Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LAVATORY SYSTEM WITH OVERFLOW PREVENTION AND OTHER FEATURES
Document Type and Number:
WIPO Patent Application WO/2012/145171
Kind Code:
A2
Abstract:
Systems and methods for a lavatory system (10) are described that include a bidirectional hand dryer (50) having a top, bottom, back, and right side and multiple sensors and LEDs. Upper and lower nozzles (160a, 160b) are also provided and respectively connected to upper and lower plenums (142, 144). At least two flexible air delivery hoses are connected to the plenums (142, 144). A motor housing (70) is provided and includes a motor (74), ports connected to the hoses, noise abatement features, and a motor microcontroller (99). A hand-receiving cavity (52) exists between the top, back, right, and bottom side for receiving at least one hand (166) of a user. Tips (162a) are connected to the nozzles (160a, 160b) and emit high speed colliding columns of air to shear water off of the user's hand (166). The columns of air are spaced and calibrated in such a way as to reduce forces on the user's hand which would otherwise move the hand toward the side surfaces.

Inventors:
LOBERGER JOHN M (US)
FIGURSKI MARK A (US)
RUNDBERG MICHELLE L (US)
KOHLWEY KEVIN M (US)
BAYLEY GRAEME S (US)
DHEIN THEODORE E (US)
KREITZER KENNETH A (US)
KLINE KEVIN B (US)
RENNER JASON M (US)
BIBA SCOTT I (US)
BOUDREAU CORY R (US)
Application Number:
PCT/US2012/032105
Publication Date:
October 26, 2012
Filing Date:
April 04, 2012
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
BRADLEY FIXTURES CORP (US)
LOBERGER JOHN M (US)
FIGURSKI MARK A (US)
RUNDBERG MICHELLE L (US)
KOHLWEY KEVIN M (US)
BAYLEY GRAEME S (US)
DHEIN THEODORE E (US)
KREITZER KENNETH A (US)
KLINE KEVIN B (US)
RENNER JASON M (US)
BIBA SCOTT I (US)
BOUDREAU CORY R (US)
International Classes:
E03C1/05; E03C1/18
Domestic Patent References:
WO2011044247A12011-04-14
Foreign References:
US20080216343A12008-09-11
US5875562A1999-03-02
Other References:
See also references of EP 2699736A4
Attorney, Agent or Firm:
GRATZ, Michael, J. (S.C.840 North Plankinton Avenu, Milwaukee WI, US)
Download PDF:
Claims:
CLAIMS

What is claimed is:

1. A lavatory system comprising:

a wash basin;

a faucet operably connected to the wash basin;

a soap dispensing system having a spout operably connected to the wash basin; a hand dryer in fluid communication with the wash basin and including a hand- receiving cavity, a top portion with an air outlet, and a bottom portion with an air outlet;

a motor in fluid communication with the air outlets for blowing air through the air outlets;

multiple proximity sensors operably connected to the motor; and

a mechanism to prevent water from entering the air outlets.

2. The lavatory system of claim 1, further comprising generally frustoconical protrusions that extend from the bottom portion air outlet and prevent water from entering into the air outlets and the motor.

3. The lavatory system of claim 1, further comprising:

a frame supporting the wash basin, the motor, and two end caps, wherein the frame includes a first generally triangular bracket mounted to a lavatory wall and a second generally triangular bracket mounted to a lavatory wall;

a countertop integral with the wash basin and hand dryer;

a drainpipe connected to a single drain in the wash basin;

a cover operably connected to the two end caps to mask the frame and drainpipe; and

a primary air inlet in fluid communication with the motor and including a small gap between the cover and a lavatory wall to minimize sound;

wherein the mechanism is an overflow lip integral with the wash basin and located on a left side front edge of the wash basin and is lower than the bottom portion air outlet.

4. The lavatory system of claim 1, wherein the motor has air outlet ports in fluid communication with the air outlets and is generally supported by a countertop, and the ports are covered by integral grates to prevent an object from being inserted into the motor.

5. The lavatory system of claim 1 , wherein at least one hand of a user is inserted into the cavity at about a 5 to 50 degree angle from the horizontal, and the air outlets eject air at about 2.2 to 2.9 PSI at the user's hand.

6. The lavatory system of claim 1, further comprising a service mode wherein a right-most sensor is triggered to allow the hand-receiving cavity to be temporarily cleaned without further engaging the hand dryer motor.

7. The lavatory system of claim 1, wherein if only one sensor consistently detects an object, the hand dryer is disabled for 30 to 60 seconds to facilitate cleaning of the hand cavity.

8. The lavatory system of claim 1, wherein four sensors in the cavity are continuously queried by a microcontroller to detect the presence of an object in the cavity, and the motor operates when an object is detected.

9. The lavatory system of claim 1, further comprising a sensor control board and motor control board; and wherein the motor has a pre-programmed unit to cause an activation delay of approximately 400-800 ms.

10. The lavatory system of claim 1, further comprising a motor housing having an outer casement surrounding the motor; a microcontroller operably connected to the motor; a motor housing cap in communication with the casement; a rubber motor mounting isolation ring and housing gasket operably connected to the motor; a first and second outlet port operably connected to the motor and each connecting to a hose; a HEPA media filter to prevent debris from entering the motor; and insulation to deaden the sound of the motor.

11. The lavatory system of claim 1 , wherein the top portion air outlet and bottom portion air outlet are respectively fluidly connected to a first plenum and a second plenum which respectively connect via hoses to a first outlet port and second outlet port on a motor housing, and wherein each plenum is formed from two pieces of injected-molded plastic.

12. A lavatory system comprising:

a wash basin;

a faucet protruding from the wash basin;

a soap dispensing spout protruding from the wash basin;

a hand dryer integral with the wash basin having a cavity, a top portion with air holes, and a bottom portion with air holes; and

sensors and lights operably connected to the hand dryer to illuminate the hand dryer cavity at a low intensity level when a sensor does not detect the presence of an object and when a sensor detects that an object has entered into the dryer cavity and during dryer activation illuminate at a high intensity level.

13. The lavatory system of claim 12, further comprising a motor housing having an outer casement and operably connected to the hand dryer; a motor within the casement; a fan connected to the motor; an integral control operably connected to the motor; a housing cap in communication with the casement, wherein the housing cap has perforations; a rubber motor mounting isolation ring and housing gasket operably connected to the motor; an outlet for connecting to a hose wherein the outlet contains an integral grate to prevent the touching of any electrical or rotating parts; a filter to prevent debris from entering the motor; foam to isolate the sound of the motor; a filter cover for covering the filter; an aluminum cover plate on the housing to provide: a shield for electrical components, a heat sink, a structural mount for cable interfaces, and a common grounding point.

14. The lavatory system of claim 12, further comprising a mechanism for preventing the bottom portion air holes of the hand dryer from being filled with water and including at least one of: an overflow lip integral with the wash basin and in fluid communication with the dryer cavity that is lower than the bottom portion air holes; protruding frustoconical nozzles fiuidly connected to the air holes; and an overflow drain integrated into the hand dryer cavity

15. A hand dryer operably connected with a wash basin having a faucet and soap dispenser and comprising:

a top wall, bottom wall, back wall, and single side wall that create a hand cavity with a front and single side opening to allow a user's hand to enter only at an oblique angle;

a plurality of generally frustoconical nozzle tips for ejecting opposing columns of air at a hand from the top wall and bottom wall;

a motor having a first air output and second air output in fluid communication with the top and bottom wall nozzle tips;

a motor control circuit board connected to the motor; and

an intake cover containing an air filter to filter the air.

16. The hand dryer of claim 15, wherein the nozzle tips eject air at speeds of approximately 340-360 MPH at approximately 2.2-2.9 PSI to create upper and lower cylindrical columns of air that collide to cause an s-shaped air flow pattern that directs water blown off of a user's hand to the bottom wall and back wall and helps minimize splashing of water back onto the user; and wherein the cylindrical air columns help to minimize net forces exerted by the air on a users' hands and arms so as not to push them into the top or bottom walls of the hand dryer cavity.

17. The hand dryer of claim 16, further comprising a primary air inlet in fluid communication with the motor and including a small gap between a cover and a lavatory wall to minimize ingestion of foreign materials and improve acoustical sound attenuation; and wherein the dryer bottom wall, back wall, and single side wall are formed from a polymeric material and the top wall is formed, in part, by a top portion hood that is relatively horizontal and further serves as a shelf.

18. The hand dryer of claim 15, further comprising at least one of: 1) UV lighting; 2) a sterilization technique to disinfect the hand cavity; 3) a drain in the wash basin and outside of the hand cavity that eliminates the need for another device to catch water from the dryer that must be emptied; and 4) certain dryer components that have an antimicrobial additive.

19. The hand dryer of claim 15, further comprising at least one of: a second row of holes, a slot, and a port to provide a lower velocity air stream to minimize splashing of water onto a user.

20. The hand dryer of claim 17, further comprising:

a circuit board including a microcontroller and a single bank of sensors that measure distance by triangulation and a microcontroller;

LEDs that continuously illuminate the hand cavity and increase in intensity when the sensors detect a user's hand in the cavity; and

a programmable unit on the board that includes a time-delay mechanism and on/off switch for the motor;

wherein the time-delay mechanism allows the user to enter a hand fully into the hand cavity prior to the motor achieving full speed.

21. A lavatory system comprising:

a bidirectional hand dryer having a top side, bottom side, back side, right side, and opposing upper and lower nozzles respectively connected to upper and lower plenums;

at least two flexible air delivery hoses connected to the plenums; a motor housing including a motor, ports connected to the hoses, and a motor control;

a hand-receiving cavity between the top, bottom, back, and right side for receiving at least one hand of a user; and

upper and lower nozzles tips connected to the nozzles that emit high speed colliding columns of air to blow water off of the user's hand;

wherein the columns of air are spaced and calibrated in such a way as to reduce forces on the user's hand which would otherwise move the hand toward the upper or lower nozzles or the sides.

22. The system of claim 21, wherein the air emitted from the upper plenum is angled about 1 degree from vertical and aimed toward the back side of the cavity and the air emitted from the lower plenum is about 37 degrees from horizontal and aimed toward the back side of the cavity; and wherein the plenums are two injection-molded pieces bonded and screwed together, and wherein one plenum contains a center post screw to minimize deflection of the plenum when pressurized.

23. The system of claim 22, wherein the upper to lower nozzle tip spacing is about 3.5 inches and the hand cavity has a width of about 10 inches to provide the user with optimal comfort when using; and wherein the tips are frustoconical protrusions that help pull static air into the air columns and prevent water from entering the nozzles.

24. The system of claim 21, further comprising lights that flash twice when entering a cleaning mode and three times when approaching a time near the end of a cleaning mode cycle which is approximately 5 seconds prior to the end of the approximately 30-60 second cleaning cycle.

25. The system of claim 21, further comprising at least one of:

multiple sensors in a row which utilize triangulation to detect an object and wherein the sensors are positioned so that they are recessed and aimed at a generally oblique angle into the hand cavity;

a sensor board programmed so that all sensors are checked at about 130ms intervals, and when a sensor flags a detection, it is then rechecked 15 times over about a 15ms period to ensure it was not a false trigger; and

a touchless cleaning mode feature wherein if one sensor is the only sensor activated within the last two seconds and if activated continuously for about three seconds, the dryer will enter a mode to allow cleaning of the dryer for about 30 seconds without activation of the dryer and then return to normal operation.

Description:
LAVATORY SYSTEM WITH OVERFLOW PREVENTION AND OTHER FEATURES

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates in general to the field of lavatory systems. More particularly, the present invention relates to a lavatory system containing a combination wash basin with faucet, soap dispensing system, and bidirectional hand dryer which are triggered by sensors. Preferably, the system also has a number of unique use, overflow prevention, and cleaning features.

2. Discussion of the Related Art

As is known to those skilled in the art, lavatories in public places such as schools, libraries, airports, train and bus terminals, and shopping centers can be very busy at times. Further, depending on the volume of use and staffing, they can be messy, germ-filled environments that may be difficult for staff to adequately keep clean and safe. Thus, a previously recognized problem has been that often paper toweling runs out and waste baskets overflow. Further, the toweling and disposal thereof is costly. Moreover, hand-washing and drying stations, countertops, and floors in such public buildings easily become wet and dirty and are rarely configured for efficient use, cleaning, and maintenance.

While electronic hand dryers have been around for decades, this previously recognized solution also has the disadvantage of relatively high cost. Further, because of how such dryers are manufactured and sold, they are normally stand-alone units that are mounted some distance from the wash station. This forces users to wash, then drip water across the floor and dry their hands in another area of the room. The water on the floor may pool creating an unsafe, slippery, and germ-filled area. Further, as building construction and maintenance costs have risen and staffing is reduced, a preferred solution will be seen by the purchaser as being cost effective. A solution is cost effective when it is seen by the purchaser as compelling when compared with other potential systems that the purchaser could obtain with limited resources.

In light of the above, it is desirable to have a lavatory system that is efficiently configured to use, maintain, and clean and that helps provide a more safe environment for lavatory users. SUMMARY AND OBJECTS OF THE INVENTION

By way of summary, the present invention is directed to a lavatory system. In one embodiment, the lavatory system includes a wash basin having a faucet operably connected to the wash basin and a soap dispensing system having a spout operably connected to the wash basin. A hand drying system is in fluid communication with the wash basin. The hand drying system includes a hand-receiving cavity, a top portion with an air outlet, and a bottom portion with an air outlet. The hand drying system also includes a motor in fluid communication with the air outlets for blowing air through the outlets. Multiple proximity sensors are operably connected to the motor and turn the motor on and off when triggered by an object. The lavatory system preferably also includes a mechanism to prevent water from entering the air outlets and the motor. For example, in one embodiment, small frustoconical protrusions preferably extend from the bottom portion air outlets to prevent water from entering into the air outlets and the motor.

The lavatory system also preferably includes a countertop integral with the wash basin. A frame under the countertop generally supports the countertop, wash basin with drainpipe, and motor. The frame includes a first generally triangular bracket mounted to a lavatory wall and a second generally triangular bracket mounted to a lavatory wall. A cover and end caps fit under the wash basin and countertop and mask the frame, motor, and drainpipe. A primary air inlet is in fluid communication with the motor and includes a small gap between the cover and/or at least one end cap and a lavatory wall to further attenuate the sound and minimize foreign object pickup. An overflow prevention mechanism may include a lip integral with the wash basin that is located on a left side front edge of the wash basin and is lower than the bottom portion air outlets.

In use, at least one hand of a user is inserted into the hand drying system cavity at nearly an oblique angle, e.g., from about 5 to 50 degrees, from the horizontal. Four sensors located in and around the cavity are continuously queried by a microcontroller to detect the presence of such an object, e.g., the hand, in the cavity. The sensors are controlled by the microcontroller which is located on a sensor control board. A second microcontroller is located on a motor control board. This microcontroller operates the motor so that when the object is detected, the motor ejects air from the air outlets at preferably about 2.2 to 2.9 pounds per square inch (PSI) at the user's hand. Both microcontrollers control a preferable pre-programmed activation delay of approximately 400-800 milliseconds (ms) to delay, e.g., the starting of the motor. The lavatory system has a service mode wherein one sensor is triggered to allow the hand-receiving cavity to be temporarily disabled. For example, if the right-most sensor consistently detects an object, the hand dryer is disabled for about 30 to 60 seconds to facilitate cleaning of the hand cavity.

The motor is surrounded by a motor housing that has an upper or outer casement, an intake cover and a rubber motor mounting isolation ring and housing gasket operably connected to the motor. The microcontroller preferably operates the motor to push air out a first and second outlet port each connecting to a hose. A preferably high efficiency particulate air (HEP A) media filter is contained in the housing to prevent debris from entering the motor and provide filtered air to the user. Sound-reducing techniques are also preferably employed in the motor housing. For example, foam insulation is provided to isolate and deaden the sound of the motor. A filter cover covers the filter and is configured to shift the direction of the air stream entering the motor housing. The filter cover also contains acoustical foam to reduce the operating volume of the motor and fan. As an added safety feature, the motor's air outlet ports are preferably covered by grates to prevent an object from being inserted into the ports.

The top portion air outlet and bottom portion air outlet are respectively fluidly connected to a first plenum and a second plenum that respectively connect via the hoses to the first outlet port and second outlet port in the motor housing. Each plenum is formed from two pieces of injection-molded plastic. In one embodiment, the central axes of the holes in the first or upper plenum are configured to emit air at an angle about 1 degree from vertical so as to aim the air toward the back side of the cavity. The central axes of the holes in the second or lower plenum are offset at an angle to emit air at about 37 degrees from horizontal and aim the air toward the back of the cavity. The plenums' two injection-molded pieces are preferably bonded and screwed together and a center post screw may be provided, as needed, to minimize the deflection of the plenums when pressurized.

Another embodiment of the lavatory system includes a wash basin, a faucet protruding from the wash basin, a soap dispensing spout protruding from the wash basin, and a hand dryer integral with the wash basin having a cavity, a top portion with air holes, and a bottom portion with air holes. Sensors along with lights, e.g., light-emitting diodes (LEDs), are operably connected to the hand dryer to continuously illuminate the hand dryer cavity at a low intensity level when a sensor does not detect the presence of an object and at a high intensity level when sensors detect that an object has entered into the dryer cavity. The LEDs may also serve to instruct a user to follow a certain path when using the system.

In one embodiment, a motor housing having a motor and an outer casement is operably connected to the hand dryer. Within the casement, a fan and an integral control are operably connected to the motor. A motor housing cap is operably connected to the casement and has perforations for air intake which are positioned to help reduce the sound volume of the motor and fan. A rubber motor mounting isolation ring and housing gasket operably connect to the motor. An outlet for connecting to a hose contains an integral grate to prevent a user from touching any of the motor's electrical or rotating parts. A filter is provided to prevent debris from entering the motor and foam is used to isolate the sound of the motor. A filter or intake cover covers the filter. The motor housing has an aluminum cover plate to provide a shield for electrical components, a heat sink, a structural mount for cable interfaces, and a common grounding point.

The system preferably has an overflow mechanism for preventing the motor and bottom portion air holes of the hand dryer from being filled with water. The mechanism may include an overflow lip integral with the wash basin and lower than the bottom portion air holes, and/or frustoconical protruding nozzles connected to the air holes. Other overflow mechanisms can include a standard overflow in either the wash basin or cavity or an overflow/drain located near the lower nozzle portion or plenum.

In another embodiment, a hand dryer is operably connected with a wash basin having a faucet and soap dispenser. The hand dryer has a top wall, bottom wall, back wall, and single side wall that create a hand cavity with a front and single side opening to allow a hand to enter only at an oblique angle. A plurality of nozzles is provided along the top wall and bottom wall for ejecting air at the hand. A motor having a first output and second output is in fluid communication with the top and bottom wall nozzles. The motor has a motor control circuit board. A motor housing surrounds the motor and includes an air intake manifold or cap and further contains an air filter. A primary air inlet is in fluid communication with the motor and includes a small gap between a trap cover and a wall to minimize ingestion of foreign materials into the motor and improve acoustical sound attenuation.

Ultraviolet (UV) lighting or some other sterilization technique may be provided to further disinfect hands and the hand cavity. Certain dryer components, including the nozzles, may have an antimicrobial additive that is added during the manufacture of the plastic part or sprayed on later.

Preferably, a single drain is contained in the wash basin and outside of the hand cavity. The drain is in fluid communication with the hand cavity and preferably eliminates the need for another device to catch water from the dryer and that must eventually be emptied.

The wash basin, bottom wall, a back wall, and single side wall are formed from a solid polymeric or a polymeric and stone material and the top wall is formed, in part, by a top plenum portion that is relatively horizontal and further serves as a shelf.

The nozzles are configured to eject air at speeds of approximately 340-360 miles per hour (MPH) at approximately 2.2-2.9 PSI. Preferably, the air creates high speed cylindrical upper and lower columns of air that collide to cause an s-shaped air flow pattern. The s-shaped air pattern directs water blown off of a user's hand to the bottom wall and back wall and helps minimize splashing of water back onto the user. The high speed cylindrical air columns and air flow pattern further minimize the net force exerted by the air on a users' hands and arms so as not to push the user's hands or arms into the top or bottom walls/surfaces of the hand dryer cavity.

A second row of holes, a slot, or a port may be provided to present a lower velocity air stream and further minimize splashing of water onto a user.

A sensor circuit board preferably controls a single bank of the sensors. The sensors are proximity sensors that measure distance by triangulation. If one of the sensors is activated by an object in the hand cavity, the microcontroller on the sensor board rechecks the activated sensor multiple times to validate that an object is actually present in the hand cavity and to minimize false activations by the hand dryer.

A programmable unit is also preferably present on the sensor board and includes a time delay in communication with an on/off switch for the motor. The delay mechanism allows the user to enter the user's hands fully into the hand cavity prior to the motor achieving full speed.

The microcontroller present on the sensor circuit board also controls LEDs. Some of the LEDs preferably continuously illuminate the hand cavity. However, when the sensors detect a user's hand in the cavity, LED illumination of the cavity increases.

In yet another embodiment, the lavatory system includes a bidirectional hand dryer having a top side, bottom side, back side, right side, and upper and lower nozzles respectively connected to upper and lower plenums. At least two flexible air delivery hoses connect to the plenums. A motor housing is provided including a motor, ports connected to the hoses, and a motor control.

A hand-receiving cavity between the top, back, right, and bottom sides receives at least one hand of a user. Upper and lower nozzle tips connect to the nozzles and emit high speed colliding columns of air to shear water off of the user's hand. The columns of air are spaced and calibrated in such a way as to reduce forces on the user's hand that would otherwise move the hand toward the upper or lower plenums or the sides and surfaces thereof.

The upper to lower nozzle tip spacing is about 3.5 inches with a hand cavity width of about 10 inches to provide the user with optimal comfort when using. The tips are pointed protrusions and help pull static air into the air columns. The pointed shape also prevents water from entering the nozzles.

In one embodiment, multiple distance sensors are present about the cavity and utilize triangulation or some other process to detect an object one sensor at a time and from left to right in the sensor's field of view. The sensors are positioned so that they are slightly recessed and aimed vertically into the hand cavity. The sensor board is preferably programmed so that all sensors are checked at about 130 ms intervals, and, when a sensor flags a detection, it is then rechecked 15 times over about a 15 ms period to ensure it was not a false trigger.

The lavatory system preferably also includes a touchless cleaning mode feature wherein if one sensor is the only sensor activated within the last two seconds, and if activated continuously for about three seconds, the dryer will enter the mode to allow cleaning of the dryer for about 30-60 seconds without dryer activation and then return to normal operation. Lights are provided in the system that flash twice when entering a cleaning mode and three times when approaching a time near the end of a cleaning cycle which is approximately 5 seconds before the end of an about 30-60 second cleaning cycle.

These and other aspects and objects of the present invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following description, while indicating preferred embodiments of the present invention, is given by way of illustration and not of limitation. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications. BRIEF DESCRIPTION OF THE DRAWINGS

A clear conception of the advantages and features constituting the present invention and of the construction and operation of typical mechanisms provided with the present invention, will become more readily apparent by referring to the exemplary, and therefore non-limiting, embodiments illustrated in the drawings accompanying and forming a part of this specification, wherein like reference numerals designate the same elements in the several views, and in which:

FIG. 1 illustrates a view of a lavatory system of the present invention;

FIG. 2 is a front elevation view of a lavatory system according to the present invention;

FIG. 3 is a front elevation cutaway view of a lavatory system according to the present invention showing upper portion and hand- washing features;

FIG. 4 is a front elevation view of a cutaway portion of the lavatory system according to the present invention showing the faucet and soap dispenser;

FIG. 5 is a front elevation view of a cutaway portion of the lavatory system according to the present invention showing the upper portion and upper air outlet;

FIG. 6A is a side view of a cutaway portion of the lavatory system according to the present invention showing the upper portion, lower nozzles, and basin;

FIG. 6B is a side view of a cutaway portion of the lavatory system according to the present invention illustrating the hand dryer and lower nozzle tips;

FIG. 7 is a partially exploded lower view of the hand dryer showing the top portion, upper air outlet, and hand dryer sensors;

FIG. 8 is a partially exploded upper view of the top portion showing the upper plenum;

FIG. 9 is a side cross-sectional view of the lavatory system showing the hand dryer, motor, upper plenum, and lower plenum;

FIG. 10 is a partially exploded view of the lavatory system showing the hand dryer motor, upper plenum, and lower plenum;

FIG. 11 is a lower view of the hand dryer upper plenum of the lavatory system according to the present invention;

FIG. 12 is a side cross-sectional view of the hand dryer upper plenum of the lavatory system according to the present invention; FIG. 13 is an elevation view of the hand dryer lower plenum of the lavatory system according to the present invention;

FIG. 14 is a side cross-sectional view of the hand dryer lower plenum of the lavatory system according to the present invention;

FIG. 15 is an elevation view of the hand dryer motor of the lavatory system according to the present invention;

FIG. 16 is a side cross-sectional view of the hand dryer motor of the lavatory system according to the present invention;

FIG. 17 is a view of the sensor board of the lavatory system according to the present invention;

FIG. 18 is a lower front view of the lavatory system according to the present invention with a cover removed to show the mounting hardware;

FIG. 19 is a block diagram showing a preferred air flow path from the hand dryer motor;

FIG. 20 is a diagram showing the hand dryer sensors according to the present invention interacting with a hand;

FIG. 21 is a block diagram showing the hand dryer electrical components;

FIG. 22 is a front elevation view of another embodiment of a lavatory system according to the present invention;

FIG. 23 is a side view of a cutaway portion of still another embodiment of the lavatory system according to the present invention illustrating a hand dryer, drain hole, and lower nozzle portion; and

FIG. 24 is a lower front view of the embodiment of FIG. 23 according to the present invention with a cover removed to show a drain tube and drainpipe.

In describing the preferred embodiment of the invention that is illustrated in the drawings, specific terminology will be resorted to for the sake of clarity. However, it is not intended that the invention be limited to the specific terms so selected and it is to be understood that each specific term includes all technical equivalents which operate in a similar manner to accomplish a similar purpose. For example, the words "connected", "attached", or terms similar thereto are often used. They are not limited to direct connection but include connection through other elements where such connection is recognized as being equivalent by those skilled in the art. DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention and the various features and advantageous details thereof are explained more fully with reference to the non-limiting embodiments described in detail in the following description.

Now turning generally to FIGS. 1-24, the present invention is directed generally to a lavatory system 10. The lavatory system 10, preferably, has a wash basin 20, including a wash basin wall 22. As shown in FIGS. 1-4, faucet 24 is provided within the wash basin 20. The faucet 24 may include indicia etched thereon such as a water droplet symbol or a faucet light 23 for directing a user. Such etched indicia may be particularly helpful to a user that has poor eyesight. The faucet 24 may also include a sensor located behind a sensor window 25 which automatically engages a faucet control to provide water to the user. The faucet 24 is connected to plumbing to provide hot and/or cold water to the faucet. Preferably, the water is provided at a comfortable temperature for the user's hands.

A soap dispensing system 26 is near the faucet 24 and in the wash basin 20. The soap dispenser 26 includes a spout 28 and a soap dispensing sensor (located behind sensor window 29) to detect an object, such as a user's hand 166 (See, e.g., FIG. 20), and provide soap thereto. Indicia, such as soap bubbles, or a light 27 may also be etched on the spout 28. As best shown in FIG. 1, a countertop 30 is preferably provided above and around the wash basin 20. The soap dispenser or system 26 includes a liquid soap container (not shown) located under the wash basin 20 and countertop 30 and that is connected to the spout 28. A backsplash 32 may also be present and integral with the countertop 30. Thus, the soap container is masked, in part, also by the backsplash 32. Further disclosure of one embodiment of the soap dispensing system 26 may be found in co-pending U.S. Patent Application No. 13/088,512 further incorporated herein by reference.

As best seen in FIG. 2, preferably a single drain 42, preferably with drain cap, is provided in the wash basin 20. This drain 42 takes soap and water from the wash basin 20 down to a drainpipe (not shown). The drainpipe 127 is preferably located directly under the wash basin 20 (see, e.g., FIG. 18). As seen in FIGS. 5-9, the lavatory system 10 preferably includes an integral drying system, e.g., a hand dryer 50. The dryer 50 has a hand-receiving cavity 52 and a motor 74. In one preferred embodiment, a mechanism 40 for preventing flooding and damage to the motor 74 is provided. The mechanism 40 may include a flood relief rim or overflow lip 44 located on the wash basin 20, see, e.g., FIG. 6A. The flood relief rim 44 is provided below the lower portion's air outlet 56 and the nozzle tips 162b as shown. Thus, water that cannot make it down the drain 42 will flow over the flood relief rim 44 and not down the nozzle holes 162b and into the motor 74. Other motor protection and flood prevention mechanisms 40 will be described further below.

Referring now to FIG. 2, the hand dryer 50 may be provided with etched instructional indicia, a heat wave symbol, or light 31. A drain conduit 47 is preferably present to fluidly connect the hand-receiving cavity 52 and wash basin 20. The conduit 47 removes excess water from the user's hands that has been left through the hand-receiving cavity 52 down toward the single drain 42 in the wash basin 20. This water then travels down the drainpipe 127, see, e.g., FIG. 18.

As best seen in FIG. 5, the hand dryer 50 is preferably provided with a top portion 53 and a bottom portion 55. The top portion 53 may also include a hood 51 with a base which forms a top wall 57 of the cavity 52. The top portion hood 51 may also include a top portion cover which may form a shelf 58. An upper air outlet 54 is also provided in the upper portion 53.

As best shown in FIGS. 5, 6A and 6B, a bottom portion 55 includes a lower air outlet 56. The bottom portion 55 is formed, in part, by bottom wall 59. The bottom portion 55 of the hand- receiving cavity 52 preferably also includes a back wall 60, front wall 61, and single side wall 62 (see, e.g., FIG. 5). A front ledge 63 is preferably integral with the front wall 61. The hand- receiving cavity 52, therefore, is preferably configured to have a front opening 64 and a single side opening 65 (herein the left side) and allow users to enter their hands at a generally oblique angle. Further, instructions 69 for using the hand dryer may provided on the front ledge 63 as shown in FIG. 6B.

As best shown in FIG. 7, one embodiment includes a top wall or base 57 that attaches to the backsplash 32 (not shown) and countertop 30 (not shown) preferably with bolts 68a and 68b. A side anchoring screw 68c is also provided to attach the top portion to side wall 62 (see, e.g., FIG. 9). The top portion 53 preferably also has multiple sensors 103a-d and LED lights, e.g., 108a-e located therein and preferably covered by a window to protect them from splashing water and debris.

FIG. 8 shows the top portion 53 of the hand dryer 50 with the top cover 58 removed. Inside the top portion 53 is a hose 140a which attaches to a first or upper plenum 142. The hose 140a is connected to the first or upper plenum air inlet 143 (see, e.g., FIG. 11) to provide air to the upper plenum 142.

As shown in FIGS. 9 and 10, a second, or lower plenum 144, is also provided. The lower plenum 144 is connected to a hose 140b which delivers air to the lower plenum 144 via a lower plenum air inlet 145. The preferably flexible hoses 140a and 140b are attached to a first outlet port 88 and a second outlet port 90 which are preferably on or part of a motor housing 70. A motor 74, with a fan 76 (see, e.g. FIG. 16), provides air to the hand dryer 50. The air outlets 54, 56 are configured in such a way so that they provide air into the hand-receiving cavity 52 (see, e.g., FIGS. 5 and 6B) downwardly and back toward the back wall 60. For example, in one embodiment the two outlet or exhaust ports 54, 56 are offset from one another in horizontal planes, i.e., the lower plenum 144 nozzle holes 164b are at about a 37 degree angle from horizontal and located closer to the user than the upper plenum 142 nozzle holes 164a which are at about an angle of 1 degree rearward from vertical and located closer to the backsplash 32 of the hand dryer cavity 52. This configuration prevents water from splashing onto the user once it is removed from the user's hands. FIG. 10 shows the motor 74 and motor housing 70 operably connected to plenums 142, 144. As shown, the motor housing 70 preferably has an aluminum cover plate 72 and an intake cover 96.

FIGS. 11 and 12 show the upper plenum 142 in detail. The upper plenum 142, preferably, is constructed of top piece 146 and a bottom piece 148. The upper plenum air inlet 143 is preferably integral with the upper plenum's 142 top piece 146 and bottom piece 148. A center post 150 and a screw 152 may be used to connect the top piece 146 to the bottom piece 148. Plastic bonding techniques, such as adhesives, may also be used. Additional screws and posts may also be provided along the outside of the plenum 142. The plenum 142 preferably has top nozzles 160a molded into it to provide the top portion upper air outlet 54. The top nozzles 160a preferably include pointed or frustoconical nozzle tips 162a that have nozzle holes 164a therethrough. The upper plenum 142 has multiple projections or tabs 147a protruding therefrom. The projections 147a act as connecting points for screws to attach the plenum to the lavatory system 10.

As shown in FIGS. 13 and 14, the lower plenum 144 is similarly configured. The lower plenum 144 has a top piece 147 connected to a bottom piece 149, preferably, by bonding and/or posts and screws. A lower plenum air inlet 145 is also provided. The lower plenum air inlet 145 is preferably integral with the rest of the lower plenum 144. The lower plenum 144 also has multiple projections or tabs 147b protruding therefrom which act as connecting points for screws to attach the plenum 144 to the lavatory system 10. Like the upper plenum, the lower plenum 144 is preferably constructed of two injection-molded plastic top and bottom pieces bonded and/or screwed together. The lower plenum may also contain a center post screw (not shown) to minimize deflection of the plenum when pressurized.

Bottom nozzles 160b are provided, again, preferably by molding into the lower plenum 144. Lower nozzles 160b, like the upper nozzles 160a, preferably have protruding frustoconical nozzle tips 162b each of which has a nozzle hole 164b therethrough. The shape of the nozzle tips 162b on the lower plenum 144 further acts as a flood prevention mechanism 40 to protect the motor 74.

The hand dryer blower motor 74 and motor housing 70 are best shown in FIGS. 15 and 16. Motor housing 70 includes an aluminum cover plate 72 and an upper or outer casement 80. An intake air manifold cap or housing cap 82 is provided toward a lower end of the motor housing 70. The motor 74 is inside the motor housing 70 and has a fan 76 with blades (not shown). Preferably, a rubber motor mounting ring and/or housing isolation gasket 86 is also provided. This gasket 86 helps reduce vibrations and deaden the motor's sound. A filter 84 is preferably provided within the housing 70 to filter the intake air. The filter 84 is preferably constructed of HEPA media or some other suitable media. Also contained within the motor housing 70 is acoustic insulation foam 83 to further isolate and lessen motor noise. The intake air portion or lower portion of the housing cap 82 is configured with a solid center section 95 surrounded by a circular pattern of holes 94. This configuration is spaced at a distance similar to the half wave length of the fan blade passing frequency of the fan motor 74. As a result, acoustical waves are reflected off of the solid center section 95 on the bottom of the housing cap 82 at a fan cowling and the acoustical foam 83, and eventually propagate through the circular hole pattern 94 in an attenuated manner.

A filter or intake cover 96 may also be provided in the housing 70 to contain or to hold the filter 84 in place. To further attenuate sound generated by the fan motor 74, insulation or acoustical foam 97 is placed on the inside of the intake cover 96. The cover 96 is preferably further configured to redirect the intake air 90 degrees from the axial center of the fan 76 and motor 74. This design promotes reflection of acoustical waves off of the noise reducing acoustical foam 97. A wire 87 is provided to keep the filter cover 96 in place.

As shown in FIG. 15, the first outlet port 88 and second outlet port 90 may include first outlet port grate 92a and second outlet port grate 92b, respectively, to prevent fingers or hands from accidentally being pushed into the motor 74 (not shown). These grates are preferably integrally molded into the port outlets.

Referring to FIG. 16, in one preferred embodiment, a motor control board or circuit board 98 is contained in the housing 70 and includes a motor control, e.g., a microcontroller 99, for turning the motor on/off and further controlling the motor 74. This microcontroller 99 may be in communication with several other sensors and/or subsystems, as will be described more fully below. The board 98 is preferably in communication with aluminum plate 72 which acts as a heat sink to channel heat away from the board 98. The plate 72 also acts as mounting platform for the board 98.

As shown in FIG. 18, the lavatory system 10 is preferably attached to a lavatory wall 118 and can be mounted at different heights to accommodate adults, children, and those with disabilities. A frame 120 may be connected to the lavatory wall to support the lavatory system 10. The frame 120 preferably has two triangular-shaped brackets 121, 122 having flat surfaces support columns 126, 128 on an underside of the wash basin 20 and hand dryer portion 50. A drain pipe 127 connects the drain 42 (see, e.g., FIG. 2) to the lavatory's plumbing behind the lavatory wall 118. Screws or other fastening means secure the brackets in place.

The frame 120 and drain pipe 127 are preferably covered by a lavatory system cover 130 (best seen in FIGS 1 and 2). The lavatory system cover 130 not only conceals the frame, motor, electrical connections, and plumbing, but it also preferably reduces the sound level experienced by the user. The cover 130 preferably also has brand indicia 131 and other user instructional indicia contained thereon. First end cap 115a and second end cap 115b help secure the cover 130 to lavatory system 10. The end caps 1 15a, 115b are preferably made of stainless steel and the cover 130 is preferably made of a plastic and/or resin material, e.g., a Class A fire-rated polymer. A primary air inlet 136 (see, e.g., FIG. 9) is preferably provided by creating a small gap between the lavatory wall 118 and the cover 130. The gap provides noise attenuation and also prevent foreign objects from getting sucked into the primary air inlet 136. FIG. 19 is a diagram showing a preferred air flow from the motor 74 out the first outlet port 88 and second outlet port 90. From the first outlet port 88, the air travels up through a grate 92a and via a hose 140a to a first or upper plenum 142 and out an air outlet 54. The air outlet 54 channels the air through individual upper nozzles 160a having upper nozzle tips 162a with air holes and into columns of air directed downwardly at a user's hands in the cavity. From the second outlet port 90, the air travels through a second outlet port grate 92b and via a hose 140b to a second or lower plenum 144 and out an air outlet 56. The air outlet 56 channels the air up through lower nozzles 160b having lower nozzle tips 162b with air holes and into columns of air directed outwardly at a user's hands in the cavity.

In a preferred embodiment, upper and lower nozzle tips 162a, 162b connected to the nozzles 162a, 162b emit high speed colliding columns of air to shear water off the user's hand. The tips, holes, and resulting air columns are spaced and calibrated in such a way as to reduce forces on the user's hand which would otherwise move the hand toward the upper or lower plenums or the side surfaces. As mentioned, one way of accomplishing this spacing and calibration is to have the axis of the air flow from upper plenum 142 nozzle holes 164a angled about 1 degree from vertical and aimed toward the cavity back wall 60 (FIG. 9) and the axis of the air flow from lower plenum 144 nozzle holes 164b angled about 37 degrees from horizontal and aimed toward the cavity back wall 60. Moreover, the upper to lower nozzle tip spacing may be about 3.5 inches apart and the hand-receiving cavity 52 (see, e.g., FIG. 5) may have width of about 9.5 to 10 inches to provide the user with optimal comfort when using.

In one embodiment, the nozzles 160a, 160b preferably have tips 162a, 162b that are pointed protrusions that help pull static air into the air columns. These rows of nozzles are preferably mounted on two, approximately ten (10) inch, rectangular blocks or blades that fit, respectively, into the top and bottom air outlets 54, 56. The blades are preferably integral with the upper and lower plenums 142, 144. There are approximately 20 nozzles with tips formed or molded into each blade. These tips are approximately .050-.060 inches long and have a diameter at the base of approximately .160-.220 inches. The holes therein are preferably about .101 inches in diameter. From the center of one nozzle hole to the center of the next nozzle hole, it is preferably about .50 inches. As mentioned, the tips 162a, 162b preferably have a generally frustoconical shape to help prevent water from entering the nozzles 160a, 160b and also have about a 6 degree taper. In one preferred embodiment, the tips have a smooth, slightly rounded side wall to prevent catching of clothing or jewelry. When the dryer 50 is in use, the user's hands are preferably about .75 inches away from the nozzle tips.

As discussed, in one embodiment the nozzles and holes on the top blade and the nozzles and holes on the bottom blade are at different angles from the horizontal plane and vertically aligned with one another so that the collision of the upper and lower streams of air provide a unique air flow pattern. This configuration helps to generate an s-shaped airflow pattern. However, in another alternative embodiment, the holes and nozzles are lined up directly across the cavity from each other.

In one embodiment, the bidirectional or dual-sided dryer uses 1600 watts (or 13.7 amps) and will dry hands in about 15 seconds at 80 decibels (dB) with 70 cubic feet per minute (CFM). In this embodiment, the dryer runs off a 120V outlet and requires a dedicated 20 ampere (amp) circuit. Ground fault interruption (GFI) circuit protection is preferred.

Referring now primarily to FIG. 17, a sensor control board 100 is preferably provided in the top portion 53 near the upper plenum 142 (see, e.g. FIG. 9). The sensor control board 100 includes a microcontroller 78, and a multitude of sensors 103a, 103b, 103c, 103d. In the preferred embodiment, four proximity sensors are provided in series. These work together through triangulation to detect an object or user hand in the cavity 52 (see, e.g., FIG. 5). Lights or LEDs 108a-m may also be mounted to the control board 100. Some or all of the LEDs 108a-l may be activated when the sensors 103a-d detect an object in the hand-receiving cavity 52.

In one preferred embodiment, the LEDs 108a-m are operably connected to the hand dryer 50. For example, LEDs 108a-d continuously illuminate the hand-receiving cavity 52 at a low intensity level when a sensor does not detect the presence of an object, i.e., the cavity is not in use or in "stand-by". However, when a sensor detects that an object has entered into the hand- receiving cavity 52, and during dryer 50 activation, preferably the LEDs 108e-h and 108i-l also illuminate cavity and thus increase the overall intensity level of light in the cavity. In another embodiment, LEDs 108a-do not begin to illuminate the cavity until the soap is dispensed or the water begins to flow in the basin.

In a preferred embodiment, when a staff member wishes to clean and service the lavatory system 10 the staff member may engage a service mode. Here the LEDs 108a-d and 108e-h continuously illuminate the hand-receiving cavity 52. Activation of hand dryer 50 is also suppressed by communication between microcontroller 78 and microcontroller 99. In one embodiment, service mode activation is accomplished by triggering a sensor, e.g., the right-most sensor 103d in the upper portion of the hand-receiving cavity 52, for an extended time period. Thus, if this one sensor consistently detects an object in the hand-receiving cavity 52, the hand dryer 50 is disabled for about 30 to 60 seconds and some of the LEDs, e.g., LEDs 108e-h, may be illuminated at a high-intensity level. This allows the hand-receiving cavity 52 to be temporarily cleaned without further engaging the hand dryer 50.

The LEDs, e.g., 108i-l, may flash in certain ways when the service mode has been started and/or is about to end. For example in one embodiment, prior to the service mode, one row of 4 white LEDs provides lower level illumination of the hand dryer cavity. However, if the rightmost sensor is triggered within the last 2 seconds and if a hand is placed over the rightmost sensor for the period of 3 seconds, a row of 4 amber LEDs will rapidly flash twice to designate that the unit is entering the service mode. At the same time, a second row of 4 white LED's will turn on to increase the illumination of the hand cavity for approximately 30 seconds to assist in cleaning. After approximately 25 seconds from when the service mode was started, the row of 4 amber LEDs will flash three times to indicate that the service mode cycle is nearing completion. At the end of the service mode cycle (5 seconds after the 4 amber LEDs flash three times or about 30 seconds in total service cycle length), the second row of white LEDs will turn off and the hand dryer cavity will remain lit at the lower level of illumination by the first row of 4 LEDs.

In one embodiment, the service mode includes a microcontroller with a programmed touchless cleaning mode feature wherein if one sensor is the only sensor activated within the last two seconds and if activated continuously for about three seconds, the hand dryer 50 will enter the mode to allow cleaning of the hand dryer 50. This mode lasts for about 30 seconds without activation of the dryer and then the microcontroller will return the system to normal operation. The microcontroller will flash the LED lights twice when entering the cleaning mode and three times when approaching a time near the end of a cleaning cycle which is approximately 25 seconds into an about 30 second cleaning cycle. If the cleaning mode is longer in another embodiment, the lights will flash 3 times 5 seconds before the end of the cleaning cycle.

FIG. 20 is a diagram showing triangulation of the sensors 103 a- 103 d in detecting an object in the hand-receiving cavity 52, e.g., a user's hand 166. In a preferred embodiment, it should be noted that hand entry occurs at an oblique angle. Hand 166 entry angles range from approximately 5 to 50 degrees from horizontal depending on the user's height and the mounting height of the lavatory system 10. For example, sensors 103a-d may be infrared (IR) sensors with emitter sections emitting IR light 104a-d, respectively. The IR light 104a and 104b may be reflected by hand 166. Each IR sensor 103a-d also has a detection module 105a-d, respectively.

The sensor detection modules 105a and 105b utilize an internal triangulation algorithm to sense IR light, 106a and 106b respectively, when an object is in the sensor's field of view. When a user's hand 166 enters the hand-receiving cavity 52, the sensor detection modules 105a and 105b output an electrical signal (e.g. a 5 volt signal). This signal is used by the microcontroller 78 to determine whether to activate the hand dryer (50) and LED lights 108e-l (see FIG. 17).

FIG. 21 is a diagram showing a preferred electronic control communications embodiment. In this embodiment, at least one microcontroller 78 communicates with the various subsystems, e.g., the first, second, third, and fourth hand dryer sensors 103a-d, LED lights 108a- 1, and hand dryer 50 (including hand dryer motor's microcontroller 99). In this embodiment, the microcontroller 78 may include a pre-programmed programmable unit having a time delay mechanism for turning the subsystems on and off in a certain sequence. For example, the delay may be approximately 400-800ms. Of course, it is appreciated that one or more microcontrollers may be used, for example, one for each subsystem, and may therefore be configured to communicate with each other. In one embodiment, a sensor control board or circuit board 100 (see, e.g., FIG. 17) is provided and includes a microcontroller 78 and a single bank of sensors (103a-d) to measure distance by triangulation. There may also be present on this sensor control board 100, LEDs 108a-d that will continuously illuminate the hand-receiving cavity 52. LEDs 108e-h and LEDs 108i-l may also be present and illuminate when the sensors 103a-d detect a user's hand 166 in the cavity. In one embodiment, white lights are used when the dryer is in stand-by, and amber lights are used when the dryer is in use.

A programmable unit may be present on the sensor control board 100 and/or motor control board 98 and preferably includes a time-delay mechanism, for example, in communication with an on/off switch for the motor 74. In this embodiment, when one of the sensors 103a-d is activated by an object in the hand-receiving cavity 52, the microcontroller 78 rechecks the activated sensor multiple times to validate that an object is in the hand-receiving cavity 52. Then the delay mechanism allows users to enter their hands 166 fully into the hand- receiving cavity 52 prior to the hand dryer motor 74 achieving full speed. This minimizes the potential of any splashing of water back on the user as a result of the fully active hand dryer imposing a shearing action on water present on the user's hands. There may be additional sensors (not shown) that may inhibit the dispensing of water or soap or activation of the dryer when a critical water level is reached in the wash basin and thus prevent overflow, flooding, and/or motor damage.

In one embodiment, multiple distance sensors 103a-d utilize triangulation one at a time and from left to right in their field of view to detect an object. These sensors are preferably positioned so they are recessed in the upper portion 53 and aimed vertically into the hand- receiving cavity 52. Recessing is minimal, however, to avoid adversely impacting sensor operation. In one embodiment, the sensor board 100 is programmed to check all sensors at about 130 milliseconds (ms) intervals. When a sensor flags a detection, it is then rechecked 15 times over about a 15ms period to ensure the detection was not a false trigger.

The temperature rise of the air during a drying cycle is dependent upon how long the user keeps the hand dryer 50 activated. Since the system 10 does not use an auxiliary air heater, the air temperature rise is a result of the heat generated by the inefficiency of the motor 74. The other factor dictating the motor temperature rise is how frequently the motor 74 is activated. In a high usage environment (airport, sports arena, etc.), the motor 74 will not typically cool down very much between cycles and the air temperature rise experienced by the user will be significantly higher than that of a hand dryer which operates infrequently. The following chart shows some typically temperatures.

In one embodiment, additional safety and cleaning features may be present. For example, UV lighting or some other sterilization technique to disinfect the hand-receiving cavity 52 may be provided. Further, only one drain may be provided between the wash basin 20 and outside of hand-receiving cavity 52 to eliminate the need for another device to catch water from the dryer 50 that must be emptied and can collect harmful molds or germs. Certain dryer components, like the nozzles 160a, 160b, may have an antimicrobial additive molded into the plastic. Further, the entire wash basin 20 and hand-receiving cavity 52 may be constructed, in part, of an antimicrobial material or may be coated with such a material during manufacture.

In one embodiment, a second row of holes, a slot, and a port are present to provide a lower velocity air stream to further minimize water splashing onto a user.

In the embodiment shown in FIG. 22, the drying system or dryer 250 may be a stand alone unit but still mounted in close proximity to the wash basin. In this embodiment, lavatory hand dryer 250 includes a hand-receiving cavity 252, a top portion 253, a bottom portion 255, a back side or wall 260, and at least one side wall 262. Note that while a right side wall is shown, the dryer may have only a left side wall. Alternatively, two side walls or partial side walls may be present. The top portion 253 may also include a hood 251 which forms a top wall or side 257 of the cavity 252. The top portion hood 251 may also include a top portion cover which may form a shelf 258. An upper air outlet 254 is also provided in the top or upper portion 253 and incorporates nozzle holes 262a.

A bottom portion 255 includes a lower air outlet 256. The bottom portion 255 is formed, in part, by a bottom wall or side 259. The bottom portion 255 of the hand-receiving cavity 252 also includes a back wall or side 260, front wall or side 261, and side wall 262. A front ledge 263 is integral with the front wall 261. The hand-receiving cavity 252, therefore, is preferably configured to have a front opening 264 and a side opening 265 (shown on the left side) so that the user's hand may travel along path 267 (as shown in Fig. 1). In this embodiment, the dryer's configuration and placement preferably allows the user to easily transition the hands from the wash basin to the dryer without dripping water onto the floor.

In one preferred embodiment, a mechanism 240 for preventing flooding and damage to the hand dryer motor is provided as well as to prevent water blown from a users' hands from falling to the floor and creating a slip hazard or unsanitary conditions. The mechanism 240 may include a flood relief rim 244 located on, for example, the left side of the hand-receiving cavity 252 at the opening 265. The flood relief rim 244 is provided below the lower portion's air outlet 256 and the nozzle tips 262b as shown. Thus, water flows over the flood relief rim 244 and not down the nozzle holes 264b and into the motor (not shown). In addition, another motor protection mechanism 240 may be the frustoconical lower nozzle tips 262b which resist the entry of water. Other preferred embodiments of the hand dryer 250 may include a side wall 262 on the left side and an opening 265 on the right side. In yet another preferred embodiment, the hand dryer 250 may include both a left side side wall and a right side side wall.

The primary components of the inventive lavatory system including the dryer bottom wall, a back wall, and single side wall are preferably formed from a plastic and/or resin material. In one embodiment, the system components may be formed from a solid polymeric and/or a polymeric and stone material. In another embodiment, the system components may be manufactured from Terreon® or TerreonRE® which are low emitting, e.g., Greenguard™ materials and available from the Bradley Corporation of Wisconsin.

In another embodiment, as best shown in FIGS. 23 and 24, lavatory system 310 has another mechanism 340 to prevent flooding of the motor (not shown). For example, as shown a drainage hole 350 is present in a lower portion of the hand-receiving cavity 352 to preferably provide an integrated overflow drain. Hole 350 is connected a drainage tube 360 and is located slightly below the plenum 365 and plenum outlet 355 and nozzle holes to prevent flooding of the motor. The drainage tube 360 connects to the drainpipe 347 located beneath the basin 320. Of course, as is know in the art, traditional drainage systems, like weep holes in the basin itself, may also be provided While the preferred embodiments and best modes of utilizing the present invention have been disclosed above, other variations are also possible. For example, the materials, shape, and size of the components may be changed. Additionally, it is understood that a number of modifications may be made in keeping with the spirit of the system 10 of the present invention. For example, the system 10 may include features of the various embodiments set forth in PCT Application No. PCT/US2010/051647 filed on 10/6/2010 and US Pub. Nos. US2008/0109956A1 published on May 15, 2008 and US2009/0077736A1 published on March 26, 2009, all of which are expressly incorporated herein by reference. Further, a number of lavatory systems like the one shown in FIG. 1 can be mounted in a row or otherwise joined together as needed.

Thus, it is specifically intended that the present invention not be limited to the embodiments and illustrations contained herein, but includes modified forms of those embodiments including portions of the embodiments and combinations of elements of different embodiments as come within the scope of the following claims.