Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INTELLIGENCE AUTOMATIC BYPASS FOR A MOTOR CONTROL DEVICE FAULT
Document Type and Number:
WIPO Patent Application WO/2004/100336
Kind Code:
A1
Abstract:
An intelligent automatic bypass for a motor control device determines if a fault that is occurring in the motor control device is a restricted or non-restricted fault. A restricted fault is one that may damage or destroy the motor if an automatic switch to bypass is allowed to occur for all faults that occur in the motor control device. The intelligent automatic bypass allows the automatic switch to bypass only if the fault is a non-restricted fault and blocks the automatic switch to bypass if the fault is a restricted fault.

Inventors:
BOREN STEVEN G (US)
Application Number:
PCT/US2004/013200
Publication Date:
November 18, 2004
Filing Date:
April 30, 2004
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ABB INC (US)
BOREN STEVEN G (US)
International Classes:
H02H7/08; H02H3/00; H02H3/06; H02H11/00; (IPC1-7): H02H7/08; H02H11/00; F24F11/00
Foreign References:
US6316896B12001-11-13
US20020012210A12002-01-31
US20030030408A12003-02-13
Other References:
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 18 5 June 2001 (2001-06-05)
Attorney, Agent or Firm:
Rickin, Michael (Wickliffe, OH, US)
Download PDF:
Claims:
What is claimed is:
1. A system for controlling an AC motor comprising : a motor controller comprising a motor control device and means for identifying a fault occurring in said motor control device and determining if said occurring fault is a restricted fault ; an output contactor connected between said motor control device and said motor, said output contactor 10 closed in the absence of any fault in said motor control device; and a bypass contactor connected between a source of AC power, said motor control device and said AC motor, said bypass contactor open in the absence of any fault occurring in said motor control device; said motor controller opening said output contactor upon said fault identifying means determining the occurrence of a restricted fault in said motor control device.
2. 20 2.
3. The system of claim 1 wherein said fault identifying means also determines if a fault occurring in said motor control device is a nonrestricted fault and said motor controller upon said fault identifying means determining the occurrence of a nonrestricted fault first opening said output contactor and then closing said bypass contactor.
4. The system of claim 2 wherein said motor controller further comprises a bypass contactor controlling device and said bypass contactor controlling 30 device in response to said fault identifying means determining the occurrence of a nonrestricted fault in said motor control device closing said bypass contactor after said output contactor is opened.
5. The system of claim 3 wherein said bypass contactor controlling device is a relay.
6. The system of claim 1 wherein said motor control device is a variable frequency drive.
7. A system for controlling an AC motor comprising : a motor controller comprising a motor control device and means for identifying a fault occurring in said motor control device as either a nonrestricted fault or a restricted fault; a normally open output contactor connected between said motor control device and said motor, said output 10 contactor closed in the absence of any fault in said motor control device ; and a bypass contactor connected between a source of AC power, said motor control and said AC motor, said bypass contactor open in the absence of any fault occurring in said motor control device ; said motor controller first opening said output contactor and then closing said bypass contactor upon said fault identifying means identifying a nonrestricted fault in said motor control device and said motor 20 controller opening said output contactor upon said fault contactor identifying the occurrence of a restricted fault in said VFD.
8. The system of claim 6 wherein said motor control device further comprises a bypass contactor controlling device and said bypass contactor controlling device in response to said fault identifying means determining the occurrence of a nonrestricted fault in said motor control device closing said bypass contactor after said output contactor is opened.
9. 30 8.
10. The system of claim 7 wherein said bypass contactor controlling device is a relay.
11. The system of claim 6 wherein said motor control device is variable frequency drive.
12. A method for controlling an AC motor by a motor control device upon the occurrence of a fault in said motor control device, said motor control device connected to said AC motor by an output contactor, said output contactor closed when said AC motor is operating in the absence of any fault occurring in said motor control device, and a bypass contactor connected between a source of AC power, said motor control device and said AC motor, said bypass contactor open when said motor is operating in the absence of any fault occurring in said motor control device, said method comprising: determining the occurrence of a restricted fault in 10 said motor control device ; and opening said output contactor upon the determination of a restricted fault occurrence in said motor control device.
13. The method of claim 10 further comprising: determining the occurrence of a nonrestricted fault in said motor control device ; and opening said output contactor and then closing said bypass contactor upon the determination of a non restricted 20 fault occurrence in said motor control device.
14. A method for controlling an AC motor by a motor control device upon the occurrence of a fault in said motor control device, said motor control device connected to said AC motor by an output contactor, said output contactor closed when said AC motor is operating in the absence of any fault occurring in said motor control device, and a bypass contactor connected between a source of AC power, said motor control device and said AC motor, said bypass contactor open when said AC motor is 30 operating in the absence of any fault occurring in said motor control device, said method comprising: determining the occurrence of a fault in said motor control device as either a nonrestricted fault or a restricted fault; opening said output contactor and then closing said bypass contactor upon the determination of a non restricted fault occurrence in said motor control device ; and opening said output contactor upon the determination of a restricted fault occurrence in said motor control device.
15. A controller for an AC motor, said controller intermediate between a source of AC power and said AC motor, comprising: means for determining the occurrence of a fault in said motor controller; means for identifying said determined fault occurrence as a restricted fault; and means for causing said AC motor to be disconnected from said motor controller when said identified occurring fault is a restricted fault.
16. The motor controller of claim 13 further comprising: means for identifying said determined fault occurrence as a nonrestricted fault; and means for first causing said motor to be disconnected from said motor controller when said identified occurring fault is a nonrestrictive fault and then causing said motor to be connected to said source of AC power through a bypass contactor.
Description:
Intelligent Automatic Bypass For A Motor Control Device Fault CROSS REFERENCE TO RELATED APPLICATION This application claims the priority of U. S. provisional patent application Ser. No. 60/467, 353 filed on May 2, 2003, entitled"Intelligent Automatic Bypass For A Variable Frequency Drive (VFD) Fault"the contents of which are relied upon and incorporated herein by reference in their entirety, and the benefit of priority under 35 U. S. C. 119 (e) is hereby claimed.

1. Field of the Invention This invention relates to motor control devices such as variable frequency drives (VFDs) and more particularly to the switching of the VFD to a bypass contactor in the event of a fault in the VFD.

2. Description of the Prior Art A-C motors are used in many applications including heating, ventilation, and air conditioning (HVAC) and also to drive pumps and fans. The HVAC applications include driving fans that provide ventilation and air handling including air conditioning in facilities such as laboratories, semiconductor manufacturing facilities and hospital operating rooms. Other example applications include driving pumps that provide service water to a hospital or office building.

Typically, in critical applications such as those described above, the A-C motor is driven by a automatic bypass control system that is connected between the source of A-C power and the motor. The automatic bypass control system includes a VFD that is used to provide power to the motor and control the speed thereof based on specific process requirements. Therefore, the device driven by the motor, such as the fan in an air handling or ventilation system or a pump in a water supply system, provides either needed air flow or air exchange or water at a rate that is based on user requirements.

The A-C source is connected to the VFD in the automatic bypass control system and is also connected through a normally open contactor, known as the bypass contactor, to the motor. The VFD is connected to the motor through a normally open contactor, known as the drive output contactor. Under normal conditions the VFD controls the speed of the motor and the bypass contactor is open and the drive contactor is closed.

Upon a malfunction of the VFD the automatic bypass 10 control system automatically opens the drive output contactor and closes the bypass contactor to thereby keep the motor connected to the source of A-C power and to continue operation. The drive output contactor must be opened when closing the bypass contactor so that AC power is not fed into the output of the VFD causing damage.

With automatic transfer to bypass operation, the motor continues to drive the fan of the air handling unit or ventilation system or the pump of the service water system even if the fan or pump is running at full speed 20 instead of at a speed based on user requirements.

The automatic switch to bypass described above guarantees no down time and no interruption of service for systems such as service water to a hospital or AC in a semiconductor manufacturing facility. The downside of this automatic switch to bypass is that in some cases the fault that has caused the VFD to malfunction may also destroy the motor if the automatic switch to bypass occurs.

The faults, referred to hereinafter as restricted 30 faults, that may also destroy the motor if the automatic switch to bypass occurs include but are not limited to a ground fault on the motor leads, incoming power phase loss, motor cable phase loss, motor overtemperature, motor bearing overtemperature, gearbox overtemperature, Overcurrent (Motor Current exceeded an internal protection limit), motor stall (jam protection), underload (broken drive train on the output of the motor shaft), vibration switch (cooling towers, pumps, and fans have mechanical vibration switches to shut the unit down if it becomes unbalanced), undervoltage (AC power has dipped to a level that trips the drive and would thus require excessive current to run the motor which would burn up the motor).

Therefore, there is a need for an intelligent automatic bypass that allows the automatic switch to 10 bypass only upon the occurrence of general non-restricted faults, that is, faults that are not threatening to the motor, fusing, automatic bypass hardware such as the contactors, or the mechanical system that is being controlled such as a fan or pump. If a restricted fault occurs, the switch to bypass is blocked so that more severe motor damage is avoided.

Summary of the Invention A system for controlling an AC motor comprising: a motor controller comprising a motor control device 20 and means for identifying a fault occurring in the motor control device and determining if the occurring fault is a restricted fault ; an output contactor connected between the motor control device and the motor, the output contactor closed in the absence of any fault in the motor control device ; and a bypass contactor connected between a source of AC power, the motor control device and the AC motor, the bypass contactor open in the absence of any fault 30 occurring in the motor control device ; the motor controller opening the output contactor upon the fault identifying means determining the occurrence of a restricted fault in the motor control device.

A system for controlling an AC motor comprising: a motor controller comprising a motor control device and means for identifying a fault occurring in the motor control device as either a non-restricted fault or a restricted fault : a normally open output contactor connected between the motor control device and the motor, the output contactor closed in the absence of any fault in the motor control device ; and a bypass contactor connected between a source of AC power, the motor control and the AC motor, the bypass 10 contactor open in the absence of any fault occurring in the motor control device; the motor controller first opening the output contactor and then closing the bypass contactor upon the fault identifying means identifying a non-restricted fault in the motor control device and the motor controller opening the output contactor upon the fault contactor identifying the occurrence of a restricted fault in the VFD.

A method for controlling an AC motor by a motor 20 control device upon the occurrence of a fault in the motor control device, the motor control device connected to the AC motor by an output contactor, the output contactor closed when the AC motor is operating in the absence of any fault occurring in the motor control device, and a bypass contactor connected between a source of AC power, the motor control device and the AC motor, the bypass contactor open when the motor is operating in the absence of any fault occurring in the motor control device, the method comprising: 30 determining the occurrence of a restricted fault in the motor control device ; and opening the output contactor upon the determination of a restricted fault occurrence in the motor control device.

A method for controlling an AC motor by a motor control device upon the occurrence of a fault in the motor control device, the motor control device connected to the AC motor by an output contactor, the output contactor closed when the AC motor is operating in the absence of any fault occurring in the motor control device, and a bypass contactor connected between a source of AC power, the motor control device and the AC motor, the bypass contactor open when the AC motor is operating in the absence of any fault occurring in the motor control device, the method comprising: 10 determining the occurrence of a fault in the motor control device as either a non-restricted fault or a restricted fault; opening the output contactor and then closing the bypass contactor upon the determination of a non- restricted fault occurrence in the motor control device ; and opening the output contactor upon the determination of a restricted fault occurrence in the motor control device.

20 A controller for an AC motor, the controller intermediate between a source of AC power and the AC motor, comprising: means for determining the occurrence of a fault in the motor controller; means for identifying the determined fault occurrence as a restricted fault; and means for causing the AC motor to be disconnected from the motor controller when the identified occurring fault is a restricted fault.

30 Description of the Drawing Fig. 1 shows a block diagram of a system that includes the intelligent automatic bypass of the present invention.

Fig. 2 shows a flowchart for the program that makes decisions what faults will allow the automatic switch to bypass.

Description of the Preferred Embodiment (s) Referring now to Fig. 1, there is shown in block diagram form a system 10 with an intelligent automatic bypass upon the occurrence of a fault in a VFD. System 10 includes a motor controller 12 that is used to drive a motor 14. The controller includes a VFD 12a and a VFD fault relay 12b. The motor controller 12 is connected to a source (not shown) of AC power. System 10 further includes a bypass contactor 16 which is also connected to 10 the source of AC power. The bypass contactor 16 is controlled by the VFD fault relay 12b.

System 10 also includes a drive output contactor 18 which is connected to controller 12 and bypass contactor 16. Drive (VFD) Output Contactor 18 isolates the VFD 12a from the AC power source when system 10 is in the bypass mode. While controller 12 includes in the embodiment shown in Fig. 1 a VFD 12a, it should be appreciated any other motor control device may be used in controller 12.

The present invention is a VFD program (see the 20 flowchart for the program shown in Fig. 2) which is resident in VFD 12a, or any other controlling device such as a computer or PLC (Programmable Logic Controller) program (connected to VFD 12a but not shown in Fig. 1), that makes"intelligent"decisions on what faults created in the VFD 12a, or other motor controlling device, will allow the automatic switch to bypass mode and what faults will not allow the bypass contactors 16 to be engaged.

When the VFD 12a, or other motor controlling device, detects a warning or faulted state, the condition that 30 triggered this fault state is first identified. If the identified fault is a restricted fault, then the controlling device does not engage the bypass contactor 16.

By blocking the automatic switch to the bypass contactor mode of operation when the identified fault is a restricted fault, destruction of the motor 14, cabling, fusing, or other mechanical devices will be avoided.

When general non-restricted faults are identified, the drive output contactor 18 is disengaged, and the bypass contactor 16 is engaged allowing the motor 14 to run at full speed. Presently, the common practice in the industry is to allow the motor 14 to operate at full speed in the event of any VFD fault when utilizing a automatic bypass control system.

Restricted faults may be selectable by the operator 10 with any type of programming interface or DIP Switches.

In the embodiment described herein, the operator of the VFD system 10 uses the VFD control keypad to"Enable"the restricted faults from a list present within the VFD firmware to thereby not allow the automatic transfer to the bypass contactor when such a fault occurs. In other words, the operator of the VFD system 10 will decide what faults are"Restricted Faults"and what faults are treated as"General Non-restricted Faults"that allow an automatic bypass to occur. Restricted faults may be 20 either selectable as previously described, or fixed (otherwise known as hard-coded logic) so that the operator can not disable the restricted faults from protecting the control system.

Once the restricted faults are identified by the operator or hard-coded in the control program, they are used to compare to any active fault that occurs in the controlling device. If the active fault matches a restricted fault, then the automatic switch to bypass is blocked from occurring. If the active fault does not 30 match a fault on the restricted fault list, then the controlling device, VFD 12a in the embodiment shown in Fig. 1, triggers an automatic switch to the Bypass Contactor 16 by energizing the contactor coil which in this embodiment is performed by the output of the VFD fault relay 12b, and the VFD Output Contactor 18 is disengaged.

Restricted faults consist of, but are not limited to, the following fault conditions: Supply Power Phase Loss, Motor Cable Phase Loss, Ground Faults, Motor Overtemperature, Motor Bearing Overtemperature, Gearbox Overtemperature, Overcurrent (Motor Current exceeded an internal protection limit), Undervoltage (low voltage on incoming power), Vibration Switch located on the mechanical device that VFD 12a is controlling, Motor Stall (mechanical bind or jam, not allowing motor to freely rotate), and a Underload (broken shaft or belt so motor is no longer driving the load).

It is to be understood that the description of the preferred embodiment (s) is (are) intended to be only illustrative, rather than exhaustive, of the present invention. Those of ordinary skill will be able to make certain additions, deletions, and/or modifications to the embodiment (s) of the disclosed subject matter without departing from the spirit of the invention or its scope, as defined by the appended claims.