL). The organic layer was sequentially washed with a IN NaOH solution (25 mL),

water (25 mL) and a saturated NaCl solution (25 mL), dried (MgSO4), and concentrated under reduced pressure to give 4- (4-methylsulfonylphenoxy)-1- nitrobenzene as a solid (2.1 g). <BR> <BR> <P>Step 4- (4-Methylsulfonylphenoxy)-l- nitrobenzene was reduced to the aniline in a manner anaologous to that described in Method B3d, step 2.

A22. General Method for Synthesis of c3-Alkoxy-(o-carboxyphenyl Anilines Step To a solution of- (3-carboxy-4-hydroxyphenoxy)-l-nitrobenzene (prepared in a manner analogous to that described in Method B3a, step 1,12 mmol) in acetone (50 mL) was added K2CO3 (5 g) and dimethyl sulfate (3.5 mL). The resulting mixture was heated aaaaaat the reflux tempoerature overnight, then cooled to room temperature and filtered through a pad of Celite. The resulting solution was concentrrated under reduced pressure, absorbed onto silica gel, and purified by column chromatography (50% EtOAc/50% hexane) to give 4- (3-methoxycarbonyl-4-methoxyphenoxy)-l- nitrobenzene as a yellow powder (3 g): mp 115 118 °C.

Step A mixture of 4- (3- methoxycarbonyl-4-methoxyphenoxy)-1-nitrobenzene (1.2 g), KOH (0.33 g), and water (5 mL) in MeOH (45 mL) was stirred at room temperature overnight and then heated at the reflux temperature for 4 h. The resulting mixture was cooled to room temperature and concentrated under reduced pressure. The residue was dissolved in water (50 mL), and the aqueous mixture was made acidic with a 1N HC1 solution.

The resulting mixture was extracted with EtOAc (50 mL). The organic layer was

dried (MgSO4) and concentrated under reduced pressure to give 4- (3-carboxy-4- methoxyphenoxy)-l-nitrobenzene (1.04 g).

B. General Methods of Urea Formation Bla. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate N-(5-tert-Butyl-2- (3-tetrahydrofuranyloxy) phenyl)-N'- (4-methylphenyl)(5-tert-Butyl-2- (3-tetrahydrofuranyloxy) phenyl)-N'- (4-methylphenyl) urea: To a solution of 5-tert-butyl-2- (3-tetrahydrofuranyloxy) aniline (0.078 g, 0.33 mmol) in toluene (2.0 mL) was addedp-tolyl isocyanate (0.048 g, 0.36 mmol) and the resulting mixture was allowed to stir at room temp. for 8 h to produce a precipitate. The reaction mixture was filtered and the residue was sequentially washed with toluene and hexanes to give the desired urea as a white solid (0.091 g, 75%): mp 229-231 °C; 'H-NMR (DMSO-d6) 8 1.30 (s, 9H), 1.99-2.03 (m, 1H), 2.19-2.23 (m, 4H), 3.69-3.76 (m, 1H), 3.86-3.93 (m, 3H), 4.98-5.01 (m, 1H), 6.81-6.90 (m, 2H), 7.06 (d, J=8.09 Hz, 2H, 7.32 (d, J=8.09 Hz, 2H), 7.84 (s, 1H), 8.22 (d, J=2.21 Hz, 1H), 9.26 (s, 1H).

Blb. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate N- (2-Methoxy-5- (trifluoromethanesulfonyl) phenyl)-N' (4-methylphenyl) urea: p- Tolyl isocyanate (0.19 mL, 1.55 mmol) was added to a solution of 2-methoxy-5- (trifluoromethanesulfonyl) aniline (0.330 g, 1.29 mmol) in EtOAc (5 mL), and the

reaction mixture was stirred at room temp. for 18 h. The resulting precipitate was collected by filtration and washed with Et2O to give a white solid (0.28 g). This material was then purified by HPLC (C-18 column, 50% CH3CN/50% H20) and the resulting solids were triturated with Et2O to provide the title compound (0.198 g):'H- NMR (CDC13) 8 7.08 (d, J=8. 5 Hz, 2H), 7.33 (d, J=8. 5 Hz, 2H), 7.40 (d, J=8. 8 Hz, 1H), 7.71 (dd, J=2.6,8.8 Hz, 1H), 8.66 (s, 1H), 8.90 (d, J=2.6 Hz, 1H), 9.36 (s, 1H); FAB-MS m/z 389 ((M+1) +).

B1c. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate

N (2-Methoxy-5- (difluoromethanesulfonyl) phenyl)-N'- (4-methylphenyl) urea: p- Tolyl isocyanate (0.058 mL, 0.46 mmol) was added to a solution of 2-methoxy-5- (difluoromethanesulfonyl) aniline (0.100 g, 0.42 mmol) in EtOAc (0.5 mL) and the resulting mixture was stirred at room temp. for 3 d. The resulting precipitate was filtered and washed with Et2O to provide the title compound as a white solid (0.092 g):'H-NMR (CDC13) 8 2.22 (s, 3H) 4.01 (s, 3H), 7.02-7.36 (m, 6H), 7.54 (dd, J=2.4, 8.6 Hz, 1H), 8.57 (s, 1H), 8.79 (d,. J=2.6 Hz, 1H), 9.33 (s, 1H); EI-MS m/z 370 (M+).

Bld. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate

N-(2, 4-Dimethoxy-5-(trifluoromethyl) phenyl)-N'-(4-methylphenyl)(2, 4-Dimethoxy-5-(trifluoromethyl) phenyl)-N'-(4-methylphenyl) urea: p-Tolyl isocyanate (0.16 mL, 1.24 mmol) was added to a solution of 2,4-dimethoxy-5- (trifluoromethyl) aniline (0.25 g, 1.13 mmol) in EtOAc (3 mL) and the resulting mixture was stirred at room temp. for 18 h. A resulting precipitate was washed with

Et20 to give the title compound as a white solid (0.36 (s, 3H). 3.97 (s, 3H), 3.86 (s, 3H), 6.88 (s, 1H), 7.05 (d, J=8. 5 Hz, 2H), 7.29 (d, J=8.5 Hz, 2H), 8.13 (s, 1H), 8.33 (s, 1H), 9.09 (s, 1H); FAB-MS m/z 355 ((M+1) +).

Ble. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate

N-(3-Methoxy-2-naphthyl)-N'-(1-naphthyl) urea: To a solution of 2-amino-3- methoxynaphthalene (0.253 g, 1.50 mmol) in CH2C12 (3 mL) at room temp. was added a solution of 1-naphthyl isocyanate (0.247 g, 1.50 mmol) in CH2C12 (2 mL) and the resulting mixture was allowed to stir overnight. The resulting precipitate was separated and washed with CH2Cl2 to give the desired urea as a white powder (0.450 g, 90%): mp 235-236 °C;'H-NMR (DMSO-d6) 5 4.04 (s, 3H), 7.28-7.32 (m, 2H), 7.38 (s, 1H), 7.44-7.72 (m, 6H), 7.90-7.93 (m, 1H), 8.05-8.08 (m, 1H), 8.21-8.24 (m, 1H), 8.64 (s, 1H), 9.03 (s, 1H), 9.44 (s, 1H); FAB-MS m/z 343 ((M+H)+).

B1f. General Method for the Reaction of an Aryl Amine with an Aryl Isocyanate

N-(5-tert-Butyl-2-(2-tert-butoxycarbonyloxy)ethoxy)phenyl)-N '-(4- methylphenyl) urea: A mixture of 5-tert-butyl-2- (2-tert- butoxycarbonyloxy) ethoxy) aniline (Method A10,0.232 g, 0.75 mmol) and p-tolyl isocyanate (0.099 mL, 0.79 mmol) in EtOAc (1 mL) was stirred at room temp. for 3 d to produce a solid, which was separated. The filtrate was purified by column chromatography (100% CH2Cl2) and the residue was triturated (Et2O/hexane) to give

the desired product (0.262 g, 79%): mp 155-156 °C; TLC (20% EtOAc/80% hexane) Rf 0.49;'H-NMR (DMSO-d6) 8 1.22 (s, 9H), 1.37 (s, 9H), 2.21 (s, 3H), 4.22-4.23 (m, 2H), 4.33-4. 35 (m, 2H), 6.89-7.00 (m, 4H), 7.06 (d, J=8.5 Hz, 2H), 7.32 (d, J=8.1 Hz, 2H), 7.96 (s, 1H); 8.22 (d, J=1.5 Hz, 1H), 9.22 (s, 1H); FAB-MS m/z (rel abundance) 443 ((M+H) t, 6%).

General Method for Reaction of an Aryl Amine with Phosgene Followed by Addition of a Second Aryl Amine N (2-Methoxy-5- (trifluoromethyl) phenyl)-N'- (3- (4-pyridinylthio) phenyl) urea: To a solution of pyridine (0.61 mL, 7.5 mmol, 3.0 equiv) and phosgene (20% in toluene; 2.65 mL, 5.0 mmol, 2.0 equiv) in CH2C12 (20 mL) was added 2-methoxy-5- (trifluoromethyl) aniline (0.48 g, 2.5 mmol) at 0 °C. The resulting mixture was allowed warm to room temp. stirred for 3 h, then treated with anh. toluene (100 mL) and concentrated under reduced pressure. The residue was suspended in a mixture of CH2C12 (10 mL) and anh. pyridine (10 mL) and treated with 3- (4-pyridinylthio) aniline (0.61 g, 2.5 mmol, 1.0 equiv). The mixture was stirred overnight at room temp., then poured into water (50 mL) and extracted with CH2C12 (3 x 25 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure. The residue was dissolved in a minimal amount of CH2Cl2 and treated with pet. ether to give the desired product as a white precipitate (0.74 g, 70%): mp 202 °C; TLC (5% acetone/95% CH2C12) Rf 0. 09;'H-NMR (DMSO-d6) 6 7.06 (d,. 7=5.5 Hz, 2H), 7.18 (dd, J=2.4,4.6 Hz, 2H), 7.31 (dd, J= 2.2,9.2 Hz, 1H), 7.44 (d, J=5.7 Hz, 1H), 7.45 (s, 1H), 7.79 (d, J=2.2 Hz, 1H), 8.37 (s, 2H), 8.50 (dd, J=2.2,9.2 Hz, 2H), 9.63 (s, 1H), 9.84 (s, 1H); FAB-MS m/z 420 ( (M+H) +, 70%).

General Method for Reaction of an Aryl Amine with Phosgene Followed by Addition of a Second Aryl Amine

N (2-Methoxy-5- (trifluoromethyl) phenyl)-N'- (4- (4-pyridinylthio) phenyl) urea: To a solution of pyridine (0.61 mL, 7.5 mmol, 3.0 equiv) and phosgene (20% in toluene; 2.65 mL, 5.0 mmol, 2.0 equiv) in CH2C12 (20 mL) was added 4- (4- pyridinylthio) aniline (0.506 g, 2.5 mmol) at 0 °C. After stirring for 3 h at room temp., the mixture was treated with anh. toluene (100 mL) then concentrated under reduced pressure. The residue was suspended in a mixture of CH2Cl2 (10 mL) and anh. pyridine (10 mL) and treated with 2-methoxy-5- (trifluoromethyl) aniline (0.50 g, 2.5 mmol, 1.0 equiv). After stirring the mixture overnight at room temp., it was poured into a 1 N NaOH solution (50 mL) and extracted with CH2Cl2 (3 x 25 mL). The combined organic layers were dried (MgSO4) and concentrated under reduced pressure to give the desired urea (0.74 g, 71%): mp 215 °C; TLC (5% acetone/95% <BR> <BR> <BR> CH2Cl2) Rf 0.08;'H-NMR (DMSO-d6) 8 3.96 (s, 3H), 6.94 (dd, J=1.1,4.8 Hz, 2H), 7.19 (d, J=8.4 Hz, 1H), 7.32 (dd, J=2.2,9.3 Hz, 1H), 7.50 (d, J=8.8 Hz, 2H), 7.62 (d, J=8.8 Hz, 2H), 8.32 (d, J=5. 1 Hz, 2H), 8.53 (d, J=0.7 Hz, 1H), 8.58 (s, 1H), 9.70 (s, 1H); FAB-MS m/z 420 ( (M+H) +).

B3a. General Method for the Reaction of an Aryl Amine with Phosgene with Isolation of the Isocyanate, Followed by Reaction with a Second Aryl Amine

Step 1.5- (Difluoromethanesulfonyl)-2-methoxyphenyl isocyanate: To a solution of phosgene (1.95 M in toluene; 3.0 mL, 5.9 mmol) in CH2C12 (40 mL) at 0 °C was added a solution of 5- (difluoromethanesulfonyl)-2-methoxyaniline (0.70 g, 2.95 mmol) and pyridine (0.44 mL, 8.85 mmol) in CH2C12 (10 mL) dropwise. After being stirred at 0 °C for 30 min and at room temp. for 3 h, the reaction mixture was concentrated under reduced pressure, then treated with toluene (50 mL). The resulting mixture was concentrated under reduced pressure, then was treated with Et2O (50 mL) to produce a precipitate (pyridinium hydrochloride). The resulting filtrate was concentrated under reduced pressure to provide the title compound as a white solid (0.33 g). This material was used in the next step without further purification.

Step 2. N-(2-Methoxy-5-(difluoromethanesulfonyl) phenyl)-N'-(2-fluoro4- methylphenyl) urea: 2-Fluoro-4-methylaniline (0.022 mL, 0.19 mmol) was added to a solution of 5- (difluoromethanesulfonyl)-2-methoxyphenyl isocyanate (0.046 g, 0.17 mmol) in EtOAc (1 mL). The reaction mixture was stirred at room temp. for 3 d. The resulting precipitate was washed with Et2O to provide the title compound as a white solid (0.055 g):'H-NMR (CDCl3) 8 2.24 (s, 3H), 4.01 (s, 3H), 6.93 (d, J=8.5 Hz, 1H), 7.01-7.36 (m, 3H), 7.56 (dd, J=2.4,8.6 Hz, 1H), 7.98 (app t, J=8.6 Hz, 1H), 8.79 (d, J=2.2 Hz, 1H), 9.07 (s, 1H), 9.26 (s, 1H); FAB-MS m/z 389 ( (M+1) +). lB3b. General Method for the Reaction of an Aryl Amine with Phosgene with Isolation of the Isocyanate, Followed by Reaction with a Second Aryl Amine

Step 1.2-Methoxy-5-trifluoromethylphenyl Isocyanate: To a solution of phosgene (1.93 M in toluene; 16 mL, 31.4 mmol) in CH2C12 (120 mL) at 0 °C was added a solution of 2-methoxy-5- (trifluoromethyl) aniline (3.0 g, 15.7 mmol) and pyridine (2.3 mL, 47.1 mmol) in CH2Cl2 (30 mL) dropwise. The resulting mixture was stirred at 0 °C for 30 min and at room temp for 3 h, then concentrated under reduced pressure. The residue was diluted with toluene (30 mL), concentrated under reduced pressure, and treated with Et2O. The resulting precipitate (pyridinium hydrochloride) was removed and the filtrate was concentrated under redeuced pressure to give the title compound as a yellow oil (3.0 g) which crystallized upon standing at room temp. for a few days.

Step 2. N (2-Methoxy-5- (trifluoromethyl) phenyl)- N'- (4-fluorophenyl) urea: 4- Fluoroaniline (0.24 mL, 2.53 mmol) was added to a solution of 2-methoxy-5- (trifluoromethyl) phenyl isocyanate (0.50 g, 2.30 mmol) in EtOAc (6 mL) and the reaction mixture was stirred at room temp. for 3 d. The resulting precipitate was washed with Et20 to give the title compound as a white solid (0.60 g): NMR: 3.94 (s, 3H). 7.13-7.18 (m, 3H), 7.30 (dd, J=1.5,8.4 Hz, 1H), 7.44 (m, 2H), 8.45 (s, 1H), 8.52 (d, J=2.2 Hz, 1H), 9.42 (s, 1H); FAB-MS mlz 329 ( (M+1) +).

B4. General Method for Urea Formation via Curtius Rearrangement, Followed by Trapping with an Amine

N-(3-Methoxy-2-naphthyl)-N'- (4-methylphenyl)(3-Methoxy-2-naphthyl)-N'- (4-methylphenyl) urea: To a solution of 3-methoxy- 2-naphthoic acid (Method A6, Step 2; 0.762 g, 3.80 mmol) and Et3N (0.588 mL, 4.2 mmol) in anh toluene (20 mL) at room temp. was added a solution of diphenylphosphoryl azide (1.16 g, 4.2 mmol) in toluene (5 mL). The resulting mixture was heated to 80 °C for 2 h, cooled to room temp., and p-toluidine (0.455 g, 4.1 mmol) was added. The mixture was heated at 80 °C overnight, cooled to room temp., quenched with a 10% citric acid solution, and extracted with EtOAc (2 x 25 mL). The combined organic layers were washed with a saturated NaCl solution (25 mL), dried (MgS04), and concentrated in vacuo. The residue was triturated with CH2C12 to give the desired urea as white powder (0.700 g, 61%): mp 171-172 °C;'H-NMR (DMSO- d6) 8 2.22 (s, 3H), 3.99 (s, 3H), 7.07 (d, J=8.49 Hz, 2H), 7.27-7.36 (m, 5H), 7.67-7.72 (m, 2H), 8.43 (s, 1H), 8.57 (s, 1H), 9.33 (s, 1H); FAB-MS m/z 307 ( (M+H)'). B5. General Method for the Reaction of Substituted Aniline with N, N'- Carbonyldiimidazole Followed by Reaction with a Second Amine

N-(5-Chloro-2-hydroxy-4-nitrophenyl)-N'-(4-(4-pyridinylmethy l)phenyl) urea: A solution of 4- (4-pyridinylmethyl) aniline (0.300 g, 1.63 mmol) and N, N'- carbonyldiimidazole (0.268 g, 1.65 mmol) in CH2C12 (10 mL) was stirred at room temp. for 1 h at which time TLC analysis indicated no starting aniline. The reaction mixture was then treated with 2-amino-4-chloro-5-nitrophenol (0.318 g, 1.65 mmol) and stirred at 40-45 °C for 48 h. The resulting mixture was cooled to room temp. and diluted with EtOAc (25 mL). The resulting precipitate was separated to give the desired product (0.416 g, 64%): TLC (50% acetone/50% CH2C12) Rif 0.40;'H-NMR <BR> <BR> <BR> (DMSO-d6) 8 3.90 (s, 2H), 7.18 (d, J=8.4 Hz, 2H), 7.21 (d, J=6 Hz, 2H), 7. 38 (d, J=8. 4 Hz, 2H), 7.54 (s, 1H), 8.43-8.45 (m, 3H), 8.78 (s, 1H), 9.56 (s, 1H), 11.8 (br s, 1H); FAB-MS m/z (rel abundance) 399 ( (M+H) +, 10%). B6. General Method for the Synthesis of Symmetrical Diphenyl Ureas as Side- Products of Urea Forming reactions

Bis (4-chloro-3- (trifluoromethyl) phenyl) urea: To a solution of 5-amino-3-tert- butylisoxazole (0.100 g) in anh toluene (5 mL) was added 4-chloro-3- (trifluoromethyl) phenyl isocyanate (0.395 g). The reaction vessel was sealed, heated at 85 °C for 24 h, and cooled to room temp. The reaction mixture was added to a slurry of Dowexs 50WX2-100 resin (0.5 g) in CH2C12 (40 mL), and the resulting mixture was stirred vigorously for 72 h. The mixture was filtered and the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography (gradient form 100% CHOC'2 to 5% MeOH/95% CH2Cl2) to give bis (4-chloro-3- (trifluoromethyl) phenyl) urea followed by N-(3-tert-butyl-5- isoxazolyl)-N'- (4-chloro-3- (trifluoromethyl) phenyl) urea. The residue from the

symmetrical urea fractions was triturated (Et2O/hexane) to give the urea as a white solid (0.110 g): TLC (3% MeOH/97% CH2Cl2) Rf 0.55; FAB-MS m/z 417 ((M+H) +).

B. Combinatorial Method for the Synthesis of Diphenyl Ureas Using Triphosgene One of the anilines to be coupled was dissolved in dichloroethane (0.10 M). This solution was added to an 8 mL vial (0.5 mL) containing dichloroethane (1 mL). To this was added a triphosgene solution (0.12 M in dichloroethane, 0.2 mL, 0.4 equiv.), followed by diisopropylethylamine (0.35 M in dichloroethane, 0.2 mL, 1.2 equiv.).

The vial was capped and heated at 80°C for 5 h, then allowed to cool to room temp. for approximately 10 h. The second aniline was added (0.10 M in dichloroethane, 0.5 mL, 1.0 equiv.), followed by diisopropylethylamine (0.35 M in dichloroethane, 0.2 mL, 1.2 equiv.). The resulting mixture was heated at 80°C for 4 h, cooled to room temperature and treated with MeOH (0.5 mL). The resulting mixture was concentrated under reduced pressure and the products were purified by reverse phase HPLC.

C. Urea Interconversions and Misc. Reactions Cl. General Method for Alkylation of Hydroxyphenyl Ureas Step 1. N (2-Hydroxy-5- (trifluoromethylthio) phenyl)-N'- (4-methylphenyl) urea: p-Tolyl isocyanate (0.066 mL, 0.52 mmol) was added to a solution of 2-hydroxy-5- (trifluoromethylthio) aniline (0.100 g, 0.48 mmol) in EtOAc (2 mL) and the reaction mixture was stirred at room temp. for 2 d. The resulting precipitate was washed with EtOAc to provide the title compound (0.13 g): IH-NMR (CDC13) 6 2.24 (s, 3H). 7.44- 7.03 (m, 6H), 8.46 (s, 1H), 8.60 (d, J=1.8 Hz, 1H), 9.16 (s, 1H), 10.41 (s, 1H); FAB- MS m/z 343 ( (M+1) +). This material was used in the next step without purification.

Step 2. N (2-Methoxy-5- (trifluoromethylthio) phenyl)-N'- (4-methylphenyl) urea: A solution of N (2-hydroxy-5- (trifluoromethylthio) phenyl)-N'- (4-methylphenyl) urea (0.125 g, 0.36 mmol), iodomethane (0.045 mL, 0.73 mmol), and K2CO3 (100 mg, 0.73 mmol) in acetone (2 mL) was heated at the reflux temp. for 6 h, then was cooled to room temp. and concentrated under reduced pressure. The residue was dissolved in a minimal amount of MeOH, absorbed onto silica gel, and then purified by flash chromatograpy (3% Et2O/97% Ch2Cl2) to provide the title compound as a white solid (68 mg):'H-NMR (CDC1,) 8 2.22 (s, 3H), 3.92 (s, 3H), 7.05-7.32 (m, 6H), 8.37 (s, 1H), 8.52 (d, J=2.2 Hz, 1H), 9.27 (s, 1H); FAB-MS mlz 357 ((M+1) +).

C2. General Method for the Reduction of Nitro-Containing Ureas N-(5-tert-Butyl-2-methoxyphenyl)-N'- (2-amino-4-methylphenyl)(5-tert-Butyl-2-methoxyphenyl)-N'- (2-amino-4-methylphenyl) urea: A solution ofN- (5-tert-butyl-2-methoxyphenyl)-N'- (2-nitro-4-methylphenyl) urea (prepared in a manner analogous to Method Bla; 4.0 g, 11.2 mmol) in EtOH (100 mL) was added to a slurry of 10% Pd/C (0.40 g) in EtOH (10 mL), and the resulting mixture was stirred under an atmosphere of H2 (balloon) at room temp. for 18 h. The mixture was filtered through a pad of Celites and concentrated in vacuo to afford the desired product (3.42 g, 94%) as a powder: mp 165-166 °C;'H-NMR (DMSO-d6) 8 1.30 (s, 9H), 2.26 (s, 3H), 3.50 (br s, 2H), 3.71 (s, 3H), 6.39 (br s, 1H), 6.62 (s, 1H), 6.73 (d, J=8. 46 Hz, 1H), 6.99 (dd, J=2.21,8.46 Hz, 1H), 7.05 (d, J=8. 46 Hz, 1H), 7.29 (s, 1H), 8.22 (d, J=2.57 Hz, 1H); FAB-MS m/z 328 ((M+H) +).

C3. General Method of Thiourea Formation by Reaction with a Thioisocyanate

N-(5-tert-Butyl-2-methoxyphenyl)-N'- (l-naphthyl)(5-tert-Butyl-2-methoxyphenyl)-N'- (l-naphthyl) thiourea: To a solution of 5- tert-butyl-2-methoxyaniline (0.372 g, 2.07 mmol) in toluene (5 mL) was added 1- naphthyl thioisocyanate (0.384 g, 2.07 mmol) and the resulting mixture was allowed to stir at room temp. for 8 h to produce a precipitate. The solids were separated and sequentially washed with toluene and hexane to give the desired product as an off- white pwoder (0.364 g, 48%): mp 158-160 °C ; IH-NMR (DMSO-d6) õ 1.31 (s, 9H), 3.59 (s, 3H), 6.74 (d, J=8.46 Hz, 1H), 7.13 (dd, J=2.21,8.46 Hz, 1H), 7.53-7.62 (m, 4H), 7.88-7.95 (m, 4H), 8.06-8.08 (m, 1H), 8.09 (br s, 1H); FAB-MS m/z 365 ( (M+H) +).

C4. General Method for Deprotection of tert-Butyl Carbonate-Containing Ureas N (5-tert-Butyl-2- (2-hydroxyethoxy) phenyl)-N'- (4-methylphenyl) urea: A solution of N- (S-tert-butyl-2- (2-tert-butoxycarbonyloxy) ethoxy) phenyl)-N'- (4- methylphenyl) urea (Method Blf; 0.237 g, 0.54 mmol) and TFA (0.21 mL, 2.7 mmol) in CH2C12 (2 mL) was stirred at room temp for 18 h, then was washed with a saturated NaHC03 solution (2 mL). The organic layer was dried by passing through 1PS filter paper (Whatman) and concentrated under reduced pressure. The resulting white foam was triturated (Et2O/hexane), then recrystallized (Et2O) to give the desired product (3.7 mg): TLC (50% EtOAc/50% hexane) Rf 0.62 ; 1H-NMR (DMSO-d6) # 1.22 (s, 9H), 3.75-3.76 (m, 2H), 4.00-4.03 (m, 2H), 4.80 (t, J=5. 0 Hz, 1H), 6.88-6.89 (m, 4H), 7.06 (d, J=8.5 Hz, 2H), Hz, 2H), 7.97 (s, 1H), 8.20 br s, 1H), 9.14 (s, 1H); FAB-MS m/z (rel abundance) 343 ((M+H) +, 100%).

The following compounds have been synthesized according to the General Methods listed above: Table 1.2-Substituted-5-tert-butylphenyl Ureas

mp TLC Solvent Mass Synth. En Rl R2 (°C) System Spec. Source Method OMe H2 192 389 FAB Bld C-N 194 M+H) + 2 OMe H N 201-390 FAB B2a -au 202 M+H) + 3 OMe » 5 H2 N= 199-90 FAB B2a C 200 (M+H) + 4 OMe I10. 07 5% 08 FAB B2b vS, N acetone M+H) + 95% CH2C12 5 OMe 207 0.56 5% 48 FAB B2a acetone M+H) + 95% 95% S I CH2C12 6 OMe 5% 2l FAB B2a acétone/(M+H) + 95% CH2C12 7 Orme 38 FAB B5 'M+H) + 8 OMe 06 FAB BS ON M+H) + Me 9 OMe. 54 50% 92 HPLC B5 EtOAc) (M+H) + ES-MS 50% hexane 10 OMe Me o= 132-0.39 30% 434 HPLC A14c, B5 tNvOMe 133 EtOAc M+H) + ES-MS 70% hexane 11 OMe 121-408 FAB B5 125 (M+H) + s \ N 12 1314-443 (M+) El A7, Bla 13 185-A7, Bia --Q 186 S-\CN 14-s/- H2/=\ 145-A7, Bla ---C-N 147 15 H _. 77 50% 78 FAB Bla free EtOAc M+H) + S-N HCI amine) 50% pe ether 16 H 76 FAB BS M+g+ Mye 17 H 62 HPLC B5 \J u kM+H) + ES-MS 18 H ou 0.80 50% OS HPLC B5 au EtOAc M+H) + ES-MS 50% pet ether 19 H Me 210. 13 30% 76 FAB B5 19 H _/f M 210 0.13 30% 376 FAB B5 &ee EtOAc M+H) + O<, N HCI mine) 70% pe ether 20 H <. 94 50% 62 HPLC B5 EtOAc M+H) + ES-MS on 50% hexane 21 H) O/=\. 41 75% 376 HPLC B5 EtOAc M+H) + ES-MS Me 25% texane 22 H Me = 114-). 38 30% 404 HPLC A14c, 22 H /==\ 4-0.38 30% 404 HPLC A14c, \laOMe 117 EtOAc (M+H) + ES-MS 70% hexane 23 H < 46 HPLC B5 \ N +H) + ES-MS 24 H 0. 14 50% 376 BPLC B5 EtOAc ES-MS 50% hexane 25 Me 0-\CN 190-. 56 75% 455 HPLC B5 O EtOAc M+H) + ES-MS 25% Me hexane 26 Me Me 194-). 55 75% 469 HPLC B5 197 EtOAc M+H) + ES-MS 0_. C-MS Me hexane Table 2. 2-Substituted-5-(trifluoromethyl)phenyl Ureas mp TLC Solvent Mass Synth. Entry R'R2 (°C) Rf System Spec. Source Method 27 OMe H2 184-401 FAB B2a eut) 185 (M+H) + 28 OMe 231-361 FAB Bla 233 (M+H) + w 29 OMe 198 417 FAB B 1 e (M+H) + 30 OMe 206 0.58 5% 437 FAB B2a acetone acetone (M+H) + 95% CH2CI2 31 OMe N 98-99 0.50 5% B2a acetone 95% CH2CI2 32 OMe 226 0.49 5% 460 FAB B2a acetone (M+H) + 95% S CH2C12 33 OMe , OMe 190 0. 65 5% B2a acetate i 95% CH2C12 34 OMe 194 0.76 5% 464 FAB B2a vS<NO2 acetone (M+H) + 95% CH2CI2 35 OMe H2 210-0.07 5% 402 FAB B2a --a C-\CN 211 acetone (M+H) + 95% CH2C12 36 OMe 202 0.09 5% 420 FAB B2a acetone (M+H) + 9 % CH2CI2 37 OMe 2 215 0. 08 5% 420 FAB B2a acetone u acetone (M+H) + 95% CH2C12 38 OMe 206 0.05 5% 404 FAB B2a m, r.w. L 39 OMe Me 60-62 0.86 5% 433 FAB Bla acetone (M+H) + /\ S \/95% CH2CI2 40 OMe Me 173-0.83 5% 417 FAB Bla 176 acetone (M+H) + 0 \/95% CH2C12 41 OMe 426 FAB B5 (M+H) + Step 42 OMe Me 198-0.75 5% 431 FAB B3b 200 acetone (M+H) + 95% Me CH2C12 43 OMe H2 169-0.03 50% 402 FAB B5 171 EtOAc (M+H) + N 50% hexane 44 OMe F 0.18 5% 456 FAB B3b < acetone (M+H) + \-/ \ N 95% Cl CH2C12 45 OMe 161-0.73 5% 417 FAB B3b 162 acetone (M+H) + Me 95% CH2CI2 46 OMe 0. 44 5% 418 FAB B3b acetone (M+H) + Me 95% CH2CI2 47 OMe 487 FAB B3b (M+H) + foc F3C 48 OMe 0.0. 35 5% 472 FAB B3b acetone (M+H) + CF3 95% CH2CI2 49 OMe F 0.91 5% 455 FAB B3b acetone (M+H) + F _ CH2C12 CH2C12 50 OMe 0.78 5% 437 FAB B3b acetone (M+H) + F 95% CH2C12 51 OMe Hz 0.82 5% 471 FAB B3b XOw acetone (M+H) + CF3 95% CH2CI2 52 OMe n/=\ 189-0. 76 5% 471 FAB B3b 190 acetone (M+H) + F3C 95% CH2C12 53 OMe 186-0. 30 20% 449 HPLC B5 O 188 EtOAc (M+H) + ES-MS 80% CH2C12 54 Orme/\ 0.53 100% 434 HPLC B5 S--N EtOAc (M+H) + ES-MS 55 OMe 223-0.22 5% 427 HPLC Ble -C'N MeOH (M+H) + ES-MS 45% EtOAc 50% pu ether 56 OMe Me 202-0.21 5% 418 HPLC B5 204 MeOH (M+H) + ES-MS 0-\N 45% EtOAc 50% pet ether 57 OMe _DN 166 0. 40 5% 454 FAB B5 57 OMe/r\_/=\.., 166 0.40 5% 454 FAB B5 KOH MeOH (M+H) + 95% CH2C12 58 OMe S 0.67 50% 434 HPLC B5 EtOAc (M+H) + ES-MS 50% pe ether 59 OMe Me 210-0.19 100% 418 HPLC B5 212 EtOAc (M+H) + ES-MS 0-\CN 1 60 OMe 203-1 0.80 50% 404 HPLC B5 205 EtOAc (M+H) + ES-MS O\N 50% hexane OMe 235-0.51 10% 488 HPLC B5 m MeOH (M+H) + ES-MS /N s \/Cl 90% CH2C12 62 Orme 205-0.59 10% 450 HPLC B5 O 207 MeOH (M+H) + ES-MS 90% CH2CI2 63 OMe < \ 214-0.59 10% 418 HPLC B5 216 216 MeOH (M+H) + ES-MS 90% CH2CI2 64 OMe 0.56 10% 422 HPLC B5 KOH O <F MeOH (M+H) + ES-MS 90% CH2C12 65 OMe Cl 209-0.63 10% B5 211 Me 90% CH2C12 66 OMe 0 196-0.54 10% 418 (M+) CI B5 198 MEOH i 90% CH2C12 67 OMe A/=\ 215-0.11 2% 434 FAB B5 O 217 MeOH (M+H) + 98% CH2C12 68 OMe 226-0.13 2% 438 FAB B5 228 MEOH (M+H) + 98% CH2C12 69 OMe/\ 211-0.08 2% 404 FAB B5 213 MeOH (M+H) + 98% CH2C12 70 OMe Cl 216-0.53 100% 488 HPLC B5 -217 EtOAc (M+H) + ES-MS w 71 OMe Me 147 0.20 30% 446 BPLC B5 N EtOAc (M+H) + ES-MS 70% hexane 72 OMe 215-420 FAB B5 220 (M+H) + O 73 OMe OH 0.14 50% 419 FAB B5 EtOAc (M+H) + \/50% hexane 74 OMe HO 0.07 50% 402 FAB B5 EtOAc N 50% hexane 75 OMe Me 0. 08 50% 418 HPLC B5 EtOAc ES-Ms 50% hexane 76 OMe 165-0.05 50% 404 FAB B5 169 EtOAc 50% hexane 77 OMe HO 0.26 50% 419 HPLC B5 0 EtOAc+ i (M+H) + ES-MS 50% pe ether 78 OMe N 0.20 50% 421 HPLC B5 EtOAc (M+H) + ES-MS 50% 50% pel ether 79 OMe n/+ 125-0. 18 5% 420 HPLC B5 127 MEOH) (M+H) + ES-MS 95% CH2C12 80 OMe _ 197-B5 198 04 81 H 142-030 100°/a 374 HPLC BS _________\="\__143___EtOAc (M+H) + ES-MS 82 Cl RO\N 149-0.48 100% 408 HPLC B5 152 EtOAc (M+H) (M+H) + ES-MS 83 185-0.100% 100% HPLC HPLC B _________\="'\_186___EtOAcN 186 EtOAc (M+H) + ES-MS Table 3. 2-Substituted-5-(trifluoromethyl)phenyl Ureas mp TLC Solvent Mass Synth. Entry Rl 18 (°C) Rf System Spec. Source Method 84 Cl 199-0.66 20% 423 FAB B5 m 201 MEOH (M+H) + 80% CH2C12 85 Cl 430 FAB B5 S<N (M+H) + SON 86 Cl Me 422 FAB B5 (M+H) + 0 454 FAB BS 87 Cl S 88 Cl OH 423 FAB B5 eOt (M+H) + 89-422 FAB B5 89 Cl/ N Me (M+H) + 90 Cl 168-0.30 20% 453 HPLC ES- O EtOAc (M+H) + MS 80% CH2C12 91 Cl O/=\ _ 0. 38 100% 422 HPLC ES-B5 --o EtOAc (M+H) + MS Mu 92 Cl 209-0. 24 5% 431 HPLC ES-B le eNC 212 MeOH/ (M+H) + MS 45% EtOAc/ 50% pet ether 93 Cl 0. 44 50% 438 HPLC ES-BS N OMe EtOAc/ (M+H) + MS 50% pet ether 1 1 94 Cl A 0. 43 50% 458 HPLC ES-B5 94 Cl _/'c_/\i 0- HPLCES-B5 EtOAc/ (M+H) + MS 50% pet ether 95 Cl A 0. 33 50% 442 HPLC ES-B5 N O Cl EtOAc/ (M+H) + MS N 50% pet ether 96 Cl Cl 0.56 50% 440 HPLC ES-B5 EtOAc/ (M+H) + MS / O \/50% pet ether 97 Cl O 0.51 50% 419 HPLC ES-B5 EtOAc/ (M+H) + MS Wpet ether 98 Cl N 0.24 50% 425 425 HPLC ES-B5 EtOAc/ EtOAc | (M+H) + MS 50% pet ether 99 Cl/\ 0. 35 50% 423 HPLC ES-B5 \/EtOAc/ (M+H) + MS HO 50% pet ether 100 ci 169-0.14 100% 424 FAB B5 171 171 EtOAc (M+H) + S-\CN I 101 Cl Me 179-0.26 100% 422 HPLC ES-B5 180 EtOAc (M+H) + MS 0-\CN I 102 CI </=\ 181-0.22 5% 408 FAB B5 183 MEOH (M+H) + 95% C5H% 2C12 103 Cl 142-0.27 70% 437 HPLC ES-B5 O 144 EtOAc/ (M+H) + MS 30% hexane 104 Cl _J"\. 118-0.17 5% 458 HPLC ES-B5 O 120 MeOH/ (M+H) + MS 95% CH2C12 105 ci 0 0.21 30% 420 HPLC ES-B5 EtOAc/ (M+H) + MS N 70% pet other 106 Cl Me 172-0.17 10% 422 FAB B5 _/Me 173 MeOH/ (M+H) + 0-N 90% CH2C12 107 ci 184-0.11 10% 408 FAB B5 -Q MeOH/ (M+H) + on 90% CH2C12 108 ci 126-0. 70 20% 408 FAB B5 vu% MeOH/ (M+H) + 80% CH2Cl2 109 Cl 0.54 50% 424 HPLC ES-B5 \J b EtOAc/ (M+H) + MS 50% hexane 110 Cl Me Me 0.11 50% 436 HPLC ES-B5 EtOAc/ (M+H) + MS 50% hexane 111 Cl A/191-0. 17 5% B5 193 MeOH/ 95% CH2C12 112 ci Cl 207-0.43 100% 492 HPLC ES-B5 -209 EtOAc (M+H) + MS w 113 C1 RNH 0. 28 100% 435 HPLC ES-B5 EtOAc (M+H) + MS 0 N 114 Cl Me 163-0.58 40% 450 HPLC ES-A14c, B5 OMe 166 EtOAc (M+H) + MS 60% hexane 115 ci 205-0. 69 5% 424 FAB B5 115 Cl/''\_-/\TTj '- B B5 207 207 acetone/ (M+H) + 0 95% CH2C12 116 Ci H2 0.06 50% 406 FAB B5 C EtOAc/ N 50% hexane 117 Cl 476 FAB BS y=/"\- (M+H) + Cl F3C 118 Br 0-\CN 115-0.28 100% 452 HPLC ES- \=/b 117 EtOAc (M+H) + MS 119 F n/=\ 171-0. 31 100% 392 HPLC ES- on 172 EtOAc (M+H) + MS Table 4.3-Substituted-2-naphthyl Ureas mp TLC Solvent Mass Synth. En R'R2 (°C) Ru System Spec. Source Method 120 OMe </=\ 238-0.25 25% 402 FAB B4 S-N 239 EtOAc (M+H) + 75% hexane 121 OMe H2 199-0.20 25% 384 FAB B4 t CttN 200 EtOAc (M+H) + 75% hexane 122 OMe 209-0.40 25% 414 (M+) EI B4 211 EtOAc 75% hexane 123 OMe 401 FAB B5 OH (M+H) + OH 124 OMe H2 0.05 50% 384 FAB B5 c-EtOAc (M+H) + N 50% hexane 125 OMe 0. 86 50% 415 HPLC B5 125 OMe/-\ -N 0.86 50% 415 HPLC B5 EtOAc (M+H) + ES-MS 50% peul ether 126 OMe 0. 76 50% 402 HPLC B5 EtOAc +H) + ES-MS S-\CN50% pet ether 127 OMe 039 50% 386 HPLC BS EtOAc (M+H) + ES-MS 50% hexane 128 OMe Me 0. 30 75% 400 HPLC B5 128 OMe Me 030 75% 400 HPLC B5 EtOAc (M+H) + ES-MS 25% hexane 129 OMe Me 130 0.28 30% 428 HPLC B5 oNtOMe EtOAc (M+H) + ES-MS 70% hexane 130 OMe Me 0. 14 50% 400 FAB B5 130 OMe Me 0.14 50% 400 FAB B5 0 EtOAc) + 50% hexane Table 5. Additional Ureas mp TLC Solvent Mass Synth. Entry Urea (OC) Rf System Spec. Source Method 131 CFs 0.57 5% 477 HPLC Ble Cl Q O S CI MeOH (M+H) + ES-MS 45% N N EtOAc TN N Y EtOAc MeO H H OMe 50% pe ether 132 CF3 0.21 5% 438 HPLC Ble C) \ I \ I O (NOH (M+H) + ES-MS 0 45% MeO H H 50% pe ether 133 CF3 0.34 100% 404 HPLC Ble 0 O EtOAc (M+H) ES-MS MNN-'- Me0 N N H H 134 Cl 0.11 100% 374 HPLC Ble Ci 0 0 EtOAc (M+H) + ES-MS uN t,-N N N H H 135 Br 0.26 100% 418 HPLC Ble Cl O S EtOAc (M+H) + ES-MS çN Hw % H H H H 136 0'CF3 0. 33 100% 390 HPLC Ble EtOAc (M+H) + ES-MS N N t,-N NN" N N H H 137 N EtOAc (M+H) + ES-MS LJt n L J M EtOAc (M+H) + ES-MS <N N* Met H H 138 0.13 100% 381 HPLC Ble O 0 EtOAc (M+H) + ES-MS N AN N Met H H CI) EtOAc (M+H) + ES-MS C1 N N H H 140 0.43 100% 370 HPLC Ble Ci 7N) (NJU tN EtOAc (M+H) + ES-MS Met H H 141 CF3 0.21 30% 420 HPLC Ble 0 EtOAc/ (M+H) + ES-MS 0 70% F3C N N pet ether 142 Ci 0.40 50% 399 FAB B5 02N o acetone/ (M+H) + A I 50% H H CH2CI2 HA 143 224 0. 87 5% 465 FAB B6 acetone/ (M+H) + u Lj 95% H CH2C12 144 O 0.10 50% 394 HPLC B5 EtOAc/ (M+H) + ES-MS 0 0 pet ether kN wN H H

BIOLOGICAL EXAMPLES In Vitro raf Kinase Assav: In an in vitro kinase assay, raf was incubated with MEK in 20 mM Tris-HCl, pH 8.2 containing 2 mM 2-mercaptoethanol and 100 mM NaCl. This protein solution (20 , ut) was mixed with water (5 L) or with compounds diluted with distilled water from 10 mM stock solutions of compounds dissolved in DMSO. The kinase reaction was initiated by adding 25 gL [y-"P] ATP (1000-3000 dpm/pmol) in 80 mM Tris-HCl, pH 7.5,120 mM NaCl, 1.6 mM DTT, 16 mM MgCl2. The reaction mixtures were incubated at 32 °C, usually for 22 min. Incorporation of 33P into protein was assayed by harvesting the reaction onto phosphocellulose mats, washing away free counts with a 1% phosphoric acid solution and quantitating phosphorylation by liquid scintillation counting. For high throughput screening, 10 µM ATP and 0.4 µM MEK was used. In some experiments, the kinase reaction was stopped by adding an equal amount of Laemmli sample buffer. Samples were boiled 3 min and the proteins resolved by electrophoresis on 7.5% Laemmli gels. Gels were fixed, dried and exposed to an imaging plate (Fuji). Phosphorylation was analyzed using a Fujix Bio-Imaging Analyzer System.

All compounds exemplified displayed ICsos of between 1 nM and 10 u. M.

CellularAssav: For in vitro growth assay, human tumor cell lines, including but not limited to HCT116 and DLD-1, containing mutated K-ras genes were used in standard proliferation assays for anchorage dependent growth on plastic or anchorage

independent growth in soft agar. Human tumor cell lines were obtained from ATCC (Rockville MD) and maintained in RPMI with 10% heat inactivated fetal bovine serum and 200 mM glutamine. Cell culture media and additives were obtained from Gibco/BRL (Gaithersburg, MD) except for fetal bovine serum (JRH Biosciences, Lenexa, KS). In a standard proliferation assay for anchorage dependent growth, 3 X 103 cells were seeded into 96-well tissue culture plates and allowed to attach overnight at 37 °C in a 5% CO2 incubator. Compounds were titrated in media in dilution series and added to 96-well cell cultures. Cells were allowed to grow 5 days typically with a feeding of fresh compound containing media on day three.

Proliferation was monitored by measuring metabolic activity with standard XTT colorimetric assay (Boehringer Mannheim) measured by standard ELISA plate reader at OD 490/560, or by measuring 3H-thymidine incorporation into DNA following an 8 h culture with 1 pCu 3H-thymidine, harvesting the cells onto glass fiber mats using a cell harvester and measuring 3H-thymidine incorporation by liquid scintillant counting.

For anchorage independent cell growth, cells were plated at 1 x 103 to 3 x 103 in 0.4% Seaplaque agarose in RPMI complete media, overlaying a bottom layer containing only 0.64% agar in RPMI complete media in 24-well tissue culture plates. Complete media plus dilution series of compounds were added to wells and incubated at 37 °C in a 5% CO2 incubator for 10-14 days with repeated feedings of fresh media containing compound at 3-4 day intervals. Colony formation was monitored and total cell mass, average colony size and number of colonies were quantitated using image capture technology and image analysis software (Image Pro Plus, media Cybernetics).

In Vivo Assav: An in vivo assay of the inhibitory effect of the compounds on tumors (e. g., solid cancers) mediated by raf kinase can be performed as follows: CDI nu/nu mice (6-8 weeks old) are injecte subcutaneously into the flank at 1 x 106 cells with human colon adenocarcinoma cell line. The mice are dosed i. p., i. v. or p. o. at 10,30,100, or 300 mg/Kg beginning on approximately day 10, when tumor size is

between 50-100 mg. Animals are dosed for 14 consecutive days once a day; tumor size was monitored with calipers twice a week.

The inhibitory effect of the compounds on raf kinase and therefore on tumors (e. g., solid cancers) mediated by raf kinase can further be demonstrated in vivo according to the technique of Monia et al. (Nat. Med. 1996,2,668-75).

The preceding examples can be repeated with similar success by substituting the generically or specifically described reactants and/or operating conditions of this invention for those used in the preceding examples.

From the foregoing description, one skilled in the art can easily ascertain the essential characteristics of this invention and, without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions.