Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INKJET INKS FOR MANUFACTURING PRINTED CIRCUIT BOARDS
Document Type and Number:
WIPO Patent Application WO/2019/166546
Kind Code:
A1
Abstract:
A radiation curable inkjet ink including an adhesion promoter according to Formula (I), wherein X is selected from the group consisting of O and NR3, L represents a divalent linking group comprising from 1 to 20 carbon atoms, R1 is selected from the group consisting of a hydrogen, a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group, R2 is selected from the group consisting of a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a substituted or unsubstituted alkaryl group, a substituted or unsubstituted araikyl group and a substituted or unsubstituted (hetero)aryl group, R3 is selected from the group consisting of a hydrogen, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a substituted or unsubstituted alkaryl group, a substituted or unsubstituted aralkyl group and a substituted or unsubstituted (hetero)aryl group, R2 and L may represent the necessary atoms to form a five to eight membered ring.

Inventors:
LOCCUFIER JOHAN (BE)
TORFS RITA (BE)
Application Number:
PCT/EP2019/054979
Publication Date:
September 06, 2019
Filing Date:
February 28, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
AGFA GEVAERT NV (BE)
International Classes:
C09D11/101; C09D11/38
Domestic Patent References:
WO2004026977A12004-04-01
WO2004106437A12004-12-09
WO2002025282A22002-03-28
WO2008074548A12008-06-26
WO2011069943A12011-06-16
WO2013189762A12013-12-27
Foreign References:
EP2302010A12011-03-30
JP2006160824A2006-06-22
US20050165135A12005-07-28
EP2036532A22009-03-18
DE102005002750A12006-07-27
EP1911814A12008-04-16
EP2809735A12014-12-10
EP2725075A12014-04-30
EP2915856A12015-09-09
EP3000853A12016-03-30
EP3119170A12017-01-18
EP2703180A12014-03-05
EP2065362A12009-06-03
EP2053101A12009-04-29
US20100249276A12010-09-30
JP2009221124A2009-10-01
US20160318845A12016-11-03
Other References:
IKEMURA ET AL., DENTAL MATERIALS JOURNAL, vol. 30, no. 4, pages 493 - 500
DENTAL MATERIALS JOURNAL, vol. 30, no. 6, 2011, pages 827 - 836
TANAKA ET AL., DENTAL MATERIALS JOURNAL, vol. 26, no. 4, 2007, pages 514 - 518
HERBST, WILLY ET AL.: "Industrial Organic Pigments, Production, Properties, Applications", 2004, WILEY - VCH
CRIVELLO, J.V. ET AL.: "Photoinitiators for Free Radical Cationic and Anionic Photopolymerization", 1998, JOHN WILEY AND SONS LTD, pages: 287 - 294
EMILITRI; ELISA: "Journal of Polymer Science", POLYMER CHEMISTRY, vol. 43, no. 7, 2005, pages 1404 - 1416
Attorney, Agent or Firm:
VIAENE, Kris (BE)
Download PDF:
Claims:
Claims

1 . A radiation curable inkjet ink including an adhesion promoter according to Formula I,

Formula I

wherein

X is selected from the group consisting of O and NR3,

L represents a divalent linking group comprising from 1 to 20 carbon atoms,

R1 is selected from the group consisting of hydrogen, a substituted or

unsubstituted alkyl group and a substituted or unsubstituted aryl group,

R2 is selected from the group consisting of a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a substituted or unsubstituted alkaryl group, a substituted or unsubstituted aralkyl group and a substituted or unsubstituted (hetero)aryl group,

R3 is selected from the group consisting of hydrogen, a substituted or

unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a substituted or unsubstituted alkaryl group, a substituted or unsubstituted aralkyl group and a substituted or unsubstituted (hetero)aryl group,

R2 and L may represent the necessary atoms to form a five to eight membered ring.

2. The radiation curable inkjet ink according to claim 1 wherein X represents oxygen.

3. The radiation curable inkjet ink according to claim 1 or 2 wherein R1 is hydrogen or a methyl group.

4. The radiation curable inkjet ink according to any of the preceding claims wherein R2 comprises at least one polymerizable group selected from the group consisting of an acrylate, a methacrylate, an acrylamide and a methacrylamide.

5. The radiation curable inkjet ink according to any of the preceding claims wherein the amount of adhesion promotor is between 0.5 and 15 wt% relative to the total weight of the radiation curable inkjet ink.

6. The radiation curable inkjet ink according to any of the preceding claims comprising a polymerizable compound having a pKa of at least 2.5.

7. The radiation curable inkjet ink according to claim 6 wherein the polymerizable compound is a phenolic monomer.

8. The radiation curable inkjet ink according to claim 7 wherein the phenolic monomer is selected from the group consisting of a phenolic acrylate, a phenolic methacrylate, a phenolic acrylamide and a phenolic methacrylamide.

9. A method of manufacturing a Printed Circuit Board (PCB) wherein an inkjet printing step is used, characterized in that in the inkjet printing step a radiation curable inkjet ink as defined in any of the claims 1 to 8 is jetted and cured on a substrate.

10. The method according to claim 9 wherein curing is carried out using UV radiation.

1 1. The method according to claims 9 or 10 wherein a solder mask is provided on a dielectric substrate containing an electrically conductive pattern in the inkjet printing step.

12. The method according to claim 1 1 also comprising a heating step.

13. The method according to according to claims 9 or 10 wherein an etch resist is

provided on a metal surface in the inkjet printing step.

14. The method according to claim 13 wherein the metal surface is a copper surface.

15. The method according to claims 13 or 14 wherein a radiation curable inkjet ink as defined in any of the claims 6 to 8 is used.

Description:
Description

Inkjet Inks for Manufacturing Printed Circuit Boards

Technical field of the invention

[001 ] The present invention relates to a radiation curable inkjet ink that may be used in the manufacturing of RGBs, for example as an etch-resistant inkjet ink, and methods of manufacturing such RGBs,

Background art for the invention

[002] The production workflow of printed circuit boards (RGBs) is gradually shifting from the standard workflow towards a digital workflow to reduce the amount of process steps and lowering the cost and the environmental impact of the production of RGBs, especially for short run productions. Inkjet is one of the preferred digital manufacturing technologies in different steps of the RGB manufacturing process going from etch resist over solder mask to legend printing. Preferred inkjet inks therefore are UV curable ink jet inks.

[003] In the different production steps, adhesion is of crucial importance. To maximize the adhesion performance, adhesion promoters are often required.

[004] Several classes of adhesion promoters have been disclosed in the prior art, most of them acidic in nature.

[005] W02004/026977 (Avecia) discloses a non-aqueous etch resistant inkjet ink

comprising 1 to 30 wt% of an acrylate functional monomer containing one or more acidic group as an adhesion promoter and dissolution promoter during stripping.

[006] W02004/106437 (Avecia) discloses an etch resistant inkjet ink preferably

comprising (meth)acrylate acid adhesion promoters, such as (meth)acrylated carboxylic acids, (meth)acrylated phosphoric acid esters and (meth)acrylated sulphonic acids.

[007] However, in low viscous ink jet inks acid adhesion promoters are often the root cause of instability inducing unwanted viscosity increase or colloid instability in pigmented systems. Therefore, there is a need for non-acidic adhesion promoters combining excellent adhesion performance with high stability in low viscous radiation curable formulations such as ink jet inks. [008] Disulfide based adhesion promoters have proven excellent bonding properties on precious metals in high viscous UV curable compositions for dental applications, as disclosed in for example Ikemura et a!., Dental Materials Journal, 30(4), 493- 500 and 30(6), 827-836 (201 1 ); EP-A 2036532 (Kabushiki Kaisha Shofu); Tanaka et al., Dental Materials Journal, 26(4), 514-518 (2007); DE 102005002750 (Ernst Muehlbauer GmbH & Co.); and W02002/025282 (Motorola).

[009] There is thus a need for alternative adhesion promotors for radiation curable

inkjet inks for use in a RGB manufacturing process.

Summary of the invention

[010] It is an object of the invention to provide a radiation curable inkjet ink for use in a PCB manufacturing process characterized by a good adhesion while maintaining excellent jetting, stability and stripping performance.

[01 1] The object of the invention has been realized by a radiation curable inkjet ink as defined in claim 1 and the method of manufacturing a PCB as defined in claim 9.

[012] It has been found that a radiation curable composition comprising a disulfide

based adhesion promoter according to Formula I shows excellent adhesion during etching of copper while maintaining excellent stability and jetting performance.

[013] Further objects of the invention will become apparent from the description

hereinafter

Detailed description of the invention

Definitions

[014] The term“monofunctional” in e.g. monofunctional polymerizable compound

means that the polymerizable compound includes one polymerizable group.

[015] The term“difunctional” in e.g. difunctional polymerizable compound means that the polymerizable compound includes two polymerizable groups.

[016] The term“polyfunctional” in e.g. polyfunctional polymerizable compound means that the polymerizable compound includes more than two polymerizable groups.

[017] The term“alkyl” means all variants possible for each number of carbon atoms in the alkyl group i.e. methyl, ethyl, for three carbon atoms: n-propyl and isopropyl; for four carbon atoms: n-butyl, isobutyl and tertiary-butyl; for five carbon atoms: n- pentyl, 1 , 1 -dimethyl-propyl, 2,2-dimethylpropyl and 2-methyl-butyl, etc.

[018] Unless otherwise specified a substituted or unsubstituted alkyl group is preferably a Ci to C6-alkyl group. [019] Unless otherwise specified a substituted or unsubstituted alkenyl group is preferably a C 2 to Ce-alkenyl group.

[020] Unless otherwise specified a substituted or unsubstituted alkynyl group is

preferably a C 2 to Ce-aikynyl group.

[021] Unless otherwise specified a substituted or unsubstituted aralkyl group is

preferably a phenyl or naphthyl group including one, two, three or more Ci to Ce- alkyl groups.

[022] Unless otherwise specified a substituted or unsubstituted alkaryl group is

preferably a C 7 to C 20 -alkyl group including a phenyl group or naphthyl group.

[023] Unless otherwise specified a substituted or unsubstituted aryl group is preferably a phenyl group or naphthyl group

[024] Unless otherwise specified a substituted or unsubstituted heteroaryl group is preferably a five- or six-mem bered ring substituted by one, two or three oxygen atoms, nitrogen atoms, sulphur atoms, selenium atoms or combinations thereof.

[025] The term“substituted”, in e.g. substituted alkyl group means that the alkyl group may be substituted by other atoms than the atoms normally present in such a group, i.e. carbon and hydrogen. For example, a substituted alkyl group may include a halogen atom or a thiol group. An unsubstituted alkyl group contains only carbon and hydrogen atoms

[026] Unless otherwise specified a substituted alkyl group, a substituted alkenyl group, a substituted alkynyl group, a substituted aralkyl group, a substituted alkaryl group, a substituted aryl and a substituted heteroaryl group are preferably substituted by one or more constituents selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl and tertiary-butyl, ester, amide, ether, thioether, ketone, aldehyde, sulfoxide, sulfone, sulfonate ester,

sulphonamide, -Cl, -Br, -I, -OH, -SH, -CN and -N0 2 .

Radiation Curable Inkjet Ink

[027] The radiation curable inkjet ink of the present invention includes an adhesion promoter as described below.

[028] The radiation curable inkjet ink preferably also comprises a polymerizable

compound having a pKa of at least 2.5.

[029] The radiation curable inkjet ink may be cured by any type of radiation, for

example by electron-beam radiation, but is preferably cured by UV radiation, more preferably by UV radiation from UV LEDs. The radiation curable inkjet ink is thus preferably a UV curable inkjet ink. [030] For reliable industrial inkjet printing, the viscosity of the radiation curable inkjet inks is preferably no more than 20 mPa.s at 45°C, more preferably between 1 and 18 mPa.s at 45°C, and most preferably between 4 and 14 mPa.s at 45°C.

[031] For good image quality and adhesion, the surface tension of the radiation curable inkjet inks is preferably in the range of 18 mN/m to 70 mN/m at 25°C, more preferably in the range of about 20 mN/m to about 40 mN/m at 25°C.

[032] The radiation curable inkjet ink may further comprise other polymerizable

compounds, colorants, polymeric dispersants, a photoiniator or photoinitiating system, a polymerization inhibitor, a flame retardant, or a surfactant.

Adhesion promoter

[033] The adhesion promoter has a chemical structure according to Formula I

Formula I

wherein

X is selected from the group consisting of O and NR3,

L represents a divalent linking group comprising from 1 to 20 carbon atoms,

R1 is selected from the group consisting of a hydrogen, a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group,

R2 is selected from the group consisting of a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a substituted or unsubstituted alkaryl group, a substituted or unsubstituted aralkyl group and a substituted or unsubstituted (hetero)aryl group,

R3 is selected from the group consisting of a hydrogen, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted alkynyl group, a substituted or unsubstituted alkaryl group, a substituted or unsubstituted aralkyl group and a substituted or unsubstituted (hetero)aryl group,

R2 and L may represent the necessary atoms to form a 5 to 8 membered ring.

[034] In a preferred embodiment, X represents an oxygen.

[035] In a further preferred embodiment, R1 is selected from the group consisting of a hydrogen and a methyl group, a hydrogen being particularly preferred. [036] In another preferred embodiment, F¾ comprises at least one polymerizable group selected from the group consisting of an acrylate, a methacrylate, an acrylamide and a methacrylamide, an acrylate and a methacrylate being more preferred, an acrylate being the most preferred.

[037] In an even more preferred embodiment, said adhesion promoter is an adhesion promoter according to Formula II,

Formula II

wherein

X is defined as above,

f¾ is selected from the group consisting of a hydrogen and a methyl group, Li represents an aliphatic linking group comprising 2 to 12 carbon atoms.

[038] In a particularly preferred embodiment, X (in Formula I and II) represents an oxygen atom and R3 represents a hydrogen.

[039] In a most preferred embodiment Li represents a substituted or unsubstituted alkylene group comprising 2 to 6 carbon atoms, an ethylene, a propylene, a butylene, a pentylene and a hexylene group being more preferred.

[040] Disulfide adhesion promoters according to the present invention are given in Table 1 without being limited thereto.

Table 1

[041] The amount of adhesion promoter in the radiation curable inkjet ink is preferably between 0.1 and 20 wt%, more preferably between 0.5 and 15 wt%, most preferably between 1 and 10 wt%, relative to the total weight of the inkjet ink.

[042] When the amount is too low, the adhesion of the inkjet ink to the metal surface may be insufficient, when the amount is too high, the ink viscosity may increase and the shelf life may become more critical.

Other Polymerizable Compounds

[043] Besides the adhesion promoter described above, the radiation curable inkjet ink preferably comprise other polymerizable compounds. [044] The other polymerizable compounds may be monomers, oligomers and/or prepolymers. These monomers, oligomers and/or prepolymers may possess different degrees of functionality. A mixture including combinations of mono-, di-, tri-and higher functionality monomers, oligomers and/or prepolymers may be used. The viscosity of the radiation curable inkjet ink may be adjusted by varying the ratio between the monomers and oligomers.

[045] Particularly preferred monomers and oligomers are those listed in [0106] to

[01 15] in EP-A 1911814 (Agfa NV).

[046] Other preferred monomers and oligomers are those disclosed in EP-As

2809735, 2725075, 2915856, 3000853 and 3119170 (all from Agfa Gevaert NV).

[047] The radiation curable inkjet ink preferably comprises a polymerizable compound having a pKa of at least 2.5, preferably at least 4, more preferably at least 5, most preferably at least 7.

[048] The polymerizable compound having a pKa of at least 2.5 is preferably a phenolic monomer.

[049] The phenolic compound is preferably selected from the group consisting of a phenolic acrylate, a phenolic methacrylate, a phenolic acrylamide and a phenolic methacrylamide, an acrylate and a methacrylate being more preferred.

[050] Typical phenolic monomers are given in Table 2 without being limited thereto.

Table 2

[051] In another preferred embodiment, the radiation curable composition comprises a monomer according to Formula III,

Formula III

wherein

Ai and A 2 are independently selected from the group consisting of an acrylate, a methacrylate, an acrylamide and a methacrylamide, and

L.2 and l_3 represent a divalent linking group including 2 to 10 carbon atoms.

[052] Preferably, Ai and A2 are independently selected from the group consisting of an acrylate and a methacrylate, an acrylate being particularly preferred.

[053] Specific examples of monomers according to Formula III are disclosed in

paragraph [0056] of EP-A 2703180 (Agfa-Gevaert N.V.).

Colorants

[054] The radiation curable inkjet may be a substantially colourless inkjet ink, but

preferably the radiation curable inkjet includes at least one colorant. The colorant makes the temporary mask clearly visible to the manufacturer of conductive patters, allowing a visual inspection of quality.

[055] The colorant may be a pigment or a dye, but is preferably a dye that is not

bleached by an UV curing step during the inkjet printing process of the radiation curable inkjet. The pigments may be black, white, cyan, magenta, yellow, red, orange, violet, blue, green, brown, mixtures thereof, and the like. A colour pigment may be chosen from those disclosed by HERBST, Willy, et al. Industrial Organic Pigments, Production, Properties, Applications. 3rd edition. Wiley - VCH, 2004, ISBN 3527305769.

[056] Suitable pigments are disclosed in paragraphs [0128] to [0138] of

W02008/074548.

[057] Pigment particles in inkjet inks should be sufficiently small to permit free flow of the ink through the inkjet-printing device, especially at the ejecting nozzles. It is also desirable to use small particles for maximum colour strength and to slow down sedimentation. Most preferably, the average pigment particle size is no larger than 150 nm. The average particle size of pigment particles is preferably determined with a Brookhaven Instruments Particle Sizer BI90plus based upon the principle of dynamic light scattering.

[058] Generally dyes exhibit a higher light fading than pigments, but cause no problems on jettability. It was found that anthraquinone dyes exhibit only minor light fading under the normal UV curing conditions used in UV curable inkjet printing.

[059] In a preferred embodiment, the colorant in the radiation curable inkjet ink is an anthraquinone dye, such as Macrolex™ Blue 3R (CASRN 325781 -98-4) from LANXESS.

[060] Other preferred dyes include crystal violet and a copper phthalocyanine dye.

[061] In a preferred embodiment, the colorant is present in an amount of 0.5 to 6.0 wt%, more preferably 1.0 to 2.5 wt%, based on the total weight of the radiation curable inkjet ink.

Polymeric Dispersants

[062] If the colorant in the radiation curable inkjet is a pigment, then the radiation

curable inkjet preferably contains a dispersant, more preferably a polymeric dispersant, for dispersing the pigment.

[063] Suitable polymeric dispersants are copolymers of two monomers but they may contain three, four, five or even more monomers. The properties of polymeric dispersants depend on both the nature of the monomers and their distribution in the polymer. Copolymeric dispersants preferably have the following polymer compositions:

statistically polymerized monomers (e.g. monomers A and B polymerized into ABBAABAB);

• alternating polymerized monomers (e.g. monomers A and B polymerized into ABABABAB);

• gradient (tapered) polymerized monomers (e.g. monomers A and B

polymerized into AAABAABBABBB);

• block copolymers (e.g. monomers A and B polymerized into

AAAAABBBBBB) wherein the block length of each of the blocks (2, 3, 4, 5 or even more) is important for the dispersion capability of the polymeric dispersant;

• graft copolymers (graft copolymers consist of a polymeric backbone with polymeric side chains attached to the backbone); and

mixed forms of these polymers, e.g. blocky gradient copolymers.

[064] Suitable polymeric dispersants are listed in the section on“Dispersants”, more specifically [0064] to [0070] and [0074] to [0077], in EP-A 1911814.

[065] Commercial examples of polymeric dispersants are the following:

• DISPERBYK™ dispersants available from BYK CHEMIE GMBH;

• SOLSPERSE™ dispersants available from NOVEON;

• TEGO™ DISPERS™ dispersants from EVONIK;

• EDAPLAN™ dispersants from MtJNZING CHEMIE;

• ETHACRYL™ dispersants from LYONDELL;

• GAN EX™ dispersants from ISP;

• DISPEX™ and EFKA™ dispersants from Cl BA SPECIALTY CHEMICALS INC;

• DISPONER™ dispersants from DEUCHEM; and

• JONCRYL™ dispersants from JOHNSON POLYMER.

Photoinitiators and Photoinitiating Systems

[066] The radiation curable inkjet preferably contains at least one photoinitiator, but may contain a photoinitiating system including a plurality of photoinitiators and/or co-initiators.

[067] The photoinitiator in the radiation curable inkjet is preferably a free radical

initiator, more specifically a Norrish type I initiator or a Norrish type II initiator. A free radical photoinitiator is a chemical compound that initiates polymerization of monomers and oligomers when exposed to actinic radiation by the formation of a free radical. A Norrish Type I initiator is an initiator which cleaves after excitation, yielding the initiating radical immediately. A Norrish type ll-initiator is a photoinitiator which is activated by actinic radiation and forms free radicals by hydrogen abstraction from a second compound that becomes the actual initiating free radical. This second compound is called a polymerization synergist or co- initiator. Both type I and type II photoinitiators can be used in the present invention, alone or in combination.

[068] Suitable photoinitiators are disclosed in CRIVELLO, J.V., et al. Photoinitiators for Free Radical Cationic and Anionic Photopolymerization. 2nd edition. Edited by BRADLEY, G.. London, UK: John Wiley and Sons Ltd, 1998. p.287-294.

[069] Specific examples of photoinitiators may include, but are not limited to, the

following compounds or combinations thereof: benzophenone and substituted benzophenones, 1 -hydroxycyclohexyl phenyl ketone, thioxanthones such as isopropylthioxanthone, 2-hydroxy-2-methyl-1 -phenylpropan-1 -one, 2-benzyl-2- dimethylamino- (4-morpholinophenyl) butan-1-one, benzyl dimethylketal, bis (2,6- dimethylbenzoyl)-2,4,4-trimethylpentylphosphine oxide, 2,4,6 trimethylbenzoyl- diphenylphosphine oxide, 2,4,6-trimethoxybenzoyldiphenylphosphine oxide, 2- methyl-1 - [4- (methylthio) phenyl] -2-morpholinopropan-1 -one, 2,2-dimethoxy-1 , 2-diphenylethan-1 -one or 5,7-diiodo-3- butoxy-6-fluorone.

[070] Suitable commercial photoinitiators include Irgacure™ 184, Irgacure™ 500,

Irgacure™ 369, Irgacure™ 1700, Irgacure™ 651 , Irgacure™ 819, Irgacure™

1000, Irgacure™ 1300, Irgacure™ 1870, Darocur™ 1 173, Darocur™ 2959, Darocur™ 4265 and Darocur™ ITX available from CIBA SPECIALTY

CHEMICALS, Lucerin™ TPO available from BASF AG, Esacure™ KT046, Esacure™ KIP150, Esacure™ KT37 and Esacure™ EDB available from

LAMBERTI, H-Nu™ 470 and H-Nu™ 470X available from SPECTRA GROUP Ltd..

[071] The photoinitiator may be a so-called diffusion hindered photoinitiator. A diffusion hindered photoinitiator is a photoinitiator which exhibits a much lower mobility in a cured ink layer than a monofunctional photoinitiator, such as benzophenone. Several methods can be used to lower the mobility of the photoinitiator. One way is to increase the molecular weight of the photoinitiators so that the diffusion speed is reduced, e.g. polymeric photoinitiators. Another way is to increase its reactivity so that it is built into the polymerizing network, e.g. multifunctional photoinitiators (having 2, 3 or more photoinitiating groups) and polymerizable photoinitiators.

[072] The diffusion hindered photoinitiator for the radiation curable inkjet is preferably selected from the group consisting of non-polymeric multifunctional

photoinitiators, oligomeric or polymeric photoinitiators and polymerizable photoinitiators. Most preferably the diffusion hindered photoinitiator is a polymerizable initiator or a polymeric photoinitiator.

[073] A preferred diffusion hindered photoinitiator contains one or more photoinitiating functional groups derived from a Norrish type l-photoinitiator selected from the group consisting of benzoinethers, benzil ketals, a,a-dialkoxyacetophenones, a- hyd roxya I kyl phenones, a-aminoalkylphenones, acylphosphine oxides, acylphosphine sulphides, ct-haloketones, a-halosulfones and phenyiglyoxalates.

[074] A preferred diffusion hindered photoinitiator contains one or more photoinitiating functional groups derived from a Norrish type ll-initiator selected from the group consisting of benzophenones, thioxanthones, 1 ,2-diketones and anthraquinones.

[075] Suitable diffusion hindered photoinitiators are also those disclosed in EP-A

2065362 in paragraphs [0074] and [0075] for difunctional and multifunctional photoinitiators, in paragraphs [0077] to [0080] for polymeric photoinitiators and in paragraphs [0081] to [0083] for polymerizable photoinitiators.

[076] A preferred amount of photoinitiator is 0.1 - 20 wt%, more preferably 2 - 15 wt%, and most preferably 3 - 10 wt% of the total weight of the radiation curable inkjet.

[077] In order to increase the photosensitivity further, the radiation curable inkjet may additionally contain co-initiators. Suitable examples of co-initiators can be categorized in three groups: 1) tertiary aliphatic amines such as

methyldiethanolamine, dimethylethanolamine, triethanolamine, triethylamine and N-methylmorpholine (2) aromatic amines such as amylparadimethyl- aminobenzoate, 2-n-butoxyethyl-4-(dimethylamino) benzoate, 2-(dimethylamino)- ethylbenzoate, ethyl-4-(dimethylamino)benzoate, and 2-ethyl hexyl-4- (dimethylamino)benzoate; and (3) (meth)acrylated amines such as dialkylamino alkyl(meth)acrylates (e.g., diethylaminoethylacrylate) or N-morpholinoalkyl- (meth)acrylates (e.g., N-morpholinoethyl-acrylate). The preferred co-initiators are aminobenzoates.

[078] When one or more co-initiators are included into the radiation curable inkjet ink, preferably these co-initiators are diffusion hindered for safety reasons.

[079] A diffusion hindered co-initiator is preferably selected from the group consisting of non-polymeric di- or multifunctional co-initiators, oligomeric or polymeric co- initiators and polymerizable co-initiators. More preferably the diffusion hindered co-initiator is selected from the group consisting of polymeric co-initiators and polymerizable co-initiators. Most preferably the diffusion hindered co-initiator is a polymerizable co-initiator having at least one (meth)acrylate group, more preferably having at least one acrylate group.

[080] The radiation curable inkjet ink preferably includes a polymerizable or polymeric tertiary amine co-initiator.

[081] Preferred diffusion hindered co-initiators are the polymerizable co-initiators

disclosed in EP-A 2053101 in paragraphs [0088] and [0097].

[082] The radiation curable inkjet inks preferably includes the (diffusion hindered) coinitiator in an amount of 0.1 to 20 wt%, more preferably in an amount of 0.5 to 15 wt%, most preferably in an amount of 1 to 10 wt% of the total weight of the radiation curable inkjet ink.

Polymerization Inhibitors

[083] The radiation curable inkjet ink may contain at least one inhibitor for improving the thermal stability of the ink.

[084] Suitable polymerization inhibitors include phenol type antioxidants, hindered amine light stabilizers, phosphor type antioxidants, hydroquinone monomethyl ether commonly used in (meth)acrylate monomers, and hydroquinone, t-butyl- catechol, pyrogallol, 2,6-di-tert.butyl-4-methylphenol (=BHT) may also be used.

[085] Suitable commercial inhibitors are, for example, Sumilizer™ GA-80, Sumilizer™ GM and Sumilizer™ GS produced by Sumitomo Chemical Co. Ltd.; Genorad™ 16, Genorad™ 18 and Genorad™ 20 from Rahn AG; lrgastab™UV10 and Irgastab™ UV22, Tinuvin™ 460 and CGS20 from Ciba Specialty Chemicals; Floorstab™ UV range (UV-1 , UV-2, UV-5 and UV-8) from Kromachem Ltd, Additol™ S range (S100, S1 10, S120 and S130) from Cytec Surface Specialties.

[086] The inhibitor is preferably a polymerizable inhibitor.

[087] Since excessive addition of these polymerization inhibitors may lower the curing speed, it is preferred that the amount capable of preventing polymerization is determined prior to blending. The amount of a polymerization inhibitor is preferably lower than 5 wt%, more preferably lower than 3 wt% of the total radiation curable inkjet ink. Surfactants

[088] The radiation curable inkjet may contain at least one surfactant, but preferably no surfactant is present. If no surfactant is present, the radiation curable inkjet ink does not spread well on the metal sheet, allowing the generation of thin conductive lines.

[089] The surfactant can be anionic, cationic, non-ionic, or zwitter-ionic and is usually added in a total quantity less than 1wt% based on the total weight of the radiation curable inkjet ink.

[090] Suitable surfactants include fluorinated surfactants, fatty acid salts, ester salts of a higher alcohol, alkylbenzene sulfonate salts, sulfosuccinate ester salts and phosphate ester salts of a higher alcohol (for example, sodium

dodecylbenzenesulfonate and sodium dioctylsulfosuccinate), ethylene oxide adducts of a higher alcohol, ethylene oxide adducts of an alkylphenol, ethylene oxide adducts of a polyhydric alcohol fatty acid ester, and acetylene glycol and ethylene oxide adducts thereof (for example, polyoxyethylene nonylphenyl ether, and SURFYNOL™ 104, 104H, 440, 465 and TG available from AIR PRODUCTS & CHEMICALS INC.).

[091] Preferred surfactants are selected from fluoric surfactants (such as fluorinated hydrocarbons) and silicone surfactants. The silicone surfactants are preferably siloxanes and can be alkoxylated, polyether modified, polyether modified hydroxy functional, amine modified, epoxy modified and other modifications or combinations thereof. Preferred siloxanes are polymeric, for example

polydimethylsiloxanes.

[092] Preferred commercial silicone surfactants include BYK™ 333 and BYK™ UV3510 from BYK Chemie.

[093] In a preferred embodiment, the surfactant is a polymerizable compound.

[094] Preferred polymerizable silicone surfactants include a (meth)acrylated silicone surfactant. Most preferably the (meth)acrylated silicone surfactant is an acrylated silicone surfactant, because acrylates are more reactive than methacrylates.

[095] In a preferred embodiment, the (meth)acrylated silicone surfactant is a polyether modified (meth)acrylated polydimethylsiloxane or a polyester modified

(meth)acrylated polydimethylsiloxane.

[096] Preferably the surfactant is present in the radiation curable inkjet ink in an

amount of 0 to 3 wt% based on the total weight of the radiation curable inkjet ink. Preparation of Inkjet Inks

[097] The preparation of pigmented radiation curable inkjet inks is well-known to the skilled person. Preferred methods of preparation are disclosed in paragraphs [0076] to [0085] of WO201 1/069943.

Method of manufacturing a Printed Circuit Board

[098] The method of manufacturing a Printed Circuit Board (PCB) according to the present invention comprises at least one inkjet printing step is, characterized in that in the inkjet printing step a radiation curable inkjet ink comprising an adhesion promoter as described below is used.

[099] According to a preferred embodiment, the method of manufacturing a PCB

comprises an inkjet printing step wherein an etch resist is provided on a metal surface, preferably a copper surface.

[0100] The etch resist is provided on the metal surface by jetting and curing the radiation curable inkjet ink on the metal surface thereby forming a protected area of the metal surface. Metal from an unprotected area of the metal surface is then removed by etching. After etching, at least part of the etch resist is removed from the protected area of the metal surface.

[0101] The inkjet printing step wherein an etch resist is provided preferably comprises a radiation curable inkjet ink including an adhesion promoter as described below and a polymerizable compound having a pKa of at least 2.5.

[0102] The metal surface is preferably a metal foil or sheet attached to a substrate.

[0103] There is no real limitation on the type of substrate bonded to the metal sheet as long as it is non-conductive. The substrates may be made of a ceramic, glass or plastics, such as polyimides.

[0104] The metal sheet usually has a thickness between 9 and 105 pm.

[0105] There is no limitation on the nature of the metal surface. The metal surfaces preferably consist of copper, aluminium, nickel, iron, tin, titanium or zinc, but may be also alloys including these metals. In a very preferred embodiment, the metal surface is made of copper. Copper has a high electrical conductivity and is a relatively cheap metal, making it very suitable for making printed circuit boards.

[0106] The method may also be used for manufacturing a decorative etched metal panel.

[0107] The metal surface used may be selected from the metals described above for the embodiment wherein conductive patterns are prepared. In this case, preferably a solid metal panel is used. However, also a metal foil attached to a substrate may be used. There is no real limitation on the type of substrate bonded to the metal foil. The substrates may be made of a ceramic, glass or plastics, or even a second (cheaper) metal plate. The metal may also be an alloy.

[0108] Such a decorative metal panel may serve a purpose other than being purely decorative, such as providing information. For example, an aluminium name plate wherein the etch resistant radiation curable inkjet ink was printed as information, such as a name of a person or a company, and then removed to result in a glossy shiny name on a mat etched background, is also considered a decorative metal panel including a decorative element. Etching causes a change in optical properties of a metal surface, such as a change of gloss. After removal of the cured radiation curable inkjet ink from the metal surface an aesthetic effect is created between the etched and the non-etched metal surface.

[0109] In a preferred embodiment of the inkjet printing method, the metal surface is cleaned before printing the radiation curable inkjet ink. This is especially desirable when the metal surface is handled by hand and no gloves are worn.

The cleaning removes dust particles and grease which can interfere in the adhesion of the radiation curable inkjet ink to the metal surface. In RGB the copper is often cleaned by microetching. The oxide layer of the copper is removed and roughness introduced in order to improve the adhesion.

[01 10] The inkjet method may also be used for manufacturing a decorative etched glass panel. Such a method is disclosed in for example WO2013/189762 (AGC).

[01 11] According to another preferred embodiment, the method of manufacturing a RGB comprises an inkjet printing step wherein a solder mask is provided.

[0112] The solder mask is provided by jetting and curing the radiation curable inkjet ink typically on a dielectric substrate containing an electrically conductive pattern.

[0113] A heat treatment is preferably applied to the jetted and cured radiation curable inkjet ink. The heat treatment is preferably carried out at a temperature between 80°C and 250°C. The temperature is preferably not less than 100°C, more preferably not less than 120°C. To prevent charring of the solder mask, the temperature is preferably not greater than 200°C, more preferably not greater than 160°C.

[01 14] The thermal treatment is typically carried out between 15 and 90 minutes.

[01 15] The purpose of the thermal treatment is to further increase the polymerization degree of the solder mask.

[01 16] This further polymerization during the thermal treatment may be accelerated by adding radical initiators, blocked thermal acid generators, blocked acid catalysts and/or thermosetting compounds which promote thermal curing of polymers, such as peroxides, azo compounds, acid anhydrides, and phenolics, to the solder mask inkjet ink.

[01 17] The dielectric substrate of the electronic device may be any non-conductiwe

material. The substrate is typically a paper/resin composite or a resin/fibre glass composite, a ceramic substrate, a polyester or a polyimide.

[01 18] The electrically conductive pattern is typically made from any metal or alloy which is conventionally used for preparing electronic devices such as gold, silver, palladium, nickel/gold, nickel, tin, tin/lead, aluminium, tin/aluminium and copper. The electrically conductive patern is preferably made from copper.

[01 19] The radiation curable solder mask inkjet ink may be cured in both embodiments by exposing the ink to actinic radiation, such as electron beam or ultraviolet (UV) radiation. Preferably the radiation curable inkjet ink is cured by UV radiation, more preferably using UV LED curing.

[0120] The method of manufacturing a PCB may comprise two, three or more inkjet printing steps. For example the method may comprise two inkjet printing steps wherein an etch resist is provided on a metal surface in one inkjet printing step and wherein a solder mask is provided on a dielectric substrate containing an electrically conductive pattern in another inkjet printing step.

[0121] A third inkjet printing step may be used for legend printing.

Etching

[0122] Etching of a metal surface, as in step b) of the inkjet printing method, is

performed by using an etchant. The etchant is preferably an aqueous solution having a pH < 3 or wherein 8 < pH < 10.

[0123] In a preferred embodiment, the etchant is an acid aqueous solution having a pH of less than 2. The acid etchant preferably includes at least one acid selected from the group consisting of nitric add, picric acid, hydrochloric acid, hydrofluoric acid and sulphuric acid.

[0124] Preferred etchants known in the art include Kalling’s N°2, ASTM N° 30, Kellers Etch, Klemm’s Reagent, Kroll’s Reagent, Marble’s Reagent, Murakami's

Reagent, Picral and Vilella’s Reagent.

[0125] In another preferred embodiment, the etchant is an alkaline aqueous solution having a pH of no more than 9. The alkaline etchant preferably includes at least one base selected from the group consisting of ammonia or ammonium hydroxide, potassium hydroxide and sodium hydroxide. [0126] The etchant may also contain a metal salt such as copper dichloride, copper sulphate, potassium ferricyanide and iron trichloride.

[0127] Etching of a metal surface in RGB applications is preferably performed in a time frame of seconds to a few minutes, more preferably 5 to 200 seconds. Etching is preferably performed at a temperature between 35 and 60°C.

[0128] The etching time of a metal surface in other applications, such as in the

manufacture or decorative metal panels, may be substantially longer, depending on the type and amount of metal that has to be removed during the etch step. Etching times may be more then 15, 30 or even 60 minutes.

[0129] In the method wherein a glass surface is etched, the etching solution is preferably an aqueous solution of hydrofluoric acid. Typically, the etching solution has a pH between 0 and 5.

[0130] Etching is preferably followed by rinsing with water to remove any residual

etchant.

Stripping

[0131 ] After etching, the cured radiation curable inkjet ink must at least partially be

removed from the metal surface, so that e.g. electric or electronic devices can make contact with the remaining metal surface (conductive pattern) or that the decorative feature of an etched metal panel becomes fully visible. For example, an electronic component such as a transistor must be able to make electrical contacts with the conductive (copper) pattern on the printed circuit board. In a preferred embodiment, the cured radiation curable inkjet ink is completely removed from the metal surface.

[0132] In a preferred embodiment, the cured radiation curable inkjet ink is removed from the protected area in step c) by an alkaline stripping bath. Such an alkaline stripping bath is usually an aqueous solution with a pH > 10.

[0133] In another embodiment, the cured radiation curable inkjet ink is removed from the protected area in step c) by dry delamination. This technique of“dry stripping” is currently unknown in the art of manufacturing printed circuit boards and introduces several ecological and economical advantages in the manufacturing process. Dry stripping not only eliminates the need of a corrosive alkaline stripping bath and its inherent liquid waste, but also allows for a higher throughput. Dry stripping can be implemented, for example, by using an adhesive foil and a roll-to-roll laminator-delaminator. The adhesive foil is first laminated with its adhesive side onto the cured radiation curable inkjet ink present on the metal surface and subsequently delaminated thereby removing the cured radiation curable inkjet ink from the metal surface. Delamination by a roll-to-roll laminator-delaminator can be performed in seconds, while alkaline stripping can take minutes.

Inkjet Printing Devices

[0134] The radiation curable inkjet ink may be jetted by one or more print heads ejecting small droplets in a controlled manner through nozzles onto a substrate, which is moving relative to the print head(s).

[0135] A preferred print head for the inkjet printing system is a piezoelectric head.

Piezoelectric inkjet printing is based on the movement of a piezoelectric ceramic transducer when a voltage is applied thereto. The application of a voltage changes the shape of the piezoelectric ceramic transducer in the print head creating a void, which is then filled with ink. When the voltage is again removed, the ceramic expands to its original shape, ejecting a drop of ink from the print head. However the inkjet printing method according to the present invention is not restricted to piezoelectric inkjet printing. Other inkjet print heads can be used and include various types, such as a continuous type.

[0136] The inkjet print head normally scans back and forth in a transversal direction across the moving ink-receiver surface. Often the inkjet print head does not print on the way back. Bi-directional printing is preferred for obtaining a high areal throughput. Another preferred printing method is by a“single pass printing process”, which can be performed by using page wide inkjet print heads or multiple staggered inkjet print heads which cover the entire width of the metal plate. In a single pass printing process the inkjet print heads usually remain stationary and the metal substrate is transported under the inkjet print heads.

Curing Devices

[0137] The radiation curable inkjet ink can be cured by exposing them to actinic

radiation, such as electron beam or ultraviolet radiation. Preferably the radiation curable inkjet ink is cured by ultraviolet radiation, more preferably using UV LED curing.

[0138] In inkjet printing, the curing means may be arranged in combination with the print head of the inkjet printer, travelling therewith so that the curable liquid is exposed to curing radiation very shortly after been jetted. [0139] In such an arrangement, with the exception of UV LEDs, it can be difficult to provide a small enough radiation source connected to and travelling with the print head. Therefore, a static fixed radiation source may be employed, e.g. a source of curing UV-light, connected to the radiation source by means of flexible radiation conductive means such as a fibre optic bundle or an internally reflective flexible tube.

[0140] Alternatively, the actinic radiation may be supplied from a fixed source to the radiation head by an arrangement of mirrors including a mirror upon the radiation head.

[0141] The source of radiation may also be an elongated radiation source extending transversely across the substrate to be cured. It may be adjacent the transverse path of the print head so that the subsequent rows of images formed by the print head are passed, stepwise or continually, beneath that radiation source.

[0142] Any ultraviolet light source, as long as part of the emitted light can be absorbed by the photo-initiator or photo-initiator system, may be employed as a radiation source, such as, a high or low pressure mercury lamp, a cold cathode tube, a black light, an ultraviolet LED, an ultraviolet laser, and a flash light. Of these, the preferred source is one exhibiting a relatively long wavelength UV-contribution having a dominant wavelength of 300-400 nm. Specifically, a UV-A light source is preferred due to the reduced light scatering therewith resulting in more efficient interior curing.

[0143] UV radiation is generally classed as UV-A, UV-B, and UV-C as follows:

• UV-A: 400 nm to 320 nm

• UV-B: 320 nm to 290 nm

• UV-C: 290 nm to 100 nm.

[0144] In a preferred embodiment, the radiation curable inkjet ink is cured by UV LEDs.

The inkjet printing device preferably contains one or more UV LEDs preferably with a wavelength larger than 360 nm, preferably one or more UV LEDs with a wavelength larger than 380 nm, and most preferably UV LEDs with a wavelength of about 395 nm.

[0145] Furthermore, it is possible to cure the ink image using, consecutively or

simultaneously, two light sources of differing wavelength or illuminance. For example, the first UV-source can be selected to be rich in UV-C, in particular in the range of 260 nm-200 nm. The second UV-source can then be rich in UV-A, e.g. a gallium-doped lamp, or a different lamp high in both UV-A and UV-B. The use of two UV-sources has been found to have advantages e.g. a fast curing speed and a high curing degree.

[0146] For facilitating curing, the inkjet printing device often includes one or more

oxygen depletion units. The oxygen depletion units place a blanket of nitrogen or other relatively inert gas (e.g. C0 2 ), with adjustable position and adjustable inert gas concentration, in order to reduce the oxygen concentration in the curing environment. Residual oxygen levels are usually maintained as low as 200 ppm, but are generally in the range of 200 ppm to 1200 ppm.

EXAMPLES

Materials

[0147] All materials used in the following examples were readily available from standard sources such as ALDRICH CHEMICAL Co. (Belgium) and ACROS (Belgium) unless otherwise specified. The water used was deionized water.

[0148] SR606A is a mixture of 80 - 90 wt% of neopentylglycol hydroxypivalate diacrylate and 10 - 20 wt% of neopentylglycol diacrylate available as Sartomer™ SR606A from ARKEMA.

[0149] ACMO is acryloyl morpholine available from RAHN.

[0150] ITX is an isomeric mixture of 2- and 4-isopropylthioxanthone available as

Darocur™ ITX from BASF.

[0151] TPO-L is ethyl(2,4,6-trimethylbenzoyl) phenyl phosphinate, a photoinitiator

available as SpeedCure: TPO-L from LAMBSON.

[0152] EPD is ethyl 4-dimethyaminobenzoate available as Genocure™ EPD from

RAHN.

[0153] CEA is 2-carboxyethyl acrylate from ALDRICH.

[0154] CN146 is (2-acryloyloxyethyl) phthalate from ARKEMA.

[0155] INHIB is a mixture forming a polymerization inhibitor having a composition

according to Table 3

Table 3

[0156] DPGDA is dipropylenediacrylate, available as Sartomer SR508 from ARKEMA.

[0157] Cupferron™ AL is aluminum N-nitrosophenylhydroxylamine from WAKO

CHEMICALS LTD.

[0158] Dye-1 is a blue anthraquinone dye available as Macrolex™ Blue 3R from

LANXESS.

[0159] Phenol-1 is a phenolic monomer prepared as disclosed in US20100249276

(Designer Molecules Inc.).

[0160] Phenol-3 is a phenolic monomer prepared according to the following scheme:

The mesylation step was disclosed JP2009221 124 (Fujifilm Corporation).

Phenol-3 was prepared according to US2016/0318845 (Fujifilm Corporation).

[0161] Novolac is Durez 33100, a poly(phenol-c-fomnaldehyde) resin from DUREZ

PLASTIC DIV.

[0162] Disperbyk 162 is a dispersing agent and has been precipitated from a solution available from BYK (ALTANA).

[0163] Cyan is SUN FAST BLUE 15:4, a cyan pigment available from SUN

CHEMICALS.

[0164] Yellow is CROMOPHTAL YELLOW D 1085J, a yellow pigment from BASF.CTFA

[0165] VEEA is 2-(vinylethoxy)ethyl acrylate available from NIPPON SHOKUBAI, Japan.

[0166] CD420 is a monofunctional acrylic monomer available as Sartomer™ CD420 from ARKEMA.

[0167] TMPTA is trimethylol propane triacrylate, available as Sartomer™ SR351 from ARKEMA.

[0168] SR335 is a laurylacrylate from ARKEMA

[0169] ADK FP600 is a flame retardant from ADEKA PALMAROLE.

[0170] PBS is a branched poly(4-hydroxystyrene) from HYDRITE CHEMICAL

COMPANY.

[0171] BAPO is a bis(2,4,6-trimethylbenzoyl)-phenylphoshineoxide photoinitiator

available as Irgacure™ 819 from BASF.

[0172] Ebecryl 1360 AK is a polysiloxane hexa acrylate slip agent from ALLNEX. [0173] Coatasil is Coatasil 7500 from MOMENTIVE PERFORMANCE MATERIALS.

Methods

Viscosity

[0174] The viscosity of the inks was measured at 45°C and at a shear rate of 1000

s- 1 using a“Robotic Viscometer Type VISCObof from CAMBRIDGE APPLIED SYSTEMS.

Copper cleaning

[0175] IsolaTM 400 copper plates from !sola were cleaned for 5 seconds at 25 °C with a solution called MecbriteTM CA-95 from MEC Europe, which has pH < 1 and contained H2SO4, H 2 O 2 and Cu 2+ .

[0176] During this operation a thin top layer of Cu (0.3 - 0.5 pm) was removed. The plates were then rinsed with a water jet for 90 seconds, dried and used immediately.

Etch Resistance

[0177] In a first method, the etch resistance was evaluated by rubbing a cotton bud over the layer immediately after etching and rinsing. Evaluation was made in accordance with a criteria described in Table 4.

Table 4

[0178] In a second method, the etch resistance was evaluated by determining the

percentage of the cured inkjet ink layer that remained on the copper plate after etching and rinsing. An etch resistance of 100% means that that the whole cured inkjet layer survived the etching bath. An etch resistance of 0 % means that no cured inkjet ink could be found to be present on the copper plate after etching. A good etch resistance means a value of at least 80%. Excellent etch resistance means a value of at least 90% but preferably 100%. Strippability

[0179] The strippability was evaluated by determining the percentage of the cured inkjet layer that was removed from the copper plate after stripping. A strippability of 100% means that the whole cured inkjet ink layer was removed from the copper plate. An intermediate percentage, e.g. 30%, means that only 30% of the cured inkjet ink could be removed from the copper plate. A good strippability means a value of at least 80%. Excellent strippability means a value of at least 90% but preferably 100%. A value of 30% or less is a very poor strippability.

Adhesion of solder mask inkjet inks

[0180] The adhesion was evaluated by a cross-cut test according to ISO2409: 1992(E).

Paints (International standard 1992-08-15) using a Braive No.1536 Cross Cut Tester from BRAIVE INSTRUMENTS with spacing of a 1 mm between cuts and using a weight of 600 g, in combination with a Tesatape™ 4104 PVC tape. The evaluation was made in accordance with a criterion described in Table 5, where both the adhesion in the cross-cut and outside the cross-cut were evaluated.

Table 5

Solder resistance

[0181] The solder resistance of the solder mask inkjet inks was evaluated using a

SPL600240 Digital Dynamic Solder Pot available from L&M PRODUCTS filled with a“K” Grade 63:37 tin/lead solder available from SOLDER CONNECTION.

The temperature of the solder was set at 290°C.

[0182] Using a Q-tip, a solder flux SC7560A from SOLDER CONNECTION was applied on the surface of the samples (i.e. coatings of the solder mask inkjet ink on a copper surface as described under adhesion) to clean the surface. The solder flux was dried by placing the samples for 10 minutes above the solder pot.

[0183] After placing the sample in the solder pot, a solder wave was created for 10

seconds after which the samples were cooled for at least 10 minutes.

[0184] The adhesion of the solder mask inkjet inks on the copper surface was then

evaluated with a tape test on the cooled samples. A black tape Tesa 4104/04 from TESA AG, Germany was taped onto the coating and the tape was removed immediately thereafter by hand.

[0185] A visual evaluation resulted in an adhesion quality ranging from 0 (very good adhesion) to 5 (very poor adhesion).

[0186] This example illustrates the preparation of adhesion promoters according to the present invention.

Synthesis of DISULF-1

[0187] 15 g (0.097 mol) 2,2 ' -dithiodiethanol was dissolved in 250 ml methylene chloride.

1 .06 g BHT and 21.51 g (0.213 mol) triethyl amine were added. The mixture was cooled to -10°C and a solution of 19.36 g (0.213 mol) acryloyl chloride in 100 ml methylene chloride was added over 30 minutes.

[0188] The reaction mixture was allowed to come to room temperature and the reaction was allowed to continue for one hour at room temperature.

[0189] The mixture was extracted twice with 100 ml of a 2N solution of hydrochloric acid and twice with 100 ml of a 2N solution of sodium hydroxide.

[0190] The organic fraction was isolated, dried over Na 2 S0 4 and evaporated under reduced pressure. [0191 ] DISULF-1 was purified using preparative column chromatography on a

GraceResolve column, using hexane/ethyl acetate 90/10 as eluent. 12.6 g of DISULF-1 was isolated (yield = 49.5 %). TLC analysis on a Merck TLC Silica gel 6OF254 plate, using hexane/ethylacetate 80/20 as eluent : R f : 0.28)

Synthesis of DISULF-7

[0192] 10.8 g (51 mmol) thioctic acid was dissolved in 80 ml acetone. 12.1 g (59 mmol) dicyclohexyl carbodiimde was added followed by the addition of 6.4 g (54 mmol) hydroxyethyl acrylate.

[0193] The mixture was refluxed for two and a half hours. An additional 6.4 g (54 mmol) hydroxyethylacrylate was added and the mixture was further refluxed for five hours.

[0194] The precipitated dicyclohexyl ureum was removed by filtration and the solvent was removed under reduced pressure. 100 ml methyl tert. butyl ether was added to the residue and the mixture was cooled to 0°C. The precipitated side products were removed by filtration and the solvent was evaporated under reduced pressure.

[0195] DISULF-7 was purified by preparative column chromatography on a Prochrom LC80 column, using Kromasil Si 60A 10pm as stationary phase and methylene chloride/ethyl acetate 95/5 as eluent.

[0196] 3.4 g of DISULF-7 (yield = 22 %) was isolated as a yellow oil (TLC analysis on a TLC Silica gel 60 F 254 plate supplied by Merck, hexane / ethyl acetate 70/30 as eluent, Rf : 0.45).

The synthesis of DISULF-8

[0197] 1 1 .26 g (0.05 mol) cystamine dichlorohydrate was dissolved in 100 ml water. 20 ml of a 10 M sodium hydroxide solution was added and the mixture was cooled to 0°C.

[0198] A solution of 9.05 g (0.1 mol) acryloyl chloride in 10 ml methylene chloride was added over 15 minutes. The reaction was allowed to continue for 1 hour at room temperature. Upon reaction the crude DISULF-8 precipitated from the reaction medium.

[0199] The crude DISULF-8 was isolated by filtration, washed three times with 50 ml water and recrystallized from ethyl acetate/hexane.

[0200] 12.2 g of DISULF-8 was isolated (yield - 93.8%, melting point (m.p.) = 1 14°C (lit.

120°C (Emilitri, Elisa; Journal of Polymer Science, Part A: Polymer Chemistry 2005, 43(7), 1404-1416)).

Example 2

[0201] This example illustrates the superior etch resistance combined with a good

strippability in an alkaline stripping bath of UV curable inkjet inks including adhesion promoters according to the present invention.

Comparative inks COMP-1 and inventive ink INV-1

[0202] The comparative radiation curable inkjet inks COMP-1 and the inventive radiation curable inkjet ink INV-1 were prepared according to Table 6. The weight percentages (wt%) are ail based on the total weight of the radiation curable inkjet ink.

Table 6

Comparative sample COMP-S-1 and Inventive sample INV-S-1

[0203] The comparative sample COMP-S-1 and the inventive test sample INV-S-1 were obtained by respectively coating the inks COM P-1 and I V-1 on a 35 pm copper laminate with a spiral coating bar of 20 pm wet coating thickness. Subsequently the layer was cured with a H-bulb (mercury lamp) at full power.

[0204] The samples were subjected to an etch bath (Metex Universal Starter from

MacDermid Enthone containing CuNH 3 CI) for 60 seconds at 45 °C and then subsequently rinsed for 90 seconds with water and dried.

[0205] The etch resistance of the samples was evaluated as described above. The

results are shown in Table 7.

[0206] The samples were than stripped in a 10% ethanol amine solution at 50°C during 2 minutes. The strippablity was evaluated as described above, the results are also shown in Table 7.

Table 7

[0207] From the results of Table 7 can be concluded that only the UV curable etch resist ink according to the present invention, i.e. containing an adhesion promoting compound as described above, combines an excellent etch resistance and a good strippability in an alkaline stripping bath.

Example 3

[0208] This example illustrates the superior etch resistance combined with a good

strippability in an alkaline stripping bath of UV curable inkjet inks including adhesion promoters and phenolic monomers according to the present invention.

Comparative inks COMP-2 to COMP-4 and inventive ink INV-2 to INV-4

[0209] The comparative radiation curable inkjet inks COMP-2 to COMP-4 and the

inventive radiation curable inkjet ink INV-2 to INV-4 were prepared according to Table 8. The weight percentages (wt%) are all based on the total weight of the radiation curable inkjet ink. Table 8

Samples COMP-S-2 to COMP-S-4 and inventive test samples INV-S-2 to INV-04

[0210] The comparative samples COMP-S-2 to COMP-S-5 and the inventive test samples INV-S-2 and INV-S-3 were obtained by jetting the inks COMP-2 to COMP-5 and INV-1 and INV-2 on a 35 pm Cu laminate using a Microcraft MJK2013 (8 pass, 45°C jetting temperature, 100 % pincure after each pass with a LED 395 nm bulb at full power).

[021 1] The samples were subjected to an etch bath (Metex Universal Starter from

MacDermid Enthone containing CuNH 3 CI) for 60 seconds at 45 °C and then subsequently rinsed for 90 seconds with water and dried.

[0212] The etch resistance of the samples was evaluated as described above. The results are shown in Table 8.

[0213] The samples were than stripped in a 6.25% NaOH solution at 50°C during 2 minutes. The strippablity was evaluated as described above, the results are also shown in Table 9.

Table 9

[0214] From the results of Table 9 can be concluded that only the UV curable etch resist ink according to the present invention combine an excellent etch resistance and a good strippabiiity in an alkaline stripping bath and in a concentration of more than 1 wt%.

Example 4

[0215] This example illustrates the superior etch resistance combined with a good

strippabiiity in an alkaline stripping bath of UV curable inkjet inks including adhesion promoters and phenolic monomers according to the present invention.

Inventive inks INV-5 and INV-6

[0216] The inventive radiation curable inkjet ink INV-5 and INV-6 were prepared

according to Table 10. The weight percentages (wt%) are all based on the total weight of the radiation curable inkjet ink.

Table 10

[0217] The viscosity of each of the inventive and comparative inks was measured as described above and the shelf life stability of the inks was determined by storing them at 80°C for 7 days and re-measuring their viscosity. The results are summarized in Table 1 1 .

Table 1 1

[0218] From Table 1 1 it is clear that both inventive inks have a good stability.

Inventive test samples INV-S-5 and INV-S-6

[0219] The inventive test samples INV-S-5 and INV-S-6 were obtained by jetting the inks INV-5 and INV-6 on a freshly cleaned copper, using an Anapurna M printed in a unidirectional printing 8 pass printing mode at a resolution of 720*1440 DPI. The samples were cured after each pass using a mercury bulb on the printer at full power.

[0220] The samples were subjected to an etch bath (Metex Universal Starter from

MacDermid Enthone containing CuNHhCI) for 60 seconds at 45 °C and then subsequently rinsed for 90 seconds with water and dried.

[0221 ] The etch resistance of the samples was evaluated as described above. The

results are shown in Table 12.

[0222] The samples were then stripped in a 6.25% NaOH solution at 50°C during 2 minutes. The strippablity was evaluated as described above, the results are also shown in Table 12.

Table 12

[0223] From the results of Table 12 can be concluded that the UV curable etch resist ink according to the present invention combine an excellent etch resistance and a good strippability in an alkaline stripping bath. Example 5

[0224] This example illustrates that an UV curable inkjet ink according to the present invention may also be used as a solder mask inkjet ink combining a good adhesion towards copper and a good solder resistance.

Cyan and Yellow pigment dispersions CRD and YPD

[0225] Concentrated Cyan and Yellow and pigment dispersions, respectively CRD and YPD, were prepared having a composition according to Table 13.

Table 13

[0226] CRD and YPD were prepared as follows: 138 g of 2-(2-vinyloxyethoxy)ethyi acrylate, 2 g of a solution containing 4 wt% of 4-methoxyphenol, 10 wt% of 2,6- Di-tert-butyl-4-methylphenol and 3.6 wt% of Aluminum-N-nitroso phenylhydroxyl amine in dipropylene glycol diacrylate, 200 g of a 30 wt% solution of Disperbyk 162 in 2-(2-Vi ny loxyethoxy)ethyl acrylate and 60 g of Cyan (for CRD) or 60 g of Yellow (for YPD) were mixed using a DISPERLUX™ dispenser. Stirring was continued for 30 minutes. The vessel was connected to a NETZSCH MiniZeta mill filled with 900 g of 0.4 mm yttrium stabilized zirconia beads ("high wear resistant zirconia grinding media" from TOSOH Co.). The mixture was circulated over the mill for 120 minutes (residence time of 45 minutes) and a rotation speed in the milt of about 10.4 m/s. During the complete milling procedure the content in the mill was cooled to keep the temperature below 60°C. After milling, the dispersion was discharged into a vessel.

[0227] The resulting concentrated pigment dispersions CPD and YPD exhibited an average particle size of respectively 80 nm and 131 nm, as measured with a Malvern™ nano-S, and a viscosity of respectively 51 mPa.s and 1 14 mPa.s at 25°C and at a shear rate of 10 s ·1 . Preparation of comparative ink COMP-6 and inventive ink INV-7

[0228] The comparative radiation curable inkjet ink COMP-6 and the inventive radiation curable inkjet ink INV-7 were prepared according to Table 14. The weight percentages (wt%) are all based on the total weight of the radiation curable inkjet ink.

Table 14

[0229] The comparative sample COMP-6 and the inventive sample INV-7were obtained by jetting the inks on a 35 pm brushed Cu laminate using a Microcraft MJK2013 (8 pass, 45°C jetting temperature, 15% pincure after each pass using a LED 395 nm lamp). Additionally a thermal cure at 150°C during 60 minutes was performed.

[0230] The solder resistance of the Comparative ink COMP-01 and the inventive inks INV-01 to IIMV-05 were tested as described above. The results are shown in Table 15.

Table15

[0231] It is clear from the results of Table 15 that the inventive solder mask inkjet ink containing an adhesion promoter according to the present invention has an improved adhesion towards the Cu-surface and a superior solder resistance compared to a solder mask inkjet ink without such an adhesion promoter.