Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
INTERDIGITATED CAPACITOR HAVING DIGITS OF VARYING WIDTH
Document Type and Number:
WIPO Patent Application WO/2013/036306
Kind Code:
A1
Abstract:
An interdigitated capacitor having digits of varying width is disclosed. One embodiment of a capacitor (100) includes a first plurality of conductive digits (110) and a second plurality of conductive digits (110) positioned in an interlocking manner with the first plurality of conductive digits (110), such that an interdigitated structure is formed. The first plurality of conductive digits (110) and the second plurality of conductive digits (110) collectively form a set of digits, where the width of a first digit in the set of digits (110) is non-uniform with respect to a second digit in the set of digits.

Inventors:
WU ZHAOYIN D (US)
UPADHYAYA PARAG (US)
JIANG XUEWEN (US)
Application Number:
PCT/US2012/039898
Publication Date:
March 14, 2013
Filing Date:
May 29, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
XILINX INC (US)
WU ZHAOYIN D (US)
UPADHYAYA PARAG (US)
JIANG XUEWEN (US)
International Classes:
H01L49/02
Foreign References:
US20100125989A12010-05-27
US20080239619A12008-10-02
US20030183884A12003-10-02
Other References:
None
Attorney, Agent or Firm:
GEORGE, Thomas et al. (Inc.2100 Logic Driv, San Jose CA, US)
Download PDF:
Claims:
What is claimed is:

1 . A capacitor comprising:

a first plurality of conductive digits; and

a second plurality of conductive digits positioned in an interlocking manner with the first plurality of conductive digits such that an interdigitated structure is formed,

wherein the first plurality of conductive digits and the second plurality of conductive digits collectively form a set of digits, and wherein a width of a first digit in the set of digits is non-uniform with respect to a second digit in the set of digits.

2. The capacitor of claim 1 , wherein a first subset of the set of digits that is positioned closest to ends of the interdigitated structure has widths that are wider than a second subset of the set of digits that is positioned closest to a center of the interdigitated structure.

3. The capacitor of claim 1 , wherein a first subset of the set of digits that is positioned closest to ends of the interdigitated structure has widths that are three to five times wider than a second subset of the set of digits that is positioned closest to a center of the interdigitated structure.

4. The capacitor of claim 1 , wherein a first defined number of a subset of the set of digits that is positioned closest to ends of the interdigitated structure has a first width, and a remainder of the digits in the set of digits has a second width that is narrower than the first width.

5. The capacitor of any one of claims 1 -4, wherein the width of each digit in the set of digits gradually tapers from a widest width at digits positioned at ends of the interdigitated structure to a narrowest width at a digit positioned at a center of the interdigitated structure.

6. The capacitor of claim 1 , wherein relative widths of the digits in the set of digits are determined in accordance with a magnetic H field distribution of the interdigitated structure.

7. The capacitor of claim 6, wherein a width of a particular one of the set of digits is proportional to an amount of current carried by the particular one of set of digits.

8. The capacitor of any one of claims 1 -7, wherein the first plurality of conductive digits and the second plurality of conductive digits are formed from at least one of: copper, doped polysilicon, aluminum, or titanium nitride.

9. The capacitor of any one of claims 1 -7, wherein the first plurality of conductive digits is formed from a first material, and the second plurality of conductive digits is formed from a second material that is different from the first material.

10. The capacitor of any one of claims 1 -7, further comprising:

at least one bar coupled to the interdigitated structure wherein the at least one bar having at least one feeding point.

1 1 . The capacitor of claim 10, wherein a first subset of the set of digits that is positioned closest to the at least one feeding point has widths that are wider than a remainder of the set of digits.

12. A method for forming a capacitor, the method comprising:

forming a first plurality of conductive digits; and

forming a second plurality of conductive digits positioned in an interlocking manner with the first plurality of conductive digits such that an interdigitated structure is formed,

wherein the first plurality of conductive digits and the second plurality of conductive digits collectively form a set of digits, and wherein a width of a first digit in the set of digits is non-uniform with respect to a second digit in the set of digits.

13. The method of claim 12, wherein a first subset of the set of digits that is positioned closest to a feeding point of a bar that is coupled to the interdigitated structure has widths that are wider than a second subset of the set of digits that is positioned farthest away from the feeding point of the bar.

14. The method of claim 12, wherein the width of each digit in the set of digits gradually tapers from a widest width at digits positioned near a feeding point of a bar that is coupled to the interdigitated structure to a narrowest width at a digit positioned farthest away from the feeding point of the bar.

15. The method of claim 12, wherein relative widths of the digits in the set of digits are determined in accordance with a magnetic H field distribution of the interdigitated structure, and wherein a width of a particular one of the set of digits is proportional to an amount of current carried by the particular one of the set of digits.

Description:
INTERDIGITATED CAPACITOR HAVING DIGITS OF VARYING WIDTH

FIELD OF THE DISCLOSURE

An embodiment of the invention relates generally to integrated circuits and relates more particularly to interdigitated capacitors for use in integrated circuit technology.

BACKGROUND

Passive electronic components such as capacitors are often used in integrated circuit (IC) applications. One particular type of capacitor is an interdigitated capacitor. A conventional interdigitated capacitor comprises a plurality of interdigitated layers, where each pair of interdigitated layers is separated by an oxide layer (or oxide region). Each interdigitated layer comprises two bars (or interconnects) which are positioned substantially parallel to each other. Extending from each of the bars is a plurality of "digits" (i.e., long conductors). The digits are spaced along the bars such that the digits

collectively form an interlocked or interdigitated structure.

Conventional interdigitated capacitors suffer from some drawbacks. For instance, the longer the length of the digits, the more current loss the digits tend to incur. As such, the length of the digits is typically selected to minimize such losses. For instance, multiple interdigitated layers having digits of shorter length typically span the area of the capacitor. Although this effectively minimizes losses, the capacitance density of the capacitor is lowered as a result. In turn, each of the interdigitated layers will require two electrodes in order to provide the necessary capacitance density. These electrodes are located outside of the interdigitated structure and consume space in the areas of the bars and oxide layer. Thus, capacitor area is not utilized in a manner that maximizes

performance.

SUMMARY

An interdigitated capacitor having digits of varying width is disclosed. One embodiment of a capacitor can include a first plurality of conductive digits and a second plurality of conductive digits positioned in an interlocking manner with the first plurality of conductive digits, such that an interdigitated structure is formed. The first plurality of conductive digits and the second plurality of conductive digits collectively form a set of digits, where the width of a first digit in the set of digits is non-uniform with respect to a second digit in the set of digits.

In some embodiments, a first subset of the set of digits that is positioned closest to the ends of the interdigitated structure can have widths that are wider than a second subset of the set of digits that is positioned closest to the center of the interdigitated structure.

In some embodiments, a first subset of the set of digits that is positioned closest to the ends of the interdigitated structure can have widths that are three to five times wider than a second subset of the set of digits that is positioned closest to the center of the interdigitated structure.

In some embodiments, a first defined number of a subset of the set of digits that is positioned closest to the ends of the interdigitated structure can have a first width, and a remainder of the digits in the set of digits can have a second width that is narrower than the first width.

In some embodiments, the width of each digit in the set of digits can gradually taper from a widest width at digits positioned at ends of the

interdigitated structure to a narrowest width at a digit positioned at a center of the interdigitated structure.

In some embodiments, the relative widths of the digits in the set of digits can be determined in accordance with a magnetic H field distribution of the interdigitated structure.

In some embodiments, the width of a particular one of the set of digits can be proportional to the amount of current carried by the particular one of the set of digits.

In some embodiments, the gaps between the digits in the set of digits can be substantially uniform in size.

In some embodiments, the first plurality of conductive digits and the second plurality of conductive digits can be formed from at least one of: copper, doped polysilicon, aluminum, or titanium nitride. In some embodiments, the first plurality of conductive digits can be formed from a first material, and the second plurality of conductive digits can be formed from a second material that is different from the first material.

In some embodiments, the capacitor can further include at least one bar coupled to the interdigitated structure where the at least one bar can have at least one feeding point.

In some embodiments, a first subset of the set of digits that is positioned closest to the feeding point can have widths that are wider than a remainder of the set of digits.

An embodiment of a method for forming a capacitor can include: forming a first plurality of conductive digits and forming a second plurality of conductive digits positioned in an interlocking manner with the first plurality of conductive digits, such that an interdigitated structure is formed. The first plurality of conductive digits and the second plurality of conductive digits can collectively form a set of digits, where the width of a first digit in the set of digits can be nonuniform with respect to a second digit in the set of digits.

In some embodiments, a first subset of the set of digits that is positioned closest to a feeding point of a bar that is coupled to the interdigitated structure can have widths that are wider than a second subset of the set of digits that is positioned farthest away from the feeding point of the bar.

In some embodiments, a first subset of the set of digits that is positioned closest to a feeding point of a bar that is coupled to the interdigitated structure can have widths that are three to five times wider than a second subset of the set of digits that is positioned farthest away from the feeding point of the bar.

In some embodiments, a first defined number of a subset of the set of digits that is positioned closest to a feeding point of a bar that is coupled to the interdigitated structure can have a first width, and a remainder of the digits in the set of digits can have a second width that is narrower than the first width.

In some embodiments, the width of each digit in the set of digits can gradually taper from a widest width at digits positioned near a feeding point of a bar that is coupled to the interdigitated structure to a narrowest width at a digit positioned farthest away from the feeding point of the bar. In some embodiments, relative widths of the digits in the set of digits can be determined in accordance with a magnetic H field distribution of the interdigitated structure, and wherein a width of a particular one of the set of digits can be proportional to an amount of current carried by the particular one of the set of dig its.

In some embodiments, at least one bar having a feeding point can be coupled to the interdigitated structure, and wherein a first subset of the set of digits that is positioned closest to the feeding point can have widths that are wider than a remainder of the set of digits.

Another embodiment of a capacitor can include a single interdigitated layer, wherein the single interdigitated layer can comprise a first plurality of conductive digits and a second plurality of conductive digits positioned in an interlocking manner. The first plurality of conductive digits and the second plurality of conductive digits can be positioned such that an interdigitated structure is formed.

BRIEF DESCRIPTION OF THE DRAWINGS

Accompanying drawings show exemplary embodiments in accordance with one or more aspects of the disclosure; however, the accompanying drawings should not be taken to limit the disclosure to the embodiments shown, but are for explanation and understanding only.

FIG. 1 is a plan view illustrating a first embodiment of an interdigitated capacitor;

FIG. 2 is a graph illustrating the magnetic H field distribution for a conventional interdigitated capacitor;

FIG. 3 is a plan view illustrating a fourth embodiment of an interdigitated capacitor;

FIG. 4 is a flow diagram illustrating one embodiment of a method for forming a capacitor;

FIG. 5 is a plan view illustrating a second embodiment of an interdigitated capacitor; and

FIG. 6 is a plan view illustrating a third embodiment of an interdigitated capacitor. DETAILED DESCRIPTION OF THE DRAWINGS

An interdigitated capacitor having digits of varying width is disclosed. As discussed above, an interdigitated capacitor is a particular type of capacitor that produces capacitor-like, high-pass characteristics using long conductors or "digits." One embodiment of an interdigitated capacitor includes a plurality of digits, where those digits located closer to the ends of the interdigitated structure are wider than those digits located closer to the center of the interdigitated structure. In a further embodiment, the width of the digits gradually tapers from a widest point at the ends of the interdigitated structure to a narrowest point at the center of the interdigitated structure. As discussed in greater detail below, this arrangement allows the digits to be lengthened so that the interdigitated capacitor structure can be applied to the bar and oxide layers, while increasing the capacitance density of the interdigitated capacitor.

FIG. 1 is a plan view illustrating a first embodiment of an interdigitated capacitor 100. Specifically, FIG. 1 illustrates the interdigitated capacitor 100 in the x and z dimensions. It is noted that FIG. 1 is not necessarily drawn to scale, and that the interdigitated capacitor 100 is not necessarily limited by the dimensions or quantities illustrated (which are meant primarily to facilitate the understanding of the reader).

As illustrated, the capacitor 100 comprises a first bar 106 and a second bar 108, which are positioned substantially parallel to each other. Extending from each of the first bar 106 and the second bar 108 are a plurality of digits 1 10i - 1 1 On (hereinafter collectively referred to as "digits 1 10"). Collectively, the digits 1 10 form an interlocked or interdigitated structure 104. Current is provided to the interdigitated structure via at least one "feeding point" or electrode 1 12i- 1 12 2 (hereinafter collectively referred to as "electrodes 1 12") located on the first bar 106 and the second bar 108. In one embodiment, each of the first bar 106 and the second bar 108 includes an electrode (broadly a feeding point) 1 12 for providing current. It should be noted that the feeding point located on the bars 106 and 108 can be deployed at any positions on the bars, e.g., at the extreme ends of the bars, at the center of the bars, and any other locations between the extreme ends and the center of the bars. In one embodiment, the digits 1 10 are formed of a conductive material such as copper, doped polysilicon, aluminum, or titanium nitride, among other potential materials. The composition of the digits 1 10 extending from the first bar 106 may differ from the composition of the digits extending from the second bar 108. The gaps between the digits 1 10 and the bars 106, 108 generally comprise a dielectric material such as silicon dioxide.

As illustrated, the width of the digits 1 10 is non-uniform from digit to digit (e.g., at least two or more digits have different widths). For example, in one embodiment, the digits 1 10 that are located closer to the ends of the

interdigitated structure 104 (e.g., digits 1 10i , 1 10 2 , 1 10 n -i , and 1 10 n ) are wider than the digits that are located closer to the center of the interdigitated structure 104 (e.g. , digits 1 10 n-m -i and 1 10 n-m )- In one embodiment in particular, the digits 1 10 that are located closer to the ends of the interdigitated structure 104 are three to five times wider than the digits that are located closer to the center of the interdigitated structure 104.

In another embodiment, a specified number of digits 1 10 located closer to the ends of the interdigitated structure 104 are wider than a remainder of the digits 1 10 in the interdigitated structure. For example, moving from the ends of the interdigitated structure 104 to the center of the interdigitated structure 104, the first x digits 1 10 have a first width, while the remaining digits 1 10 have a second width that is narrower than the first width.

In yet another embodiment, the widths of the digits 1 10 gradually taper from a widest width \Ni at the ends of the interdigitated structure 104 to a narrowest width W 2 at the center of the interdigitated structure 104, such that the widths of the digits 1 10 residing at the intermediate points of the interdigitated structure 104 (i.e., between the ends and the center) have widths somewhere between \Ni and W 2 .

In another embodiment still, the relative widths of the digits 1 10 are determined in accordance with the magnetic H field distribution of the

interdigitated structure 104. FIG. 2, for example, is a graph illustrating the magnetic H field distribution for a conventional interdigitated capacitor.

Specifically, FIG. 2 maps the magnitude of the current density (in kilo Amps per meter) to the distance (in micrometers) from the feeding location of the interdigitated structure (i.e., the point at which current is injected). As illustrated, the current density decreases as one moves from the ends of the interdigitated structure to the center of the interdigitated structure. By contrast, the distribution of the electrical field across the interdigitated structure is relatively uniform.

Thus, in one embodiment, the digits 1 10 closer to the center of the interdigitated structure 104 (i.e. , the digits 1 10 that carry the least current) are made the narrowest (e.g., as narrow as the mechanical tolerances of the interdigitated capacitor 100 will allow). As one moves outward from the center of the interdigitated structure 104, the digits 1 10 are made proportionally wider as they carry more current, with the widest digits 1 10 being the digits 1 10 located closest to the ends of the interdigitated structure 104. This arrangement will increase the capacitance density of the interdigitated capacitor 100.

In another embodiment, the widest digits 1 10 are located closest to the electrodes 1 12. For example, in the exemplary embodiment illustrated in FIG. 1 , the widest digits 1 10i and 1 10 n are also the closest digits to the electrodes 1 12, which are positioned at opposite ends of the first bar 106 and the second bar 108, respectively; the narrowest digits are the digits furthest from the electrodes 1 12 (e.g. , digits 1 10 n-m -i and 1 10 n-m )- Thus, the widest digits 1 10i and 1 10 n are also positioned at opposite ends of the first bar 106 and the second bar 108, respectively.

By way of further example, FIG. 5 is a plan view illustrating a second embodiment of an interdigitated capacitor 500; FIG. 6 is a plan view illustrating a third embodiment of an interdigitated capacitor 600. In FIG. 5, the electrodes 512i-512 2 (hereinafter collectively referred to as "electrodes 512") are located on the same ends of the first bar 506 and the second bar 508, respectively (i.e., on the left-hand side of the illustration). Again, the widest digits 510i and 5102 are also the closest digits to the electrodes 512; the narrowest digits are the digits furthest from the electrodes 512 (e.g., digit 510 n ). Thus, the widest digits 510i and 5102 are also positioned on the same ends of the first bar 506 and the second bar 508, respectively (i.e., such that the digits 510i and 5102 are next to each other).

In FIG. 6, the electrodes 612i-612 2 (hereinafter collectively referred to as "electrodes 612") are located at approximately the centers of the first bar 606 and the second bar 608, respectively. Again, the widest digit 610, is also the closest digit to the electrodes 612 (in this case, a single digit 610, that extends between the electrodes 612); the narrowest digits are the digits furthest from the electrodes 612 (e.g., digits 610i and 610 n ).

In any of the above cases, the gaps G between the digits 1 10 remain substantially uniform. That is, although the widths of the digits 1 10 will vary, the size of the gaps G between the digits will not vary substantially.

As illustrated in FIG. 1 , the interdigitated capacitor 100 can be formed with multiple layers. The configuration of the interdigitated capacitor 100, including the digits 1 10 of varying widths, allows the digits 1 10 to be lengthened to minimizes the space consumed by electrodes in the capacitor 100 {e.g., in the areas of the first bar 106 and second bar 108), while increasing the capacitance density of the interdigitated capacitor. Since the widths of the digits 1 10 carrying the most current (i.e., the digits closer to the ends of the interdigitated structure 104) are increased, these wider digits 1 10 will not see an increase in losses. Moreover, since the digits 1 10 closer to the center of the interdigitated structure 104 carry little to no current, the increase in the lengths of the digits 1 10 will not produce a significant increase in losses. Thus, the quality factor (or "Q factor") of the capacitor 100 (i.e., the capacitor's capacitive reactance divided by the capacitor's equivalent series resistance) can be maintained.

FIG. 3 is a plan view illustrating a second embodiment of an interdigitated capacitor 300. Specifically, FIG. 1 illustrates the interdigitated capacitor 100 in the x and z dimensions. It is noted that FIG. 1 is not necessarily drawn to scale, and that the interdigitated capacitor 100 is not necessarily limited by the dimensions or quantities illustrated (which are meant primarily to facilitate the understanding of the reader).

As illustrated, the capacitor 300 comprises a first bar 306 and a second bar 308, which are positioned substantially parallel to each other. Extending from each of the first bar 306 and the second bar 308 are a plurality of digits 310i - 31 On (hereinafter collectively referred to as "digits 310"). Collectively, the digits 310 form an interlocked or interdigitated structure 304.

In one embodiment, the digits 310 are formed of a conductive material such as copper, doped polysilicon, aluminum, or titanium nitride, among other potential materials. The composition of the digits 310 extending from the first bar 306 may differ from the composition of the digits extending from the second bar 308. The gaps between the digits 310 and the bars 306, 308 generally comprise a dielectric material such as silicon dioxide.

As illustrated, the width of the digits 310 is non-uniform from digit to digit

(e.g., at least two or more digits have different widths). In one embodiment, the widths of the digits 310 may be varied in any of the manners discussed above. Additionally, the length of the digits 310 is also non-uniform from digit to digit (e.g., at least two or more digits have different lengths). For instance, the lengths of the digits 310 may vary from a longest length of l_i to a shortest length of L 2 . In one embodiment, the lengths of the digits 310 are varied based on any of the criteria discussed above for varying the widths of the digits 310.

FIG. 4 is a flow diagram illustrating one embodiment of a method 400 for forming a capacitor. The method 400 may be implemented, for example, in order to form a capacitor such as the capacitors illustrated in FIGs. 1 and 3.

The method 400 is started in step 402. In step 404, a first plurality of conductive digits is formed, in which the widths of the digits vary from digit to digit. Optionally, the lengths of the digits may also vary from digit to digit. In one embodiment, the widths (and optionally lengths) of the digits are varied according to any of the criteria discussed above. The first plurality of conductive digits is connected by a first bar from which the digits extend in a spaced-apart manner. In one embodiment, the first plurality of conductive digits is formed of a conductive material such as copper, doped polysilicon, aluminum, or titanium nitride, among other potential materials. Gaps between the digits in the first plurality of conductive digits generally comprise a dielectric material such as silicon dioxide.

In step 406, a second plurality of conductive digits is formed, in which the widths of the digits vary from digit to digit. Optionally, the lengths of the digits may also vary from digit to digit. In one embodiment, the widths (and optionally lengths) of the digits are varied according to any of the criteria discussed above. The second plurality of conductive digits is connected by a second bar from which the digits extend in a spaced-apart manner. In one embodiment, the second plurality of conductive digits is formed of a conductive material such as copper, doped polysilicon, aluminum, or titanium nitride, among other potential materials. The second plurality of conductive digits need not necessarily be formed from the same conductive material as the first plurality of conductive digits. Gaps between the digits in the second plurality of conductive digits generally comprise a dielectric material such as silicon dioxide.

In step 408, the first plurality of conductive digits and the second plurality of conductive digits are positioned to form an interdigitated structure. This interdigitated structure forms the main structure of an interdigitated capacitor, as discussed above. Those skilled in the art will appreciate that the final

interdigitated capacitor may comprise additional components such as electrodes.

The method 400 then ends in step 410.

While the foregoing describes exemplary embodiments in accordance with one or more aspects of the present disclosure, other and further

embodiments in accordance with the one or more aspects of the present disclosure may be devised without departing from the scope thereof, which is determined by the claims that follow and equivalents thereof. Claims listing steps do not imply any order of the steps. Trademarks are the property of their respective owners.