Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
ISOTHERMAL ELECTRICITY FOR ENERGY RENEWAL
Document Type and Number:
WIPO Patent Application WO/2019/136037
Kind Code:
A1
Abstract:
Inspired by the discovery that environmental heat energy can be isothermally utilized through electrostatically localized protons at a liquid-membrane interface to do useful work such as driving ATP synthesis, the present invention discloses an innovative energy renewal method with making and using an asymmetric function-gated isothermal electricity production system comprising at least one pair of a low work function thermal electron emitter and a high work function electron collector across a barrier space installed in a container with electric conductor support to enable energy recycle process functions with utilization of environmental heat energy isothermally for at least one of: a) utilization of environmental heat energy for energy renewing of fully dissipated waste heat energy from the environment to generate electricity to do useful work; b) providing a novel cooling function for a new type of refrigerator by isothermally extracting environmental heat energy from inside the refrigerator while generating isothermal electricity.

Inventors:
LEE JAMES (US)
Application Number:
PCT/US2019/012002
Publication Date:
July 11, 2019
Filing Date:
January 01, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
LEE JAMES WEIFU (US)
International Classes:
H01J45/00; H01L35/00
Domestic Patent References:
WO2001069657A22001-09-20
Foreign References:
US20170062195A12017-03-02
US20090173082A12009-07-09
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. An energy renewal method for generating isothermal electricity with making and using a special asymmetric function-gated isothermal electricity power generator system comprising at least one pair of a low work function thermal electron emitter and a high work function electron collector across a barrier space installed in a container with electric conductor support to enable a series of energy recycle process functions with utilization of environmental heat energy isothermally for at least one of:

a) utilization of environmental heat energy for energy recycling and renewing of fully dissipated waste heat energy from the environment to generate electricity with an output voltage and electric current to do useful work; b) providing a novel cooling function for a new type of refrigerator without requiring any of the conventional refrigeration mechanisms of compressor, condenser, evaporator and radiator by isothermally extracting environmental heat energy from inside the refrigerator while generating isothermal electricity; and

c) combinations thereof.

2. The method according to claim 1, wherein the special asymmetric function-gated isothermal electron-based power generator system is an integrated isothermal electricity generator system that has a narrow inter electrode space gap size for each pair of emitter and collector installed in a vacuum tube chamber set up vertically comprising:

a low work function film coated on the first electric conductor plate bottom surface to serve as the first emitter;

a first narrow space allowing thermally emitted electrons to flow through ballistically between the first pair of emitter and collector;

a high work function film coated on the second electric conductor top surface to serve as the first collector;

a low work function film on the second electric conductor bottom surface to serve as the second emitter; a second narrow space allowing thermally emitted electrons to flow through ballistically between the second pair of emitter and collector;

a high work function film coated on the third electric conductor top surface to sever as a second collector;

a low work function film coated on the third electric conductor bottom surface to serve as the third emitter;

a third narrow space allowing thermally emitted electrons to flow through ballistically between the third pair of emitter and collector;

a high work function film coated on the fourth electric conductor top surface to serve as the terminal collector,

a first electricity outlet and an Earth ground that are connected with the first electric conductor plate;

and a second electric outlet that is connected with the fourth electric conductor.

3. The method according to claim 2, wherein the inter electrode space gap size is selected from the group consisting of: 2 nm, 3 nm, 4 nm, 5 nm, 6 nm. 7, nm, 8nm, 9 nm, 10 nm, 12 nm, l4nm, 16 nm, 18 nm, 20 nm, 25 nm, 30 nm, 35nm, 40 nm 45 nm, 50 nm, 60 nm ,70 nm, 80 nm, 100 nm, 120 nm, 140 nm 160 nm, 180 nm, 200 nm, 250 nm, 300 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, 1.2 pm, 1.4 pm, 1.6 pm, 1.8 pm, 2.0 pm, 2.5 pm, 3.0 pm, 3.5 pm, 4.0 pm, 4.5 pm, 5.0 pm, 6.0 pm, 7.0 pm, 9.0 pm, 10 pm, 12 pm, 14 pm, 16 pm, 18 pm, 20 pm, 25 pm, 30 pm, 35 pm, 40 pm, 45 pm, 50 pm, 60 pm, 70 pm, 80 pm, 90 pm, 100 pm, 120 pm, 140 pm, 160 pm, 180 pm, 200 pm, 250 pm, 300 pm, 400 pm, 500 pm, 600 pm, 700 pm, 800 pm, 900 pm, 1000 pm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2.0 mm, 2.5 mm, 3.0 mm, 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, 9.0 mm, 10 mm, 12 mm, 15 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, 80 mm, 100 mm and/or within a range bounded by any two of these values.

4. The method according to claim 1, wherein the special asymmetric function-gated isothermal electron-based power generator system is an isothermal electricity generator system that has a low work function Ag-O-Cs (0.6 eV) emitter and a high work function protonated polyaniline (4.42 eV) collector installed in a chamber-like vacuum tube comprising:

an Ag-O-Cs film coated on the dome-shaped top inner surface of the chamber-like vacuum tube wall to serve as an emitter; a protonated polyaniline film coated on the inversed-dome-shaped bottom inner surface of the chamber-like vacuum tube to serve as the collector;

a vacuum space allowing thermally emitted electrons to ballistically fly through between the emitter and the collector;

an electricity outlet connected with the emitter;

and an electricity outlet connected with the collector.

5. The method according to claim 1, wherein the special asymmetric function-gated isothermal electron-based power generator system is an integrated isothermal electricity generator system that has three pairs of low work function of Ag-O-Cs (0.6 eV) emitters and high work function protonated polyaniline (4.42 eV) collectors operating in series comprising:

an Ag-O-Cs film coated on the dome-shaped top inner surface of the vacuum tube wall to serve as the first emitter;

a protonated polyaniline film (collector) coated on the first middle electric conductor top surface to serve as the first collector;

a first vacuum space allowing thermally emitted electrons to fly through ballistically across the first emitter and the first collector;

an Ag-O-Cs film coated on the first middle electric conductor bottom surface to serve as the second emitter;

a protonated polyaniline film coated on the second middle electric conductor top surface to serve as the second collector;

a second vacuum space allowing thermally emitted electrons to fly through ballistically between the second emitter and the second collector;

an Ag-O-Cs film coated on the second middle electric conductor bottom surface to serve as the third emitter,

a protonated polyaniline film coated on the inversed-dome-shaped bottom inner surface of the vacuum tube to serve as the third collector;

a third vacuum space allowing thermally emitted electrons to fly through ballistically between the third emitter and the third collector;

a first electricity outlet connected with the first emitter; and a second electricity outlet connected with the terminal collector.

6. The method according to claim 1, wherein the special asymmetric function-gated isothermal electron-based power generator system is an isothermal electricity generator system that has a low work function (0.7 eV) Ag-O-Cs emitter and a high work function Cu metal (4.56 eV) collector installed in a chamber-like vacuum tube comprising:

an Ag-O-Cs film coated on the dome-shaped top end inner surface of the chamber-like vacuum tube wall to serve as the emitter;

a vacuum space allowing thermally emitted electrons to flow through ballistically between the emitter and collector;

a Cu film coated on the inversed-dome-shaped bottom end inner surface of the chamber-like vacuum tube to serve as the collector;

a first electricity outlet connected with the emitter;

and a second electricity outlet connected with the collector.

7. The method according to claim 1, wherein the special asymmetric function-gated isothermal electron-based power generator system is an integrated isothermal electricity generator system that has two pairs of low work function Ag-O-Cs (0.7 eV) emitters and high work function Cu metal (4.56 eV) collectors operating in series comprising:

an Ag-O-Cs film coated on the dome-shaped top end inner surface of the vacuum tube chamber wall to serve as the first emitter;

a first vacuum space allowing thermally emitted electrons to flow through ballistically across the first pair of emitter and collector;

a Cu film/plate coated on the middle electric conductor top surface to serve as the first collector;

an Ag-O-Cs film coated on the middle electric conductor bottom surface to serve as the second emitter,

a second vacuum space allowing thermally emitted electrons to flow through ballistically across the second pair of emitter and collector;

a Cu film coated on the inversed-dome-shaped bottom end inner surface of the vacuum tube chamber to serve as the terminal collector; a first electricity outlet connected with the first emitter;

and a second electricity outlet connected with the terminal collector:

8. The method according to claim 1, wherein the special asymmetric function-gated isothermal electron-based power generator system is an integrated isothermal electricity generator system that employs three pairs of exceptionally low work function Ag-O-Cs (0.5 eV) emitters and high work function Au metal (5.10 eV) collectors working in series comprising:

an Ag-O-Cs film coated on the dome-shaped top end inner surface of the vacuum tube chamber wall to serve as first emitter that has an electricity outlet;

a first vacuum space allowing thermally emitted electrons to flow through ballistically across the first pair of emitter and collector;

an Au film coated on the first middle electric conductor top surface to serve as the first collector;

an Ag-O-Cs film coated on the first middle electric conductor bottom surface to serve as the second emitter;

a second vacuum space allowing thermally emitted electrons to flow through ballistically across the second pair of emitter and collector;

an Au film coated on the second middle electric conductor top surface to serve as the second collector;

an Ag-O-Cs film coated on the second middle electric conductor bottom surface as the third emitter;

a third vacuum space allowing thermally emitted electrons to flow through ballistically across the third pair of emitter and collector;

and an Au film coated on the inversed-dome-shaped bottom end inner surface of the vacuum tube chamber to serve as the terminal collector connected with an electricity outlet.

9. The method according to claim 1, wherein the special asymmetric function-gated isothermal electron-based power generator system is an integrated isothermal electricity generator system that employs multiple pairs of low work function doped-graphene (l.OleV) emitters and high work function graphene (4.60 eV) collectors comprising: a doped-graphene film coated on the dome-shaped top end inner surface of the vacuum tube chamber wall to serve as first emitter that has an electricity outlet;

a first vacuum space allowing thermally emitted electrons to flow through ballistically across the first pair of emitter and collector;

a graphene film coated on the first middle electric conductor top surface to serve as the first collector,

a doped-graphene film coated on the first middle electric conductor bottom surface to serve as the second emitter;

a second vacuum space allowing thermally emitted electrons to flow through ballistically across the second pair of emitter and collector,

a graphene film coated on the second middle electric conductor top surface to serve as the second collector;

a doped-graphene film coated on the second middle electric conductor bottom surface as the third emitter;

a third vacuum space allowing thermally emitted electrons to flow through ballistically across the third pair of emitter and collector;

and a graphene film coated on the inversed-dome-shaped bottom end inner surface of the vacuum tube chamber to serve as the terminal collector connected with an electricity outlet.

10. The method according to claim 1, wherein the said low work function thermal electron emitter has a special work function value selected from the group consisting of 0.2 eV,

0.3 eV, 0.4 eV, 0.5 eV, 0.6 eV, 0.7 eV, 0.8 eV, 0.9 eV, 1.0 eV, 1.1 eV, 1.2 eV, 1.3 eV,

1.4 eV, 1.5 eV, 1.6 eV, 1.7 eV, 1.8 eV, 1.9 eV, 2.0 eV, 2.1 eV, 2.2 eV, 2.4 eV, 2.6 eV,

2.8 eV, 3.0 eV, and a range bounded by any two of these values.

11. The method according to claim 1, wherein the said high work function electron collector has a special work function value selected from the group consisting of 1.0 eV, 1.1 eV, 1.2 eV, 1.3 eV, 1.4 eV, 1.5 eV, 1.6 eV, 1.7 eV, 1.8 eV, 1.9 eV, 2.0 eV, 2.1 eV, 2.2 eV,

2.4 eV, 2.6 eV, 2.8 eV, 3.0 eV, 3.2 eV, 3.4 eV, 3.6 eV, 3.8 eV, 4.0 eV, 4.2 eV, 4.4 eV, 4.6 eV, 4.8 eV, 5.0 eV, 5.5 eV, 6.0 eV, and a range bounded by any two of these values.

12. The method according to claim 1, wherein the said asymmetric function-gated isothermal electricity power generator system is designed to isothermally operate at a temperature or temperature range selected from a group consisting of 193K (-80 °C), 200K (-73 °C), 210K (-63 °C), 220K (-53 °C), 230K (-43 °C), 240K (-33 °C), 250K (-23 °C), 260K (-13 °C), 270K (-3 °C), 273K (0 °C), 278K (5 °C), 283K (10 °C), 288K (15 °C), 293K (20 °C), 298K (25 °C), 303K (30 °C), 308K (35 °C), 313K (40 °C), 318K (45 °C), 323K (50 °C), 328K (55 °C), 333K (60 °C), 338K (65 °C), 343K (70 °C), 348K (75 °C), 353K (80 °C), 363K (90 °C), 373K (100 °C), 383K (110 °C), 393K (120 °C), 403K (130 °C), 413K (140 °C), 423K (150 °C), 433K (160 °C), 453K (180 °C), 473K (200 °C), 493K (220 °C), 513K (240 °C), 533K (260 °C), 553K (280 °C), 573K (300 °C), 623K (350 °C), 673K (400 °C), 723K (450 °C), 773K (500 °C), 823K (550 °C), 873K (600 °C), 923K (650 °C), 973K (700 °C), 1073K (800 °C), 1173K (900 °C), 1273K (1000 °C), 1373K (1100 °C), 1473K (1200 °C), and a range bounded by any two of these values.

13. The method according to claim 1, wherein the said low work function thermal electron emitter is made from special emitter material that is selected from a group consisting of Ag-O-Cs, Cs20-coated Ag plate surface, K-O/Si(l00), Cl2A7:e-, K on WTe2, P-doped diamond, P-doped diamond, Ca24Al28064, Cs/O doped graphene, Sri-xBaxV03, Ba-coated SiC, O-Ba on W, Cs on Pt metal and combinations thereof.

14. The method according to claim 1, wherein the said high work function electron collector is made from special collector material that is selected from a group consisting of platinum (Pt) metal, silver (Ag) metal, gold (Au) metal, copper (Cu) metal, molybdenum (Mo) metal, aluminum (Al) metal, tungsten, rhenium, molybdenum, niobium, nickel, graphene, graphite, polyaniline film, ZnO metal oxide, ITO metal oxide, FTO metal oxide, 2-dimensional nickel, PEDOT:PSS, protonated-polyaniline film and combinations thereof.

15. The method according to claim 1, wherein the said emitter is coated on certain surface of an electric conductor that is selected from the group consisting of: heat-conducting electric conductors, heat-conducting metallic conductors, refractory metals, metal alloys, stainless steels, aluminum, copper, silver, gold, platinum, molybdenum, conductive M0O3, tungsten, rhenium, molybdenum, niobium, nickel, titanium, graphene, graphite, heat-conducting electrically conductive polymers, polyaniline film, protonated- polyaniline film and combinations thereof.

16. The method according to claim 1, wherein the said collector is coated on certain surface of an electric conductor that is selected from the group consisting of: heat-conducting electric conductors, heat-conducting metallic conductors, refractory metals, metal alloys, stainless steels, aluminum, copper, silver, gold, platinum, molybdenum, conductive M0O3, tungsten, rhenium, molybdenum, niobium, nickel, titanium, graphene, graphite, heat-conducting electrically conductive polymers, polyaniline film, protonated- polyaniline film and combinations thereof.

17. The method according to claim 1, wherein the said container is made with a varieties of heat-conducting wall materials that are selected from the group consisting of heat- conducting metals including stainless steels, aluminum, copper and metal alloys, vacuum-tube glass, vacuum lamp-bulb glass, electric insulating materials, carbon fibers composite materials, vinyl ester, epoxy, polyester resin, thermoplastic, highly heat- conductive graphene, graphite, cellulose nanofiber/epoxy resin nanocomposites, heat- conductive and electrical insulating plastics, heat-conductive and electrical insulating ceramics, heat-conductive and electrical insulating glass, fiberglass-reinforced plastic materials, borosilicate glass, Pyrex glass, fiberglass, sol-gel, silicone gel, silicone rubber, quartz mineral, diamond material, glass-ceramic, transparent ceramics, clear plastics, such as Acrylic (polymethyl methacrylate), Butyrate (cellulose acetate butyrate), Lexan (polycarbonate), and PETG (glycol modified polyethylene terephthalate), polypropylene, polyethylene (or polyethene) and polyethylene HD, thermally conductive transparent plastics, heat conductive and electrical insulating paint, colorless glass, clear transparent plastics containing certain anti -reflection materials or coatings, clear glass containing certain anti-reflection materials, and combinations thereof

18. The method according to claim 1, wherein the interfacing contact and seal between the said container wall and the electrode plates is made with certain heat-conductive but electrical insulating materials that are selected from the group consisting of heat- conductive and electrical insulating plastics, epoxy, polyester resin, air-tight electric- insulating Kafuter 704 RTV silicone gel material, thermoplastic, heat-conductive and electrical insulating ceramics, heat-conductive and electrical insulating glass, highly heat- conductive graphene, graphite, clear plastics, for example, Acrylic (polymethyl methacrylate), Butyrate (cellulose acetate butyrate), Lexan (polycarbonate), and PETG (glycol modified polyethylene terephthalate), polypropylene, polyethylene, and polyethylene HD, thermally conductive transparent plastics, heat conductive glues, electric insulating glues, heat conductive paint, electric insulating paint, heat conductive glass, borosilicate glass such as Pyrex glass, sol-gel, silicone gel, silicone rubber, quartz mineral, diamond material, cellulose nanofiber/epoxy resin nanocomposites, carbon fibers composite materials, glass-ceramic materials, transparent ceramics, clear transparent plastics containing anti -reflection materials and/or coating, clear glass containing anti -reflection materials and combinations thereof.

19. The method according to claim 1, wherein the asymmetric function-gated isothermal electricity power generator system with said energy recycle process functions comprises a feature where its isothermally generated electricity current density (/isoT ) from extraction of environmental heat energy may be calculated according to:

where A is the universal factor (also known as the Richardson-Dushman constant) can be

47G Mb/ί^

expressed as—— — » 120 Amp/(K . cm ) [where m is the electron mass, e is the electron charge, k is the Boltzmann constant and h is Planck constant] T is the absolute temperature in Kelvin (K) for both the emitter and the collector; WF(e) is the work function of the emitter surface; the term of e V(e) is the product of electron charge e and voltage V (e) at the emitter; k is the Boltzmann constant in (eV/K); WF(c) is the work function of collector surface; and e V(c) is the product of electron charge e and voltage V ( c ) at the collector.

20. The method according to claim 1, wherein the special asymmetric function-gated isothermal electron-based power generator system that has a pair of an exceptionally low work function Ag-O-Cs (0.5 eV) emitter and a high work function graphene (4.60 eV) collector is employed to provide novel cooling for a new type of refrigerator by isothermally extracting environmental heat energy from inside the refrigerator while generating isothermal electricity.

Description:
ISOTHERMAL ELECTRICITY FOR ENERGY RENEWAL

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority and benefit from U.S. Provisional Application No. 62/613,912 filed on January 5, 2018. This application also claims priority and benefit from U.S. Patent Application No. 16/237,681 filed on January 1, 2019 that is a continuation-in-part of co pending U.S. Patent Application No. 15/202,214 filed on July 5, 2016 and that also claims priority and benefit from U.S. Provisional Application No. 62/613,912 filed on January 5, 2018. These applications are incorporated herein by reference in their entirety.

FIELD OF THE INVENTION

[0002] The present invention is directed to a series of methods and systems for creating and using asymmetric function-gated isothermal electricity power generator systems to isothermally utilize environmental heat energy to generate electricity to do useful work.

BACKGROUND

[0003] The newly developed proton-electrostatics localization hypothesis in understanding proton-coupling bioenergetics over the Nobel-prize work of Peter Mitchell’s chemiosmotic theory (Lee 2012 Bioenergetics 1 : 104; doi: l0.4l72/2l67-7662T000l04; Lee 2015

Bioenergetics 4: 121. doi: l0.4172/2167-7662.1000121) resulted in the following new protonic motive force (pmf) equation that may potentially represent a major breakthrough advance in the science of bioenergetics:

Where Dy is the electrical potential difference across the membrane; R is the gas constant; T is the absolute temperature in Kelvin (K); F is the Faraday constant; pH nB is pH of the cytoplasmic (negative n side) bulk phase; [H + pB ] is the proton concentration in the periplasmic (positive p side) bulk aqueous phase such as in the case of alkalophilic bacteria; C/S is the specific membrane capacitance; / is the thickness for localized proton layer; K Pi is the equilibrium constant for non-proton cations to exchange for localized protons; and | M" PB | is the concentration of non-proton cations in liquid culture medium (Lee 2015 Bioenergetics 4: 121. doi: 10.4172/2167-7662.1000121).

[0004] The core concept of the proton-electrostatics localization hypothesis is based on the premise that a biologically-relevant water body, such as the water within a bacterium, can act as a proton conductor in a manner similar to an electric conductor with respect to electrostatics. This is consistent with the well-established knowledge that protons can quickly transfer among water molecules by the“hops and turns” mechanism. From the charge translocation point of view, it is noticed that hydroxyl anions are transferred in the opposite direction of proton conduction. This understanding suggests that excess free protons in a biologically-relevant water body behave like electrons in a perfect conductor. It is well known for a charged electrical conductor at static equilibrium that all extra electrons reside on the conducting body’s surface. This is expected because electrons repel each other, and, being free to move, they will spread out to the surface. By the same token, it is reasonable to expect that free excess protons (or conversely the excess hydroxyl anions) in a biologically-relevant water body will move to its surface. Adapting this view to excess free hydroxyl anions in the cytoplasm (created by pumping protons across the cytoplasm membrane through the respiratory redox-driven electron-transport- coupled proton transfer into the liquid medium outside the cell), they will be electrostatically localized along the water-membrane interface at the cytoplasmic (n) side of the cell membrane such as in the case of alkalophilic bacteria. In addition, their negative charges (OFT) will attract the positively charged species (H + ) outside the cell to the membrane-water interface at the periplasmic (p) side.

[0005] That is, when excess hydroxyl anions are created in the cytoplasm by the redox-driven proton pump across the membrane leaving excess protons outside the cell, the excess hydroxyl anions in the cytoplasm will not stay in the bulk water phase because of their mutual repulsion. Consequently, they go to the water-membrane interface at the cytoplasmic (n) side of the membrane where they then attract the excess protons at the periplasmic (p) side of the membrane, forming an “excess anions-membrane-excess protons” capacitor-like system. Therefore, the protonic capacitor concept is used to calculate the effective concentration of the ideal localized protons [H ] 0 at the membrane-water interface in a pure water-membrane-water system assuming a reasonable thickness (/) for the localized proton layer using the following equation:

where C/S is the membrane capacitance per unit surface area; F is the Faraday constant; k is the dielectric constant of the membrane; e 0 is the electric permittivity; d is the thickness of the membrane; and / is the thickness of the localized proton layer. This proton-capacitor equation [2a] is a foundation for the newly revised pmf equation [1], which includes an additional term that accounts for the effect of non-proton cations exchanging with the localized protons.

[0006] By rearranging Eq. 2a, we can also solve for the membrane potential Dy in terms of the ideal localized excess proton population density [Hi ]° and the membrane capacitance properties including parameters such as the membrane capacitance per unit surface area C/S the Faraday constant F; the membrane dielectric constant K; the electric permittivity e 0 ; the membrane thickness d and the localized proton layer thickness /. Accordingly, the membrane potential Dy can now be expressed as a function of the effective concentration of the ideal localized protons [Hi ]° at the membrane-water interface in an idealized pure water-membrane-water system using the following equation:

F · S · Z · [Hi ] 0 F · d l [H +

Dy = [2b]

C K · e 0

From this equation [2b], it is now quite clear that it is the accumulation of excess protons and the resulting ideal localized proton density [H ] 0 that essentially builds the membrane potential Dy in proton-coupling bioenergetics systems.

[0007] Recently, using nanoscale measurements with electrostatic force microscopy, the dielectric constant (K) of a lipid bilayer was determined to be about 3 units, which is in the expected range of 2~4 units (Grames et al, Biophysical Journal 104: 1257-1262; Heimburg 2012 Biophysical Journal 103: 918-929.). Table 1 lists the calculation results for localized protons for an idealized pure water-membrane-water system with Eq. 2a using a lipid membrane dielectric constant k of 3 units, membrane thickness d of 4 nm, trans-membrane potential difference Dy of 180 mV, and three assumed values for the proton layer thickness of 0.5, 1.0, and 1.5 nm.

Table 1. Calculation of localized protons with Equation 2a in an idealized pure water- membrane-water system using a membrane dielectric constant k of 3, membrane thickness d of 4 nm, and trans-membrane potential difference Dy of 180 mV.

[0008] As shown in Table 1, the ideal localized proton density per unit area was calculated to be 1.238 x 10 8 moles H + /m 2 . The calculated effective concentration of ideal localized proton ([^ L ]°) was in a range from 8.25 mM to 24.76 mM if the localized proton layer is aroundl.0±0.5 nm thick. The calculated effective pH of localized proton layer (pH L °) was 1.61, 1.91, and 2.08 assuming that the ideal localized proton layer is 0.5, 1.0, and l.5-nm thick, respectively. This calculation result also indicated that localized excess protons may be created at a water-membrane interface for possible industrial applications such as acid-etching of certain metals and/or protonation of certain micro/nanometer materials without requiring the use of conventional acid chemicals such as nitric and sulfuric acids.

[0009] International Patent Application Publication No. W02017/007762 Al discloses a set of methods on creating electrostatically localized excess protons to be utilized as a clean“green chemistry” technology for industrial applications and, more importantly, as a special energy- renewing technology process to isothermally utilize environmental heat through electrostatically localized protons at a liquid-membrane interface for generation of local protonic motive force (equivalent to Gibbs free energy) to do useful work such as driving ATP synthesis. The discovery of this isothermal protonic environmental-heat-utilization energy-renewing process without being constrained by the Second Law of Thermodynamics may have seminal scientific and practical implications for energy and environmental sustainability on Earth. Further development and extension from this fundamental science and engineering breakthrough to the other fields such as the electron-based systems for energy renewal is highly desirable.

SUMMARY OF THE INVENTION

[0010] As inspired by the discovery that environmental heat energy can be isothermally utilized through electrostatically localized protons at a liquid-membrane interface to do useful work such as driving ATP synthesis, the present invention discloses a series of methods on the creation and use of asymmetric function-gated isothermal electron power generator systems for isothermal electricity production by isothermally utilizing environmental heat energy which is also known as the latent (existing hidden) heat energy from the environment without requiring the use of conventional energy resources such as a high temperature gradient. A special energy- recycling and renewing technology is provided with the associated methods and systems to extract environmental heat energy including molecular and/or electron thermal motion energy for producing isothermal electricity to do useful work, which may have seminal scientific and practical implications for energy and environmental sustainability on Earth. [0011] The present invention specially discloses an energy renewal method for generating isothermal electricity with making and using a special asymmetric function-gated isothermal electricity power generator system comprising at least one pair of a low work function thermal electron emitter and a high work function electron collector across a barrier space installed in a container (such as a vacuum tube, bottle or chamber) with electric conductor support to enable a series of energy recycle process functions with isothermal utilization of environmental heat energy for at least one of: a) utilization of environmental heat energy for energy recycling and renewing of fully dissipated waste heat energy from the environment to generate electricity with an output voltage and electric current to do useful work; b) providing a novel cooling function for a new type of freezer/refrigerator without requiring any of the conventional refrigeration mechanisms of compressor, condenser, evaporator and/or radiator by isothermally extracting environmental heat energy from inside the freezer/refrigerator while generating isothermal electricity; and c) combinations thereof.

[0012] According to one of the exemplary embodiments, the present invention teaches the making and using of an asymmetric function-gated isothermal electron-based power generator system that has a low work function (0.7 eV) Ag-O-Cs emitter and a high work function Cu metal (4.56 eV) collector installed in a chamber-like vacuum tube comprising: an Ag-O-Cs film coated on the dome-shaped top end inner surface of the chamber-like vacuum tube to serve as the emitter; a vacuum space allowing thermally emitted electrons to fly through ballistically between the emitter and collector; a Cu film coated on the inversed-dome-shaped bottom end inner surface of the chamber-like vacuum tube to serve as the collector; a first electricity outlet (such as an electric conductive wire and/or lead) connected with the emitter; and a second electricity outlet connected with the collector.

[0013] According to one of the exemplary embodiments, the present invention teaches the making and using of an integrated isothermal electricity generator system that has a narrow inter electrode space gap size for each of three pairs of emitters and collectors installed in a vacuum tube chamber set up vertically comprising: a low work function film coated on the first electric conductor plate bottom surface to serve as the first emitter; a first narrow space allowing thermally emitted electrons to flow through ballistically between the first pair of emitter and collector; a high work function film coated on the second electric conductor top surface to serve as the first collector; a low work function film coated on the second electric conductor bottom surface to serve as the second emitter; a second narrow space allowing thermally emitted electrons to flow through ballistically between the second pair of emitter and collector; a high work function film coated on the third electric conductor top surface to sever as a collector; a low work function film coated on the third electric conductor bottom surface to serve as the third emitter; a third narrow space allowing thermally emitted electrons to flow through ballistically between the third pair of emitter and collector; a high work function film coated on the fourth electric conductor top surface to serve as the terminal collector, a first electricity outlet (wire) and an Earth ground that are connected with the first electric conductor plate; and a second electric outlet (wire) that is connected with the fourth electric conductor.

[0014] According to one of the exemplary embodiments, the effect of an asymmetric function gated isothermal electricity production is additive. Pluralities (n) of asymmetrically function gated isothermal electricity generator systems may be employed in parallel and/or in series. When a plurality (n) of the asymmetric function-gated isothermal electricity generator systems are used in parallel, the total steady-state electrical current ( I st(t o t ai ) ) is the summation of the steady-state electrical current (/ st (i)) from each of the asymmetrically function-gated isothermal electricity generator systems while the total steady-state output voltage (E st(totai) ) remains the same. Conversely, when a plurality (n) of the asymmetric function-gated isothermal electricity generator systems operate in series, the total steady-state output voltage (E st(totai) ) is the summation of the steady-state output voltages (V st (l) ) from each of the asymmetrically function gated isothermal electricity generator systems while the total steady-state electrical current (4t (total)) remains the same.

[0015] According to one of the exemplary embodiments, the present invention teaches the making and using of an integrated isothermal electricity generator system that employs three pairs of exceptionally low work function Ag-O-Cs (0.5 eV) emitters and high work function Au metal (5.10 eV) collectors working in series comprising: an Ag-O-Cs film coated on the dome shaped top end inner surface of the vacuum tube chamber to serve as the first emitter that has an electricity outlet; a first vacuum space allowing thermally emitted electrons to flow through ballistically across the first pair of emitter and collector; a Au film coated on the first middle electric conductor top surface to serve as the first collector; an Ag-O-Cs film coated on the first middle electric conductor bottom surface to serve as the second emitter; a second vacuum space allowing thermally emitted electrons to flow through ballistically across the second pair of emitter and collector; an Au film coated on the second middle electric conductor top surface to serve as the second collector; an Ag-O-Cs film coated on the second middle electric conductor bottom surface as the third emitter; a third vacuum space allowing thermally emitted electrons to flow through ballistically across the third pair of emitter and collector; and an Au film coated on the inversed-dome-shaped bottom end inner surface of the vacuum tube chamber to serve as the terminal collector connected with an electricity outlet.

[0016] According to another one of the exemplary embodiments, the present invention teaches the making and using of an asymmetric function-gated isothermal electricity generator system that has a pair of an exceptionally low work function Ag-O-Cs (0.5 eV) emitter and a high work function graphene (4.60 eV) collector is employed to provide cooling for a new type of novel freezer/refrigerator by isothermally extracting environmental heat energy from inside the freezer/refrigerator while generating isothermal electricity.

BRIEF DESCRIPTION OF THE DRAWINGS

[0017] Fig. 13 presents an asymmetric function-gated isothermal electron power generator system 1000 comprising an asymmetric electron-gating function across a membrane-like barrier space that separates two electric conductors.

[0018] Fig. 14a presents a basic unit of an asymmetric function-gated isothermal electron power generator system 1100 comprising a barrier space such as a vacuum space that separates a pair of electric conductors: one of them has a low work function film to act as a thermal electron emitter and the other has a high work function plate surface to serve as an electron collector.

[0019] Fig. 14b illustrates certain characteristics in the asymmetric function-gated isothermal electricity generator system 1100 such as the excess holes (positive charges) left at the emitter will also electrostatically spread to the surface, and likewise so do the excess electrons at the collector under the“open circuit” condition.

[0020] Fig. 14c illustrates a preferred practice to ground the emitter with an Earth ground at the electricity outlet 1106 terminal of the asymmetric function-gated isothermal electricity generator system 1100.

[0021] Fig. 15 presents the energy diagrams of the asymmetric function-gated isothermal electron power generator system 1100.

[0022] Fig. 16a presents an example for a pair of silver (Ag) and molybdenum (Mo) electrodes installed in a vacuum tube as part of a fabrication process to create an asymmetric function-gated isothermal electricity generator system.

[0023] Fig. 16b presents an example of a prototype isothermal electricity generating system using a low work function Ag-O-Cs film coated on the silver electrode surface to serve as a thermal electron emitter.

[0024] Fig. 17a presents examples of the isothermal electricity current density (A/cm 2 ) as a function of operating temperature T at various output voltage V(c) from 0.00 to 3.86 V, as calculated using Eq. 12 for a pair of low work function (0.70 eV) emitter and high work function (4.56 eV) collector; in which the emitter was grounded.

[0025] Fig. 17b presents examples of the isothermal electricity current density curves as a function of output voltage V(c) from 0.00 to 3.86 V at an operating temperature of 273, 293, 298, or 303 K for a pair of low work function (0.70 eV) emitter and high work function (4.56 eV) collector; in which the emitter was grounded.

[0026] Fig. 17c presents examples of the isothermal electricity current density (A/cm 2 ) curves at an output voltage V(c) of 3.00 V as a function of operating environmental temperature T for a series of emitters with a low work function of 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, or 1.2 eV; each of these emitters is grounded and paired with a high work function (4.56 eV) collector.

[0027] Fig. 18a presents examples of the isothermal electricity current density (A/cm 2 ) curves as a function of output voltage V(c) from 0.00 to 5.31 V at an operating environmental temperature of 273, 293, 298, and 303 K for a pair of low work function (0.6 eV) emitter and high work function (5.91 eV) collector; in which the emitter was grounded.

[0028] Fig. 18b presents examples of the isothermal electricity current density (A/cm 2 ) as a function of operating environmental temperature T for a series of emitters with low work function values including 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0, or 2.2 eV; each of these emitters is grounded and paired with a high work function (5.91 eV) collector.

[0029] Fig. 18c presents examples of the isothermal electricity current density (A/cm 2 ) at an output voltage V(c) of 4.00 V as a function of operating environmental temperature T for a series of emitters with low work function values including 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, or 2.0 eV; each of these emitters is grounded and paired with a high work function (5.91 eV) collector.

[0030] Fig. 18d presents examples of the isothermal electricity current density (A/cm 2 ) at an output voltage V(c) of 5.00 V as a function of operating environmental temperature T for a series of emitters with low work function values including 0.4, 0.5, 0.6, 0.7, 0.8, or 0.9 eV; each of these emitters is grounded and paired with a high work function (5.91 eV) collector.

[0031] Fig. 19a presents examples of the isothermal electricity current density (A/cm 2 ) curves as a function of output voltage V(c) volts from 0.00 to 4.10 V at an operating environmental temperature of 273, 293, 298, or 303 K for a pair of emitter work function (0.50 eV) and collector work function (4.60 eV), with the emitter grounded.

[0032] Fig. 19b presents examples of the isothermal electricity current density (A/cm 2 ) curves as a function of output voltage V(c) volts from 0.00 to 4.10 V at freezing/refrigerating temperature of 253, 263, 273, or 277 K for a pair of emitter work function (0.50 eV) and collector work function (4.60 eV), with the emitter grounded.

[0033] Fig. 19c presents examples of the isothermal electricity current density (A/cm 2 ) as a function of operating environmental temperature T for a series of emitters with low work function values including 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, or 3.5 eV; each of these emitters is grounded and paired with a high work function (4.60 eV) collector.

[0034] Fig. 20 presents an example of an integrated isothermal electricity generator system 1300 that comprises multiple (e.g., three) pairs of emitters and collectors working in series.

[0035] Fig. 21a presents an example of a prototype for an isothermal electricity generator system 1400A that has a pair of emitter (work function 0.7 eV) and collector (work function 4.36 eV) installed in a container such as a vacuum tube chamber.

[0035] Fig. 21b presents an example of a prototype for an isothermal electricity generator system 1400B that has two pairs of emitters (work function 0.7 eV) and collectors (work function 4.36 eV) installed in a vacuum tube chamber.

[0036] Fig. 21c presents an example of a prototype for an integrated isothermal electricity generator system 1400C that comprises three pairs of emitters (work function 0.7 eV) and collectors (work function 4.36 eV) installed in a vacuum tube chamber.

[0037] Fig. 22 presents an example of an integrated isothermal electricity generator system 1500 that has a narrow inter electrode space gap size for each of three pairs of low work function emitters and high work function collectors installed in a vacuum tube chamber set up vertically.

[0038] Fig. 23 presents an example of an integrated isothermal electricity generator system 1600 that has three pairs of low work function emitters and high work function collectors installed in a vacuum tube chamber set up vertically to utilize the gravity to help pull the emitted electrons from an emitter down to a collector.

[0039] Fig. 24a presents an example of an isothermal electricity generator system 1700A that has a pair of low work function Ag-O-Cs (0.6 eV) emitter and high work function protonated polyaniline (4.42 eV) collector installed in a chamber-like vacuum tube container.

[0040] Fig. 24b presents an example of an integrated isothermal electricity generator system 1700B that has two pairs of low work function Ag-O-Cs (0.6 eV) emitters and high work function of protonated polyaniline (4.42 eV) collectors working in series as installed in a chamber-like vacuum tube container. [0041] Fig. 24c presents an example of an integrated isothermal electricity generator system 1700C that has three pairs of low work function Ag-O-Cs (0.6 eV) emitters and high work function protonated polyaniline (4.42 eV) collectors operating in series as installed in a vacuum tube container.

[0042] Fig. 25a presents another example of an isothermal electricity generator system 1800A that has a pair of low work function Ag-O-Cs (0.7 eV) emitter and high work function Cu metal (4.56 eV) collector installed in a chamber-like vacuum tube container.

[0043] Fig. 25b presents another example of an integrated isothermal electricity generator system 1800B that has two pairs of low work function Ag-O-Cs (0.7 eV) emitters and high work function of Cu metal (4.56 eV) collectors operating in series as installed in a chamber-like vacuum tube container.

[0044] Fig. 25c presents another example of an integrated isothermal electricity generator system 1800C that has three pairs of low work function Ag-O-Cs (0.7 eV) emitters and high work function Cu metal (4.56 eV) collectors operating in series as installed in a vacuum tube container.

[0045] Fig. 26 presents an example of an integrated isothermal electricity generator system 1900 that employs three pairs of exceptionally low work function Ag-O-Cs (0.5 eV) emitters and high work function Au metal (5.10 eV) collectors operating in series as installed in a vacuum tube container.

[0046] Fig. 27 presents an example of an integrated isothermal electricity generator system 2000 that employs three pairs of low work function doped-graphene (l.OleV) emitters and high work function graphite (4.60 eV) collectors operating in series as installed in a vacuum tube container.

[0047] Fig. 28 presents an example of an integrated isothermal electricity generator system 2100 that has three pairs of low work function doped-graphene (l.OleV) emitters and high work function graphene (4.60 eV) collector operating in series as installed in a vacuum tube container.

[0048] Fig. 29a presents photographs for a pair of parallel aluminum plate-supported silver (Ag) and copper (Cu) electrode plates (size: 40 mm x 46 mm) held together with electric- insulating plastic spacers (washers), screws and nuts at the four comers for each of the two electrode plates to make a pair of Ag-O-Cs type emitter (CsOAg) and Cu collector with or without oxygen plasma treatment.

[0049] Fig. 29b presents photographs for a pair of parallel aluminum plate-supported silver (Ag) and copper (Cu) collector electrode plates (size: 40 mm x 46 mm) held together with electric-insulating plastic spacers (washers), heat-shrink plastic tube-insulated metal screws and nuts at the comers of the electrode plates. The silver (Ag) plate and copper (Cu) collector plate were connected by soldering with a red insulator coated copper wire and a blue insulator coated copper wire, respectively. The silver (Ag) electrode plate surface was coated with a thin molecular layer of cesium oxide (Cs 2 0) through painting with a dilute cesium oxide solution followed by drying to form a type of Ag-O-Cs emitter (CsOAg) with or without oxygen plasma treatment.

[0050] Fig. 30 presents a photograph of the parts for a prototype CsOAg-Cu electrobottle that comprise a pair of parallel aluminum plate-supported silver (Ag, coated with Cs 2 0) and copper (Cu) plates installed with the red and blue insulator coated copper wires passing through a screw bottle cap. Two blue plastic air tubes were installed through two additional holes in the screw bottle cap. Electric-insulating and air-tight Kafuter 704 RTV silicone gel (white) was used to seal the joints for the wires and tubes passing through the bottle cap.

[0051] Fig. 31a presents a photograph showing four prototype CsOAg-Cu electrobottles that were fabricated using crew bottle caps. Each electrobottle comprises a pair of parallel aluminum plate-supported CsOAg (a type of Ag-O-Cs emitter) and Cu collector electrode surfaces installed with red and blue insulator coated wires passing through a screw bottle cap. After installation and sealing with electric-insulating and air-tight Kafuter 704 RTV silicone gel (white), air was removed from each of the electro-bottles using a vacuum pump through the blue plastic tubes with the bottle cap.

[0052] Fig. 31b presents a photograph of 17 prototype CsOAg-Cu electro-bottles that were made using non-screw bottle caps and sealed with electric-insulating and air-tight Kafuter 704 RTV silicone gel (white) material.

[0053] Fig. 32a presents a photograph showing a prototype CsOAg-Cu electrobottle that was placed into a Faraday box for isothermal electricity production testing by connecting its red and blue insulator coated copper wires (passing across the non-screw bottle cap) with Keithley 6514 electrometer system’s Model 237-ALG-2 low noise cable-alligator clips.

[0054] Fig. 32b presents a photograph of a Faraday box made of heavy-duty aluminum foils containing a prototype CsOAg-Cu electrobottle inside for isothermal electricity production testing with a Keithley 6514 system electrometer.

[0055] Fig. 33a presents a photograph of a prototype CsOAg-Cu electrobottle placed inside a Faraday box and tested in normal polarity (Keithley 6514 red alligator connector to CsOAg emitter plate and black alligator connector to Cu collector plate), showing an electric current reading of“11.888 pA.CZ”. [0056] Fig. 33b presents a photograph of a prototype CsOAg-Cu electrobottle placed inside a Faraday box and tested in reverse polarity (Keithley 6514 black alligator connector to CsOAg emitter plate and red alligator connector to Cu collector plate), showing an electric current reading of“-11.030 pA.CZ”

[0057] Fig. 34a presents a photograph of a prototype CsOAg-Cu electrobottle placed inside a Faraday box and tested in normal polarity (Keithley 6514 red alligator connector to CsOAg emitter plate and black alligator connector to Cu collector plate), showing an electric voltage reading of“0.10051 V.CZ”

[0058] Fig. 34b presents a photograph of a prototype CsOAg-Cu electrobottle placed inside a Faraday box and tested with an electric shorting wire between the terminals (outlets) of CsOAg emitter and Cu collector, showing an electric voltage reading of“-0.00001 V.CZ”.

[0059] Fig. 34c presents a photograph of a prototype CsOAg-Cu electrobottle placed inside a Faraday box and tested in reverse polarity (Keithley 6514 black alligator connector to CsOAg emitter and red alligator connector to Cu collector, showing an electric voltage reading of “-0.11329 V.CZ”

[0060] Fig. 35 presents a photograph of two prototype CsOAg-Cu electrobottles connected in parallel in normal polarity (Keithley 6514 red alligator connector to CsOAg emitter plates and black alligator connector to Cu collector plates) inside a Faraday box, showing an electric current reading of“22.230 pA.CZ”.

[0061] Fig. 36 presents a photograph of three prototype CsOAg-Cu electrobottles connected in parallel with their normal polarity (Keithley 6514 red alligator connector to CsOAg emitter plates and black alligator connector to Cu collector plates) inside a Faraday box, showing an electric current reading of“26.166 pA.CZ”.

DETAILED DESCRIPTION

[0062] The present invention discloses a series of methods on the creation and use of asymmetric function-gated isothermal electron power generator systems for isothermal electricity production by isothermally utilizing latent (existing hidden) heat energy from the environment without requiring the use of conventional energy resources such as a high temperature gradient.

[0063] Accordingly, a special energy -recycling and renewing technology is disclosed with the associated methods to extract environmental heat energy including molecular and/or electron thermal motion energy for producing isothermal electricity to do useful work, which may have seminal scientific and practical implications for energy and environmental sustainability on Earth. Specially, the present invention discloses an energy renewal method for generating isothermal electricity with making and using a special asymmetric function-gated isothermal electricity power generator system comprising at least one pair of a low work function thermal electron emitter and a high work function electron collector across a barrier space installed in a container such as a bottle with electric conductor support to enable a series of energy recycle process functions with utilization of environmental heat energy isothermally for at least one of: a) utilization of environmental heat energy for energy recycling and renewing of fully dissipated waste heat energy from the environment to generate electricity with an output voltage and electric current to do useful work; b) providing a novel cooling function for a new type of freezer/refrigerator without requiring any of the conventional refrigeration mechanisms of compressor, condenser, evaporator and/or radiator by isothermally extracting latent energy from inside the freezer/refrigerator while generating isothermal electricity; and c) combinations thereof.

[0064] Philosophically, this invention is inspired by the scientific discovery work associated with localized excess protons disclosed by the inventor in W02017/007762 Al and US 2017/0009357 Al, where it was revealed that environmental heat also known as latent (existing hidden) heat energy can be isothermally utilized through electrostatically localized protons at a liquid-membrane interface to do useful work in driving the synthesis of ATP (as shown in Fig. 4 of WO2017/007762 Al, US 2017/0009357 Al) without being constrained by the second law of thermodynamics. This type of protonic isothermal environmental heat utilization process apparently occurs in many proton-coupling bioenergetics systems such as the alkalophilic bacteria and the animal mitochondria. The case of protonic bioenergetics in the alkalophilic bacteria (Fig. 12 of W02017/007762 Al, US 2017/0009357 Al) probably represents just a tip of an iceberg in regarding to the non-second-law component of the world that had not been fully recognized before. It is now quite clear that the life on Earth likely comprises a mixture of both the second-law and the anti-second-law processes that apparently have been going on naturally for billions of years. For example, some biological processes such as the metabolic process of glycolysis appear to follow the second law of thermodynamics very well; On the other hand, the membrane potential (D y) associated local protonic motive force as expressed in the local pmf equation (Eq. 9 of W02017/007762 Al, US 2017/0009357 Al) clearly represents an anti- second-law energy -renewal mechanism. This breakthrough fundamental understanding may have game-changing practical implications on new energy technology development for sustainable development on Earth. As inspired by the fundamental understanding of the proton- based isothermal energy -renewing processes described above, the present invention discloses an electron-based energy renewal method to isothermally utilize environmental heat energy with thermal electrons for electricity generation hereinbelow.

[0065] According to one of the various embodiments, this electron-based energy renewal method teaches how to isothermally extract environmental heat energy to generate electricity by teaching the making and using of an asymmetric function-gated isothermal electron-based power generator such as the asymmetric electron-gated system 1000 illustrated in Fig. 13. The system 1000 (Fig. 13) comprises an asymmetric electron-gating function 1003 across a membrane-like barrier space 1004 that separates two electric conductors 1001 and 1002 acting as a pair of a thermal electron emitter and an electron collector, two electrically conducting leads 1006 and 1007 connected with each of these electrodes 1001 and 1002 as the two power outlet terminals that may be connected with an electrical load 1008. The barrier space 1004 is preferably a special electric insulator which contains no electric conduction materials (does not conduct electrons through any molecular orbital-associated conduction bands) but allows the thermally emitted electrons to fly through ballistically across the emitter and collector.

[0066] Therefore, according to one of the various embodiments, the barrier space 1004 comprises a vacuum space that has no electric conductive materials and/or molecules with molecular orbital-associated electric conduction bands but allows the thermally emitted electrons to fly and/or flow through ballistically. The asymmetric electron-gating function 1003 effectively allows freely emitted thermal electrons 1005 to ballistically fly predominantly from the electric conductor (emitter) 1001 through the barrier space 1004 to the electric conductor (collector) 1002 although the two electric conductors 1001 and 1002 are under the same temperature and pressure conditions. Since the barrier space 1004 is an electrical insulating space without the conventional conductor-based electrical conduction but has a unique property that allows thermal electrons to fly through ballistically, it prevents the excess thermal electrons captured by the collector 1002 from conducting back to the emitter except the minimal back emission from the collector that may be controlled by the asymmetric electron-gating function 1003. As a result, the excess thermal electrons captured by the collector 1002 may accumulate, thermally equilibrate and electrostatically distribute themselves mostly to the collector 1002 electrode surface. Similarly, the excess positive charges (‘holes”) left in the emitter may also accumulate and electrostatically distribute themselves mostly to the emitter 1001 electrode surface. This results in the creation of an electric voltage potential difference across the barrier space 1004 between the emitter electrode 1001 and the collector electrode 1102, in a manner that is analogous to the creation of a membrane potential Dy in proton-coupling bioenergetics systems as expressed in Eq. 2b. [0067] Note, in the cases of localized excess protons, when a protonic load circuit such as an ATP synthase protonic channel/load is provided, the excess protons typically flow through the ATP synthase protonic channel across the membrane to perform work in driving ATP synthesis (as illustrated in Fig. 4 of W02017/007762 Al, US 2017/0009357 Al). Analogously, when an external electric load circuit is connected between the emitter and the collector, the excess electrons in the collector can flow through the external load circuit back to the emitter. Consequently, in this case, the excess electrons in the collector electrode will pass through an external circuit comprising an electrically conducting lead as an electric outlet 1007 (-) and an electrical load 1008 connected with another wire as electric outlet 1007 (+) back to the emitter 1001 (Fig. 13). By doing so, a portion of the environmental heat energy (thermal motion energy) associated with the thermal electrons is utilized to perform work through use of the electrical load 1008 in this example.

[0068] According to one of the various embodiments as shown in Fig. 14, the asymmetric electron-gating function comprise a pair of a low work function film 1103 formed on the surface of electric conductor 1101 to serve as the emitter, a high work function plate 1109 as part of electric conductor 1102 to serve as the collector, a barrier space 1104 that separates the emitter and the collector, two electrically conducting leads 1106 and 1107 that are connected with each of these electrodes 1101 and 1102 to serve as the two power terminals that may be connected with an electrical load 1108.

[0069] Fig. l4a illustrates a basic unit of an asymmetric function-gated isothermal electron power generator system 1100 comprising a barrier space 1104 such as a vacuum space that separates a pair of electric conductors 1101 and 1102: one of them has a low work function film 1103 surface and the other has a high work function plate 1109 surface. The film 1103 is made of a low work function material such as Ag-O-Cs that has a work function as low as about 0.7 eV to serve as the emitter. The barrier space 1104 is a special electric insulator space such as vacuum space that does not conduct electricity by the regular electric conduction but allow free thermal electrons 1105 to fly or flow through ballistically. Use of such barrier space 1104 and low work function film 1103 enable significant amounts of the ambient temperature thermal electrons to emit from the film surface into the barrier space 1104 and fly ballistically towards the collector that is a high work function plate 1109 such as a copper plate which has a work function as high as about 4.65 eV. At ambient temperature around 298 K, such a high work function plate 1109 practically has nearly zero emission of thermal electrons from its surface whereas it can accept the thermal electrons flying through the barrier space from the emitter 1101. After the thermal electrons 1105 from the emitter 1101 flowing ballistically across the barrier space arrive at the collector 1102, they as excess electrons will electrostatically repel each other and spread around the electric conductor 1102 (collector) surface in a way quite similar to the behavior of the excess protons in a proton conductive water body illustrated in Fig. lc of WO2017/007762 Al and US 2017/0009357 Al. Similarly, the excess holes (positive charges) left at the emitter will also electrostatically spread around the electrode 1101 (emitter) surface as illustrated in Fig. l4b. As a result, this creates a voltage difference between the emitter 1101 and the collector 1102. Use of this voltage difference through the terminals of electricity outlets 1107 (-) and 1106 (+) can drive an electric current through the load resistance 1108 to do electric work as shown in Fig. l4a. This conductive flow of electrons through the external load wire, better known as electricity, will continue as the excess electrons flow conductively through the external circuit back to the emitter where they will get re-emitted again for the next cycle and so on after gaining thermal motion energy from the environmental heat of the surrounding environment. This explains how the system 1100 can isothermally generate electricity by utilizing latent (existing hidden) heat from the environment.

[0070] As mentioned above, this phenomenon (Fig. l4b) is fundamentally quite similar or analogous to that of the excess protons in a water body separated by a membrane barrier with excess hydroxyl anions at the other side of the membrane as illustrated in Fig. 1 of W02017/007762 Al and experimentally demonstrated in Figs. 5-11 of W02017/007762 Al and US 2017/0009357 Al. According to the membrane potential equation (Eq. 2b) described above, it is the excess proton population density resulted from the accumulation of excess protons that builds the membrane potential Dy in proton-coupling bioenergetics systems. Analogously, it is the excess electron population density [ef]° accumulation at the collector electrode surface resulted from the activity of the asymmetric function-gated isothermal electron-based power generator system across the emitter and the collector that builds the output voltage V output . which is defined as the electrical voltage potential difference between the emitter electrode and the collector electrode for isothermal electricity production. Consequently, according to one of the various embodiments, the isothermal electricity output voltage V output under the“open circuit” conditions can be expressed as a function of the ideal effective concentration of the localized excess electrons [e ]° at the collector electrode surface using the following equation:

F · d l · [e ]°

V, output [11a]

K · 8 n

Where F is the Faraday constant; d is the barrier space thickness that is the distance between the emitter and the collector; k is the barrier space dielectric constant; e 0 is the electric permittivity; and / is the localized excess electron layer thickness. [0071] This equation (Eq. 11 a) mathematically explains how the accumulation of excess electron population density [¾ ]° as a result from the capturing of thermally emitted electrons from the emitter by the collector can build the isothermal electricity output voltage V output . Consequently, the excess electrons in the collector electrode with such an output voltage V output can drive an electric current through an external circuit, which comprises an electric outlet 1107 (-) wire connected with an electrical load 1108 that is connected with another electric wire as electric outlet 1106 (+) back to the emitter 1101 as shown in Fig. l4a. By doing so, a portion of the environmental heat energy (thermal motion energy) associated with the thermal electrons is utilized to perform work through use of an electrical load 1108 in this example.

[0072] Fig. 15 presents the energy diagrams of the asymmetric function-gated isothermal electron power generator system 1100. As shown in Fig. l5a (left), the work function (WF(e)) of the emitter 1101 (Fig. l4a) is the energy level difference between the Fermi energy level (E(F, e)) of the emitter and the vacuum energy level (E(vacuum, ¥) of a free electron that is considered“infinitely” (¥) far away from the emitter and collector surfaces; while the work function (WF(c)) of the collector 1102 is the difference between the collector’s Fermi energy level (E(F, c)) and the vacuum energy level (E(vacuum, ¥). As mentioned before, it is a preferred practice to employ an emitter with a work function as low as possible such as about 0.7 eV so that significant amounts of the ambient temperature thermal electrons can emit from the emitter surface into the vacuum barrier space 1104 and fly ballistically with kinetic energy (E(k)) towards the collector 1109 that has a work function (WF(c)) much larger than that of the emitter (WF(e)). On the other hand, essentially no ambient-temperature thermal electrons can emit from the high work function collector surface into the vacuum barrier space 1104 since the work function of the collector (WF(c)) is so big (for example, above 2.0 eV) that the ambient- temperature thermal electrons are essentially not able to escape from the collector surface. Consequently, there are statistically many more free thermal electrons 1105 flying from the emitter 1101 into the collector 1102 than that in the opposite direction. After the emitted electrons arriving at the collector 1102, they will thermally equilibrate with the environment and electrostatically result in the creation of a voltage at the collector (V(c)) as expressed in Eq. l la that can drive an electric current through an external electric load 1108 back to the emitter 1101. This completes a cycle of the asymmetric function-gated thermal electron power generation process and gets ready for the next cycles of thermal electron emission and collection as shown in Fig. l4a.

[0073] When the asymmetric function-gated isothermal electron power generator system 1100 is under its“open circuit” condition (such as when the electric load 1108 is removed) as shown in Fig. l4b, as mentioned before, the activity of the asymmetric function-gated thermal electron power generation process will result in the accumulation of excess electrons in the collector thus generating a negative voltage V(c) there; Meanwhile, this may also result in the accumulation of excess positive charges at the emitter thus generating a positive voltage V(e) there. The negative voltage V(c) at the collector will push up its effective Fermi level by the absolute value of V(c) to that of E(F, c) minus the negative voltage V(c) (labeled as“E(F, c) - V(c)” in the 1100 (b) of Fig. 15); whereas the positive voltage V(e) at the emitter will push down its effective Fermi level to a lower level of (E(F, e) - V(e)) as shown in the 1100 (b) of Fig. 15 (middle). Consequently, under the“open circuit” condition, the effective work function of the emitter at the equilibrated state (WF(e)eq) is increased by the product e V(e) of the election charge e and V(e) to a higher value (WF(e) + e V(e)) while the effective work function of the collector (WF(c)eq) is decreased by the absolute value of e-V(c) to a lower (smaller) value (WF(c) + e-V(c)). The larger (higher) effective work function of the emitter (WF(e) + e V(e)) will reduce and eventually pretty much cut off the ambient-temperature electron emission at the emitter 1101 and consequently the accumulation of positive charges at the emitter will then stop, resulting in an equilibrated value of V(e) as shown in Fig. 15b.

[0074] According to one of the various embodiments, it is a preferred practice to ground the emitter with an Earth ground 1110 at the electricity outlet 1106 (+) terminal as shown in Fig. l4c to prevent the accumulation of positive charges there. When the emitter is“Earth grounded” (V(e) = 0), the effective work function of the emitter will be retained at the initial value of WF(e) even when the 1100 system is under the“open circuit” condition. In this way, the ambient-temperature electron emission at the emitter 1101 will continue until the effective Fermi level of the collector (E(F, c) - V(c)) will rise so much by the absolute value of V(c) that will match at the same level of the emitter E(F, e) with WF(e) as shown in the 1100(c) of Fig. 15 (right). At this point, the back emission flow of the ambient-temperature electrons from the collector 1102 to the emitter 1101 will cancel the flow of the ambient-temperature electrons from the emitter 1101 to the collector 1102 at an equal rate. In this case, at its equilibrium state, V(c) will equal to the difference between the collector work function WF(c) and emitter work function WF(e) over the electronic unit charge ( e for electron e ).

[0075] This asymmetric function-gated isothermal electron power generator system 1100 (Fig. 14) is fundamentally different from the conventional temperature gradient-driven thermionic converter reported previously by Hatsopoulos and Gyftopoulos 1973 (Thermionic Energy Conversion, Volume I: Processes and Devices, The MIT Press, Cambridge, Massachusetts, and London, England). The conventional thermionic converter converts heat to electricity by boiling electrons from a very hot emitter surface (-2000 K) across a small inter electrode gap (< 0.5 mm) to a cooler collector surface (-1000 K), which requires a large temperature gradient and clearly is not an isothermal operation in contrast to the isothermal electricity generation disclosed in the present inventions. Since the thermionic converter is a form of heat engine which runs by using a temperature gradient, it is believed to be limited by the Carnot efficiency, at best. In the conventional temperature gradient-driven thermionic converter reported by King et al 2004 (Sandia Report, SAND2004-0555, Unlimited Release, Sandia National Laboratory, Albuquerque, New Mexico) and by Chou 2014 (Discovering Low Work Function Materials For Thermionic Energy Conversion, PhD Dissertation, Stanford University, California), a high work function electrode is typically used as the emitter that is heated up by a high temperature heat source while a low work function electrode is used as the collector that is cooled by a cold heat sink so that the conventional thermionic electricity generation is believed to be driven by the temperature difference between the heated emitter and the cooled collector in“following the second law of thermodynamics”.

[0076] In contrast, for an isothermal electricity generator system such as the one illustrated in Fig. l4c, it is preferred to use a special low work function conductor as the emitter electrode 1101 while the collector electrode 1102 is selected to have a higher work function predominately from the nuclear (positive) charge force. More importantly, both the emitter 1101 and the collector 1102 can be used at the same ambient temperature ( isothermal conditions) without requiring the use of a significant temperature gradient between the emitter and the collector. Consequently, the isothermal electron power generator system which isothermally extracts latent heat energy from the environment for generating useful electricity perfectly follows the first law of thermodynamics but without being constrained by the second law of thermodynamics owning to the use of the special asymmetric function-gated mechanisms.

[0077] In the conventional temperature gradient-driven thermionic converter, a conducting electrode (emitter) is heated to high temperatures so that it emits electrons (Wanke et al 2017 MRS Bulletin 42: 518-524). These thermionic electrons overcome the electrode’s work function and generate a thermionic emission current. It typically requires the emitter being heated by using an external energy/heat source such as focused solar irradiation, intensified chemical combustion, or nuclear decay reaction heat to a temperature as high as 2000K while the collector is cooled to below about 600K using a heat sink (Sandia Report, SAND2004-0555). Air- breathing chemical heat sources, such as common hydrocarbon burners, cannot achieve the desired thermionic temperatures (-2000K) unless substantial air-preheat is used. That is, the thermionic converter operation is based on an exceptionally high temperature at the emitter with a large temperature difference between the two electrodes (thermionic emitter and collector). The elevated high temperatures required by the thermionic converter impose formidable technical problems concerning the structure of the fuel elements and the means of transferring heat to the converters. The Camot efficiency here is believed to represent the ultimate efficiency limit (Khalid et al 2016 IEEE Transactions on Electron Devices 63: 2231-2241). In contrast, the asymmetric function-gated isothermal electron power generator system disclosed in the present invention does not require such an elevated high temperature and is not constrained by the Camot efficiency, since it can generate electricity by isothermally utilizing the ambient temperature latent heat energy from the surrounding environment without requiring any of such energy-intensive heating and/or cooling energy resources.

[0078] According to one of the various embodiments in accordance with the present invention, the asymmetric electron-gating function 1003 (Fig. 13) that comprises the utilization of low work function emitter 1103 (Fig. l4a) typically coated on the surface of an electric conductor 1101, which is able to emit thermal electrons even at the ambient temperature (such as 293 K (20 °C)) and the utilization of higher work function collector 1109 on an electric conductor plate 1102 surface under the ambient temperature conditions that essentially will not emit electrons but be able to collect the thermal electrons from the emitter 1103. It is this asymmetric electron gating function that enables the flow of thermal electrons 1105 through the vacuum barrier space 1104 from the emitter 1103 to the collector 1109 under the isothermal conditions, generating an electricity output with a voltage difference across the two outlets 1106 (+) and l007(-) without being constrained by the second law of thermodynamics. Therefore, this asymmetric function- gated isothermal electron power generator system 1100 (Fig. 14) represents a special Anti- Second-Law energy technology function that is capable of energy renewal by extracting the latent (existing hidden) heat energy from the ambient environment through the use of thermal electrons associated with the emitter and the collector and converting it to useful energy in the form of electricity under the isothermal conditions. Fundamentally, this is somewhat similar to the Anti-Second-Law energy renewal function disclosed previously with the systems of localized protons (WO2017/007762 Al, US 2017/0009357 Al).

[0079] Previous study suggested that the conventional thermionic generators could be effective, but only at temperatures above 1000K (Hishinuma et al 2001 Applied Physics Letters 78: 2572-2574). In contrast, the asymmetric function-gated isothermal electron power generator system can operate isothermally at nearly any temperatures from a freezing temperature such as 253 K (-20 °C), to ambient temperatures around 293 K (20 °C), to an elevated temperature as high as both above and/or below 1000 K where the conventional thermionic generators still cannot effectively operate. According to one of the various embodiments in accordance with the present invention, an asymmetric function-gated isothermal electricity generator system is designed to isothermally operate at a temperature or temperature range selected from a group consisting of 193K (-80 °C), 200K (-73 °C), 21 OK (-63 °C), 220K (-53 °C), 230K (-43 °C), 240K (-33 °C), 250K (-23 °C), 260K (-13 °C), 270K (-3 °C), 273K (0 °C), 278K (5 °C), 283K (10 °C), 288K (15 °C), 293K (20 °C), 298K (25 °C), 303K (30 °C), 308K (35 °C), 3l3K (40 °C), 3l8K (45 °C), 323K (50 °C), 328K (55 °C), 333K (60 °C), 338K (65 °C), 343K (70 °C), 348K (75 °C), 353K (80 °C), 363K (90 °C), 373K (100 °C), 383K (110 °C), 393K (120 °C), 403K (130 °C), 413K (140 °C), 423K (150 °C), 433K (160 °C), 453K (180 °C), 473K (200 °C), 493K (220 °C),

513K (240 °C), 533K (260 °C), 553K (280 °C), 573K (300 °C), 623K (350 °C), 673K (400 °C),

723K (450 °C), 773K (500 °C), 823K (550 °C), 873K (600 °C), 923K (650 °C), 973K (700 °C),

1073K (800 °C), 1173K (900 °C), 1273K (1000 °C), 1373K (1100 °C), 1473K (1200 °C), and/or within a range bounded by any two of these values. The words“to isothermally operate” here means that both the emitter and collector are placed at the same temperature and no temperature difference between the emitter and collector is required for the asymmetric function-gated isothermal electricity generation to run in accordance with one of the various embodiments of the present invention.

[0080] According to one of the various embodiments, it is critically important to properly select a special low work function conductor to serve as the emitter with consideration of its operating environmental temperature conditions. For example, for an asymmetric function gated thermal electron power generator system that is designed to operate at a room temperature (around 25°C), the work function of the emitter is preferably selected to be less than 1.0 eV, more preferably less than 0.8 eV, even more preferably less than 0.7 eV or 0.6 eV, and most preferably less than 0.5 eV. For an asymmetric function-gated isothermal electron power generator system designed to isothermally operate at a higher environmental temperature such as 35°C, 40°C, 50°C, 60°C, 80°C, l00°C, l20°C, l50°C, 200 °C and/or within a range bounded by any two of these values, somewhat higher work function materials may also be selected for use as the emitters. On the other hand, when the intended isothermally operating temperature is significantly lower, such as, at l5°C, l0°C, 5°C, 0°C, -5°C, -l0°C, -l5°C, -20°C, -30°C, -50 °C and/or within a range bounded by any two of these values, exceptionally low work function materials should be selected for use as the emitters.

[0081] According to one of the various embodiments, depending on a given specific application and its associated temperature conditions, system compositions, and the properties of the electrode materials and barrier space such as its thickness, capacitance and other physical chemistry properties, the work function of the emitters for the purpose of extracting environmental heat to generate electricity may be selected from the group consisting of 0.2 eV, 0.3 eV, 0.4 eV, 0.5 eV, 0.6 eV, 0.7 eV, 0.8 eV, 0.9 eV, 1.0 eV, 1.1 eV, 1.2 eV, 1.3 eV, 1.4 eV, 1.5 eV, 1.6 eV, 1.7 eV, 1.8 eV, 1.9 eV, 2.0 eV, 2.1 eV, 2.2 eV, 2.4 eV, 2.6 eV, 2.8 eV, 3.0 eV and/or within a range bounded by any two of these values.

[0082] According to one of the various embodiments, the collector electrode 1102 is preferable to have a work function higher than that of its pairing emitter 1101 (Fig. 14) so that no appreciable isothermal electron emission occurs at the collector surface. Depending on a given specific application and its associated temperature conditions, system compositions, and the properties of the electrode materials and barrier space such as its thickness, capacitance and other physical chemistry properties, the work function of the collectors for the purpose of extracting environmental heat to generate isothermal electricity is selected from the group consisting of 1.0 eV, 1.1 eV, 1.2 eV, 1.3 eV, 1.4 eV, 1.5 eV, 1.6 eV, 1.7 eV, 1.8 eV, 1.9 eV, 2.0 eV, 2.1 eV, 2.2 eV, 2.4 eV, 2.6 eV, 2.8 eV, 3.0 eV, 3.2 eV, 3.4 eV, 3.6 eV, 3.8 eV, 4.0 eV, 4.2 eV, 4.4 eV, 4.6 eV, 4.8 eV, 5.0 eV, 5.5 eV, 6.0 eV, and/or within a range bounded by any two of these values.

[0083] As mentioned before, the work function represents the energy barrier for an electron at the Fermi level from escaping the solid (such as the metal conductor) to free space. The work function commonly comprises two components: a bulk component and a surface component. The dominant one is the bulk component which corresponds to the chemical potential that derives from the electronic density and density of states with relation to the nuclear (positive) charge force in the solid. The surface component (also known as the surface dipole component) originates with a redistribution of charges at the surface of a metal, which give rise to the surface dipole that is generally resulted from the“spill out” of electrons into vacuum over some small distance (Angstroms), creating negative sheet of charges outside the solid and leaving a positive sheet of uncompensated metal ions in the surface and sub-surface atomic planes. It is this double sheet of charges (surface dipoles) that create a potential step which raises the electron potential just out the surface, effectively also raising the electron vacuum energy level at the emitter electrode surface Evac (S). This surface dipole-associated component may correspond to the energy difference between the Evac (S) (the vacuum energy level at the emitter electrode surface) and the Evac (¥) in vacuum space far away from the surface. The surface dipole- associated negative charge could repel an electron away the electrode. Consequently, the electrons leaving the emitter surface could be accelerated towards the collector by this repulsive force from the emitter’s surface dipole, which may be beneficial to the isothermal electricity generation. On the other hand, if the collector also has a surface dipole-associated negative charge component that could potentially impede the reception of the electrons emitted from the emitter by repelling them away from the collector surface. Therefore, according to one of the various embodiments, it is a preferred practice to use a collector electrode that has no or minimized surface dipole-associated negative charge component. Alternatively, if there is the surface dipole-associated negative charge component on the collector surface, it needs to be nearly equal to or smaller than that of the emitter surface for the isothermal electricity generator to more efficiently operate. That is, it is beneficial to use a work function that originates predominately from the nuclear (positive) charge force with no or minimal surface dipole- associated negative charge force for the collector to better collect the electrons emitted from the emitter.

[0084] It is critically important to properly select a special low work function conductor as the emitter while the collector should have a higher work function predominately from the nuclear (positive) charge force. Table 6 lists various materials with known work function (eV) values, which may be considered for selection to use in making of the emitters and/or collectors in accordance with one of the various embodiments of the present invention.

Table 6. Examples of various materials with known work function (eV) that may be considered for selection to use in making of the emitters and/or the collectors according to one of the various embodiments in the present invention.

[0085] According to one of the various embodiments in accordance with the present invention, it is preferred practice to use a special low work function conductor as the emitter electrode while the collector electrode should have a high work function predominately from the nuclear (positive) charge force.

[0086] According to one of the various embodiments, the emitter is a layer or film of a special lower work function material 1103 coated on a conductive electrode 1101 while the collector 1109 is a film of higher work function coated on conductive electrode 1102 and/or is simply a plate of higher-work-function conductor. Depending on a given specific isothermal electricity generation application and its associated operating temperature conditions, the emitter material is selected from a group consisting of Ag-O-Cs, Cs20-coated Ag plate surface, K-O/Si(l00), Cl2A7:e-, K on WTe2, P-doped diamond, P-doped diamond, Ca24Al 2 8064, Cs/O doped graphene, Sri -x Ba x V03, Ba-coated SiC, O-Ba on W, Cs on Pt metal and combinations thereof. Meanwhile, the collector material is selected from a group consisting of platinum (Pt) metal, silver (Ag) metal, gold (Au) metal, copper (Cu) metal, molybdenum (Mo) metal, aluminum (Al) metal, tungsten, rhenium, molybdenum, niobium, nickel, graphene, graphite, polyaniline film, ZnO metal oxide, ITO metal oxide, FTO metal oxide, 2-dimensional nickel, PEDOT:PSS, protonated-polyaniline film and combinations thereof.

[0087] According to one of the various embodiments, the materials for making the electric conductors 1191 and 1102 that support the emitter and/or collector, and that may also directly serve as the collector are selected from the group consisting of: heat-conducting electric conductors, heat-conducting metallic conductors, refractory metals, metal alloys, stainless steels, aluminum, copper, silver, gold, platinum, molybdenum, conductive M0O3, tungsten, rhenium, molybdenum, niobium, nickel, titanium, graphene, graphite, heat-conducting electrically conductive polymers, polyaniline film, protonated-polyaniline film and combinations thereof.

[0088] According to one of the various embodiments, it is a preferred practice to employ a conductor with no or minimized surface dipole-associated work function component to serve as a collector electrode to facilitate the collection of the electrons from the emitter. For example, nonpolar organic conductors typically have no significant“spilling” of electrons at the surface and can thus be selected to use as a collector electrode.

[0089] A major problem that has been hindering the performance of the conventional thermionic converter is the formation of the static electron space-charge clouds in the inter electrode space (Physics of Plasmas 21, 023510 (2014); doi: 10.1063/1.4865828). This“space charge problem” is minimized in the asymmetric function-gated isothermal electricity generation system (Fig. 14), for example, by its design to operate at a significantly lower current density (/) across the interelectrode space (often in a range from sub Amp/cm 2 to no more than a few Amp/cm 2 ) than that of the conventional thermionic converter which typically is on the order of over 10-100 A/cm 2 (temperatures 1000-2000 K). In the conventional thermionic converter, as electrons are emitted into the interelectrode space with such a high current density (/), they can repel each other and tend to be pulled back into the emitter, which now has a positive charge after having lost some electrons, and to form a cloud of negative charges close to the emitter surface. This results in what is called the space charge effect, which later on repels the additional emitted electrons away from the collector, thus reducing the current transferred to the collector. The space charge effect also creates an additional potential barrier to electron emission. Only those electrons with sufficient kinetic energy are able to reach the collector. Therefore, according to one of the various embodiments, the“space charge problem” is minimized by a number of ways selected from the group consisting of: 1) by operating the isothermal electricity generation system (Fig. 14) naturally at a relatively lower current density (/) across the interelectrode space (in a range from sub Amp/cm 2 to no more than a few Amp/cm 2 ); 2) by grounding the emitter as shown in Fig. l4c; 3) by using a capacitor with the emitter and/or the collector, 4) by minimizing the interelectrode space distance between the emitter and the collector to the scales of micrometers and/or nanometers; 5) by using the gravity to facilitate the thermal electron flow from the emitter to the collector; 6) by using positively charged molecular structures such as protonated amine groups on the collector surface; and combinations thereof.

[0090] According to one of the various embodiments, a series of capacitors can be used across each of pairs of the emitters and the collectors with the isothermal electricity outlets (illustrated in the example of Fig. 20 below) to increase the capacitance across each pair of the emitter and collector to improve the stability and efficacy of the isothermal electricity generator system.

[0091] According to one of the various embodiments, the capacitance across each pair of the emitter and collector is increased by properly narrowing the space separation distance between the emitter surface and the collector surface (illustrated in the example of Fig. 22 below) to improve the stability and efficacy of the isothermal electricity generator system. A smaller and highly evacuated interelectrode space gap distance can limit the number of electrons travelling within it. Excessive numbers of electrons in transit will form an electron cloud, causing decreased efficiency due to the space charge effect. Therefore, it is a preferred practice to properly minimize the separation distance between the emitter surface and the collector surface to increase capacitance and limit the formation of the static electron space-charge clouds in the inter electrode space for enhanced isothermal electricity generation.

[0092] On the other hand, the barrier space separation distance between the emitter surface and the collector surface should be big enough (somewhat larger than the electron tunneling distance (2 or 3 nm)) to avoid electricity current leaking loss due to the possible electron tunneling. Considering the surface of a metal as a two-dimensional system, electrons cannot escape, but due to“barrier penetration”, the electron density of a metal actually extends outside the surface of the metal. The distance outside the surface of the metal at which the electron probability density drops to 1/1000 of that just inside the metal is on the order of 0.1 to 1 nanometer (nm) for electron tunneling which is strongly dependent on the distance. The electron tunneling distance is also depending on the property of the materials and barrier space. For example, electron transfer and tunneling can occur between the metal centers in the respiratory enzymes, typically over distances up to 20 or 30 A (2010 Laser Phys. 20(1): 125-138). It is also known that biological lipid bilayer membrane with a thickness about 4 nm works well as an electric insulating barrier space with a membrane potential voltage difference of about 200 mV. In certain cases, larger barrier space gaps may be also desirable such as for ease of fabrication and certain mechanical operations. Therefore, depending on a given specific application and its associated temperature conditions, system compositions, and the properties of the electrode materials and barrier space, the inter electrode space separation distance (gap size d) across a pair of emitter and collector according to one of the various embodiments is selected from the group consisting of 2 nm, 3 nm, 4 nm, 5 nm, 6nm. 7, nm, 8nm, 9 nm, 10 nm, 12 nm, l4nm, 16 nm, 18 nm, 20 nm, 25 nm, 30 nm, 35nm, 40 nm 45 nm, 50 nm, 60 nm ,70 nm, 80 nm, 100 nm, 120 nm, 140 nm 160 nm, 180 nm, 200 nm, 250 nm, 300 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, 1.2 pm, 1.4 pm, 1.6 pm, 1.8 pm, 2.0 pm, 2.5 pm, 3.0 pm, 3.5 pm, 4.0 pm, 4.5 pm, 5.0 pm, 6.0 pm, 7.0 pm, 9.0 pm, 10 pm, 12 pm, 14 pm, 16 pm, 18 pm, 20 pm, 25 pm, 30 pm, 35 pm, 40 pm, 45 pm, 50 pm, 60 pm, 70 pm, 80 pm, 90 pm, 100 pm, 120 pm, 140 pm, 160 pm, 180 pm, 200 pm, 250 pm, 300 pm, 400 pm, 500 pm, 600 pm, 700 pm, 800 pm, 900 pm, 1000 pm, 1.2 mm, 1.4 mm, 1.6 mm, 1.8 mm, 2.0 mm, 2.5 mm, 3.0 mm, 4.0 mm, 5.0 mm, 6.0 mm, 7.0 mm, 8.0 mm, 9.0 mm, 10 mm, 12 mm, 15 mm, 20 mm, 30 mm, 40 mm, 50 mm, 60 mm, 80 mm, 100 mm and/or within a range bounded by any two of these values.

[0093] According to one of the various embodiments, a barrier space composition is selected from the group consisting of vacuum space, semi-vacuum space, gaseous space, inertial gas space, special gas space, ballistic-electron-permeable porous material space, perforated two- dimensional (2D) materials, perforated insulator film such as perforated Teflon film, and combinations thereof. When considering to utilize certain special gaseous space, attention should be paid to avoid possible side reactions associated with the gas molecules and properties of the electrodes and space barrier compositions and materials when the electric field formed across the inter electrode space during the isothermal electricity generation could be high enough to cause certain side effects such as the undesirable current leaking, plasma or radical species formation, and O3 generation if the gaseous space containing O2 gas. For many of the applications, it is a preferred practice to use vacuum space as the inter electrode space barrier 1104 (Fig. 14). Furthermore, it is also valuable to utilize perforated two-dimensional (2D) materials such as perforated thin insulator film such as perforated Teflon and certain plastic films that allow thermal electrons to ballistically fly through with minimal absorption coefficient. The masses of thin perforated insulator films can be extremely small, making them attractive for mobile applications.

[0094] According to one of the various embodiments, emitter(s) and collector(s) are installed in a vacuum container such as a vacuum electrotube (Fig. 16), vacuum bottle, vacuum chamber, and/or vacuum box with certain vacuum space. The vacuum container wall is made with a varieties of heat-conducting materials in combination of electric insulating materials that are selected from the group consisting of heat-conducting metals including stainless steels, aluminum, copper and metal alloys, vacuum-tube glass, vacuum lamp-bulb glass, electric insulating materials, carbon fibers composite materials, vinyl ester, epoxy, polyester resin, air tight electric-insulating Kafuter 704 RTV silicone gel material, thermoplastic, highly heat- conductive graphene, graphite, cellulose nanofiber/epoxy resin nanocomposites, heat-conductive and electrical insulating plastics, heat-conductive and electrical insulating ceramics, heat- conductive and electrical insulating glass, fiberglass-reinforced plastic materials, borosilicate glass, Pyrex glass, fiberglass, sol-gel, silicone gel, silicone rubber, quartz mineral, diamond material, glass-ceramic, transparent ceramics, clear plastics, such as Acrylic (polymethyl methacrylate, PMMA), Butyrate (cellulose acetate butyrate), Lexan (polycarbonate), and PETG (glycol modified polyethylene terephthalate), polypropylene, polyethylene (or polyethene) and polyethylene HD, thermally conductive transparent plastics, heat conductive and electrical insulating paint, colorless glass, clear transparent plastics containing certain anti-reflection materials or coatings, clear glass containing certain anti-reflection materials or coatings and combinations thereof.

[0095] According to one of the various embodiments, the interfacing contact/seal between the container wall and the electrode plates and/or electric wires is made with heat-conductive and electrical insulating material(s). Depending on a given specific application and its associated temperature conditions, the interfacing contact/seal material (s) is selected from the group consisting of heat-conductive and electrical insulating plastics, epoxy, polyester resin, air-tight electric-insulating Kafuter 704 RTV silicone gel material, thermoplastic, heat-conductive and electrical insulating ceramics, heat-conductive and electrical insulating glass, highly heat- conductive graphene, graphite, clear plastics, for example, Acrylic (polymethyl methacrylate, PMMA), Butyrate (cellulose acetate butyrate), Lexan (polycarbonate), and PETG (glycol modified polyethylene terephthalate), polypropylene, polyethylene, and polyethylene HD, thermally conductive transparent plastics, heat conductive glues, electric insulating glues, heat conductive paint, electric insulating paint, heat conductive glass, borosilicate glass such as Pyrex glass, sol-gel, silicone gel, silicone rubber, quartz mineral, diamond material, cellulose nanofiber/epoxy resin nanocomposites, carbon fibers composite materials, glass-ceramic materials, transparent ceramics, clear transparent plastics containing anti-reflection materials and/or coating, clear glass containing anti -reflection materials or coatings and combinations thereof.

[0096] According to one of the various embodiments, an asymmetric function-gated isothermal electrons-based environmental heat energy utilization system comprises a low work function of Ag-O-Cs coated on an Ag metal electrode surface to serve as an emitter and a high work function of a Cu metallic conductor to serve as a collector in a vacuum condition.

[0097] According to one of the various embodiments, a prototype of an asymmetric function gated isothermal electrons-based environmental heat energy utilization system comprises a pair of a low work function Ag-O-Cs film 1203 (coated on a silver electrode 1201 surface) and a high work function Mo metallic conductor 1202 separated by a vacuum space 1204 in a vacuum tube (Fig. 16). The Ag-O-Cs film 1203 coated on the silver electrode 1201 is used as the emitter while the Mo metallic conductor 1202 is used as the collector. In certain examples, a Mo-O-Cs film sometimes co-produced (during the Ag-O-Cs film making process) may also be used as the collector since it typically has a work function higher (bigger) than that of the Ag-O-Cs film. Figure 16 illustrates an example of how such a prototype system can be fabricated and tested for isothermal electricity generation. In this example, a pair of silver and molybdenum electrodes was installed in a vacuum tube as shown in Fig. l6a. A cesium (Cs) vapor with a small amount of oxygen was introduced into the vacuum electrotube. During the fabrication process, the molybdenum electrode was used as a temporary anode to oxidize the silver electrode surface by a type of oxygen plasma discharge with the Cs vapor and subsequently resulted in the formation of an Ag-O-Cs film on the silver electrode 1201 surface as shown in Fig. l6b. Sometimes, this fabrication process also results in the co-generation of a Mo-O-Cs film on the molybdenum electrode 1202.

[0098] According to one of the various embodiments, a prototype of an asymmetric function gated electrotube system like the one shown in Fig. l6b can isothermally generate electricity that can be measured at an ambient temperature such as 25 °C (298 K) using the input resistance of an electrometer as the load. It is predicted that when the outlet terminal 1206 of emitter 1201 is connected with a Model 237-ALG-2-type low-noise-cable positive (red) input connector of an electrometer while the output terminal 1207 of collector 1202 is connected with the negative (black) input connector, it will measure a positive electric current that is generated by the isothermal electricity generating system (Fig. l6b). When the asymmetric function-gated electrotube system and the electrometer are connected in the opposite (reverse) orientation in which the collector 1202 is connected to the positive (red) input connector of the electrometer while the emitter 1201 connected to the negative (black) input connector of the electrometer, the isothermal electricity generating system (Fig. l6b) is expected to give a measurable negative current to the electrometer.

[0099] These predicted features were successfully demonstrated in a preliminary experiment, where an asymmetric function-gated electrotube was placed into a Faraday shielding box made of metal foils and its isothermal electricity generation was measured with a Keithley 6514 system electrometer (Keithley Instruments, Inc., Cleveland, Ohio, USA). When the emitter 1201 was connected with the positive (red) input connector alligator clip of the Keithley 6514 system electrometer while the collector 1202 was connected with the negative (black) input connector alligator clip, a positive electrical current was indeed sensed by the Keithley 6514 electrometer. The steady-state electrical current density normal to the cross-section area of the interelectrode space was measured to be 5.17 pA/cm 2 . Meanwhile, when the asymmetric function-gated electrotube system and electrometer were connected in the opposite (reverse) orientation, a negative electrical current with comparable amplitude was indeed measured through the Keithley 6514 electrometer. The steady-state electrical current density normal to the cross- section area of the interelectrode space measured in the reverse orientation was -4.50 pA/cm 2 . The averaged steady-state electrical current density from the absolute values measured in the two orientations was 4.84 ± 0.34 pA/cm 2 .

[00100] Similarly, according to one of the various embodiments, it is predicted that when the emitter 1201 is connected with the positive (red) input connector alligator clip of a Keithley 6514 electrometer while the collector 1202 is connected with the negative (black) input connector alligator clip, it will measure a positive voltage that is generated by the isothermal electricity generating system (Figure l6b). When the asymmetric function-gated electrotube system is connected with the electrometer in the opposite orientation, the isothermal electricity generating system (Figure l6b) will give a measurable negative voltage to the electrometer. These predicted features were successfully demonstrated in the preliminary experiment as well. The steady-state output voltage averaged from the absolute values measured in the two orientations was about 140 mV in this example.

[0101] Based on the measured steady-state electrical current density (4.84 ± 0.34 pA/cm 2 ) and steady-state output voltage (about 140 mV), the isothermal electricity power generation density cross-section area of the interelectrode space was calculated to be about 6.78 x 10 1 Watt/cm 2 in this example of an experimental prototype system (Fig. l6b).

[0102] Table 7 presents more examples of experimental data on the isothermal electricity current density of the asymmetric work function-gated electrotubes similar to that of Fig. l6b as measured in both the normal and reverse orientations. It was noticed that the amplitude of the isothermal electricity current density measured in the normal orientation occasionally was somewhat larger than that measured in the reverse orientation. For each of the asymmetric work function-gated electrotube samples 1, 2, 3 and 4 listed in Table 7, the values of the isothermal electricity current density measured in the normal orientation were 5.17, 4.90, 7.06 and 9.62 pA/cm 2 which appeared to be slightly larger than the absolute values of those (-4.50, -1.63, -2.72, and -5.52 pA/cm 2 ) in the reverse orientation. A similar trend was observed in the corresponding voltage measurements; the amplitude of isothermal electricity output voltage measured in the normal orientation also appeared to be slightly larger than that measured in the reverse orientation. This might be explained by the interaction of an asymmetric work function- gated electrotube system with the Keithley 6514 electrometer. For example, if the input connector (black) of the Keithley 6514 system during the measurement somehow gave a slightly positive voltage to the emitter when connected as in the reverse orientation, it could slightly push down the Fermi level at the emitter that could reduce the ability for the emitter to emit electrons which could explain the somewhat decreased isothermal electricity current density and consequently also the reduced voltage output.

[0103] As shown in Table 7, the isothermal electricity current density averaged from the absolute values measured in both orientations was 3.26, 4.87, and 7.57 pA/cm 2 for the asymmetric work function-gated electrotube samples 2, 3 and 4, respectively. The corresponding averaged voltage output was 94, 141 and 218 mV. The isothermal electricity power density calculated as the product of the isothermal electricity current density and corresponding voltage output was 3.07 x 10 13 , 6.90 x 10 13 , and 1.65 x 10 12 Watt/cm 2 for the asymmetric work function-gated electrotube samples 2, 3 and 4, respectively, under the given experimental conditions without any optimization efforts. Therefore, these experimental data and the specific details were intended to show the proof of the principle according to one of the various embodiments and they shall not be viewed as a limit to its performance. Table 7 lists more examples of experimental data on the isothermal electricity current density (pA/cm 2 ) of asymmetric work function-gated electrotubes similar to that of Fig. l6b as measured in normal and reverse orientations and the observed output voltage (mV) and isothermal electricity power density (Watt/cm 2 ).

[0104] According to one of the various embodiments, the asymmetric function-gated thermal electron power generator system 1100 as illustrated in Fig. 14 operates isothermally where the temperature at the emitter (T e ) equals to that of the collector (T c ). Under the isothermal operating conditions (T = T e = T c ). the ideal net flow density (flux) of the emitted electrons 1105 from the emitter 1101 to the collector 1102, which is defined also as the ideal isothermal electron flux ( Ji soT ) normal to the surfaces of the emitter and collector (also named as the ideal isothermal electricity current density defined as amps (A) per square centimeters of the cross-section area of the emitter-collector interelectrode space), can be calculated based on the Richardson- Dushman formulation using the following ideal isothermal current density (J LSO T ) equation:

Where A is the universal factor (as known as the Richardson-Dushman constant) can be

Anrtiek 2

expressed as——— ~ 120 Amp / (K . cm ) [where m is the electron mass, e is the electron unit charge, k is the Boltzmann constant and h is Planck constant] T is the absolute temperature in Kelvin (K) for both the emitter and the collector; WF(e) is the work function of the emitter surface; the term of e V (e) is the product of the electron unit charge e and the voltage V (e) at the emitter; k is the Boltzmann constant in (eV/K); WF(c ) is the work function of the collector surface; and e V(c) is the product of the electron unit charge e and the voltage V (c) at the collector.

[0105] Of particular significance is that the conversion of environmental thermal energy (latent heat) isothermally to electrical power without the need for an external energy -consuming heater or an exhaust, heat sink or the like, so that the energy efficiency is essentially 100% without being constrained by the second law of thermodynamics.

[0106] According to one of the various embodiments, when the voltage at the emitter (V(e)) is zero such as when the emitter is grounded as illustrated in Fig. l4c, the ideal net isothermal electrons flow density across the vacuum space from the emitter 1101 to the collector 1102 can be calculated using the following modified ideal isothermal current density (Ji S0T{gnd ) ) equation:

[0107] According to one of the various embodiments, when the voltage at both the emitter (V(e)) and the collector (V(c)) are zero such as at the initial state of an isothermal electricity generation system 1100 as illustrated in Fig. l4a (or if/when the resistance of the circuit including the load 1108 and associated wire, electrodes and connection terminals 1106 and 1107, is zero), the maximum net isothermal electron flow density across the vacuum space from the emitter 1101 to the collector 1102 reaches the highest attainable, which is regarded as the “saturation” (upper limit) flux after the effects of any negative space charge and other limiting factors are all eliminated. This ideal saturation electron flux can be calculated using the following ideal saturation isothermal current density (Ji S0 T{sat ) ) equation:

[0108] According to one of the various embodiments, the“open circuit” ideal saturation output voltage ( V sat ) at the equilibrium between the emitter and collector terminals (1106 and 1107) as shown in Fig. l4c can be expressed as the difference in the work functions:

WF ic) - WF (e

^sat [14]

Where e is the electron charge which is 1 (an electron charge unit); and WF^ and WF (e) are the collector work function and the emitter work function, respectively, as illustrated in the 1100 (c) of Fig. 15 (right).

[0109] According to one of the various embodiments, the steady-state operating output voltage (F st ) between the emitter and collector terminals (1106 and 1107) can be expressed as:

V st = V {c) - V (e) [15] Where V (c) and V (e} are the steady-state operating voltages at the collector and emitter, respectively, as illustrated in the 1100 (b) Fig. 15 (middle).

[0110] According to one of the various embodiments, the ideal saturation electrical current (hat) across the inter electrode space between the emitter and collector as shown in Fig. l4a can be expressed as the product of the interelectrode space cross section (emitter surface) area (S) and the ideal saturation isothermal electron flux as known as the saturation current density (J isoT(sat) ) with the following equation:

[0111] According to one of the various embodiments, the ideal steady-state operating electrical current (/ st ) through the electrical load 1108 as shown in Fig. l4a can be expressed as:

Ri + R m

ht = [17]

St

Where Ri is the resistance of the electrical load and R m is any possible miscellaneous resistance from the circuit including the electrodes and wire materials; V st is the steady-state operating output voltage as of Eq. [15]

[0112] According to one of the various embodiments, the effect of the asymmetric function- gated isothermal electricity generating activity is additive. That is, the asymmetric function- gated isothermal electricity generator systems like the one shown in Fig. 14 can be used in series and/or in parallel. When a plurality (n) of the asymmetric function-gated isothermal electricity generator systems like the one shown in Fig. 14 are used in the series, the total steady-state output voltage is the summation of the steady-state output voltages as of Eq.

[15]) from each of the asymmetric function-gated isothermal electricity generator systems:

Similarly, the total saturation output voltage (V S at(totai) ) is the summation of the saturation output voltages as of Eq. [14]) from each of the asymmetric function-gated isothermal electricity generator systems operating in series:

[0113] According to one of the various embodiments, when pluralities (n) of the asymmetric function-gated isothermal electricity generator systems are used in the parallel, the total ideal electrical current ( hat(totai ) ) is the summation of the ideal electrical current (/ sat(i) as of Eq.

[16]) from each of the asymmetric function-gated isothermal electricity generator systems:

[0114] Therefore, the asymmetric function-gated isothermal electricity production is additive. Pluralities (n) of the asymmetric function-gated isothermal electricity generator systems may be used in parallel and/or in series, depending on a given specific application and its associated operating conditions such as temperature conditions, and the properties of the barrier spaces such as their thickness and compositions, the properties of the emitter and collector electrodes and other physical chemistry properties.

[0115] When a plurality (n) of the asymmetric function-gated isothermal electricity generator systems operate in parallel, the total steady-state electrical current ( I s t(totai ) ) is the summation of the steady-state electrical current (/ st(i) ) from each of the asymmetric function-gated isothermal electricity generator systems while the total steady-state output voltage (V st(t0tai) ) remains the same.

[0116] When a plurality (n) of the asymmetric function-gated isothermal electricity generator systems operate in series, the total steady-state output voltage (V s e summation of the steady-state output voltages (V st (l) ) from each of the asymmetric function-gated isothermal electricity generator systems while the total steady-state electrical current (I s t(totai)) remains the same.

[0117] Fig. l7a presents the examples of the ideal isothermal electricity current density () (A/cm 2 defined as amps (A) per square centimeters of the cross-section area of the emitter- collector interelectrode space) as a function of operating temperature T at various output voltage V(c) from 0.00 to 3.86 V, as calculated using Eq. 12 for a pair of emitter work function (WF(e) = 0.70 eV) and collector work function (WF(c) = 4.56 eV, copper Cu(l lO)), in which the emitter was grounded. Since the emitter was grounded, the output voltage equals to V(c), which is the difference between the collector voltage V(c) and the grounded emitter voltage (V(e) = 0). Consequently, the isothermal electricity current density (A/cm 2 ) with the output voltage V(c) of 0.00 V in the initial state as illustrated with energy diagram in the 1110 (a) of Fig. 15 represents the saturation isothermal current density as expressed in Eq. 13.

[0118] As shown in Fig. l7a, the ideal isothermal electricity current density curve with an output voltage V(c) of 3.00 V pretty much overlaps with that of the saturation isothermal current density (with V(c) = 0.00 V) in a temperature (T) range from 225 K to 325 K. When the output voltage V(c) is raised to 3.80 V, the isothermal electricity current density curve lay only slightly below the maximum saturation isothermal current density curve. In these cases, the isothermal electricity current density increases dramatically as function of temperature T. However, when the output voltage V(c) is further raised to 3.86 V, the isothermal electricity current density is dramatically reduced to zero (a flat line), which represents the equilibrium state as shown in the 1110(c) of Fig. 15 (right) where the thermal electron flow from the emitter to the collector equals to that from the collector to the emitter, resulting in a net isothermal electricity current density of zero.

[0119] Fig. l7b presents the examples of the isothermal electricity current density (A/cm 2 ) curves as a function of output voltage V(c) from 0.00 to 3.86 V at an operating environmental temperature of 273, 293, 298, and 303 K for a pair of emitter work function (WF(e) = 0.70 eV) and collector work function (WF(c) =4.56 eV, copper Cu(l lO)) with the emitter grounded. These curves showed that the saturation isothermal electricity current density is pretty much constant (steady) in an output voltage V(c) range from 0.00 to 3.75 V at each of the operating environmental temperature of 273, 293, 298, and 303 K. Only when the output voltage V(c) is raised from 3.75 V to 3.86 V, the isothermal electricity current density is dramatically reduced to zero. At an output voltage in a range from 0 to 3.50V, the level of the steady-state isothermal electricity current density increases with temperature dramatically from the level of 1.07 pA/cm 2 at 273 K (0 °C) to the levels of 9.39, 15.5, and 25.1 pA/cm 2 at 293 K (20 °C), 298 K (25 °C), and 303 K (30 °C), respectfully.

[0120] Table 8 lists the ideal isothermal electricity current density (A/cm 2 ) values as a function of operating temperature T in a range from 203 K (-70 °C) to 673 K (400 °C) at a number of output voltage V(c) values including 0.00, 1.50, 3.00, 3.50, 3,80 and 3.86 V, as calculated using Eq. 12 for a pair of emitter work function (WF(e) = 0.70 eV) and collector work function (WF(c) = 4.56 eV, copper Cu(l lO)) where the emitter was grounded. The data showed that, with a reasonable output voltage V(c) of about 3 V, the isothermal electricity current density is strongly dependent on temperature T in a range from 2.07xl0 n (A/cm 2 ) at 203 K (-70 °C) to 1.55x10 5 (A/cm 2 ) at 298K (25 °C), and to as much as 311 (A/cm 2 ) at 673 K (400 °C).

Table 8 presents the examples of the ideal isothermal electricity current density (A/cm 2 ) as a function of operating temperature T at various output voltage V(c) from 0.00 to 3.86 V, calculated using Eq. 12 for a pair of emitter work function (WF(e) = 0.70 eV) and collector work function (WF(c) = 4.56 eV, copper Cu(l lO)). The emitter was grounded and the output voltage V(c) is the voltage difference between the collector and the grounded emitter.

[0121] According to one of the various embodiments, when the emitter is grounded, the ideal isothermal electricity power production density (W/cm 2 ) at various output voltage V(c) volts can be expressed as:

[0122] Table 9 list the ideal isothermal electricity power production density defined as Watt (W) per square centimeters (W/cm 2 ) as a function of operating temperature T in a range from 203 K (-70 °C) to 673 K (400 °C) at a number of output voltage V(c) values including 0.00, 1.50, 3.00, 3.50, 3,80 and 3.86 V, as calculated using Eq. 21 for a pair of emitter work function (WF(e) = 0.70 eV) and collector work function (WF(c) = 4.56 eV, copper Cu(l lO)) where the emitter was grounded. The data showed that the output voltage V(c) that gave the best isothermal electricity power production density (W/cm 2 ) was about 3.50 V in this example. The isothermal power production density (W/cm 2 ) at output voltage V(c) of 3.50 V is strongly dependent on temperature T, which is in a range from 7.24xlO n (W/cm 2 ) at 203 K (-70 °C) to 5.41x10 5 (W/cm 2 ) at 298K (25 °C), and to as much as 1090 (W/cm 2 ) at 673 K (400 °C).

Table 9 presents the examples of the ideal isothermal electricity power production density defined as Watt (W) per square centimeters (W/cm 2 ) as a function of operating temperature T at various output voltage V(c) from 0.00 to 3.86 V, calculated using Eq. 21 for a pair of emitter work function (WF(e) = 0.70 eV) and collector work function (WF(c) = 4.56 eV, copper Cu(l 10)) where the emitter is grounded.

[0123] Fig. l7c presents the examples of the ideal isothermal electricity current density

(A/cm 2 ) at an output voltage V(c) of 3.00 V as a function of operating environmental temperature T with a series of emitter work function (WF(e)) values including 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 or 1.2 eV in pairing with the collector work function (WF(c) = 4.56 eV, copper Cu(l lO)) with the emitter grounded. The data showed that use of emitter with a lower work function is highly imperative to utilize environmental heat to generate isothermal electricity. Therefore, according to one of various embodiments, it is a preferred practice to employ emitter with a low work function that is selected from the group consisting of 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1 and 1.2 eV and/or within a range bounded by any two of these values for isothermal electricity generation in a temperature range from 250 K to 673 K.

[0124] Fig. l8a presents the examples of the ideal isothermal electricity current density

(A/cm 2 ) curves as a function of output voltage V(c) volts in a range from 0.00 to 5.31 V at an operating environmental temperature of 273, 293, 298, and 303 K for a pair of emitter work function (WF(e) = 0.60 eV) and collector work function (WF(c) = 5.91 eV, platinum Pt(l l l)) with the emitter grounded. These curves showed that the isothermal electricity current density is pretty much constant (steady) in an output voltage V(c) range from 0.00 to 5.00 V at each of the operating environmental temperature of 273, 293, 298, and 303 K. Only when the output voltage V(c) is raised beyond 5.0 V up to the limit of 5.31 V, the isothermal electricity current density is dramatically reduced to zero. The level of the steady-state isothermal electricity current density at an output voltage of 5.00V increases dramatically with temperature from 7.50x10 -5 A/cm 2 at 273 K (0 °C) to 4.93x10 4 A/cm 2 at 293 K (20 °C), 7.59xl0 4 A/cm 2 at 298 K (25 °C), and to 1.15x10 3 A/cm 2 at 303 K (30 °C).

[0125] Fig. 18b presents the examples of the ideal isothermal electricity current density (A/cm 2 ) as a function of operating environmental temperature T with a series of emitter work function (WF(e)) values including 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0, and 2.2 eV, each in pair with collector work function (WF(c) = 5.91 eV, platinum Pt(l l l)) with the emitter grounded. The data showed that it is a preferred practice to use emitter with a lower work function to utilize environmental heat to generate isothermal electricity. Therefore, according to one of various embodiments, it is a preferred practice to employ emitter with a low work function that is selected from the group consisting of 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0, and 2.2 eV and/or within a range bounded by any two of these values for isothermal electricity generation in a temperature range from 250 to 1500 K.

[0126] Fig. l8c presents the examples of the ideal isothermal electricity current density

(A/cm 2 ) at an output voltage V(c) of 4.00 V as a function of operating environmental temperature T with a series of emitter work function (WF(e)) values including 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, and 2.0 eV, each in pair with the collector work function (WF(c) = 5.91 eV, platinum Pt(l l l)) with the emitter grounded. The data showed that it is a preferred practice to use emitter with a lower work function to utilize environmental heat to generate isothermal electricity. Therefore, according to one of various embodiments, it is a more preferred practice to employ emitter with a low work function that is selected from the group consisting of 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, and 1.8 eV and/or within a range bounded by any two of these values for isothermal electricity generation with an output voltage V(c) of 4.00 V in a temperature range from 250 to 1500 K.

[0127] Fig. 18d presents the examples of the ideal isothermal electricity current density

(A/cm 2 ) at an output voltage V(c) of 5.00 V as a function of operating environmental temperature T with a series of emitter work function (WF(e)) values including 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 eV, each in pair with the collector work function (WF(c) = 5.91 eV, platinum Pt(l 11)) with the emitter grounded. The data showed that it is a preferred practice to use emitter with a lower work function to utilize environmental heat to generate isothermal electricity. Therefore, according to one of various embodiments, it is a preferred practice to employ emitter with a low work function that is selected from the group consisting of 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 eV and/or within a range bounded by any two of these values for isothermal electricity generation with an output voltage V(c) of 5.00 V in a temperature range from 250 to 900 K.

[0128] Fig. l9a presents the examples of the ideal isothermal electricity current density (A/cm 2 ) curves as a function of output voltage V(c) from 0.00 to 4.10 V at operating environmental temperature of 273, 293, 298, and 303 K for a pair of emitter work function (WF(e) = 0.50 eV) and collector work function (WF(c) =4.60 eV, graphene and/or graphite) with the emitter grounded. These curves showed that the isothermal electricity current density is pretty much constant (steady) in a range of output voltage V(c) from 0.00 to 4.00 V at each of the operating environmental temperature of 273, 293, 298, and 303 K. Only when the output voltage V(c) is raised beyond 4.00 V up to the limit of 4.10 V, the isothermal electricity current density is dramatically reduced to zero. The level of the steady-state isothermal electricity current density at an output voltage of 3.50 V increases dramatically with temperature from 5.26x10 3 A/cm 2 at 273 K (0 °C) to 2.59xl0 2 A/cm 2 at 293 K (20 °C), 3.73 xl0 2 A/cm 2 at 298 K (25 °C), and to 5.32 xl0 2 A/cm 2 at 303 K (30 °C).

[0129] Fig. l9b presents the examples of the ideal isothermal electricity current density (A/cm 2 ) curves as a function of output voltage V(c) from 0.00 to 4.10 V at a freezing and/or refrigerating temperature of 253, 263, 273, and 277 K for a pair of emitter work function (WF(e) = 0.50 eV) and collector work function (WF(c) = 4.60 eV, graphene and/or graphite) with the emitter grounded. These curves showed that the isothermal electricity current density is pretty much constant in a range of output voltage V(c) from 0.00 to 4.00 V at each of the operating temperature of 253, 263, 273, and 277 K. Only when the output voltage V(c) is raised beyond 4.00 V up to the limit of 4.10 V, the isothermal electricity current density is dramatically reduced to zero. The saturation level of the steady-state isothermal electricity current density at an output voltage of 3.50 V increases dramatically with temperature from 8.42x10 4 A/cm 2 at 253 K (-20 °C) to 2.18x10 3 A/cm 2 at 263 K (-10 °C), to 5.26xl0 3 A/cm 2 at 273 K (0 °C) and to 7.36x10 3 A/cm 2 at 277 K (4 °C).

[0130] Fig. l9c presents the examples of the ideal isothermal electricity current density (A/cm 2 ) as a function of operating environmental temperature T with a series of emitter work function (WF(e)) values including 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, and 3.5 eV, each in pair with a collector work function (WF(c) = 4.60 eV, graphene and/or graphite) with the emitter grounded. The data showed that it is a preferred practice to use an emitter with a lower work function to utilize environmental heat to generate isothermal electricity. Therefore, according to one of various embodiments, it is a preferred practice to employ an emitter with a low work function that is selected from the group consisting of 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.8, 2.2, 2.4, 2.6, 2.8, and 3.0 eV and/or within a range bounded by any two of these values for isothermal electricity generation in a temperature range from 200 to 2000 K.

[0131] Fig. 20 presents an example of an integrated isothermal electricity generator system 1300 that comprises multiple pairs of emitters and collectors working in series. As illustrated in Fig. 20, the system 1300 comprises four parallel electric conductor plates 1301, 1302, 1321 and 1332 set apart with barrier spaces (such as vacuum spaces) 1304, 1324, and 1334 in between the conductor plates. Accordingly, the first electric conductive plate 1301 has its right side surface coated with a thin layer of low work function (LWF) film 1303 serving as the first emitter; The second electric conductive plate 1302 has its left side surface coated with a thin layer of high work function (HWF) film 1309 serving as the first collector while its right side surface coated with a thin layer of low work function (LWF) film 1323 serving as the second emitter; The third electric conductive plate 1321 has its left side surface coated with a thin layer of high work function (HWF) film 1329 serving as the second collector while its right side surface coated with a thin layer of low work function (LWF) film 1333 serving as the third emitter; The fourth electric conductive plate 1332 has its left side surface coated with a thin layer of high work function (HWF) film 1339 serving as third (terminal) collector; The first barrier space 1304 allows the thermal electron flow 1305 to pass through ballistically between the first pair of emitter 1303 and collector 1309; The second barrier space 1324 allows the thermal electron flow 1325 to pass through ballistically between the second pair of emitter 1323 and collector 1329; The third barrier space 1334 allows the thermal electron flow 1335 to pass through ballistically between the third pair of emitter 1333 and collector 1339.

[0132] According to one of the various embodiments, it is a preferred practice to employ: a first capacitor 1361 connected in between the first and second electric conductor plates 1301 and 1302; a second capacitor 1362 linked in between the second and third conductor plates 1302 and 1321; a third capacitor 1363 used in between third and the fourth conductor plates 1321 and 1332 as illustrated in Fig. 20. The use of capacitors in this manner can typically provide better system stability and robust isothermal electricity delivery. In this example with the first conductor plate 1301 grounded, isothermal electricity can be delivered through outlet terminals 1306 and 1376 or 1377 depending on the specific output power needs. When the isothermal electricity is delivered through outlet terminals 1306 and 1376 across a pair of emitter and collector, the steady-state operating output voltage equals to V(c), which typically can be around 3~4 V depending on the system operating conditions including the load resistance and the difference in work function between the emitter and the collector. When the isothermal electricity is delivered through outlet terminals 1306 and 1377 across three pairs of emitters and collectors, the steady-state operating output voltage is 3xVc, which typically can be about 9-12 V in this example.

[0133] According to one of the various embodiments, the isothermal electricity of the 1300 system (Fig. 20) can be delivered also through outlet terminalsl376 and 1377. In this case, the V(c) voltage at the second electric conductor plate 1302 generated by the activity of the first emitter (conductor 1301 with LWF film 1303) and first collector (HWF plate 1309) may serve as a bias voltage for the second emitter (LWF film 1323 on the right side surface of the second electric conductor plate 1302) so that the second emitter 1323 will more readily emit thermal electrons towards the second collector 1329 on the left side surface of the third conductor plate 1321 which has the third emitter 1333. Subsequently, the V(c) created at the second collector 1329 of the third conductor plate 1321 can serve as a bias voltage for the third emitter 1333 to more readily emit thermal electrons towards the terminal collector 1339 at the fourth conductor plate 1332 to facilitate the generation of isothermal electricity for delivery through the outlet terminalsl376 and 1377. Therefore, use of this special feature can help better extract environmental energy especially when the operating environmental temperature is relatively low or when the work function of certain emitters alone may not be entirely low enough to function effectively. When the isothermal electricity is delivered through the outlet terminalsl376 and 1377, the steady-state operating output voltage is 2xVc, which typically can be about 6-8 V in this case.

[0134] Fig. 21 a presents an example of a prototype for an isothermal electricity generator system 1400A that has a pair of emitter (work function 0.7 eV) and collector (work function 4.36 eV) installed in a vacuum tube chamber. As illustrated in Fig. 2la, the system 1400A comprises a thin layer of low work function Ag-O-Cs film 1403 coated on the right side surface of electric conductor plate 1401 to serve as the emitter, a vacuum space 1404 allowing the thermal electron flow 1405 to pass through ballistically between the emitter and collector, a high work function Mo film/plate 1439 coated on the left side surface of the second electric conductor plate 1432 facing the emitter 1403 to serve as the collector, a vacuum tube wall 1450 that is in contact with the edges of the electric conductor plates 1401 and 1432 to allow environmental heat to transfer between the tube wall and the electric conductor plates 1401 (emitter) and 1432 (collector), a first electricity outlet 1406 connected with the first electric conductor plate 1401, an second electricity outlet 1477 connected with the second electric conductor plate 1432, a capacitor 1461 that is connected in between the two electricity outlets 1406 and 1477, and an Earth ground 1410 that is connected with the first electricity outlet 1406.

[0135] The isothermal electricity generator system 1400A (Fig. 2la) is similar to the prototype of Fig. l6b, except that the effective heat-conduction contact of vacuum tube wall 1450 with the edges of the two electric conductor plates 1401 and 1432 in the system 1400A allow more efficient transfer of environmental heat from the tube wall to both the emitter and collector system than the prototype of Fig. l6b. Furthermore, the use of Earth ground 1410 and capacitor 1461 with the electricity outlets 1406 and 1477 as illustrated in Fig. 2la provides more stable and better system performance for isothermal electricity generation and delivery than the prototype of Fig. l6b as well.

[0136] As shown in Table 6, the work function of Mo film is about 4.36 eV and the work function of Ag-O-Cs film can be made to be anywhere between 0.5 and 1.2 eV. In the example with the isothermal electricity generator system 1400A, the work function of Ag-O-Cs film was selected to be 0.7 eV for use as the emitter while the work function of Mo film was 4.36 eV for use as the collector as illustrated in Fig. 21 a. Accordingly, when the isothermal electricity is delivered through the outlet terminalsl406 and 1477, the steady-state operating output voltage can typically be about 3.5 V in this case. Its saturation isothermal electricity current density (at output voltage of 3.5 V) is T55xlO 5 (A/cm 2 ) at the standard ambient temperature of 298 K (25 °C). The characteristic pattern of the ideal isothermal electricity current density (A/cm 2 ) as a function of operating temperature T at various output voltage V(c) for this system is also similar to that of the system with a pair of emitter work function (0.70 eV) and collector work function (4.56 eV, copper Cu(l 10)) presented in Fig. l7b.

[0137] Fig. 2lb presents an example of a prototype for an isothermal electricity generator system 1400B that has two pairs of emitters (work function 0.7 eV) and collectors (work function 4.36 eV) installed in a vacuum tube chamber. As illustrated in Fig. 2lb, the system 1400B comprises: the thin layer of low work function (0.7 eV) Ag-O-Cs film 1403 coated on the first electric conductor plate 1401 right side surface to serve as the first emitter; the first vacuum space 1404 allowing the thermal electron flow 1405 to pass through ballistically between the first pair of emitter and collector; the high work function (4.36 eV) Mo film/plate 1409 coated on the second electric conductor platel402 left side surface facing the first emitter to serve as the first collector; the thin layer of low work function Ag-O-Cs film 1423 coated on the second electric conductor plate 1402 right side surface to serve as the second emitter; the second vacuum space 1424 allowing the thermal electron flow 1425 to pass through ballistically between the second pair of emitter and collector; the high work function Mo film/plate 1439 coated on the third electric conductor plate 1432 left side surface facing the second emitter to serve as the terminal collector; the vacuum tube wall 1450 that is in contact with the edges of the three electric conductor plates 1401, 1402 and 1432 to allow the environmental heat to transfer from the tube wall to the electric conductor plates 1401 (emitter), 1402 (collector/emitter) and 1432 (collector); the first electricity outlet 1406 connected with the first electric conductor plate 1401; the second electricity outlet 1476 connected with the second electric conductor plate 1402; the third electricity outlet 1477 connected with the third electric conductor plate 1432; the first capacitor 1461 that is connected in between the first and second electric conductor plates 1401 and 1402; the second capacitor 1462 that is connected in between the second and third electric conductor plates 1402 and 1432; and an Earth ground 1410 that is connected with the first conductor plate 1401.

[0138] The isothermal electricity generator system 1400B (Fig. 2lb) is similar to the system 1400A (Fig. 2la), except that the middle electrode plate 1402 is coated with a Mo film 1409 on its left side surface and with Ag-O-Cs film at its right side surface to simultaneously serve as the first collector and the second emitter, respectively. Consequently, this system has two pairs of emitters and collectors working in series. According to Eq. 18, when a plurality (n) of the asymmetrically gated isothermal electricity generators are used in the series, the total steady- state output voltage (V s ^ total ^) is the summation of the output voltages from each of the asymmetrically gated isothermal electricity generators. Therefore, when the isothermal electricity is delivered through the outlet terminalsl406 and 1477, the total steady-state output voltage (E st(totai) ) of the system 1400B is about 2 x 3.5 V in this example. However, the total saturation isothermal electricity current density (at output voltage of 7 V) is still about 1.55x10 5 (A/cm 2 ) at the standard ambient operating temperature of 298 K (25 °C).

[0139] Furthermore, this system 1400B is designed to provide an option to deliver the isothermal electricity through the outlet terminals 1476 and 1477, leaving the V(c) voltage (about 3.5 V) generated by the first pair of emitter (Ag-O-Cs film 1403) and collector (Mo film/plate 1409) to serves as a bias voltage for the second emitter (Ag-O-Cs film 1423 on the second conductor plate 1402 right side surface) to more readily emit thermal electrons towards the terminal collector (Mo film/plate 1439) of the third conductor plate 1432. Sometimes, use of this option can help better extract environmental heat energy especially when the operating environmental temperature is relatively low or when the work function of certain emitters alone may not be low enough to function effectively. When the isothermal electricity is delivered through the outlet terminalsl476 and 1477, the steady-state operating output voltage is typically about 3.5 V in this example.

[0140] Fig. 2lc presents an example of a prototype for an integrated isothermal electricity generator system 1400C that has three pairs of emitters (work function 0.7 eV) and collectors (work function 4.36 eV) installed in a vacuum tube. As illustrated in Fig. 2lc, the system 1400 comprises: a thin layer of low work function (0.7 eV) Ag-O-Cs film 1403 coated on the first electric conductor plate 1401 right side surface to serve as the first emitter; a first vacuum space 1404 allowing the thermal electron flow 1405 to pass through ballistically between the first pair of emitter and collector; a (high work function 4.36 eV) Mo film/plate 1409 coated on the second electric conductor plate 1402 left side surface facing the first emitter to serve as the first collector; a thin layer of low work function (0.7 eV) Ag-O-Cs film 1423 coated on a second electric conductor plate 1402 right side surface to serve as the second emitter; a second vacuum space 1424 allowing the thermal electron flow 1425 to pass through ballistically between the second pair of emitter and collector; a (high work function 4.36 eV) Mo film/plate 1429 coated on a third electric conductor plate 1421 left side surface facing the second emitter to serve as the second collector; a thin layer of low work function (0.7 eV) Ag-O-Cs film 1433 coated on a third electric conductor plate 1421 right side surface to serve as the third emitter; a third vacuum space 1434 allowing the thermal electron flow 1435 to pass through ballistically between the third pair of emitter and collector; a (work function 4.36 eV) Mo film/plate 1439 coated on a fourth electric conductor plate 1432 left side surface facing the third emitter to serve as the terminal collector; a vacuum tube wall 1450 that is in contact with the edges of the electric conductor plates 1401, 1402. 1421 and 1432 to allow environmental heat to transfer from the tube wall to the electric conductor plates 1401 (emitter), 1402 (collector/emitter), 1421 (collector/emitter) and 1432 (collector); a first electricity outlet 1406 connected with the first electric conductor plate 1401; a second electricity outlet 1476 connected with the second electric conductor plate 1402; a third electricity outlet 1477 connected with the fourth electric conductor plate 1432; a first capacitor 1461 that is connected in between the first and second electric conductor plates 1401 and 1402; a second capacitor 1462 that is connected in between the second and third electric conductor plates 1402 and 1421; a third capacitor 1463 that is connected in between the third electric conductor plate 1421 and the fourth electric conductor plate 1432; and an Earth ground 1410 that is connected with the first electric conductor plates 1401. [0141] As illustrated in Fig. 21 c, the isothermal electricity in this example can be delivered through outlet terminals 1406 and 1476 or 1477 depending on the specific output power needs. When the isothermal electricity is delivered through outlet terminals 1406 and 1476 across a pair of emitter and collector, the steady-state operating output voltage equals to V(c), which typically can be around 3.5 V depending on the system operating conditions including the load impedance and the difference in work function between the emitter and the collector. The saturation isothermal electricity current density (at output voltage of 7 V) is about 1.55x10 5 (A/cm 2 ) at the standard ambient temperature of 298 K (25 °C).

[0142] When the isothermal electricity is delivered through outlet terminals 1406 and 1477 across three pairs of emitters and collectors, according to Eq. 18, the steady-state operating output voltage typically can be as high as about 10.5 V. However, the total saturation isothermal electricity current density (at output voltage of 10.5 V) remains to be about 1.55x10 5 (A/cm 2 ) at the standard ambient temperature of 298 K (25 °C) in this example.

[0143] More importantly, when the isothermal electricity is delivered through the outlet terminalsl476 and 1477, the activity of the first emitter (1401 with Ag-O-Cs film 1403) and the first collector (Mo film/plate 1409) can be used to generate a V(c) of about 3.5 V to serves as a bias voltage for the second emitter (Ag-O-Cs film 1423) on the surface of the second conductor plate 1402. In this way, the second emitter (Ag-O-Cs film 1423) will more readily emit thermal electrons towards the second collector (Mo film/plate 1429) of the third conductor plate 1421. Subsequently, the enhanced generation of V(c) at the third collector 1429 of the third conductor plate 1421 can serve as a bias voltage for the third emitter to more readily emit thermal electrons towards the terminal collector 1439 at the fourth conductor plate 1432. Therefore, use of this special feature can help better extract environmental heat energy especially when the operating environmental temperature is relatively low or when the work function of certain emitters alone may not be entirely low enough to function effectively. When the isothermal electricity is delivered through the outlet terminalsl476 and 1477, the steady-state operating output voltage can typically be about 7 V according to Eq. 18. The total saturation isothermal electricity current density (at output voltage of 7 V) remains to be about 1.55x10 5 (A/cm 2 ) at the standard ambient temperature of 298 K (25 °C) in this example.

[0144] According to one of the various embodiments, the system capacitance for a pair of parallel emitter and collector plates is inversely dependent on their separation distance ( d ). It is a preferred practice to increase the capacitance across each pair of emitter and collector by properly narrowing the space separation distance (d) between the emitter surface and the collector surface to a selected space gap size in a range from as big as 100 mm to as small as in a micrometer and/or sub-micrometer scale based on specific application and operation conditions. In this way, the need of using external capacitors may be eliminated. Furthermore, use of a narrow (micrometer and/or sub-micrometer) space gap between the emitter and the collector may also help to limit the formation of the static electron space-charge clouds in the inter electrode space for better system performance. Fig. 22 presents an example of an integrated isothermal electricity generator system 1500 that has a narrow inter electrode space gap size (separation distance d) for each of the three pairs of emitters and collectors installed in a vacuum tube chamber set up vertically. The system 1500 (Fig. 22) comprises the following components installed in a vacuum tube chamber from its top to bottom: a LWF (low work function) film 1503 coated on the first electric conductor plate 1501 bottom surface to serve as the first emitter, a first narrow space 1504 allowing thermally emitted electrons 1505 to flow through ballistically between the first pair of emitter and collector, a HWF (high work function) film 1509 coated on the second electric conductor 1502 top surface to serve as the first collector, a LWF film 1523 coated on the second electric conductor 1502 bottom surface to serve as the second emitter, a second narrow space 1524 allowing thermally emitted electrons 1525 to flow through ballistically between the second pair of emitter and collector, a HWF (high work function) film 1529 coated on the third electric conductor 1521 top surface to sever as the second collector, a LWF film 1533 coated on the third electric conductor 1521 bottom surface to serve as the third emitter, a third narrow space 1534 allowing thermally emitted electrons 1535 to flow through ballistically between the third pair of emitter and collector, a HWF (high work function) film 1539 coated on the fourth electric conductor 1532 top surface to serve as the terminal (third) collector, a first electricity outlet 1506 (+) and a Earth ground 1510 that are connected with the first electric conductor plate 1501, and the second electric outlet 1537 (-) that is connected with the fourth electric conductor 1532.

[0145] The integrated isothermal electricity generator system 1500 (Fig. 22) is similar to the system 1400C (Fig. 2lc) except that only the first electric conductor platel50l and the terminal conductor plate 1532 are wired to provide electricity outlets 1506 and 1507. Therefore, in this example, each of the second and third electric conductor plates in between the first electric conductor platel50l and the terminal (fourth) conductor plate 1532 is designed to simultaneously serve as a collector on its top surface and an emitter at its bottom surface. For example, the conductor plate 1502 has a collector (HWF film 1509) on the top surface facing up to receive thermally emitted electrons 1505 from the first emitter (LWF film 1503) located above the narrow space 1504 and an emitter (LWF film 1523) on the bottom side to emit thermal electrons 1525 downwards. Meanwhile, the conductor plate 1521 has a HWF film 1529 on its top surface facing up to receive thermally emitted electrons 1525 from the second emitter (LWF film 1523) located above the narrow space 1524 and a LWF film 1533 on its bottom to emit thermal electrons 1535 downwards to the terminal collector (HWF 1539) on the terminal conductor 1532. When the isothermal electricity is delivered through outlet terminals 1506 and 1537 across three pairs of emitters and collectors, the maximum total steady-state operating output voltage typically can be about 9-12 V in this example.

[0146] According to one of the various embodiments, it is a preferred practice to use an asymmetric function-gated thermal electron power generator system in an orientation with its emitter facing down and its collector is placed at the lower position facing up so that it can utilize gravity to better collect the thermally emitted electrons from the emitter placed at a higher position as illustrated in Fig. 22. In this way, the system can utilize the gravity to help pull the emitted electrons from an emitter above down to the collector below. Although the effect of the gravitational pull may be relatively small, it can help to ensure some of the emitted electrons with nearly zero kinetic energy to travel down to the collector. After any of the emitted electrons enter the collector, their contribution to the isothermal electricity is equally good in accordance with one of the various embodiment of the present invention.

[0147] For examples, some of the emitted election may have quite limited kinetic energy that may not be sufficient to overcome the repulsion force of the collector electrode’s surface electrons to immediately enter the collection electrode. The use of gravitational pull provides two effects that benefit the collection of the electrons from the emission electrode. First, it can, in some extent, help accelerate the electrons from the emitter more quickly move down into the collector. The second effect is to help localize some of these emitted electrons at (and/or near) the interface between the collector surface and the vacuum space by the use of gravitational force in this manner. Similarly as demonstrated previously with localized protons, use of localized electron population density may enhance the utilization of environmental heat to benefit the thermal electron power generation. For instance, since free electrons including these at the interface between the collector surface and the vacuum space can gain additional kinetic energy by absorbing infrared radiation from the environment, an enhanced concentration of localized electrons at the interface between the vacuum space and the collection electrode surface enhances the probability for localized electrons to utilize their thermal motion energy to finally enter the collector electrode. After an electron enters into the collector electrode that typically has a relatively higher work function, its contribution to the thermal electron power production is essentially certain regardless of its initial kinetic energy before or after the entry.

[0148] According to one of the various embodiments, this special energy technology process for generating useful Gibbs free energy from utilization of electron thermal motion energy associated with localized electrons has a special feature that its local electron motive force (emf) generated from its special utilization of environmental heat energy may be calculated according to the following equation:

Where R is the gas constant, T is the absolute temperature, F is Faraday’s constant, [ef ~ \ is the concentration of localized electrons at the interface between the collector surface and the vacuum space, and [ef ] is the electron concentration in the bulk vacuum space.

[0149] With this Eq. 22, it is now, for the first time, understood that this local emf is a logarithmic function of the ratio of localized electron concentration [ef ~ \ at the interface to the delocalized electron concentration [e B ] in the bulk vacuum space. Proper application of this local emf may facilitate the entry of thermal elections gap space - collector surface interface into the collector in accordance with one of the various embodiments. For example, the use of positive-charged molecular functional group-modified collector surface and/or the use of gravitational force may bring the emitted electrons to the gap space-collector surface interface forming local emf there that may help overcome the collector surface-dipole barrier to facilitate the entry of thermal electrons into the collector for enhanced isothermal electricity production.

[0150] According to one of the various embodiments, the effect of the isothermal electricity production is additive. Depending on a given specific application and its associated operating conditions such as temperature conditions, and the properties of the barrier space such as its thickness and composition, the emitter and collector electrodes and other physical chemistry properties, the number of emitter-collector pairs that may be used per integrated system as shown in Fig. 22 for the purpose of isothermally extracting environmental heat energy to generate electricity may be selected from the group consisting of 1, 2, 3, 4, 5, 6, 7, 8, 8, 9, 10,

20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 500, 1000, 2000, 5000, 10,000, 100,000, 1,000,000, more and/or within a range bounded by any two of these values.

[0151] Figure 23 presents another example of an integrated isothermal electricity generator system 1600 that has three pairs of emitters and collectors installed in a vacuum tube chamber set up vertically to utilize the gravity to help pull the emitted electrons from an emitter down to a collector. The system 1600 (Fig. 23) comprises the following components installed in a vacuum tube container from its top to bottom: a LWF (low work function) film 1603 coated onto the vacuum tube wall 1650 inner surface at the dome-shaped top end to serve as a first emitter that has an electricity outlet 1606 (+) wired with a capacitor 1611 that is connected with an Earth ground 1610, a first vacuum space 1604 allowing thermally emitted electrons 1605 to flow through ballistically, a HWF (high work function) film 1609 to serve as a first collector on the top surface of electric conductor 1602, a LWF film 1623 as the second emitter at the bottom surface of electric conductor 1602, a second vacuum space 1624 allowing thermally emitted electrons 1625 to flow through ballistically, a HWF (high work function) film 1629 as the second collector on electric conductor 1621 top surface, a LWF film 1633 as the third emitter at electric conductor 1621 bottom surface, a third vacuum space 1634 allowing thermally emitted electrons 1635 to flow through ballistically, and a HWF (high work function) film 1639 coated on the inner surface of the inversed-dome-shaped bottom end of the vacuum tube to serve as the terminal collector connected with an electricity outlet 1637 (-). When the isothermal electricity is delivered through outlet terminals 1606 and 1637 across three pairs of emitters and collectors, the maximum total steady-state operating output voltage typically can be about 9-12 V in this example.

[0152] The integrated isothermal electricity generator system 1600 (Fig. 23) is similar to the system 1500 (Fig. 22) except the following special features: 1) The system 1600 employs the inner surface of dome-shaped top end of the vacuum tube chamber as a physical support to construct the first emitter by coating an LWF (low work function) film 1603; 2) It utilizes the inner surface of the inversed-dome-shaped bottom end of the vacuum tube chamber to construct the terminal collector by coating a HWF (high work function) film 1639; and 3) the first emitter has an electricity outlet 1606 (+) wired with a capacitor 1611 that is connected with an Earth ground 1610 while the terminal collector connected with an electricity outlet 1637 (-). These features make the integrated isothermal electricity generator system 1600 much more compact than the system 1500. The optional use of capacitor 1611 between the electricity outlet 1606 (+) and the Earth ground 1610 also provides an additional way to reduce and/or modulate the possible voltage at the emitter for better system performance.

[0153] According to one of the various embodiments, during the isothermal electricity generation, an effective emitter such as those in the systems 1300, 1400, 1500 and 1600 absorbs environmental heat from the outside environment and utilizes the environmental heat energy to emit electrons as shown in Figs. 20-22. It is important to provide effective heat conduction from the environment to the emitters. The system 1500 (Fig. 22) provide an example where the environmental heat energy primarily flow through the tube wall-electric conductor plate joints to the emitters on the electric conductor plate surfaces. Therefore, it is a preferred practice to employ heat-conductive materials in making the tube wall and more importantly the tube wall- electric conductor plate joints to ensure effective conduction of latent heat from the environment to the emitters.

[0154] The integrated isothermal electricity generator system 1600 (Fig. 23) provide an example of an emitter constructed on the inner surface of dome-shaped top end of the vacuum tube chamber by coating an LWF (low work function) film 1603. Such a close physical contact between the vacuum tube dome-shaped top wall inner surface and the emitter can favorably facilitate the heat transfer from the tube environment to the emitter.

[0155] According to one of the various embodiments, the collector surface is engineered by adding certain positively charged molecular structure such as protonated amine groups on the surface. Protonated (poly)aniline which has protonated amine groups (positive charges) on its surface made by the protonation process using the electrostatically localized excess protons as disclosed in W02017/007762 Al and US 2017/0009357 Al is selected for use as a collector electrode in this embodiment.

[0156] According to one of the various embodiments, the positively charged groups such as the protonated amine groups on the collector electrode surface provide a number of beneficial effects on facilitating the collection of electrons emitted from the emitter electrode: 1) Attracting the electrons emitted from the emitter electrode, which results in an enhanced concentration of localized electron cloud [e ] at the vicinity of the collector electrode surface and thus enable better utilization of additional environmental heat energy according to Eq. 22 to facilitate the entry of the vacuum electrons into the collector electrode for power generation; 2) Neutralizing negative surface dipole (if any) for the collector electrode surface; and 3) Counter balancing the negative electric surface potential resulted from the accumulation of the collected electrons in the collector electrode for more power storage.

[0157] Figure 24a presents an example of an isothermal electricity generator system 1700A that has a low work function Ag-O-Cs (0.6 eV) emitter and a high work function protonated polyaniline (4.42 eV) collector installed in a chamber-like vacuum tube with a dome-shaped top end and an inversed-dome-shaped bottom end. The system 1700A (Fig. 24a) comprises the following components installed in the chamber-like vacuum tube from its top to bottom: a Ag- O-Cs film (emitter) 1703 coated on the dome-shaped top inner surface of the chamber-like vacuum tube wall 1750 to serve as an emitter; a protonated polyaniline film 1739 coated on the inversed-dome-shaped bottom inner surface of the chamber-like vacuum tube to serve as the collector; a vacuum space 1704 allowing thermally emitted electrons 1705 to ballistically fly through between the emitter 1703 and the collector 1739; an electricity outlet 1706 (+) connected with the emitter 1703; and an electricity outlet 1737 (-) connected with the collector 1739. When the isothermal electricity is delivered through outlet terminals 1706 and 1737, the steady-state operating output voltage typically can be about 3.5 V. The saturation isothermal electricity current density (at output voltage of 3.5 V) is 7.59x 10 4 A/cm 2 at the standard ambient temperature of 298 K (25 °C) in this example.

[0158] Figure 24b presents an example of an integrated isothermal electricity generator system 1700B that has two pair of emitters and collectors working in series employing low work function of Ag-O-Cs (0.6 eV) and high work function of protonated polyaniline (4.42 eV). The system 1700B (Fig. 24b) comprises the following components installed in a vacuum tube chamber from its top to bottom: a Ag-O-Cs film (emitter) 1703 coated onto the inner surface of dome-shaped top end of the vacuum tube wall 1750 to serve as first emitter that has an electricity outlet 1706 (+), a vacuum space 1704 allowing thermally emitted electrons 1705 to flow through ballistically, a protonated polyaniline film 1709 to serve as the first collector on the top surface of the middle electric conductor 1702, a Ag-O-Cs film 1723 as the second emitter at the bottom surface of the middle electric conductor 1702, a second vacuum space 1734 allowing thermally emitted electrons 1735 to flow through ballistically, a protonated polyaniline film 1739 coated on the inner surface of the inversed-dome-shaped bottom end of the vacuum tube to serve as the terminal collector connected with an electricity outlet 1737 (-). When the isothermal electricity is delivered through outlet terminals 1706 and 1737, the steady-state operating output voltage typically can be about 7 V according to Eq. 18. The saturation isothermal electricity current density (at output voltage of 7 V) is about 7.59x 10 4 A/cm 2 at the standard ambient temperature of 298K (25 °C) in this example.

[0159] Figure 24c presents an example of an integrated isothermal electricity generator system 1700C that has three pairs of low work function of Ag-O-Cs (0.6 eV) emitters and high work function protonated polyaniline (4.42 eV) collectors operating in series. The system 1700C (Fig. 25c) comprises the following components installed in a vacuum tube chamber from its top to bottom: a Ag-O-Cs film (emitter) 1703 coated onto the dome-shaped top end inner surface of the vacuum tube wall 1750 to serve as the first emitter; a protonated polyaniline film 1709 (collector) coated on the first middle electric conductor 1702 top surface to serve as the first collector; the first vacuum space 1704 allowing thermally emitted electrons 1705 to fly through ballistically across the first emitter and the first collector; a Ag-O-Cs film 1723 at the first middle electric conductor 1702 bottom surface to serve as the second emitter; a protonated polyaniline film 1729 coated on the second middle electric conductor 1721 top surface to serve as the second collector; the second vacuum space 1724 allowing thermally emitted electrons 1725 to fly through ballistically between the second emitter and the second collector; a Ag-O-Cs film 1733 coated on the second middle electric conductor 1721 bottom surface to serve as the third emitter, a protonated polyaniline film 1739 coated on the inversed-dome-shaped bottom end inner surface of the vacuum tube to serve as the third (terminal) collector; the third vacuum space 1734 allowing thermally emitted electrons 1735 to fly through ballistically between the third emitter and the terminal collector; the first electricity outlet 1706 (+) connected with the first emitter 1703; and the second electricity outlet 1737 (-) connected with the third (terminal) collector. When the isothermal electricity is delivered through outlet terminals 1706 and 1737 across three pairs of emitters and collectors, the maximum total steady-state operating output voltage typically can be about 10.5 V according to Eq. 18. The saturation isothermal electricity current density (at output voltage of 10.5 V) is about 7.59\ 10 4 A/cm 2 at the standard ambient temperature of 298 K (25 °C) in this example.

[0160] According to one of the various embodiments, an isothermal electrons-based environmental heat energy utilization system comprises low work function of Ag-O-Cs and high work function of Cu metal. Figure 25a presents another example of an isothermal electricity generator system 1800A that has a low work function (0.7 eV) Ag-O-Cs emitter and a high work function (4.56 eV) Cu metal collector installed in a chamber-like vacuum tube. The system 1800A (Fig. 25a) comprises the following components installed in the chamber-like vacuum tube from its top to bottom: a Ag-O-Cs film (emitter) 1803 coated on the dome-shaped top end inner surface of the chamber-like vacuum tube wall 1850 to serve as the emitter; a vacuum space 1804 allowing thermally emitted electrons 1805 to flow through ballistically between the emitter 1803 and collector 1839; a Cu film/plate 1839 coated on the inversed-dome-shaped bottom end inner surface of the chamber-like vacuum tube to serve as the collector 1839; the first electricity outlet 1806 (+) connected with the emitter 1803; and the second electricity outlet 1837 (-) connected with the collector 1839. When the isothermal electricity is delivered through outlet terminals 1806 and 1837 across three pairs of emitters and collectors, the maximum total steady- state operating output voltage typically can be about 3.5 V. The saturation isothermal electricity current density (at output voltage of 3.5 V) is about T55xlO 5 (A/cm 2 ) at the standard ambient temperature of 298 K (25 °C) in this example.

[0161] Figure 25b presents another example of an integrated isothermal electricity generator system 1800B that has two pairs of low work function Ag-O-Cs (0.7 eV) emitters and high work function Cu metal (4.56 eV) collectors operating in series. The system 1800B (Fig. 25b) comprises the following components installed in a vacuum tube chamber from its top to bottom: an Ag-O-Cs film (emitter) 1803 coated on the dome-shaped top end inner surface of the vacuum tube chamber wall 1850 to serve as the first emitter; a first vacuum space 1804 allowing thermally emitted electrons 1805 to flow through ballistically across the first pair of emitter and collector; a Cu film/plate 1809 coated on the middle electric conductor 1802 top surface to serve as the first collector; an Ag-O-Cs film 1823 coated on the middle electric conductor 1802 bottom surface to serve as the second emitter; a second vacuum space 1834 allowing thermally emitted electrons 1835 to flow through ballistically across the second pair of emitter 1823 and collector 1839; a Cu film/plate 1839 coated on the inversed-dome-shaped bottom end inner surface of the vacuum tube chamber to serve as the terminal collector; a first electricity outlet 1806 (+) connected with the first emitter 1803; and a second electricity outlet 1837 (-) connected with the terminal collector 1839.

[0162] When the isothermal electricity is delivered through outlet terminals 1806 and 1837 across two pairs of emitters and collectors, the maximum total steady-state operating output voltage of the system 1800B (Fig. 25b) typically can be about 7 V. The total saturation isothermal electricity current density (at output voltage of 7 V) is about 1.55x10 5 (A/cm 2 ) at the standard ambient temperature of 298 K (25 °C) in this example.

[0163] Figure 25c presents another example of an integrated isothermal electricity generator system 1800C that has three pairs of emitters and collectors operating in series employing low work function of Ag-O-Cs (0.7 eV) and high work function of Cu metal (4.56 eV). The system 1800C (Fig. 25c) comprises the following components installed in a vacuum tube from its top to bottom: an Ag-O-Cs film (emitter) 1803 coated onto the inner surface of dome-shaped top end of the vacuum tube wall 1850 to serve as the first emitter that has an electricity outlet 1806 (+), a first vacuum space 1804 allowing thermally emitted electrons 1805 to flow through ballistically, a Cu film/plate 1809 to serve as the first collector on the top surface of electric conductor 1802, an Ag-O-Cs film 1823 as the second emitter at the bottom surface of electric conductor 1802, a second vacuum space 1824 allowing thermally emitted electrons 1825 to flow through ballistically, a Cu film/plate 1829 as the second collector on electric conductor 1821 top surface, an Ag-O-Cs film 1833 as the third emitter at electric conductor 1821 bottom surface, a third vacuum space 1834 allowing thermally emitted electrons 1835 to flow through ballistically, and a Cu film/plate 1839 coated on the inner surface of the inversed-dome-shaped bottom end of the vacuum tube to serve as the terminal collector connected with an electricity outlet 1837 (-). When the isothermal electricity is delivered through outlet terminals 1806 and 1837 across three pairs of emitters and collectors, the maximum total steady-state operating output voltage typically is about 10.5 V. The total saturation isothermal electricity current density (at output voltage of 10.5 V) is about T55xlO 5 (A/cm 2 ) at the standard ambient temperature of 298 K (25 °C) in this example.

[0164] According to one of the various embodiments, an isothermal electrons-based environmental heat energy utilization system comprises low work function of Ag-O-Cs and high work function of Au metal. Figure 26 presents another example of an integrated isothermal electricity generator system 1900 that employs three pairs of exceptionally low work function Ag-O-Cs (0.5 eV) emitters and high work function Au metal (5.10 eV) collectors working in series. The system 1900 (Fig. 26) comprises the following components installed in a vacuum tube chamber from its top to bottom: an Ag-O-Cs film (emitter) 1903 coated on the dome shaped top end inner surface of the vacuum tube chamber wall 1950 to serve as the first emitter that has an electricity outlet 1906 (+); a first vacuum space 1904 allowing thermally emitted electrons 1905 to flow through ballistically across the first pair of emitter 1903 and collector 1909; an Au film 1909 coated on the first middle electric conductor 1902 top surface to serve as the first collector; an Ag-O-Cs film 1923 coated on the first middle electric conductor 1902 bottom surface to serve as the second emitter; a second vacuum space 1924 allowing thermally emitted electrons 1925 to flow through ballistically across the second pair of emitter 1923 and collector 1929; an Au film 1929 coated on the second middle electric conductor 1921 top surface to serve as the second collector; a Ag-O-Cs film 1933 coated on the second middle electric conductor 1921 bottom surface to serve as the third emitter; a third vacuum space 1934 allowing thermally emitted electrons 1935 to flow through ballistically across the third pair of emitter 1933 and collector 1939; and an Au film 1939 coated on the inversed-dome-shaped bottom end inner surface of the vacuum tube chamber to serve as the terminal collector connected with an electricity outlet 1937 (-). When the isothermal electricity is delivered through outlet terminals 1906 and 1937 across three pairs of emitters and collectors, the maximum total steady-state operating output voltage typically can be about 12 V. The total saturation isothermal electricity current density (at output voltage of 12 V) is about 3.73 x 10 2 A/cm 2 at the standard ambient temperature of 298K (25 °C) in this example.

[0165] According to one of the various embodiments, an isothermal electrons-based environmental heat energy utilization system comprises low work function of doped-graphene and high work function of graphite. Figure 27 presents another example of an integrated isothermal electricity generator system 2000 that employs low work function of doped-graphene (l.OleV) and high work function of graphite (4.60 eV). The system 2000 (Fig. 27) comprises the following components installed in a vacuum tube from its top to bottom: a doped-graphene film (emitter) 2003 coated onto the inner surface of dome-shaped top end of the vacuum tube wall 2050 to serve as the first emitter that has an electricity outlet 2006 (+), a first vacuum space 2004 allowing thermally emitted electrons 2005 to flow through ballistically, a graphite film 2009 to serve as a collector on the top surface of the first middle electric conductor 2002, a doped-graphene film 2023 as the second emitter at the bottom surface of the first middle electric conductor 2002, a second vacuum space 2024 allowing thermally emitted electrons 2025 to flow through ballistically, a graphite film 2029 as the second collector on the second middle electric conductor 2021 top surface, a doped-graphene film 2033 as the third emitter at the second middle electric conductor 2021 bottom surface, a third vacuum space 2034 allowing thermally emitted electrons 2035 to flow through ballistically, and a graphite film 2039 coated on the inner surface of the inversed-dome-shaped bottom end of the vacuum tube to serve as the terminal collector connected with an electricity outlet 2037 (-). When the isothermal electricity is delivered through outlet terminals 2006 and 2037 across three pairs of emitters and collectors, the maximum total steady-state operating output voltage typically can be about 9 V. The total ideal saturation isothermal electricity current density (at output voltage of 9 V) at the following operating temperature is: 1.30x 10 10 A/cm 2 at 298 K (25 °C), 5. 14x 10 A/cm 2 at 373 K (100 °C), 5.94x10 4 A/cm 2 at 473 K (200 °C), 6.3lxl(T 2 A/cm 2 at 573 K (300 °C), 1.76 A/cm 2 at 673 K (400 °C), 1.76 A/cm 2 at 673 K (400 °C), 17.3 A/cm 2 at 763 K (490 °C), 61.1 A/cm 2 at 823 K (500 °C), and 154 A/cm 2 at 873 K (600 °C) in this example.

[0166] According to one of the various embodiments, an isothermal electrons-based environmental heat energy utilization system comprises low work function of doped-graphene and high work function of graphene. Figure 28 presents another example of an integrated isothermal electricity generator system 2100 that employs multiple pairs of low work function doped-graphene (l.OleV) emitters and high work function graphene (4.60 eV) collectors. The system 2100 (Fig. 28) comprises the following components installed in a vacuum tube chamber from its top to bottom: a doped-graphene film (emitter) 2103 coated on the dome-shaped top end inner surface of the vacuum tube chamber wall 2150 to serve as first emitter that has an electricity outlet 2106 (+), a first vacuum space 2104 allowing thermally emitted electrons 2105 to flow through ballistically across the first pair of emitter 2103 and collector 2109, a graphene film 2109 on the first middle electric conductor 2102 top surface to serve as the first collector, a doped-graphene film 2123 coated on the first middle electric conductor 2102 bottom surface to serve as the second emitter, a second vacuum space 2124 allowing thermally emitted electrons 2125 to flow through ballistically across the second pair of emitter 2123 and collector 2129, a graphene film 2129 coated on the second middle electric conductor 2121 top surface to serve as the second collector, a doped-graphene film 2133 coated on the second middle electric conductor 2121 bottom surface as the third emitter, a third vacuum space 2134 allowing thermally emitted electrons 2135 to flow through ballistically across the third pair of emitter 2133 and collector 2139, and a graphene film 2139 coated on the inversed-dome-shaped bottom end the inner surface of the vacuum tube chamber to serve as the terminal collector connected with an electricity outlet 2137 (-). When the isothermal electricity is delivered through outlet terminals 2106 and 2137 across three pairs of emitters and collectors, the maximum total steady- state operating output voltage typically can be about 9 V in this example. The total ideal saturation isothermal electricity current density (at output voltage of 9 V) at the following operating temperature is: 1.30x 10 10 A/cm 2 at 298 K (25 °C), 5.14x10 7 A/cm 2 at 373 K (100 °C), 5.94x10 4 A/cm 2 at 473 K (200 °C), 6.3lxl(T 2 A/cm 2 at 573 K (300 °C), 1.76 A/cm 2 at 673 K (400 °C), 1.76 A/cm 2 at 673 K (400 °C), 17.3 A/cm 2 at 763 K (490 °C), 61.1 A/cm 2 at 823 K (500 °C), 154 A/cm 2 at 873 K (600 °C), 354 A/cm 2 at 923 K (650 °C), and 750 A/cm 2 at 973 K (700 °C) in this example.

[0167] According to one of the various embodiments, any of the isothermal electricity generator systems disclosed here may be modified for various applications. For examples, a typical smart mobile phone device such as iPhone 6 consumes about 10.5 Watt-hours per day (24 hours). Use of certain isothermal electricity generator systems disclosed in this invention may enable to produce a new generation of smart mobile electronic devices that can utilize the latent (existing hidden) heat energy from the ambient temperature environment to power the devices without requiring the conventional electrical power sources. For instance, use of an asymmetric function-gated isothermal electricity generator system disclosed here with a chip size of about 40 cm 2 that has a 3 V isothermal electricity output of 200 mA may be sufficient to continuously power a smart mobile phone device.

[0168] According to one of the various embodiments, a highly optimized isothermal electricity generator system such as the integrated isothermal electricity generator system 1900 that employs an exceptionally low work function of Ag-O-Cs (0.5 eV) and a high work function of Au metal (5.10 eV) illustrated in Fig. 26 can be powerful enough to extract environmental heat energy from an environment as cold as - 20 °C (T = 253 K). Consequently, it is possible to use this type of highly optimized isothermal electricity generator system to provide novel cooling for a new type of freezers and/or refrigerators while generating isothermal electricity by isothermally extracting environmental heat energy from inside the cold icebox (the heat source). Optimization and utilization of exceptionally low work function (0.5 eV) materials such as Ag- O-Cs film as an emitter are critically important to this application in extracting environmental heat energy from the interior surface of the cold box. The collector work function material for this application does not have to be gold (Au) and other work function materials such as Cu metal film, graphene and/or graphite conductors with work function about 4.6 eV can also be used. [0169] As presented in Fig. l9b, the isothermal electricity current density (A/cm 2 ) curves as a function of output voltage V(c) for a pair of emitter work function of 0.50 eV and collector work function of 4.60 eV showed that this type of isothermal electricity generator system can work even at a refrigerating and/or freezing temperature of 253, 263, 273, and 277 K. The saturation level of the steady-state ideal isothermal electricity current density at an output voltage of 3.50 V is: 8.42x10 4 A/cm 2 at 253 K (-20 °C), 2. l8xl0 3 A/cm 2 at 263 K (-10 °C), 5.26xl0 3 A/cm 2 at 273 K (0 °C), and 7.36\ 10 A/cm 2 at 277 K (4 °C). Consequently, the cooling power of the isothermal electricity generator defined as Watt (W) per square centimeters of the cross-section area of the emitter-collector interelectrode space in this example is estimated to be: 2.88\ 10 W/cm 2 at 253 K (-20 °C), 7.63xl0 3 W/cm 2 at 263 K (-10 °C), l.84xl0 2 W/cm 2 at 273 K (0 °C), and 2.58\ 10 2 W/cm 2 at 277 K (4 °C). A typical family-size freezer/refrigerator has a height of 174 cm, a depth of 80 cm and a width of 91 cm. It has a total outside surface area of 74,068 cm 2 . Even if only 50% of the surface area is used by an asymmetric function-gated isothermal electricity generator with a cooling power density of 2.88\ 10 W/cm 2 at 253 K (-20 °C), it maximally can deliver an electricity power of 106 W plus a novel cooling power of 106 W, which is plenty to power the entire family-size freezer/refrigerator that typically requires an electricity power of only 72.5 W to run in this example.

[0170] According to one of the various embodiments, an asymmetric function-gated optimized isothermal electricity generator system that has a pair of an exceptionally low work function Ag- O-Cs (0.5 eV) emitter and a high work function graphene (4.60 eV) collector is employed to provide the novel cooling for a new type of freezer/refrigerator without requiring any of the conventional refrigeration mechanisms of compressor, condenser, evaporator and/or radiator by isothermally extracting environmental heat energy from inside the freezer/refrigerator while generating isothermal electricity.

[0171] Furthermore, use of certain isothermal electricity generator systems according to one of the various embodiments can produce electricity by utilizing the waste heat from wide varieties of waste heat sources including (but not limited to) the waste heat from electrical devices such as computers, motor vehicles engines, air-conditioner heat exchange systems, combustion-based power plants, combustion systems, heat-based distillation systems, nuclear power plants, geothermal heat sources, solar heat, and waste heat from photovoltaic panels.

[0172] Figures 29-31 presents additional prototypes for an isothermal electricity generator system that comprises a pair of a low work function Ag-O-Cs emitter plate (size: 40 mm x 46 mm) and a high work function Cu collector plate (size: 40 mm x 46 mm) installed in a sealed glass bohle (Zhongquo Mingbei, Nuoyan Koubei, made in China) with a screw cap (Fig. 3 la) or with a non-screw cap (Fig. 3 lb). In the electrobottle prototype design, the air inside each bottle can be readily removed though a vacuum pump to create a vacuum condition. These prototype electrobottles were made through a private effort in collaboration with a private lighting-device manufacturing company in Hangzhou City, Zhejiang Province, China.

[0173] Fig. 29a presents photographs for a pair of parallel aluminum plate-supported silver (Ag) and copper (Cu) electrode plates (size: 40 mm x 46 mm) held together with electric- insulating plastic spacers (washers), screws and nuts at the four comers for each of the two electrode plates to make a pair of Ag-O-Cs type emitter (CsOAg) and Cu collector with or without oxygen plasma treatment. Fig. 29b presents photographs for a pair of parallel aluminum plate-supported silver (Ag) and copper (Cu) collector electrode plates (size: 40 mm x 46 mm) held together with electric-insulating plastic spacers (washers), heat-shrink plastic tube-insulated metal screws and nuts at the comers of the electrode plates. The silver (Ag) plate and copper (Cu) collector plate were connected by soldering with a red insulator coated copper wire and a blue insulator coated copper wire, respectively. The silver (Ag) electrode plate surface was coated with a thin molecular layer of cesium oxide (Cs 2 0) through painting with a dilute cesium oxide solution followed by drying to form a type of Ag-O-Cs emitter with or without oxygen plasma treatment. This shows how a pair of prototype Ag-O-Cs emitter (CsOAg) and Cu collector can be assembled.

[0174] Fig. 30 presents a photograph of the parts for a prototype CsOAg-Cu electrobottle that comprise a pair of parallel aluminum plate-supported CsOAg (silver (Ag), coated with Cs 2 0) and copper (Cu) collector plates installed with the red and blue insulator coated copper wires passing through a screw bottle cap. Two blue plastic air tubes were installed through two additional holes in the screw bottle cap. Electric-insulating and air-tight Kafuter 704 RTV silicone gel (white) was used to seal the joints for the wires and tubes passing through the bottle cap. This shows how a prototype CsOAg-Cu electrobottle can be assembled.

[0175] Fig. 3 la presents a photograph showing four prototype CsOAg-Cu electrobottles that were fabricated using crew bottle caps. Each electrobottle comprises a pair of parallel aluminum plate-supported silver CsOAg (a type of Ag-O-Cs emitter) and copper (Cu) collector electrode surfaces installed with red and blue insulator coated wires passing through a screw bottle cap. After installation and sealing with electric-insulating and air-tight Kafuter 704 RTV silicone gel (white), air was removed from each of the electro-bottles using a vacuum pump through the blue plastic tubes with the bottle cap. Fig. 3 lb presents a photograph of 17 prototype CsOAg-Cu electro-bottles that were made using non-screw bottle caps and sealed with electric-insulating and air-tight Kafuter 704 RTV silicone gel (white) material. [0176] The following methods and steps were employed in fabricating these CsOAg-Cu prototype electrobottles (Figs. 3 la and 3 lb): a) l.O-mm thick aluminum sheets (size: 160 mm x 184 mm with a thickness of l.O-mm) were used as the mechanical supporting plate material; b) a pre-manufactured copper (Cu) film (35-pm thick) was mechanically pressed with a layer of 0.2- mm thick sticky heat-conductive and electric insulating gel onto an aluminum sheet (size: 160 mm x 184 mm with a thickness of l.O-mm), forming a Cu film (35-pm thick)-insulating gel (0.2-mm thick)-aluminum sheet (l-mm thick) structure; c) a l0-pm thick silver (Ag) film was then electroplated onto the Cu film (35-pm thick)-insulating gel (0.2-mm thick)-aluminum sheet (l-mm thick) structure using a sliver electroplating solution containing silver nitrate and potassium cyanide (which is highly toxic and must be carefully handled with protective equipment by fully trained professionals only), producing a 160 mm x 184 mm Ag film (lO-pm thick)-Cu film (35-pm thick)-insulating gel (0.2-mm thick)-aluminum sheet (l-mm thick) structure; d) a 160 mm x 184 mm Cu film-insulating gel -aluminum sheet was mechanically cut to produce smaller pieces with a size of 40 mm x 46 mm to serve as high work function Cu collector plates; e) similarly, a 160 mm x 184 mm Ag film (lO-pm thick)-Cu film (35-pm thick)-insulating gel (0.2-mm thick)-aluminum sheet (l-mm thick) structure was mechanically cut to produce smaller pieces with the size of 40 mm x 46 mm to serve as Ag plates; e) the silver (Ag) electrode plate surfaces were coated with a thin molecular layer of cesium oxide (Cs 2 0) through painting with a dilute (l0-mM) Cs 2 0 solution followed by drying (alternatively, Ag plate surfaces are treated with oxygen plasma and coated with vaporized Cs atoms) to produce a type of low work function Ag-O-Cs emitter plates; f) a small hole (diameter 3 mm) was made near each of the four comers for each of the 40 mm x 46 mm electrode plates using a mechanical hole maker; g) each of the Ag-O-Cs emitter plates was connected by soldering with a red insulator coated copper wire (a single 16 gauge copper wire with red insulator coat); h) similarly, each of the Cu collector plates was connected by soldering with a blue insulator coated copper wire (a single 16 gauge copper wire with blue insulator coat); i) as shown in Fig. 29b, each pair of a low work function Ag-O-Cs emitter plate (size: 40 mm x 46 mm) and a high work function Cu collector plate (size: 40 mm x 46 mm) was assembled in parallel with a separation distance of 5 mm using a set of four heat-shrinking plastic insulator tube-insulated metal screws, four insulating plastic washers/spacers, and four nuts (or using a set of electric- insulating plastic spacers (washers), screws and nuts as shown in Fig. 29a) at the four comers of the two electrode plates; j) as shown in Fig. 30, a pair of 3-mm-diameter holes was made in each of the bottle caps (typically made of stainless steel and/or plastic material) for the red and blue wires to pass through; k) a pair of 8-mm-diameter holes was made in the bottle cap for a pair of blue plastic (or stainless steel) tubes to pass through (to pull vacuum later); 1) the assembled pair of Ag-O-Cs emitter plate and Cu collector plate was then inserted into a glass bottle with its insulated red and blue wires passing through the 3-mm-diameter holes of the bottle cap (Fig. 30); m) all the joints around the wires and the tubes in the bottle cap were sealed with an air tight electric-insulating Kafuter 704 RTV silicone gel material (Figures 30 and 31); n) after installation, air was removed from each of the electrobottles through the blue plastic tubes at the bottle cap using a vacuum pump and kept each electrobottle sealed under the vacuum condition by closing the rubber valves of the air tubes (Fig. 31); and o) quality inspection: for example, the insulation between the Ag film/Cu film and the supporting aluminum sheet by the 0.2-mm thick insulating gel and the insulation between the metal screws and the Ag film/Cu film plates by the heat-shrinking plastic insulator tubes for all metal screw bolts were inspected with electric insulation measurement for each pair of electrode plates.

[0177] Therefore, although the metal screws/nuts were in contact with the supporting aluminum sheet plates as shown in Fig. 29b, each of the CsOAg film emitter and the Cu film collector was still well insulated from both the metal screws and the supporting aluminum sheet plates. The insulator electric resistance as measured across a pair of CsOAg film emitter terminal wire (red) and Cu film collector terminal wire (blue) was over 50 MW for a typical CsOAg-Cu electrobohle prototype in this example.

[0178] The isothermal electricity generation activity in each prototype CsOAg-Cu electrobohle was measured with a Keithley 6514 electrometer (Keithley Instruments, Inc., Cleveland, Ohio, USA) as shown in Fig. 32. During the experimental measurements, a prototype electrobohle that comprises a pair of a low work function Ag-O-Cs emitter plate (size: 40 mm x 46 mm) and a high work function Cu collector plate (size: 40 mm x 46 mm) installed in a sealed glass bohle was placed into a 33 x 30 x 42 cm Faraday box made of heavy duty aluminum foil to reduce the potential electric interference from the surroundings. As shown in Fig. 32a, the Keithley 6514 electrometer’s red alligator clip was connected with the wire (red) of the Ag-O- Cs emitter plate while the electrometer’s black alligator clip was connected to the wire (black) of the Cu collector plate. The metal Faraday box that was typically grounded by connecting with the Keithley 6514 electrometer’s green alligator clip (ground wire) was closed at all sides as shown in Fig. 32b to shield the prototype electrobohle device to minimize any potential electric interference from the sounding environment during the measurements for isothermal electricity generation activity.

[0179] As shown in Fig. 32b, for example, the isothermal electricity generation was measured by a Keithley 6514 electrometer reading“20.9444 PA.CZ”. This indicates that the isothermal electric current from the prototype electrobottle device (Fig. 32a) was approximately 20.94 pico Amps (pA) as measured at a room temperature (2l°C) using the well-established Amps measurement procedure with Keithley 6514 electrometer’s zero check and zero (baseline) correction (CZ) functions.

[0180] A number of prototype CsOAg-Cu electrobottles were experimentally tested for their isothermal electricity production performance. Table 10 presents examples of experimental isothermal electricity production results from a prototype isothermal electricity generator (electrobottle sample“CsOAg-Cu 1”) in comparison with a control electrobottle sample“CK Ag-Cu” as tested at 23 °C with Keithley 6514 system electrometer. The control electrobottle “CK Ag-Cu” has the same structure as that of the electrobottle“CsOAg-Cu 1” except that the Ag plate surface of the control electrobottle“CK Ag-Cu” was not coated with any cesium oxide (Cs 2 0). The Amps measurement procedure with Keithley 6514 electrometer’s zero check and zero (baseline) correction (CZ) was used in testing 1) the electrobottle“CsOAg-Cu 1”, 2) the Keithley 6514 system’s Model 237-ALG-2 low noise cable with three alligator clips (no electrobottle device), and 3) the control electrobottle“CK Ag-Cu”. Based on the experimental measurements with 12 readings from the Keithley 6514 system electrometer, the isothermal electric current from electrobottle“CsOAg-Cu 1” was measured to be 11.17 ± 0.08 pico amps (pA), which is well above the electrometer baseline signal of 0.071 ± 0.17 pA as measured with Keithley 6514 system’s Model 237-ALG-2 low noise cable with three alligator clips (no electrobottle device). The control electrobottle“CK Ag-Cu” gave an electric current reading of -0.360 ± 0.005 pA, which is quite different from that (11.17 ± 0.08 pA) of electrobottle “CsOAg-Cu 1”. Therefore, these experimental results quite clearly demonstrated the isothermal electricity production in the prototype electrobottle“CsOAg-Cu 1”.

[0181] When the isothermal electricity from the prototype electrobottle“CsOAg-Cu 1” was measured in reverse polarity (Keithley 6514 system’s Model 237-ALG-2 low noise cable black alligator connector to CsOAg plate (a type of Ag-O-Cs emitter) and red alligator connector to Cu plate), the isothermal electric current was measured to be -10.77 ± 0.17 pA, which is quite different from that (0.220 ± 0.003 pA) of the control electrobottle“CK Ag-Cu” when measured also in its reverse polarity (see“rev, pA.CZ” in Table 10). Therefore, these experimental results also quite clearly demonstrated the isothermal electricity production activity in the prototype electrobottle“CsOAg-Cu 1” as expected.

[0182] Note, the isothermal electron flux (/ isoT ) normal to the surfaces of the emitter and collector (also named as the isothermal electricity current density) can be calculated as the ratio of the isothermal electric current (l l. l7±0.08 pA) to the CsOAg plate surface area (4.0 x 4.6 = 18.4 cm 2 ). As listed in Table 10, the electricity current density across the CsOAg plate surface area in electrobottle“CsOAg-Cu 1” was determined to be 0.607 pA/cm 2 in its normal polarity and -0.586 pA/cm 2 when measured with its reverse polarity. By taking their absolute values, the averaged electricity current density in electrobottle“CsOAg-Cu 1” was calculated to be 0.596 pA/cm 2 . Based on this isothermal electron flux (Ji S0 T ) of 0.596 pA/cm 2 at 23 °C, the work function of the CsOAg emitter plate surface in electrobottle“CsOAg-Cu 1” was estimated to be about 1.1 eV in this example.

Table 10 presents the experimental isothermal electricity production results from a prototype isothermal electricity generator (electrobottle“CsOAg-Cu 1”) in comparison with a control electrobottle“CK Ag-Cu” as tested at 23 °C with Keithley 6514 electrometer’s zero check and zero (baseline) correction (CZ) functions.

[0183] Table 11 presents the experimental isothermal electricity production results from another prototype isothermal electricity generator (electrobottle“(3) CsOAg-Cu”) measured as a function of operating temperature. The standard methods of Amps and voltage measurements with Keithley 6514 electrometer’s zero check and zero (baseline) correction (CZ) were used in testing this prototype“(3) CsOAg-Cu” electrobottle. Based on 12 measurement readings from Keithley 6514 system electrometer, the isothermal electric current from electrobottle “(3) CsOAg-Cu” at 20.5 °C, 23 °C and 25 °C was measured to be 2.12 ± 0.03 pA, 5.81 ± 0.03 pA and 7.35 ± 0.02 pA, respectively. This experimental result demonstrated that isothermal electricity production can indeed increase dramatically with the rising of environmental temperature as expected.

Table 11 presents the experimental isothermal electricity production results from a prototype isothermal electricity generator (electrobottle“(3) CsOAg-Cu”) measured as a function of operating temperature at 20.5 °C, 23 °C and 25 °C with Keithley 6514 electrometer’s zero check and zero (baseline) correction (CZ) functions.

[0184] When the isothermal electricity from electrobottle“(3) CsOAg-Cu” was measured in reverse polarity (Keithley 6514 system’s Model 237-ALG-2 low noise cable black alligator connector to CsOAg plate (a type of Ag-O-Cs emitter) and red alligator connector to Cu collector plate), the isothermal electric current was measured to be -7.43 ± 0.03 pA (Table 11), somewhat similar to that observed in electrobottle“CsOAg-Cu 1” (Table 10).

[0185] According to the measurements with 12 readings from Keithley 6514 system electrometer, the isothermal electric voltage output from electrobottle“(3) CsOAg-Cu” at 25 °C was measured to be 54.2 ± 0.8 mV (Table 11). Based on the isothermal electric voltage (54.2 ± 0.8 mV) and isothermal electric current (7.35 ± 0.02 pA) as measured at 25 °C, the isothermal electricity power output was calculated to be 3.98 x l () 1 Watts for the electrobottle“(3) CsOAg-Cu” prototype device in this example.

[0186] As listed in Table 11, the electricity current density across the CsOAg plate surface area in electrobottle“(3) CsOAg-Cu” was measured to be 0.399 pA/cm 2 with normal polarity and -0.404 pA/cm 2 when measured with reverse polarity. By taking the absolute values, the averaged electricity current density in electrobottle“(3) CsOAg-Cu” was calculated to be 0.402 pA/cm 2 . Based on this experimentally determined isothermal electron flux (J LSO T) of 0.402 pA/cm 2 at 25 °C, the work function of the CsOAg emitter plate surface in electrobottle“(3) CsOAg-Cu” was estimated to be about 1.1 eV.

[00187] Fig. 33a presents a photograph of another prototype electrobottle placed inside a Faraday box and tested in normal polarity (Keithley 6514 system electrometer’s low noise cable/red alligator connector to CsOAg Ag plate (a type of Ag-O-Cs emitter) and black alligator connector to Cu collector plate), showing an electric current reading of“11.888 pA.CZ”. This shows that the isothermal electric current from this prototype electrobottle was approximately 11.89 pA as measured at room temperature (21 °C) with Keithley 6514 electrometer’s zero check and zero (baseline) correction (CZ). When the same electrobottle was tested in its reverse polarity (Keithley 6514 black alligator connector to CsOAg plate and red alligator connector to Cu plate) as shown in Fig. 33b, it showed a negative electric current reading of “-11.030 pA.CZ”. This is important experimental result since it demonstrated that the sign of the measured electric current was indeed dependent on the polarity of the CsOAg-Cu electrobottle as expected.

[0188] Fig. 34a presents a photograph of another CsOAg-Cu electrobottle placed inside a Faraday box and tested in normal polarity (Keithley 6514 red alligator connector to CsOAg emitter plate and black alligator connector to Cu collector plate), showing an electric voltage reading of“0.10051 V.CZ”. This shows that the isothermal electric voltage from this sample electrobottle was approximately 100.5 mV as measured at room temperature (2l°C) with Keithley 6514 electrometer’s zero check and zero (baseline) correction (CZ). Subsequently, when this CsOAg-Cu electrobottle was short-circuited by connecting with a wire between the terminal (red wire) of CsOAg plate and the terminal (blue wire) of Cu plate as shown in Fig. 34b, it immediately resulted in a zero electric voltage output reading of“-0.00001 V.CZ” as expected. Finally, when the same CsOAg-Cu electrobottle was tested in reverse polarity (Keithley 6514 system’s black alligator connector to CsOAg emitter plate and red alligator connector to Cu collector plate as shown in Fig. 34c), it resulted in a negative electric voltage output reading of“-0.11329 V.CZ” as expected as well. This is also an important result since it demonstrated that the sign of the measured electric voltage was indeed dependent on the polarity of the prototype CsOAg-Cu electrobottle as expected according to one of the various embodiments in the present invention.

[0189] Figure 35 presents a photograph of two prototype electrobottles connected in parallel with their normal polarity (Keithley 6514 system’s red alligator connector to CsOAg emitters and black alligator connector to Cu collectors) inside a Faraday box, showing an electric current reading of“22.230 pA.CZ”. The two prototype electrobottles have an individually measured isothermal electric current of about 11 pA each. According to Eq. 20 disclosed above, when pluralities (n) of the asymmetric function-gated isothermal electricity generator systems are used in parallel, the total electrical current (I sa t(totai)) is the summation of the electrical current ( at(i) as of Eq. 16) from each of the asymmetric function-gated isothermal electricity generator systems. Therefore, the predicted isothermal electric current for the two prototype electrobottles used in parallel should be 22 pA, which excellently matched with the measured electric current reading of“22.230 pA.CZ”. This is an important result since it demonstrated that the isothermal electric current generation effects of the electrobottles used in parallel are indeed additive in nature as expected in accordance with one of the various embodiments in the present invention.

[0190] Figure 36 presents a photograph of three prototype electrobottles connected in parallel in normal polarity (Keithley 6514 red alligator connector to CsOAg emitters and black alligator connector to Cu collectors) inside a Faraday box, showing an electric current reading of“26.166 pA.CZ”. As noted above, the first two prototype electrobottles have an individually measured isothermal electric current of about 11 pA each and the third electrobottle has an measured isothermal electric current of about 4 pA. Therefore, the predicted total isothermal electric current for the three prototype electrobottles connected in parallel should be 26 pA, which matched well with the measured electric current reading of “26.166 pA.CZ”. This is an important result since it again demonstrated that the isothermal electricity generation effects of the prototype electrobottles connected in parallel are indeed additive in accordance with one of the various embodiments in the present invention.

[0191] While the present invention has been illustrated by description of several embodiments and while the illustrative embodiments have been described in considerable detail, it is not the intention of the applicant to restrict or in any way limit the scope of the invention claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicant's general inventive concept.