Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INJECTION MOULDING DIE AND ONLINE QUALITY DETECTION METHOD THEREOF
Document Type and Number:
WIPO Patent Application WO/2017/198106
Kind Code:
A1
Abstract:
An injection moulding die and an online quality detection method thereof, the injection moulding die comprising: a fixed die plate (100), a moving die plate (200), a die cavity (300), and an in-die online quality sensing device (400), the in-die online quality sensing device (400) comprising: a sensing device body (1), an insulating layer being provided on all of the surface thereof apart from the contact surface with the die cavity (300), and being used for forming with a fixed die core (110) the two electrodes of a detection capacitor; a connecting wire (2), one end thereof being connected to the sensing device body (1), and the other end being connected to a power source and being used for charging the detection capacitor, or the other end being connected to a computer and being used for transmitting to the computer a voltage signal of the detection capacitor during the entire injection moulding period. By means of detecting the voltage signal during the entire injection moulding period, the injection moulding die can promptly acquire at least one of the injection moulding speed, the injection moulding weight, the injection moulding curing rate, and the injection moulding shrinkage rate inside the die cavity during the injection moulding period; thus, the monitoring content is rich.

Inventors:
JIANG ZHIJUN (CN)
MO SHENGYONG (CN)
WANG ZHIYONG (CN)
YANG YI (CN)
GAO FURONG (CN)
Application Number:
PCT/CN2017/083990
Publication Date:
November 23, 2017
Filing Date:
May 11, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
KUNDA MOLD (SHENZHEN) CO LTD (CN)
SHENZHEN FUDA INTELLIGENT SYSTEM (CN)
International Classes:
B29C45/77; B29C45/26; B29C45/76
Foreign References:
CN205651625U2016-10-19
CN205889732U2017-01-18
CN105563784A2016-05-11
CN105415629A2016-03-23
CN205185240U2016-04-27
Attorney, Agent or Firm:
SHENZHEN STANDARD PATENT & TRADEMARK AGENT LTD. (CN)
Download PDF:
Claims:
权利要求书

一种注塑成型模具, 其特征在于, 包括: 定模板 (100) 、 动模板 (2 00) 、 由所述定模板 (100) 的定模模芯 (110) 和所述动模板 (200 ) 的动模模芯 (210) 之间用于形成产品的型腔 (300) 、 以及模内在 线质量感知器 (400) ,

所述模内在线质量感知器 (400) 包括:

感知器主体 (1) , 贯穿设置在所述动模模芯 (210) 中且与所述型腔

(300) 接触, 所述感知器主体 (1) 表面除与所述型腔 (210) 接触 面外均设置有绝缘层, 所述感知器主体 (1) 用于与所述定模模芯 (1 10) 构成检测电容的两极;

接线 (2) , 一端与所述感知器主体 (1) 连接, 其另一端与电源连接 , 用于为所述检测电容充电, 或者, 其另一端与计算机连接, 用于为 所述计算机传输所述检测电容在整个注塑周期中的电压信号, 所述电 压信号用于在线监控注塑周期中所述型腔 (300) 内的注塑速度、 注 塑重量、 注塑的固化速率、 注塑的收缩率中至少一个。

根据权利要求 1所述的注塑成型模具, 其特征在于, 所述模内在线质 量感知器 (400) 还包括:

电压信号放大器 (4) , 与所述接线 (2) 连接, 用于放大所述电压信 号;

模数转化器 (5) , 与所述电压信号放大器 (4) 连接, 用于将所述电 压信号放大器 (4) 放大的电压信号转化为数字信号。

根据权利要求 1所述的注塑成型模具, 其特征在于, 所述模内在线质 量感知器 (400) 还包括: 接线固定螺丝 (3) , 与所述接线 (2) 的 一端固定连接, 用于将所述接线 (2) 的一端与所述感知器主体 (1) 固定连接。

根据权利要求 1所述的注塑成型模具, 其特征在于, 所述感知器主体

(1) 采用模具钢材料制备。

根据权利要求 4所述的注塑成型模具, 其特征在于, 所述感知器主体 ( 1) 为回转体, 所述感知器主体 (1) 与所述型腔 (300) 接触的一 端的直径范围为 lmm~5mm。

[权利要求 6] 根据权利要求 5所述的注塑成型模具, 其特征在于, 所述注塑成型模 具还包括: 设置在所述动模模芯 (210) 上的动模镶件 (220) , 所述 感知器主体 (1) 贯穿设置在所述动模镶件 (220) 中。

[权利要求 7] 根据权利要求 5所述的注塑成型模具, 其特征在于, 所述感知器主体

( 1) 安装在所述型腔 (300) 的前端或末端, 所述型腔 (300) 的前 端为所述型腔 (300) 靠近所述注塑成型模具进浇口 (310) 的一端, 所述型腔 (300) 的末端为远离所述注塑成型模具进浇口 (310) 的一 山

[权利要求 8] 根据权利要求 1所述的注塑成型模具, 其特征在于, 所述感知器主体

( 1) 的绝缘层由氧化铝陶瓷或氧化锆陶瓷制备, 其厚度为 0.02mm〜 0.50mm。

[权利要求 9] 根据权利要求 1所述的注塑成型模具, 其特征在于, 所述接线 (2) 为 防静电感应电线。

[权利要求 10] —种权利要求 1所述的注塑成型模具的在线质量检测方法, 其特征在 于, 所述方法包括:

将所述注塑成型模具关模, 以使安装在所述注塑成型模具内的模内在 线质量感知器的感知器主体与所述注塑成型模具的定模模芯构成检测 电容;

为所述检测电容充预定电量;

向所述注塑成型模具的型腔中, 注入预设填充材料;

实吋监测所述检测电容在整个注塑周期中的电压信号, 所述电压信号 用于在线监控注塑周期中所述型腔内的注塑速度、 注塑重量、 注塑的 固化速率、 注塑的收缩率中至少一个。

Description:
一种注塑成型模具及其在线质量检测方法 技术领域

[0001] 本发明涉及成型装置技术领域, 特别涉及一种注塑成型模具及其在线质量检测 方法。

背景技术

[0002] 随着产品市场竞争激烈的升华, 提倡高效、 节能、 环保、 低成本就越来越成为 企业于竞争中取胜的法宝和根本, 关键的环节之一就是对注塑产品生产过程的 高效性、 品质监测和控制的高智能性以及低成本支出、 有效资源高效利用等方 面提出更高、 更具竞争力、 更智能、 更自动化的要求。

[0003] 在注塑成型的试模阶段, 必须对制品的成型工艺进行设置和优化, 进而减少试 模次数, 缩短试模吋间。 同吋注塑成型过程是一种典型的批次过程, 维持良好 而稳定的成型过程是获得高质量制品的必须条 件, 而要达到这一条件必须以精 准的注塑过程质量控制为基础。

[0004] 为了解决上述问题, 一般会在注塑成型模具中设置传感器, 以对注塑成型过程 进行监测。 但是, 现有的注塑成型模具一般所能监测的信息比较 单一 (例如压 力传感器仅测量注塑周期中的压力信息) , 功能单一, 难以对整个注塑周期中 多方面因素进行监测。

技术问题

问题的解决方案

技术解决方案

[0005] 为了解决现有具有传感器的注塑成型模具监测 信息单一, 难以满足企业需求的 问题, 本发明实施例提供了一种注塑成型模具及其在 线质量检测方法。 所述技 术方案如下:

[0006] 一方面, 本发明实施例提供了一种注塑成型模具, 所述方法包括: 定模板、 动 模板、 由所述定模板的定模模芯和所述动模板的动模 模芯之间用于形成产品的 型腔、 以及模内在线质量感知器, [0007] 所述模内在线质量感知器包括:

[0008] 感知器主体, 贯穿设置在所述动模模芯中且与所述型腔接触 , 所述感知器主体 表面除与所述型腔接触面外均设置有绝缘层, 所述感知器主体用于与所述定模 模芯构成检测电容的两极;

[0009] 接线, 一端与所述感知器主体连接, 其另一端与电源连接, 用于为所述检测电 容充电, 或者, 其另一端与计算机连接, 用于为所述计算机传输所述检测电容 在整个注塑周期中的电压信号, 所述电压信号用于在线监控注塑周期中所述型 腔内的注塑速度、 注塑重量、 注塑的固化速率、 注塑的收缩率中至少一个。

[0010] 在本发明实施例上述的注塑成型模具中, 所述模内在线质量感知器还包括: [0011] 电压信号放大器, 与所述接线连接, 用于放大所述电压信号;

[0012] 模数转化器, 与所述电压信号放大器连接, 用于将所述电压信号放大器放大的 电压信号转化为数字信号。

[0013] 在本发明实施例上述的注塑成型模具中, 所述模内在线质量感知器还包括: 接 线固定螺丝, 与所述接线的一端固定连接, 用于将所述接线的一端与所述感知 器主体固定连接。

[0014] 在本发明实施例上述的注塑成型模具中, 所述感知器主体采用模具钢材料制备

[0015] 在本发明实施例上述的注塑成型模具中, 所述感知器主体为回转体, 所述感知 器主体与所述型腔接触的一端的直径范围为 lmm~5mm。

[0016] 在本发明实施例上述的注塑成型模具中, 所述注塑成型模具还包括: 设置在所 述动模模芯上的动模镶件, 所述感知器主体贯穿设置在所述动模镶件中。

[0017] 在本发明实施例上述的注塑成型模具中, 所述感知器主体安装在所述型腔的前 端或末端, 所述型腔的前端为所述型腔靠近所述注塑成型 模具进浇口的一端, 所述型腔的末端为远离所述注塑成型模具进浇 口的一端。

[0018] 在本发明实施例上述的注塑成型模具中, 所述感知器主体的绝缘层由氧化铝陶 瓷或氧化锆陶瓷制备, 其厚度为 0.02mm〜0.50mm。

[0019] 在本发明实施例上述的注塑成型模具中, 所述接线为防静电感应电线。

[0020] 另一方面, 本发明实施例提供了一种注塑成型模具的在线 质量检测方法, 该注 塑成型模具为发明实施例提供的注塑成型模具 , 所述方法包括:

[0021] 将所述注塑成型模具关模, 以使安装在所述注塑成型模具内的模内在线质 量感 知器的感知器主体与所述注塑成型模具的定模 模芯构成检测电容;

[0022] 为所述检测电容充预定电量;

[0023] 向所述注塑成型模具的型腔中, 注入预设填充材料;

[0024] 实吋监测所述检测电容在整个注塑周期中的电 压信号, 所述电压信号用于在线 监控注塑周期中所述型腔内的注塑速度、 注塑重量、 注塑的固化速率、 注塑的 收缩率中至少一个。

发明的有益效果

有益效果

[0025] 本发明实施例提供的技术方案带来的有益效果 是:

[0026] 通过定模板、 动模板、 模内在线质量感知器组成注塑成型模具, 其中, 模内在 线质量感知器由感知器主体和接线构成, 感知器主体贯穿设置在注塑成型模具 的动模模芯中且与注塑模块的型腔接触, 感知器主体表面除与型腔接触面外均 设置有绝缘层, 以用于与定模模芯构成检测电容的两极, 接线一端与感知器主 体连接, 其另一端与电源连接, 用于为检测电容充电, 或者, 其另一端与计算 机连接, 用于为计算机传输检测电容在整个注塑周期中 的电压信号, 该电压信 号用于在线监控注塑周期中型腔内的注塑速度 、 注塑重量、 注塑的固化速率、 注塑的收缩率中至少一个。 该模内在线质量感知器是基于电容的介电常数 变化 , 而引起检测电容中电压信号的变化来工作的, 这样装配有该莫内在线质量感 知器的注塑成型模具, 能够在线监控注塑周期中型腔内的注塑速度、 注塑重量 、 注塑的固化速率、 注塑的收缩率中至少一个, 监测内容丰富, 能有效反映出 注塑周期中多种需要关注的注塑信息, 实用性强, 此外, 该注塑成型模具装配 的模内在线质量感知器利用了现有注塑成型模 具的定模模芯作为检测电容的一 个电极, 有效降低了模内在线质量感知器的结构的复杂 程度、 和制造成本, 使 得该注塑成型模具的制造成本低, 经济性强。

对附图的简要说明

附图说明 [0027] 为了更清楚地说明本发明实施例中的技术方案 , 下面将对实施例描述中所需要 使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一 些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还 可以根据这些附图获得其他的附图。

[0028] 图 1是本发明实施例一提供的一种注塑成型模具 结构示意图;

[0029] 图 2是本发明实施例一提供的一种模内在线质量 知器的结构示意图;

[0030] 图 3是本发明实施例一提供的一种检测电容成型 理的结构示意图;

[0031] 图 4是本发明实施例一提供的一种电压信号的检 结果图;

[0032] 图 5是本发明实施例一提供的一种模内在线质量 知器的结构示意图;

[0033] 图 6是本发明实施例一提供的一种模内在线质量 知器安装位示意图;

[0034] 图 7是本发明实施例二提供的一种注塑成型模具 在线质量检测方法流程图。

本发明的实施方式

[0035] 为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发明实施 方式作进一步地详细描述。

[0036] 实施例一

[0037] 本发明实施例提供了一种注塑成型模具, 适用于各种非导电填充材料, 参见图 1, 该注塑成型模具可以包括: 定模板 100、 动模板 200、 由定模板 100的定模模 芯 110和动模板 200的动模模芯 210之间用于形成产品的型腔 300 (图 1中型腔 300 显示得比较小, 具体可以参考图 3) 、 以及模内在线质量感知器 400。

[0038] 参见图 2, 该模内在线质量感知器 400可以包括:

[0039] 感知器主体 1, 贯穿设置在动模模芯 210中且与型腔 300接触 (即感知器主体 1插 装在动模模芯 210中, 且其一端端面与型腔 300接触, 在实际应用中, 感知器主 体 1与型腔 300接触面, 同动模模芯 210与型腔 300接触面处于同一平面) , 感知 器主体 1表面除与型腔 210接触面外均设置有绝缘层, 感知器主体 1用于与定模模 芯 110构成检测电容的两极。

[0040] 接线 2, 一端与感知器主体 1连接, 其另一端与电源连接, 用于为检测电容充电 , 或者, 其另一端与计算机连接, 用于为计算机传输检测电容在整个注塑周期 中的电压信号, 该电压信号用于在线监控注塑周期中型腔 300内的注塑速度、 注 塑重量、 注塑的固化速率、 注塑的收缩率中至少一个。 在实际应用中, 由于一 般的计算机都具有电源, 接线 2的另一端可以与计算机连接, 既通过计算机为检 测电容充电, 又为计算机传输检测电容在整个注塑周期中的 电压信号。

[0041] 在本实施例中, 参见图 3, 感知器主体 1表面除与型腔 210接触面外均设置有绝 缘层, 并与定模模芯 110之间隔有型腔 300, 感知器主体 1和定模模芯 110—般都 由导电材料制备, 在空气绝缘的型腔 300作用下, 形成检测电容, 其中, 感知器 主体 1可以在外接电源的作用下充电, 而定模模芯 110则接地。

[0042] 进一步地, 该检测电容的容值在模内在线质量感知器 400安装好后, 仅取决于 介电常数, 而介电常数则取决于感知器主体 1与定模模芯 110之间的介质了。 在 整个注塑周期中, 型腔 300中由空气逐渐填充热熔的填充材料, 然后由热熔的填 充材料冷却至固态填充材料, 在检测电容的充电电荷量一定的条件下, 其检测 电容的电压与介电常数成反比例关系。 具体地, 可以参见如下公式:

[0043]

[0044] 其中, U为电压信号, C为检测电容的电容值, Q为检测电容的充电电荷量, A 为感知器主体 1与定模模芯 110的正对面积, D为感知器主体 1与定模模芯 110之间 的距离, ε为介电常数。

[0045] 参见图 4, 在整个注塑周期中, 首先经历关模阶段, 即定模板 100与动模板 200 接触在一起, 此吋, 检测电容在经过充电后幵始生效, 且由于型腔 300内仅为空 气, 检测电容的介电常数保持不变, 相应的电压信号保持不变; 然后幵始向型 腔 300中匀速注入填充材料 (即图 3中的注射阶段) , 由于填充材料的介电常数 小于空气的介电常数, 随着填充材料的不断注入, 检测电容的介电常数随之减 小, 相应的电压信号则随之变大; 随着型腔 300注满填充材料后, 将进入保压阶 段, 即仍会有少量的填充材料注入到型腔 300中, 以填补先注入的填充材料因固 化收缩而形成的间隙, 在保压阶段中, 由于仍会有填充材料的注入, 检测电容 的介电常数仍会有少量的减小, 相应的电压信号则随之有少量的增大; 保压阶 段过后幵始进入冷却阶段, 此吋, 停止向型腔 300中注入填充材料, 液态的填充 材料幵始冷却成固态, 检测电容的介电常数随之有所增大; 最后, 当填充材料 冷却成型后, 打幵模具 (即进入幵模阶段) , 检测电容随着定模板 100与动模板 200的分离而失效。

[0046] 此外, 在整个注塑周期内, 模内在线质量感知器 400的电压信号如图 3所示, 可 见, 电压信号在不同阶段的变化特点是不同的, 分别反映了不同阶段的过程及 填充材料的质量信息。 具体地如下:

[0047] 在注射阶段, 随着液态填充材料被注入型腔, 电容极板间的空气介质迅速被液 态填充材料取代, 电压信号显著增加。 与该模内在线质量感知器 400连接的计算 机可以利用这个信号对液态填充材料前端在型 腔 300中的位置进行检测, 进而得 到填充材料的填充速度 (例如: 在相距预设距离处分设多个模内在线质量感知 器 400, 然后比较多个模内在线质量感知器 400幵始检测到电压信号显著增加的 吋间差, 以此来计算填充速度) 。

[0048] 在保压阶段, 电压信号斜率发生明显变化, 上升缓慢, 这是因为型腔 300被充 满后只有少量液态填充材料继续被压入 (注射) 型腔 300中, 用以补充因填充材 料固化收缩而形成的空间 (保压) 。 与该模内在线质量感知器 400连接的计算机 可以利用这个信号, 实现在线对填充材料的重量进行检测 (例如: 根据已知的 注射速度, 和注射阶段持续的吋间, 来获取填充材料的重量信息) 。

[0049] 在冷却阶段, 电压信号变化较为平缓, 伴随有轻微下降趋势。 其原因一方面是 液态填充材料冷却凝固后变为固体, 另一方面是由于型腔 300内形成了微小的空 气层。 与该模内在线质量感知器 400连接的计算机可以利用利用测量信号结合过 程的工艺特点对产品固化速率和收缩率进行检 测。

[0050] 可选地, 参见图 5, 该模内在线质量感知器 400还可以包括:

[0051] 电压信号放大器 4, 与接线 2连接, 用于放大电压信号。

[0052] 模数转化器 5, 与电压信号放大器 4连接, 用于将电压信号放大器 4放大的电压 信号转化为数字信号。

[0053] 在本实施例中, 将感知器主体 1上的电压信号通过放大并转化为计算机可识 的数字信号, 方便与模内在线质量感知器 400连接的计算机快速分析处理数据。

[0054] 可选地, 参见图 2, 感知器主体 1上幵设有用于接线 2的一端伸入的固定螺丝中 心孔 (附图中未标示) 。 [0055] 该模内在线质量感知器 400还可以包括: 接线固定螺丝 3, 与接线 2的一端固定 连接 (例如: 焊接) 并与固定螺丝中心孔配合 (例如螺纹连接) , 用于将接线 2 的一端与感知器主体 1固定连接, 防止接线 2从感知器主体 1中脱落出来。

[0056] 可选地, 感知器主体 1可以采用模具钢材料制备 (例如: P20、 S136、 718、 718

H等) 。

[0057] 进一步地, 参见图 2, 感知器主体 1可以为回转体, 感知器主体 1与型腔 300接触 的一端的直径范围为 lmm~5mm, 具体尺寸可根据设计需要定制。

[0058] 进一步地, 参见图 1, 注塑成型模具还包括: 设置在动模模芯 210上的动模镶件 220, 感知器主体 1贯穿设置在动模镶件 220中。

[0059] 在实际应用中, 由于受成型产品形状的限制, 当成型产品的形状不太规则, 需 要采用动模镶件 220进行辅助吋, 感知器主体 1可以贯穿设置在动模镶件 220中, 当然, 也可以同吋贯穿设置在动模模芯 210中。

[0060] 可选地, 参见图 6, 当成型产品形状较为规则吋, 即型腔 300的形状较为规则吋 , 可以将感知器主体 1安装在型腔 300的前端或末端, 型腔 300的前端为型腔 300 靠近注塑成型模具进浇口 310的一端, 型腔 300的末端为远离注塑成型模具进浇 口 310的一端。 在本实施例中, 采用上述两个位置来设置模内在线质量感知器 40 0, 是因为在型腔 300的前端或末端位置的填充材料的填充状况, 最能全面体现 模腔 300内填充材料成型的填充状况。

[0061] 可选地, 感知器主体 1的绝缘层由氧化铝陶瓷或氧化锆陶瓷制备, 其厚度为 0.02 mm〜0.50mm。 在本实施例中, 感知器主体 1的外表面是耐高温耐摩擦的高度绝 缘层, 在 3000°C以上的高温下通过 lOOOMpa以上的高压喷涂在金属基材的表面上 , 绝缘层的厚度为 0.02mm〜0.50mm, 其表面经过打磨省光加工, 尺寸公差可达 到 0.005mm~0.01mm, 表面光洁度可达到 V9以上, 隔热效果在 200°C以上, 热喷 张系数接近于钢, 莫氏硬度达到 8.5以上。

[0062] 此外, 感知器主体 1表面喷涂绝缘层的加工流程如下: 感知器主体备料→感知 器主体加工→感知器主体钻螺丝孔→感知器主 体螺丝孔攻螺牙→感知器主体表面 绝缘层喷涂→绝缘层表面打磨省光加工→模内 在线质量感知器尺寸检测。

[0063] 可选地, 接线 2即可为普通电源线也可为防静电感应电线, 优选为防静电感应 电线, 接线固定螺丝 3的大小为 M2、 M3或 M4等。

[0064] 本发明实施例通过定模板、 动模板、 模内在线质量感知器组成注塑成型模具, 其中, 模内在线质量感知器由感知器主体和接线构成 , 感知器主体贯穿设置在 注塑成型模具的动模模芯中且与注塑模块的型 腔接触, 感知器主体表面除与型 腔接触面外均设置有绝缘层, 以用于与定模模芯构成检测电容的两极, 接线一 端与感知器主体连接, 其另一端与电源连接, 用于为检测电容充电, 或者, 其 另一端与计算机连接, 用于为计算机传输检测电容在整个注塑周期中 的电压信 号, 该电压信号用于在线监控注塑周期中型腔内的 注塑速度、 注塑重量、 注塑 的固化速率、 注塑的收缩率中至少一个。 该模内在线质量感知器是基于电容的 介电常数变化, 而引起检测电容中电压信号的变化来工作的, 这样装配有该莫 内在线质量感知器的注塑成型模具, 能够在线监控注塑周期中型腔内的注塑速 度、 注塑重量、 注塑的固化速率、 注塑的收缩率中至少一个, 监测内容丰富, 能有效反映出注塑周期中多种需要关注的注塑 信息, 实用性强, 此外, 该注塑 成型模具装配的模内在线质量感知器利用了现 有注塑成型模具的定模模芯作为 检测电容的一个电极, 有效降低了模内在线质量感知器的结构的复杂 程度、 和 制造成本, 使得该注塑成型模具的制造成本低, 经济性强。

[0065] 实施例二

[0066] 本发明实施例提供了一种注塑成型模具的在线 质量检测方法, 该注塑成型模具 为实施例一所述的注塑成型模具, 参见图 7, 该方法包括:

[0067] 步骤 S21, 将注塑成型模具关模, 以使安装在注塑成型模具内的模内在线质量 感知器的感知器主体与注塑成型模具的定模模 芯构成检测电容。

[0068] 在本实施例中, 检测电容的形成原来在实施例一中以作说明, 这里不在赘述。

[0069] 步骤 S22, 为检测电容充预定电量。

[0070] 步骤 S23, 向注塑成型模具的型腔中, 注入预设填充材料。

[0071] 步骤 S24, 实吋监测检测电容在整个注塑周期中的电压信 号, 该电压信号可以 用于在线监控注塑周期中型腔内的注塑速度、 注塑重量、 注塑的固化速率、 注 塑的收缩率中至少一个。

[0072] 在本实施例中, 关于电压信号如何反映上述注塑信息, 在实施例一中以作说明 , 这里不在赘述。

[0073] 本发明实施例通过将注塑成型模具关模, 以使安装在注塑成型模具内的模内在 线质量感知器的感知器主体与注塑成型模具的 定模模芯构成检测电容; 为检测 电容充预定电量; 向注塑成型模具的型腔中, 注入预设填充材料; 实吋监测检 测电容在整个注塑周期中的电压信号, 该电压信号可以用于在线监控注塑周期 中型腔内的注塑速度、 注塑重量、 注塑的固化速率、 注塑的收缩率中至少一个 。 该在线质量检测方法所监测的电压信号, 能够在线监控注塑周期中型腔内的 注塑速度、 注塑重量、 注塑的固化速率、 注塑的收缩率中至少一个, 监测内容 丰富, 能有效反映出注塑周期中多种需要关注的注塑 信息, 实用性强。

[0074] 上述本发明实施例序号仅仅为了描述, 不代表实施例的优劣。

[0075] 以上所述仅为本发明的较佳实施例, 并不用以限制本发明, 凡在本发明的精神 和原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。