Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LABORATORY SAMPLE DISTRIBUTION SYSTEM AND LABORATORY AUTOMATION SYSTEM
Document Type and Number:
WIPO Patent Application WO/2018/024885
Kind Code:
A1
Abstract:
Laboratory sample distribution system (100), comprising: - an optical inspection device (160) being adapted to optically inspect items (145) to be optically inspected, - at least one mirror device (200), - drive means (120) being adapted to move the items (145) to be optically inspected and to move the at least one mirror device (200), and - a control device (150) being configured to move an item (145) to be optically inspected relative to the optical inspection device (160) by controlling the drive means (120) such that a field of view of the optical inspection device (160) is extended.

Inventors:
SINZ, Achim (Max-Eyth-Straße 3, Waiblingen, 71332, DE)
HUBER, Tobias (Oskar-Kreibich-Weg 4, Backnang, 71522, DE)
Application Number:
EP2017/069803
Publication Date:
February 08, 2018
Filing Date:
August 04, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
EXCEPT de AND usROCHE DIAGNOSTICS GMBH (Sandhofer Straße 116, Mannheim, 68305, DE)
F. HOFFMANN-LA ROCHE AG (Grenzacherstraße 124, 4070 Basel, 4070, CH)
ROCHE DIAGNOSTICS OPERATIONS, INC. (9115 Hague Road, Indianapolis, Indiana, 46250, US)
International Classes:
G01N35/00; G01N35/04
Domestic Patent References:
WO2013064656A12013-05-10
WO2013098202A12013-07-04
WO2016012517A12016-01-28
Foreign References:
US20140374480A12014-12-25
US20070172396A12007-07-26
US20160069715A12016-03-10
JP2005338938A2005-12-08
US20130175342A12013-07-11
US9248982B22016-02-02
DE102014202838B32014-11-06
Attorney, Agent or Firm:
PATENTANWÄLTE RUFF, WILHELM, BEIER, DAUSTER & PARTNER MBB (Kronenstraße 30, Stuttgart, 70174, DE)
Download PDF:
Claims:
Claims

1 . Laboratory sample distribution system (100), comprising:

an optical inspection device (160) being adapted to optically inspect items (145) to be optically inspected,

at least one mirror device (200),

drive means (120) being adapted to move the items (145) to be optically inspected and to move the at least one mirror device (200), and

a control device (150) being configured to move an item (145) to be optically inspected relative to the optical inspection device (160) by controlling the drive means (120) such that a field of view of the optical inspection device (160) is extended.

2. Laboratory sample distribution system (100) according to claim 1 , further comprising: a transport plane (1 10),

a number of sample container carriers (140) being adapted to carry a respective sample container (145), wherein the sample containers (145) form the items to be optically inspected,

wherein the at least one mirror device (200) comprises:

a base portion (210) comprising a bottom surface (212) for moving over the transport plane (1 10) of the laboratory sample distribution system (100), and a mirror (230),

wherein the drive means (120) are adapted to move the sample container carriers (140) and the mirror device (200) on the transport plane (1 10),

wherein the control device (150) is configured to control the movement of the sample container carriers (140) on top of the transport plane (1 10) by controlling the drive means (120) such that the sample container carriers (140) move along corresponding transport paths, and is configured to control the movement of the mirror device (200) on top of the transport plane (1 10) by controlling the drive means (120) such that the mirror device (200) moves to a mirror position (1 12) on the transport plane (1 10), and

a scanning device (160) forming the optical inspection device being configured to scan a barcode or other information placed on a sample container (145) carried by a sample container carrier (140) that is placed at a scanning position (1 14) on the transport plane (1 10), wherein the scanning position (1 14) is located on the transport plane (1 10) between the scanning device (160) and the mirror position (1 12).

3. Laboratory sample distribution system (100) according to claim 2,

characterized in that the mirror (230) is oriented perpendicular to the bottom surface (212).

4. Laboratory sample distribution system (100) according to claim 2 or 3,

characterized in that

the mirror device (200) comprises a magnetically active device (21 1 ) for interaction with a magnetic field generated by drive means formed as electromagnetic actuators (120) such that a magnetic drive force is applied to the mirror device (200).

5. Laboratory sample distribution system (100) according to one of claims 2 to 4,

characterized in that

the mirror (230) is an angled mirror with respect to an axis (236) perpendicular to the bottom surface (212).

6. Laboratory sample distribution system (100) according to one of claims 2 to 5, characterized in that

the mirror (230) comprises:

a first mirror segment (238), and

a second mirror segment (239), and

the base portion (210) comprises:

a first base portion segment (215) holding the first mirror segment (238), and a second base portion segment (216) holding the second mirror segment (239), and the mirror device (200) comprises a joint (237) connecting the first base portion segment (215) to the second base portion segment (216) such that the first base portion segment (215) and/or the second base portion segment (216) are rotatable around the joint (237), wherein the first base portion segment (215) and the second base portion segment (216) are configured to be moved on the transport plane (1 10) by the drive means (120).

7. Laboratory sample distribution system (100) according to one of claims 2 to 6,

characterized in that

the laboratory sample distribution system (100) comprises at least two mirror devices (200), wherein the control device (150) is configured to drive the mirror devices (200) such that they are placed at respective mirror positions (1 12) on the transport plane (1 10) in order to form an angled mirror surface being commonly formed by the mirrors (230) of the mirror devices (200).

8. Laboratory sample distribution system (100) according to one of claims 2 to 7,

characterized in that the control device (150) is configured to drive the mirror device (200) such that it is rotated on the transport plane (1 10).

9. Laboratory sample distribution system (100) according to one of claims 2 to 8,

characterized in that

the scanning device (160) and/or the mirror (230, 250) is/are configured to allow a 360° view of the scanning device (160) on the sample container (145) at the scanning position (1 14).

10. Laboratory sample distribution system (100) according to one of claims 2 to 9,

characterized in that

the control device (150) is configured to move sample container carriers (140) each carrying a sample container (145) successively to and away from the scanning position (1 14).

1 1 . Laboratory sample distribution system (100) according to one of claims 2 to 10,

characterized in that

the drive means are formed as electromagnetic actuators (120) being located below the transport plane (1 10) and being controllable by the control device (150), and

the sample container carriers (140) each comprise a magnetically active device (141 ) for interaction with a magnetic field generated by the electromagnetic actuators (120) such that a magnetic drive force is applied to the sample container carriers (140).

12. Laboratory automation system (10), comprising

a number of laboratory stations (20, 30), and

a laboratory sample distribution system (100) according to one of the preceding claims.

Description:
Laboratory sample distribution system and laboratory automation system

Applicable field and prior art

The invention relates to a laboratory sample distribution system and to a laboratory automation system. Known laboratory sample distribution systems are typically used in laboratory automation systems in order to transport samples contained in sample containers between different laboratory stations.

A typical laboratory sample distribution system is shown in document WO 2013/064656 A1 . Such a laboratory sample distribution system provides for a high throughput and for reliable operation.

US 9 248 982 B2 discloses a transport system for transporting sample containers, wherein a sample container is placed in a wheel-based sample container carrier.

WO 2013/098202 A1 discloses a transport system for samples or reagents comprising driving means in form of a planar motor. A typical sample container carrier for receiving, holding and transporting a sample container between pre-analytical, analytical and/or post-analytical stations of a laboratory automation system is shown in DE 10 2014 202 838 B3.

WO 2016/012517 A1 discloses a sample container carrier for transporting a sample container over a transport plane by a magnetic force. Sample containers carried by a laboratory sample distribution system may contain barcodes or other identification tags in order to identify a sample contained in the sample container. Such identification tags may be read out by optical recognition devices, for example by barcode readers or cameras.

However, it has been found that reading such identification tags is complicated in certain situations, because the identification tags usually do not span a whole circumference of the sample container. As the sample containers can typically rotate freely on a transport plane of a laboratory sample distribution system, it is possible that a reading device is not able to identify a sufficient portion of the identification tag when a sample container is placed at a certain position in order to read the identification tag.

Object and solution It is an object of the invention to provide for a laboratory sample distribution system and a laboratory automation system enabling a reliable and performant optical inspection of items to be optically inspected.

This object is solved by a laboratory sample distribution system according to claim 1 , and a laboratory automation system according to claim 12. The laboratory sample distribution system comprises an optical inspection device, e.g. in form of a camera, a bar code reader, a microscope, etc. The optical inspection device is adapted to optically inspect items to be optically inspected. The items may e.g. be embodied as tubes, glass slides with tissue slices, any kind of work pieces, etc.

The laboratory sample distribution system further comprises at least one mirror device. The laboratory sample distribution system further comprises drive means being adapted to directly or indirectly move the number of items to be optically inspected and to move the at least one mirror device. The drive means may be adapted to move the items to be optically inspected independently from the mirror device.

The laboratory sample distribution system further comprises a control device being configured to move an item to be optically inspected relative to the optical inspection device by driving or controlling the drive means such that a field of view of the optical inspection device is extended or enhanced. The control device may be configured to move the item to be optically inspected relative to the optical inspection device by driving or controlling the drive means such that an optical angle of inspection of the optical inspection device is enhanced. The invention further relates to a laboratory sample distribution system comprising a transport plane. The laboratory sample distribution system further comprises a number (e.g. 1 to 10000) of sample container carriers. The laboratory sample distribution system further comprises at least one mirror device comprising a base portion comprising a bottom surface for moving over the transport plane of the laboratory sample distribution system, and a mirror. The laboratory sample distribution system further comprises drive means being adapted to move the sample container carriers and the mirror device on the transport plane. The laboratory sample distribution system further comprises a control device being configured to control the movement of the sample container carriers on top of the transport plane by driving or controlling the drive means such that the sample container carriers move along corresponding transport paths, and being configured to control the movement of the mirror device on top of the transport plane by driving or controlling the drive means such that the mirror device moves to a mirror position on the transport plane. The laboratory sample distribution system further comprises a scanning device being configured to scan barcodes or other information printed on a sample container carried by a sample container carrier that is placed at a scanning position on the transport plane, wherein the scanning position is located on the transport plane between the scanning device and the mirror position. The control device is configured to control or drive the drive means such that the sample container carrier carrying the sample container to be scanned moves to the scanning position. By moving the mirror device by means of the existing drive mechanism to the required mirror position, the scanning device is enabled to scan barcodes not being in the field of view of the scanning device.

The mirror position can be located at a position where the mirror of the mirror device helps the scanning device to see an identification tag on a sample container. Placing the sample container carrier at the scanning position on the transport plane between the scanning device and the mirror position e.g. allows for reading barcodes or other information or identification tags with great reliability independently of a rotational orientation of the sample container.

The mirror may be an optical mirror. Typically, the mirror is mechanically fixed to the base portion and is placed on top of the base portion. The mirror device may be embodied separate from the sample container carriers. The mirror device according to the present invention allows for a significant extension of a field of view of the optical inspection device, because the mirror can be used in order to view portions of a sample container that would not be visible without the mirror. In addition, the mirror of the mirror device can be placed at a specific location on a transport plane of a sample distribution system, because it can in principle be moved like a sample container carrier that is typically used in a laboratory sample distribution system.

The control device may e.g. a Personal Computer or a microprocessor. By means of the laboratory sample distribution system, sample container carriers can be used in order to transport sample containers containing respective samples to laboratory stations or other entities. Furthermore, using a mirror device yields the additional functionality of having at least one mirror being movable on the transport plane, so that devices needing to have a view on identification tags placed on sample containers can make use of respective mirrors in order to extend their field of view. It should be noted that the sample container carriers and the mirror devices can typically be driven based on the same drive principle.

According to an embodiment, the mirror is oriented with a non-zero angle relative to the bottom surface. Especially, the mirror can be oriented perpendicular to the bottom surface. This allows for a view on parts of a sample container at the same height as an optical viewing device like a camera.

According to an embodiment, the mirror device comprises a magnetically active device for interaction with a magnetic field generated by drive means formed as electro-magnetic actuators such that a magnetic drive force is applied to the mirror device. This allows for the mirror device being driven in a similar way as a sample container carrier. The magnetically active device can e.g. be a permanent magnet.

According to an embodiment, the mirror device carries a number (e.g. 2 to 4) of magnetically active devices for interaction with a magnetic field generated by drive means formed as electromagnetic actuators such that a magnetic drive force is applied to the mirror device. The mirror device can carry more than one, especially two magnetically active devices, which allows for the mirror device not only being moved on a transport plane, but also being deliberately rotated.

According to an embodiment, the mirror device comprises drive means formed as wheels driven by electric motors. This allows for autonomous propulsion of the mirror device without the need for interaction with external electro-magnetic actuators. According to an embodiment, the mirror is an angled mirror with respect to an axis perpendicular to the bottom surface. This allows for an even wider viewing area. It should be noted that there can also be more than one axis around which the mirror is angled, so that the mirror can be divided into a plurality of segments. Therefore, the mirror may comprise several mirror segments.

According to an embodiment, the mirror of the mirror device comprises a first mirror segment and a second mirror segment. The base portion of the mirror device comprises a first base portion segment holding the first mirror segment and a second base portion segment holding the second mirror segment. A joint connects the first base portion segment to the second base portion segment. The first base portion segment and/or the second base portion segment are rotatable around the joint. The rotational movement is caused by the drive means. The first base portion segment and the second base portion segment are configured to be moved on the transport plane by the drive means. This allows for an even wider viewing area. The viewing area may be adapted on demand by the movement of the first base portion segment or the second base portion segment relative to each other. It should be noted that there may be more than two mirror segments. According to an embodiment, the laboratory sample distribution system comprises at least two mirror devices according to the invention. With regard to the mirror devices, all embodiments and variations as discussed herein can be applied. The control device may be configured to drive the mirror devices such that they are placed at respective mirror positions on the transport plane in order to form an angled mirror surface being commonly formed by the mirrors of the mirror devices.

Such an embodiment allows for the advantages of an angled mirror as discussed above without the need to provide for an actually angled mirror. Rather, two mirrors can be used in combination to form a common angled mirror.

According to an embodiment, the control device is configured to drive the mirror device such that it is rotated on the transport plane, especially while the mirror device is passing a sample container or while a laboratory sample container is passing the mirror device. This allows that the mirror device helps to read an identification tag on a sample container even if the sample container is moving or if a similar device is moving. This can increase throughput of a reading apparatus being placed on or besides the transport plane. Rotating the mirror device can especially be accomplished when the mirror device comprises at least two magnetically active devices.

The invention further relates to a laboratory sample distribution system. The laboratory sample distribution system comprises a transport plane and a number of sample container carriers. It further comprises at least one mirror being positioned fixedly at a mirror position on or besides the transport plane. The laboratory sample distribution system further comprises drive means being adapted to move the sample container carriers on the transport plane. The laboratory sample distribution system further comprises a control device being configured to control the movement of the sample container carriers on top of the transport plane by driving the drive means such that the sample container carriers move along corresponding transport paths. By means of this type of laboratory sample distribution system, the advantages as discussed above with respect to having a mirror in a laboratory sample distribution system can be applied for a laboratory sample distribution system without the need to provide for a movable mirror. Rather, it has been found that similar advantages can be achieved if the mirror is placed fixedly on or besides the transport plane.

According to an embodiment, the scanning device and/or the mirrors are configured to allow a 360° view of the scanning device on the sample container at the scanning position. This allows for high reliability when reading barcodes or other identification tags. The 360° view can be achieved by using the mirror or mirrors to see portions of the sample container that would not be visible without a mirror.

According to an embodiment, the control device is configured to move sample container carriers each carrying a sample container successively to and away from the scanning position. This allows for a successive scanning of barcodes or other information or identification tags being placed on respective sample containers.

According to an embodiment, the drive means are formed as electro-magnetic actuators being located below the transport plane in a grid having rows and columns and being controllable by the control device. The sample container carriers each comprise a magnetically active device, e.g. a permanent magnet, for interaction with a magnetic field generated by the electro- magnetic actuators such that a magnetic drive force is applied to the sample container carriers. This implementation allows for a reliable and efficient driving of the sample container carriers and the mirror devices.

According to an alternative embodiment, the drive means are formed as wheels driven by electric motors being located in the sample container carriers and being controllable by the control device. This allows for an alternative implementation having wheels in order to drive the sample container carriers and the mirror devices.

The invention further relates to a laboratory automation system. The laboratory automation system comprises a number of laboratory stations, preferably pre-analytical, analytical and/or post-analytical stations. The laboratory automation system further comprises a laboratory sample distribution system according to the invention. With regard to the laboratory sample distribution system, all embodiments and variations as discussed herein can be applied. The stations may be arranged adjacent to the laboratory sample distribution system. The laboratory sample distribution system may be adapted to transport the sample container carriers and/or sample containers between the stations.

Pre-analytical stations may be adapted to perform any kind of pre-processing of samples, sample containers and/or sample container carriers.

Analytical stations may be adapted to use a sample or part of the sample and a reagent to generate a measuring signal, the measuring signal indicating if and in which concentration, if any, an analyte is existing.

Post-analytical stations may be adapted to perform any kind of post-processing of samples, sample containers and/or sample container carriers.

The pre-analytical, analytical and/or post-analytical stations may comprise at least one of a decapping station, a recapping station, an aliquot station, a centrifugation station, an archiving station, a pipetting station, a sorting station, a tube type identification station, a sample quality determining station, an add-on buffer station, a liquid level detection station, and a sealing/desealing station.

The invention may be directed to a method of operating the laboratory sample distribution system as described above. The method comprises the following steps: moving the laboratory sample container carrier on the transport plane to the scanning position, moving the mirror device to reflect the information to the optical inspection device, and detecting the information by the optical inspection device, in particular during the movement of the laboratory sample container carrier.

Brief description of the drawing

The invention will be described in detail with respect to the drawings schematically depicting embodiments of the invention. In detail:

Fig. 1 shows a mirror device, Fig. 2 shows further embodiment of a mirror device, Fig. 3 shows a laboratory automation system, Fig. 4 shows a further embodiment of a laboratory automation system,

Fig. 5 shows a further embodiment of a laboratory automation system, Fig. 6 shows further embodiment of a mirror device,

Fig. 7 shows the mirror device of Fig. 6 in another functional position,

Fig. 8 shows further embodiment of a mirror device, and

Fig. 9 shows further embodiment of a mirror device.

Detailed description of the embodiments Fig. 1 shows a mirror device 200 according to an embodiment of the invention. The mirror device 200 comprises a base portion 210. At a lower side of the base portion 210 that is not visible in fig. 1 , a bottom surface 212 is provided. The bottom surface 212 is configured as a flat surface so as to provide for a stable standing of the mirror device 200 on a transport plane of a laboratory sample distribution system. It should be noted that the bottom surface 212 defines the orientation of the mirror device 200 in its typical use situation.

On the base portion 210, there is provided a holding means 220 on which a mirror 230 is positioned. The mirror 230 is configured as a flat optical mirror that is oriented perpendicular to the bottom surface 212. Thus, the mirror 230 provides for the possibility to extend a viewing region of an optical inspection device positioned on the same height above a transport plane as the mirror 230.

Inside of the base portion 210, there is provided a magnetically active device 21 1 in the form of a permanent magnet so that the mirror device 200 can be moved over a transport plane of a laboratory sample distribution system by means of interaction between the permanent magnet 21 1 and electro-magnetic actuators of the laboratory sample distribution system. This will be described further below with reference to figs. 3 and 4. Fig. 2 shows an alternative embodiment of a mirror device 200 according to the invention. In contrast to the embodiment shown in fig. 1 , the mirror 230 is embodied as an angled mirror having a first mirror surface 232 and a second mirror surface 234, which abut each other at an axis 236. The axis 236 is oriented perpendicular to the bottom surface 212, so that the axis 236 is in a vertical orientation in a typical use of the mirror device 200.

The angled mirror 230 provides for an even further extension of a viewing region of an optical inspection device and can be advantageously used in certain situations.

Fig. 3 shows a laboratory automation system 10. The laboratory automation system 10 comprises a first laboratory station 20, a second laboratory station 30 and a laboratory sample distribution system 100.

The laboratory sample distribution system 100 comprises a transport plane 1 10. Below the transport plane 1 10, a plurality of electro-magnetic actuators 120 are arranged in rows and columns. Each electro-magnetic actuator 120 comprises a respective ferromagnetic core 125.

A number of position sensors 130, being embodied as Hall-sensors, are distributed over the transport plane 1 10.

The laboratory sample distribution system 100 further comprises a plurality of sample container carriers 140. A sample container carrier 140 can carry a respective sample container 145, being embodied as laboratory tube. It is to be noted that only one laboratory sample container carrier 140 carrying a respective sample container 145 is shown in fig. 3 for exemplary purposes. A typical sample distribution system 100 comprises a plurality of such sample container carriers 140. The sample containers 145 form items to be optically inspected.

Each sample container carrier 140 comprises a magnetically active device 141 in the form of a permanent magnet. Thus, magnetic fields generated by the electro-magnetic actuators 120 can drive a sample container carrier 140 over the transport plane 1 10. Furthermore, the magnetic field generated by the permanent magnet 141 of a sample container carrier 140 can be detected by the position sensors 130, so that a feedback regarding the position of a sample container carrier 140 can be obtained.

Both the electro-magnetic actuators 120 and the position sensors 130 are electrically connected to a control device 150. The control device 150 can drive or control the electro-magnetic actuators 120 such that the sample container carriers 140 move along corresponding transport paths. It can also determine the position of each sample container carrier 140.

The laboratory stations 20, 30 are arranged adjacent to the transport plane 1 10. It is noted that these two laboratory stations 20, 30 are only shown for exemplary purposes in fig. 3, and that a typical laboratory automation system 10 comprises more than two laboratory stations 20, 30.

On the transport plane 1 10, there is provided a mirror device 200 according to the embodiment shown in fig. 1 . The mirror device is also part of the laboratory sample distribution system 100.

The mirror device 200 is placed at a mirror position 1 12, which is defined as an electromagnetic actuator 120 where a mirror is of most use. The mirror device 200 comprises a magnetically active device 21 1 in the form of a permanent magnet so that it can be moved and detected on the transport plane 1 10 in the same way as the sample container carrier 140. The control device 150 controls the electro-magnetic actuators 120 such that the mirror device 200 moves to the mirror position 1 12.

Adjacent to the transport plane 1 10, an optical inspection device in form of an optical recognition device or scanning device, here in the form of a camera 160, is provided which is adapted to detect barcodes or other identification tags being located on a sample container 145.

In the situation shown in fig. 3, the sample container carrier 140 carrying its sample container 145 is placed at a scanning position 1 14, which is an electro-magnetic actuator 120 over which a sample container 145 can best be seen or read out by the camera 160. If a barcode or other identification tag on the sample container 145 is not in an orientation that it can directly be seen by the camera 160, the mirror device 200 by means of its mirror 230 supports the camera 260 to see the barcode or identification tag on the sample container 145. Thus, the camera 160 can identify and read the barcode or identification tag on the sample container 145 even if it is not directly orientated in the direction of the camera 160. Fig. 4 shows an alternative embodiment of the laboratory automation system 10 of fig. 3 in that a mirror device 200 according to the embodiment shown in fig. 2 is provided on the transport plane 1 10. Thus, the mirror device 200 has an angled mirror 230. This provides for an alternative and - at least in some situations - better field of view or viewing region of the camera 160. Fig. 5 shows a further alternative embodiment of a laboratory automation system 10, wherein a fixed mirror 250 is provided on the transport plane 1 10. The fixed mirror 250 is provided at a position on the transport plane 1 10 which is similar to the mirror position 1 12 shown in figs. 3 and 4. Thus, the fixed mirror 250 can yield the same functionality as the mirrors shown in figs. 3 and 4.

Fig. 6 and fig.7 show an alternative embodiment of a mirror device 200 according to the invention.

The mirror 230 of the mirror device 200 comprises a first mirror segment 238 and a second mirror segment 239. The first mirror segment 238 is held by a first base portion segment 215 having one magnetically active device 21 1 . The second mirror segment 239 is held by a second base portion segment 216 having two magnetically active devices 21 1 .

The first base portion segment 215 and the second base portion segment 216 together form the base portion.

A joint 237 connects first base portion segment 215 to the second base portion segment 216. When both base portion segments 215, 216 are moved relative to each other at least one base portion segment performs a rotational movement, the joint 237 forming the rotation axis. The rotational movement is caused by the magnetic fields generated by the electro-magnetic actuators 120.

Fig. 6 and fig.7 show the mirror device 200 for different rotated positions of the first base portion segment 215 relative to the second base portion segment 216.

Fig. 8 shows an alternative embodiment of a mirror device 200 according to the invention.

The mirror device 200 comprises an electric motor 241 , being adapted to rotate the mirror 230 relative to the base portion 210. The mirror device 200 further comprises a power source 242. The power source 242 may e.g. be embodied as a battery, a supercapacitor or an inductive unit for receiving energy from the magnetic field generated by means of the electro-magnetic actuators 120. In order to establish a desired field of view the control device 150 may control the electric motor 241 such that the field of view of the camera 160 is optimized. The field of view of the camera 160 may be optimized by a tracking rotational movement of the mirror 230 during a movement of a sample container carrier 140 through the field of view of the camera 160. Fig. 9 shows an alternative embodiment of a mirror device 200 according to the invention. The base portion 210 further comprises a second magnetically active device 243 causing a magnetic anisotropy, i.e. the magnetic properties of the base portion 210 depend on an angularity of the base portion 210. Thus, it is possible to rotate the mirror device 200 on the transport plane 1 10 around a vertical axis by a magnetic force resulting from an interaction between the magnetic field of the electro-magnetic actuators 120 and the anisotropic magnetic field of the base portion 210. In order to establish a desired field of view the control device 150 may control the electro-magnetic actuators 120 such that the field of view of the camera 160 is optimized. The field of view of the camera 160 may be optimized by a tracking rotational movement of the mirror 230 during a movement of a sample container carrier 140 through the field of view of the camera 160.