Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LAUNDRY DETERGENT COMPOSITION
Document Type and Number:
WIPO Patent Application WO/2016/206837
Kind Code:
A1
Abstract:
A laundry detergent composition comprising (i) from 4 to 50 wt% of an anionic charged surfactant, other than an alkoxylated polyarylphenol, (ii) from 0.5 to 20 wt% of an alkoxylated polyarylphenol having an average of 5 to 70 alkoxy groups, (iii) from 0.0005 to 0.5 wt % of a lipase enzyme, and (iv) from 0.0005 to 0.2 wt% of a protease enzyme. Domestic method of treating a textile, the method comprising the step of treating a textile with an aqueous solution of 0.5 to 20 g/L of the laundry detergent composition.

Inventors:
BATCHELOR STEPHEN NORMAN (GB)
BIRD JAYNE MICHELLE (GB)
Application Number:
PCT/EP2016/059424
Publication Date:
December 29, 2016
Filing Date:
April 27, 2016
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
UNILEVER PLC (GB)
UNILEVER NV (NL)
CONOPCO INC DBA UNILEVER (US)
International Classes:
C11D1/37; C11D1/83; C11D3/37; C11D3/386; C11D11/00; C11D1/72
Domestic Patent References:
WO1998045396A11998-10-15
WO2002036727A12002-05-10
WO1992008779A11992-05-29
WO1998045396A11998-10-15
WO1995006720A11995-03-09
WO1996027002A11996-09-06
WO1996012012A11996-04-25
WO1991016422A11991-10-31
WO2000060063A12000-10-12
WO1999042566A11999-08-26
WO2002062973A22002-08-15
WO1997004078A11997-02-06
WO1997004079A11997-02-06
WO2004101759A22004-11-25
WO2004101760A22004-11-25
WO2004101763A22004-11-25
WO2007087243A22007-08-02
WO2009021867A22009-02-19
WO1989006279A11989-07-13
WO1993018140A11993-09-16
WO1992017517A11992-10-15
WO2001016285A22001-03-08
WO2002026024A12002-04-04
WO2002016547A22002-02-28
WO1989006270A11989-07-13
WO1994025583A11994-11-10
WO2005040372A12005-05-06
WO2005052161A22005-06-09
WO2005052146A22005-06-09
WO1992019729A11992-11-12
WO1996034946A11996-11-07
WO1998020115A11998-05-14
WO1998020116A11998-05-14
WO1999011768A11999-03-11
WO2001044452A12001-06-21
WO2003006602A22003-01-23
WO2004003186A22004-01-08
WO2004041979A22004-05-21
WO2007006305A12007-01-18
WO2011036263A12011-03-31
WO2011036264A12011-03-31
Foreign References:
GB2007692A1979-05-23
US20040087458A12004-05-06
US20050107281A12005-05-19
GB2007692A1979-05-23
EP0218272A11987-04-15
EP0331376A21989-09-06
GB1372034A1974-10-30
JPS6474992A1989-03-20
US5869438A1999-02-09
US6939702B12005-09-06
US7262042B22007-08-28
US6312936B12001-11-06
US5679630A1997-10-21
US4760025A1988-07-26
US5352604A1994-10-04
EP0384070A21990-08-29
Other References:
JAN H. VAN EE: "Enzymes in Detergency", 1997
DARTOIS ET AL., BIOCHEMICA ET BIOPHYSICA ACTA, vol. 1131, 1993, pages 253 - 360
SIEZEN ET AL., PROTEIN ENGNG., vol. 4, 1991, pages 719 - 737
SIEZEN ET AL., PROTEIN SCIENCE, vol. 6, 1997, pages 501 - 523
"International Buyers Guide", 1992, CFTA PUBLICATIONS
"Chemicals Buyers Directory 80th Annual Edition", 1993, SCHNELL PUBLISHING CO.
POUCHER, JOURNAL OF THE SOCIETY OF COSMETIC CHEMISTS, vol. 6, no. 2, 1955, pages 80
Attorney, Agent or Firm:
AVILA, David, Victor (Colworth House Sharnbroo, Bedford Bedfordshire MK44 1LQ, GB)
Download PDF:
Claims:
CLAIMS

1. A laundry detergent composition comprising:

(i) from 4 to 50 wt% of an anionic charged surfactant, other than an alkoxylated polyarylphenol;

(ii) from 0.5 to 20 wt% of an alkoxylated polyarylphenol having an average of 5 to 70 alkoxy groups;

(iii) from 0.0005 to 0.5 wt % of a lipase enzyme; and,

(iv) from 0.0005 to 0.2 wt% of a protease enzyme.

2. A laundry detergent composition according to claim 1 wherein the lipase is selected from a Triacylglycerol lipase (E.C. 3.1.1.3).

3. A laundry detergent composition according to claim 1 or 2 where the protease is a Subtilisins type serine proteases (EC 3.4.21 .62).

4. A laundry detergent composition according to claim 1 to 3, wherein the alkoxylated polyarylphenol has 10 to 30 alkoxy groups.

5. A laundry detergent composition according to any one of claim 1 to 4, wherein the alkoxylation is ethoxylation and the alkoxylated polyarylphenol has 2 or 3 aryl groups attached to the phenol and the aryl group is styryl.

6. A laundry detergent composition according any preceding claim, wherein the

alkoxylated polyarylphenol dispersant is:

7. A laundry detergent composition according to any one of the preceding claims, where in the composition is is a non-phosphate built powder laundry detergent formulation.

8. A laundry detergent composition according to any one of the preceding claims,

wherein the alkoxylated polyarylphenol is present at a level of from 2 to 14 wt%; the lipase is present at a level of from 0.05 to 0.25 wt % and the protease is present at a level from 0.002 to 0.02 wt%.

9. A laundry detergent composition according to any preceding claims, wherein the

anionic charged surfactant is selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; methyl ester sulphonates; and mixtures thereof.

10. A laundry detergent composition according to any preceding claims, wherein the

anionic surfactant is selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; and mixtures thereof. 1 1 . A laundry detergent composition according to any preceding claims wherein the level of anionic surfactant is from 8 to 20 wt%.

12. A laundry detergent composition according to any preceding claims wherein the weight fraction of non-ionic surfactant/anionic surfactant is from 0 to 0.1 .

13. A domestic method of treating a textile, the method comprising the step of: treating a textile with an aqueous solution of 0.5 to 20 g/L of the laundry detergent composition according to any preceding claim.

Description:
LAUNDRY DETERGENT COMPOSITION

FIELD OF INVENTION

The present invention concerns the use of alkoxylated polyarylphenols with an enzyme cocktail comprising a lipase and protease enzyme in a detergent formulation.

BACKGROUND OF THE INVENTION

Lipases are used in domestic detergent formulations to remove fat based stains.

Protease enzymes are used in laundry detergent formulations to remove protein containing stains from fabrics.

Many stains found in domestic laundry contain both proteins and fats.

Enzyme cocktails comprising protease and lipases are used in domestic laundry detergent formulations.

There is a need to improve the performance of protease and lipase enzyme cocktails in domestic laundry detergent formulations. WO 98/45396 discloses a cleaning composition containing: (a) from about 1 to about 60 percent by weight of a surfactant component consisting essentially of: (i) a fatty alkyl ether sulfate; (ii) a linear alcohol ethoxylate; and (iii) a nonionic sugar surfactant, having a ratio by- weight of (i):(ii):(iii) in a range of about 0.5 to 1 .0:1.5 to 2.5:0.5 to 1 .5; and (b) from about 0.1 to about 10 percent by weight of an enzyme component selected from the group consisting of proteases, amylases, lipases, cellulases, peroxidases, and mixtures thereof.

GB 2007692 discloses anti-soiling and anti-redesposition compositions which can be used in detergency. SUMMARY OF THE INVENTION

We have found that the combination of a lipase protease enzyme cocktail and alkoxylated polyarylphenols dispersants gives enhanced cleaning.

In one aspect the present invention provides a laundry detergent composition comprising:

(i) from 4 to 50 wt% of an anionic charged surfactant, preferably the level of charged surfactant from 6 to 30 wt%, most preferably from 8 to 20 wt%;

(ii) from 0.5 to 20 wt%, preferably from 2 to 14 wt%, most preferably from 2.5 to 8 wt% of an alkoxylated polyarylphenols dispersant having 5 to 70 alkoxy groups, most preferably 10 to 30 alkoxy groups; (iii) from 0.0005 to 0.5 wt % of a lipase enzyme, preferably from 0.01 to 0.2 wt%; and,

(iv) from 0.0005 to 0.2 wt% of a protease enzyme, preferably from 0.002 to 0.02 wt%.

In the context of the current invention the alkoxylated polyarylphenol is not considered a surfactant and does not contribute numerically to the surfactant as defined herein.

All enzyme levels refer to pure protein.

In another aspect the present invention provides a domestic method of treating a textile, the method comprising the step of: treating a textile with an aqueous solution of 0.5 to 20 g/L of the laundry detergent composition as defined herein.

The domestic method is preferably conducted at a temperature from 283 to 313K.

DETAILED DESCRIPTION OF THE INVENTION

Alkoxylated polyarylphenol dispersant The alkoxylated polyarylphenol dispersant is a phenol to which aryl groups are covalently attached and the molecule is alkoxylated preferably with ethoxy groups. The alkoxylated polyarylphenol may be charged or uncharged, preferably negatively charged or uncharged, most preferably uncharged (neutral).

Preferably the alkoxylated polyarylphenol is an alkoxylated tristyrylphenol.

The alkoxylated polyarylphenol contains an average of 5 to 70 alkoxy groups, preferably 10 to 30 alkoxy groups. Preferably the alkoxylation is ethoxylation.

Preferably the alkoxylated polyarylphenol has 2 or 3 aryl groups attached to the phenol.

Preferably they are in the 2,4 or 2,4,6 position on the phenol. The alkoxylate is attached to the 1 position. The alkoxylate may be capped by charged groups such as phosphate or sulphate. Preferably the alkoxylate is capped by a hydrogen atom.

The aryl group in the alkoxylated polyarylphenol is preferably selected from, phenyl, tolyl, naphthyl, tetrahydronaphthyl, indanyl, indenyl, styryl, pyridyl, quinolinyl, and mixtures thereof, most preferably styryl.

Most preferably, the alkoxylated polyarylphenol is polyethylene glycol mono(2,4,6-tris(1 - phenylethyl)phenyl) ether (CAS-No: 70559-25-0) with the following structure:

Where n is selected from 5 to 70, preferably n is selected from: 10; 1 1 ; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21 ; 22; 23; 24; 25; 26; 27; 28; 29; 30; 31 ; 32; 33; 34; 35; 36; 37; 38; 39; 40; 41 ; 42; 43; 44; 45; 46; 47; 48; 49; 50; 51 ; 52; 53; and, 54, most preferably n is selected from 10; 1 1 ; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21 ; 22; 23; 24; 25; 26; 27; 28; 29; 30.

The designation n is the average numbers of moles of alkoxy units in the polyalkoxy chain. Compounds are available from industrial suppliers, for example Rhodia under the Soprophor trade name; from Clariant under the Emulsogen trade name; Aoki Oil Industrial Co under the Blaunon trade name; from Stepan under the Makon trade name; from TOHO Chemical Industry Co under the Sorpol trade name.

In the context of the current invention the alkoxylated polyarylphenol is not considered a surfactant and does not contribute numerically to the surfactant as defined herein.

Lipases

Cleaning lipases are discussed in Enzymes in Detergency edited by Jan H. Van Ee, Onno Misset and Erik J. Baas (1997 Marcel Dekker, New York).

Cleaning lipases are preferable active at alkaline pH in the range 7 to 1 1 , most preferably they have maximum activity in the pH range 8 to 10.5.

The lipase may be selected from lipase enzymes in E.C. class 3.1 or 3.2 or a combination thereof.

Preferably the cleaning lipases selected a Triacylglycerol lipases (E.C. 3.1 .1 .3).

Suitable triacylglycerol lipases can be selected from variants of the Humicola lanuginosa (Thermomyces lanuginosus) lipase. Other suitable triacylglycerol lipases can be selected from variants of Pseudomonas lipases, e.g., from P. alcaligenes or P. pseudoalcaligenes (EP 218 272), P. cepacia (EP 331 376), P. stutzeri (GB 1 ,372,034), P. fluorescens,

Pseudomonas sp. strain SD 705 (WO 95/06720 and WO 96/27002), P. wisconsinensis (WO 96/12012), Bacillus lipases, e.g., from B. subtilis (Dartois et al. (1993), Biochemica et Biophysica Acta, 1 131 , 253-360), B. stearothermophilus (JP 64/744992) or B. pumilus (WO 91/16422). Further examples of EC 3.1 .1 .3 lipases include those described in WIPO publications WO 00/60063, WO 99/42566, WO 02/062973, WO 97/04078, WO 97/04079 and

US 5,869,438. Preferred lipases are produced by Absidia reflexa, Absidia corymbefera, Rhizmucor miehei, Rhizopus deleman Aspergillus niger, Aspergillus tubigensis, Fusarium oxysporum, Fusarium heterosporum, Aspergillus oryzea, Penicilium camembertii,

Aspergillus foetidus, Aspergillus niger, Thermomyces lanoginosus (synonym: Humicola lanuginosa) and Landerina penisapora, particularly Thermomyces lanoginosus. Certain preferred lipases are supplied by Novozymes under the tradenames. Lipolase®, Lipolase Ultra®, Lipoprime®, Lipoclean® and Lipex® (registered tradenames of Novozymes) and LIPASE P "AMANO®" available from Areario Pharmaceutical Co. Ltd., Nagoya, Japan, AMANO-CES®, commercially available from Toyo Jozo Co., Tagata, Japan; and further Chromobacter viscosum lipases from Amersham Pharmacia Biotech., Piscataway, New Jersey, U.S.A. and Diosynth Co., Netherlands, and other lipases such as Pseudomonas gladioli. Additional useful lipases are described in WIPO publications WO 02062973, WO 2004/101759, WO 2004/101760 and WO 2004/101763. In one embodiment, suitable lipases include the "first cycle lipases" described in WO 00/60063 and U.S. Patent

6,939,702 Bl, preferably a variant of SEQ ID No. 2, more preferably a variant of SEQ ID No. 2 having at least 90% homology to SEQ ID No. 2 comprising a substitution of an electrically neutral or negatively charged amino acid with R or K at any of positions 3, 224, 229, 231 and 233, with a most preferred variant comprising T23 IR and N233R mutations, such most preferred variant being sold under the tradename Lipex® (Novozymes).

The aforementioned lipases can be used in combination (any mixture of lipases can be used). Suitable lipases can be purchased from Novozymes, Bagsvaerd, Denmark; Areario Pharmaceutical Co. Ltd., Nagoya, Japan; Toyo Jozo Co., Tagata, Japan; Amersham

Pharmacia Biotech., Piscataway, New Jersey, U.S.A; Diosynth Co., Oss, Netherlands and/or made in accordance with the examples contained herein.

Lipase with reduced potential for odour generation and a good relative performance, are particularly preferred, as described in WO2007/087243. These include lipoclean ®

(Novozyme)

Protease

Protease enzymes hydrolyse bonds within peptides and proteins, in the laundry context this leads to enhanced removal of protein or peptide containing stains. Examples of suitable proteases families include aspartic proteases; cysteine proteases; glutamic proteases;

aspargine peptide lyase; serine proteases and threonine proteases. Such protease families are described in the MEROPS peptidase database (http://merops.sanger.ac.uk/). Serine proteases are preferred. Subtilase type serine proteases are more preferred. The term "subtilases" refers to a sub-group of serine protease according to Siezen et al., Protein Engng. 4 (1991 ) 719-737 and Siezen et al. Protein Science 6 (1997) 501 -523. Serine proteases are a subgroup of proteases characterized by having a serine in the active site, which forms a covalent adduct with the substrate. The subtilases may be divided into 6 sub- divisions, i.e. the Subtilisin family, the Thermitase family, the Proteinase K family, the Lantibiotic peptidase family, the Kexin family and the Pyrolysin family.

Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B.

alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in (WO93/18140). Other useful proteases may be those described in W092/175177, WO01/016285, WO02/026024 and WO02/016547. Examples of trypsin-like proteases are trypsin (e.g. of porcine or bovine origin) and the Fusarium protease described in WO89/06270, W094/25583 and

WO05/040372, and the chymotrypsin proteases derived from Cellumonas described in WO05/052161 and WO05/052146. Further Examples of useful proteases are the variants described in: W092/19729,

WO96/034946, WO98/201 15, WO98/201 16, WO99/01 1768, WO01/44452, WO03/006602, WO04/03186, WO04/041979, WO07/006305, W01 1/036263, W01 1/036264, especially the variants with substitutions in one or more of the following positions: 3, 4, 9, 15, 27, 36, 57, 68, 76, 87, 95, 96, 97, 98, 99, 100, 101 , 102, 103, 104, 106, 1 18, 120, 123, 128, 129, 130, 160, 167, 170, 194, 195, 199, 205, 206, 217, 218, 222, 224, 232, 235, 236, 245, 248, 252 and 274 using the BPN' numbering. More preferred the subtilase variants may comprise the mutations: S3T, V4I, S9R, A15T, K27R, * 36D, V68A, N76D, N87S,R, * 97E, A98S, S99G,D,A, S99AD, S101 G,M,R S103A, V104I,Y,N, S106A, G1 18V,R, H120D,N, N123S, S128L, P129Q, S130A, G160D, Y167A, R170S, A194P, G195E, V199M, V205I, L217D, N218D, M222S, A232V, K235L, Q236H, Q245R, N252K, T274A (using BPN' numbering).

Most preferably the protease is a subtilisins (EC 3.4.21 .62).

Examples of subtilases are those derived from Bacillus such as Bacillus lentus, B.

alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii described in; US7262042 and WO09/021867, and subtilisin lentus, subtilisin Novo, subtilisin Carlsberg, Bacillus licheniformis, subtilisin BPN', subtilisin 309, subtilisin 147 and subtilisin 168 described in WO89/06279 and protease PD138 described in (WO93/18140). Preferably the subsilisin is derived from Bacillus, preferably Bacillus lentus, B. alkalophilus, B. subtilis, B. amyloliquefaciens, Bacillus pumilus and Bacillus gibsonii as described in US 6,312,936 B I, US 5,679,630, US 4,760,025, US 7,262,042 and WO09/021867. Most preferably the subtilisin is derived from Bacillus gibsonii or Bacillus Lentus.

Suitable commercially available protease enzymes include those sold under the trade names names Alcalase®, Blaze®; DuralaseTm, DurazymTm, Relase®, Relase® Ultra, Savinase®, Savinase® Ultra, Primase®, Polarzyme®, Kannase®, Liquanase®, Liquanase® Ultra, Ovozyme®, Coronase®, Coronase® Ultra, Neutrase®, Everlase® and Esperase® all could be sold as Ultra® or Evity® (Novozymes A S). Those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Properase®,

Purafect®, Purafect Prime®, Purafect Ox®, FN3®, FN4®, Excellase® and Purafect OXP® by Genencor International.

Those sold under the tradename Maxatase®, Maxacal®, Maxapem®, Purafect®, Purafect Prime®, PreferenzTm, Purafect MA®, Purafect Ox®, Purafect OxP®, Puramax®,

Properase®, EffectenzTm, FN2®, FN3® , FN4®, Excellase®, Opticlean® and Optimase® (Danisco/DuPont), Axapem™ (Gist-Brocases N.V.),

Those available from Henkel/ Kemira, namely BLAP (sequence shown in Figure 29 of US 5,352,604 with the following mutations S99D + SIOI R + S103A + V104I + G159S, hereinafter referred to as BLAP), BLAP R (BLAP with S3T + V4I + V199M + V205I + L217D), BLAP X (BLAP with S3T + V4I + V205I) and BLAP F49 (BLAP with S3T + V4I + A194P + V199M + V205I + L217D) - all from Henkel/Kemira; and KAP (Bacillus alkalophilus subtilisin with mutations A230V + S256G + S259N) from Kao.

Metalloproteases, most preferably zinc based proteases, may also be used. Surfactant

The laundry composition comprises anionic charged surfactant (which includes a mixture of the same). The composition comprises from 4 to 50 wt% of an anionic surfactant, preferably from 6 to 30 wt%, more preferably from 8 to 20 wt%.

The formulation may contain non-ionic surfactant, preferably the weight fraction of non-ionic surfactant anionic surfactant is from 0 to 0.3, preferably 0 to 0.1. Suitable anionic detergent compounds which may be used are usually water-soluble alkali metal salts of organic sulphates and sulphonates having alkyl radicals containing from about 8 to about 22 carbon atoms, the term alkyl being used to include the alkyl portion of higher alkyl radicals.

Examples of suitable synthetic anionic detergent compounds are sodium and potassium alkyl sulphates, especially those obtained by sulphating higher Cs to Cis alcohols, produced for example from tallow or coconut oil, sodium and potassium alkyl Cg to C20 benzene sulphonates, particularly sodium linear secondary alkyl C10 to C15 benzene sulphonates; and sodium alkyl glyceryl ether sulphates, especially those ethers of the higher alcohols derived from tallow or coconut oil and synthetic alcohols derived from petroleum.

The anionic surfactant is preferably selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates; soaps; alkyl (preferably methyl) ester sulphonates, and mixtures thereof.

The most preferred anionic surfactants are selected from: linear alkyl benzene sulphonate; alkyl sulphates; alkyl ether sulphates and mixtures thereof. Preferably the alkyl ether sulphate is a C12-C14 n-alkyl ether sulphate with an average of 1 to 3EO (ethoxylate) units. Sodium lauryl ether sulphate is particularly preferred (SLES). Preferably the linear alkyl benzene sulphonate is a sodium Cn to C15 alkyl benzene sulphonates. Preferably the alkyl sulphates is a linear or branched sodium C12 to Cis alkyl sulphates. Sodium dodecyl sulphate is particularly preferred, (SDS, also known as primary alkyl sulphate). In liquid formulations preferably two or more anionic surfactant are present, for example linear alkyl benzene sulphonate together with an alkyl ether sulphate.

Suitable nonionic detergent compounds which may be used include, in particular, the reaction products of compounds having an aliphatic hydrophobic group and a reactive hydrogen atom, for example, aliphatic alcohols, acids or amides, especially ethylene oxide either alone or with propylene oxide. Preferred nonionic detergent compounds are the condensation products of aliphatic Cs to Cis primary or secondary linear or branched alcohols with ethylene oxide. Most preferably the nonionic detergent compound is the alkyl ethoxylated non-ionic surfactant is a Cs to Cis primary alcohol with an average ethoxylation of 7EO to 9EO units. Preferably the surfactants used are saturated.

Builders or Complexing Agents

Builder materials may be selected from 1 ) calcium sequestrant materials, 2) precipitating materials, 3) calcium ion-exchange materials and 4) mixtures thereof.

Examples of calcium sequestrant builder materials include alkali metal polyphosphates, such as sodium tripolyphosphate and organic sequestrants, such as ethylene diamine tetra-acetic acid.

Examples of precipitating builder materials include sodium orthophosphate and sodium carbonate.

Examples of calcium ion-exchange builder materials include the various types of water- insoluble crystalline or amorphous aluminosilicates, of which zeolites are well known representatives thereof, e.g. zeolite A, zeolite B (also known as zeolite P), zeolite C, zeolite X, zeolite Y and also the zeolite P-type as described in EP-A-0,384,070.

The composition may also contain 0-65 % of a builder or complexing agent such as ethylenediaminetetraacetic acid, diethylenetriamine-pentaacetic acid, alkyl- or

alkenylsuccinic acid, nitrilotriacetic acid or the other builders mentioned below. Many builders are also bleach-stabilising agents by virtue of their ability to complex metal ions.

Zeolite and carbonate (carbonate (including bicarbonate and sesquicarbonate) are preferred builders, with carbonates being particularly preferred.

The composition may contain as builder a crystalline aluminosilicate, preferably an alkali metal aluminosilicate, more preferably a sodium aluminosilicate. This is typically present at a level of less than 15 wt%. Aluminosilicates are materials having the general formula:

0.8-1 .5 M 2 0. AI2O3. 0.8-6 S1O2, where M is a monovalent cation, preferably sodium. These materials contain some bound water and are required to have a calcium ion exchange capacity of at least 50 mg CaO/g. The preferred sodium aluminosilicates contain 1.5-3.5 S1O2 units in the formula above. They can be prepared readily by reaction between sodium silicate and sodium aluminate, as amply described in the literature. The ratio of surfactants to alumuminosilicate (where present) is preferably greater than 5:2, more preferably greater than 3:1 .

Alternatively, or additionally to the aluminosilicate builders, phosphate builders may be used. In this art the term 'phosphate' embraces diphosphate, triphosphate, and phosphonate species. Other forms of builder include silicates, such as soluble silicates, metasilicates, layered silicates (e.g. SKS-6 from Hoechst).

Most preferably the laundry detergent formulation is a non-phosphate built powder laundry detergent formulation, i.e., contains less than 1 wt% of phosphate. Preferably the powder laundry detergent formulations are predominantly carbonate built. Powders, should preferably give an in use pH of from 9.5 to 1 1. Preferably the powder laundry detergent has linear alkyl benzene sulfonate as greater than 80 wt% of the total anionic surfactant present.

In the aqueous liquid laundry detergent it is preferred that mono propylene glycol is present at a level from 1 to 30 wt%, most preferably 2 to 18 wt%, to provide the formulation with appropriate, pourable viscosity.

Fluorescent Agent

The composition preferably comprises a fluorescent agent (optical brightener). Fluorescent agents are well known and many such fluorescent agents are available commercially.

Usually, these fluorescent agents are supplied and used in the form of their alkali metal salts, for example, the sodium salts.

The total amount of the fluorescent agent or agents used in the composition is generally from 0.0001 to 0.5 wt %, preferably 0.005 to 2 wt %, more preferably 0.05 to 0.25 wt %.

Preferred classes of fluorescer are: Di-styryl biphenyl compounds, e.g. Tinopal (Trade Mark) CBS-X, Di-amine stilbene di-sulphonic acid compounds, e.g. Tinopal DMS pure Xtra and Blankophor (Trade Mark) HRH, and Pyrazoline compounds, e.g. Blankophor SN. Preferred fluorescers are fluorescers with CAS-No 3426-43-5; CAS-No 35632-99-6; CAS-No 24565-13-7; CAS-No 12224-16-7; CAS-No 13863-31 -5; CAS-No 4193-55-9; CAS-No 16090- 02-1 ; CAS-No 133-66-4; CAS-No 68444-86-0; CAS-No 27344-41 -8. Most preferred fluorescers are: sodium 2 (4-styryl-3-sulfophenyl)-2H-napthol[1 ,2-d]triazole, disodium 4,4'-bis{[(4-anilino-6-(N methyl-N-2 hydroxyethyl) amino 1 ,3,5-triazin-2- yl)]amino}stilbene-2-2' disulphonate, disodium 4,4'-bis{[(4-anilino-6-morpholino-1 ,3,5-triazin- 2-yl)]amino} stilbene-2-2' disulphonate, and disodium 4,4'-bis(2-sulphostyryl)biphenyl. The aqueous solution used in the method has a fluorescer present. The fluorescer is present in the aqueous solution used in the method preferably in the range from 0.0001 g/l to 0.1 g/l, more preferably 0.001 to 0.02 g/l.

Perfume

The composition preferably comprises a perfume. Many suitable examples of perfumes are provided in the CTFA (Cosmetic, Toiletry and Fragrance Association) 1992 International Buyers Guide, published by CFTA Publications and OPD 1993 Chemicals Buyers Directory 80th Annual Edition, published by Schnell Publishing Co. Preferably the perfume comprises at least one note (compound) from: alpha-isomethyl ionone, benzyl salicylate; citronellol; coumarin; hexyl cinnamal; linalool; pentanoic acid, 2- methyl-, ethyl ester; octanal; benzyl acetate; 1 ,6-octadien-3-ol, 3,7-dimethyl-, 3-acetate; cyclohexanol, 2-(1 ,1-dimethylethyl)-, 1-acetate; delta-damascone; beta-ionone; verdyl acetate; dodecanal; hexyl cinnamic aldehyde; cyclopentadecanolide; benzeneacetic acid, 2- phenylethyl ester; amyl salicylate; beta-caryophyllene; ethyl undecylenate; geranyl anthranilate; alpha-irone; beta-phenyl ethyl benzoate; alpa-santalol; cedrol; cedryl acetate; cedry formate; cyclohexyl salicyate; gamma-dodecalactone; and, beta phenylethyl phenyl acetate. Useful components of the perfume include materials of both natural and synthetic origin. They include single compounds and mixtures. Specific examples of such components may be found in the current literature, e.g., in Fenaroli's Handbook of Flavour Ingredients, 1975, CRC Press; Synthetic Food Adjuncts, 1947 by M. B. Jacobs, edited by Van Nostrand; or Perfume and Flavour Chemicals by S. Arctander 1969, Montclair, N.J. (USA). It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components.

In perfume mixtures preferably 15 to 25 wt% are top notes. Top notes are defined by Poucher (Journal of the Society of Cosmetic Chemists 6(2):80 [1955]). Preferred top-notes are selected from citrus oils, linalool, linalyl acetate, lavender, dihydromyrcenol, rose oxide and cis-3-hexanol.

The International Fragrance Association has published a list of fragrance ingredients (perfumes) in 201 1 : (http://www.ifraorg.Org/en-us/ingredients#.U7Z4hPldWzk).

The Research Institute for Fragrance Materials provides a database of perfumes

(fragrances) with safety information.

Perfume top note may be used to cue the whiteness and brightness benefit of the invention.

Some or all of the perfume may be encapsulated, typical perfume components which it is advantageous to encapsulate, include those with a relatively low boiling point, preferably those with a boiling point of less than 300, preferably 100-250 Celsius. It is also

advantageous to encapsulate perfume components which have a low CLog P (ie. those which will have a greater tendency to be partitioned into water), preferably with a CLog P of less than 3.0. These materials, of relatively low boiling point and relatively low CLog P have been called the "delayed blooming" perfume ingredients and include one or more of the following materials: allyl caproate, amyl acetate, amyl propionate, anisic aldehyde, anisole, benzaldehyde, benzyl acetate, benzyl acetone, benzyl alcohol, benzyl formate, benzyl iso valerate, benzyl propionate, beta gamma hexenol, camphor gum, laevo-carvone, d- carvone, cinnamic alcohol, cinamyl formate, cis-jasmone, cis-3-hexenyl acetate,

cuminic alcohol, cyclal c, dimethyl benzyl carbinol, dimethyl benzyl carbinol acetate, ethyl acetate, ethyl aceto acetate, ethyl amyl ketone, ethyl benzoate, ethyl butyrate, ethyl hexyl ketone, ethyl phenyl acetate, eucalyptol, eugenol, fenchyl acetate, flor acetate (tricyclo decenyl acetate) , frutene (tricyclco decenyl propionate) , geraniol, hexenol, hexenyl acetate, hexyl acetate, hexyl formate, hydratropic alcohol, hydroxycitronellal, indone, isoamyl alcohol, iso menthone, isopulegyl acetate, isoquinolone, ligustral, linalool, linalool oxide, linalyl formate, menthone, menthyl acetphenone, methyl amyl ketone, methyl anthranilate, methyl benzoate, methyl benyl acetate, methyl eugenol, methyl heptenone, methyl heptine carbonate, methyl heptyl ketone, methyl hexyl ketone, methyl phenyl carbinyl acetate, methyl salicylate, methyl-n-methyl anthranilate, nerol, octalactone, octyl alcohol, p-cresol, p- cresol methyl ether, p-methoxy acetophenone, p-methyl acetophenone, phenoxy ethanol, phenyl acetaldehyde, phenyl ethyl acetate, phenyl ethyl alcohol, phenyl ethyl dimethyl carbinol, prenyl acetate, propyl bornate, pulegone, rose oxide, safrole, 4-terpinenol, alpha- terpinenol, and /or viridine. It is commonplace for a plurality of perfume components to be present in a formulation. In the compositions of the present invention it is envisaged that there will be four or more, preferably five or more, more preferably six or more or even seven or more different perfume components from the list given of delayed blooming perfumes given above present in the perfume.

Another group of perfumes with which the present invention can be applied are the so- called aromatherapy' materials. These include many components also used in perfumery, including components of essential oils such as Clary Sage, Eucalyptus, Geranium,

Lavender, Mace Extract, Neroli, Nutmeg, Spearmint, Sweet Violet Leaf and Valerian.

It is preferred that the laundry treatment composition does not contain a peroxygen bleach, e.g., sodium percarbonate, sodium perborate, and peracid.

Polymers

The composition may comprise one or more further polymers. Examples are

carboxymethylcellulose, poly (ethylene glycol), polyvinyl alcohol), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid

copolymers.

Where alkyl groups are sufficiently long to form branched or cyclic chains, the alkyl groups encompass branched, cyclic and linear alkyl chains. The alkyl groups are preferably linear or branched, most preferably linear.

The indefinite article "a" or "an" and its corresponding definite article "the" as used herein means at least one, or one or more, unless specified otherwise.

Dye weights refer to the sodium or chloride salts unless otherwise stated. Experimental Examples

A powder laundry detergent was prepared of the following formulation:

The formulation was used to wash eight 5x5cm EMPA 1 17 stain monitor (blood/milk/ink stain on polycotton) in a tergotometer set at 200rpm. A 60 minute wash was conducted in 800ml of 26° French Hard water at 35°C, with 1.5g/L of the formulation. To simulate oily soil (7.4 g) of an SBL2004 soil strip (ex Warwick Equest) was added to the wash liquor.

Once the wash had been completed the cotton monitors were rinsed once in 400ml clean water, removed dried and the colour measured on a reflectometer and expressed as the CIE L * a * b * values. Stain removal was calculates as the ΔΙ_ * value:

ΔΙ_ * = L * (treatment)-L * (control without enzyme or alkoxylated polyarylphenol)

Higher ΔΙ_ * value equate to better cleaning.

Equivalent Formulations but with the addition of 13.3 wt% alkoxylated polyarylphenol which were polyethylene glycol mono(2,4,6-tris(1 -phenylethyl)phenyl) ether (CAS-No: 70559-25-0) with an average of 16 and 54 ethylene oxide groups. Experiments were repeated with and without the addition of a lipase-protease enzyme cocktail: Lipex® as the lipase and Savanase® as the protease (both ex Novozymes). The lipase was added to give 0.3wt% pure active protein to the formulation and the protease added to give 0.007wt% pure active protein to the formulation.

95% confidence limits are also given calculated from the standard deviation on the measurements from the 8 monitors.

The combination of the enzyme cocktail and alkoxylated polyarylphenol increases the stain removal as shown by the larger AL * values. For the 16EO alkoxylated polyarylphenol the combination with the enzyme cocktail increases the stain removal by more than expected from combination of the effects of the single components. For the combination a ΔΙ_ * = 4.06 + 1.19 = 5.25 would be expected but 10.25 obtained.

The formulation was remade with the addition of mix of amylase, mannase and pectinase enzymes (Stainzyme ® Novozyme, Mannaway ® Novozymes, Pectawash ® Novozymes)




 
Previous Patent: INJECTION DEVICE

Next Patent: LAUNDRY DETERGENT COMPOSITION