Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LEAD BATTERY COMPRISING AN INTEGRATED REFERENCE ELECTRODE
Document Type and Number:
WIPO Patent Application WO/2004/019022
Kind Code:
A1
Abstract:
The invention relates to a lead battery (1) into which at least one silver-silver sulfate reference electrode is permanently integrated. The electrochemically active material (3) of the reference electrode consists of silver and silver sulfate. It is surrounded by a sleeve (4) consisting of a plastic which is resistant to acids and oxidation. Said sleeve has an opening (11) which is filled with a microporous separating material (10). Said sleeve (4) can itself at least partially or fully consist of said microporous separating material. Said microporous separating material (10) is impregnated with a sulphuric acid solution which ensures the electrolytic contact with the battery electrolyte (12). The electrical supply line (2) to the electrochemically active material (3) consists of silver. Said electrical supply line (2) is guided through the battery housing or the battery cover (6) in a sealed manner. The reference electrode is used to control the charging and/or discharging of the battery, and can also be used to measure the acid density and the charging state of the battery.

Inventors:
RUETSCHI PAUL (CH)
Application Number:
PCT/CH2003/000541
Publication Date:
March 04, 2004
Filing Date:
August 11, 2003
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
RUETSCHI PAUL (CH)
International Classes:
G01N27/30; H01M10/14; H01M10/48; (IPC1-7): G01N27/30; G01N27/49; H01M4/14
Foreign References:
US4414093A1983-11-08
US4859305A1989-08-22
FR2237543A51975-02-07
DE19925825A12000-08-31
Other References:
SUZUKI H ET AL: "Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability", SENSORS AND ACTUATORS B, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 46, no. 2, 15 February 1998 (1998-02-15), pages 104 - 113, XP004147284, ISSN: 0925-4005
MOUSSY F ET AL: "PREVENTION OF THE RAPID DEGRADATION OF SUBCUTANEOUSLY IMPLANTED AG/AGCI REFERENCE ELECTRODES USING POLYMER COATINGS", ANALYTICAL CHEMISTRY, AMERICAN CHEMICAL SOCIETY. COLUMBUS, US, vol. 66, no. 5, 1 March 1994 (1994-03-01), pages 674 - 679, XP000434610, ISSN: 0003-2700
Download PDF:
Claims:
Patentansprüche
1. Bleiakkumulator (1) mit Referenzelektrode, dadurch gekennzeichnet dass die Referenzelektrode auf dem elektrochemischen System Silber/Silbersulfat basiert, und dass sie permanent im Akkumulator eingebaut ist.
2. Bleiakkumulator gemäss Anspruch 1, dadurch gekennzeichnet dass das aktive Material (3) der Referenzelektrode aus Silber und Silbersulfat besteht und dieses aktive Material von einer säureund oxidationsbeständigen Kunststoffhülle (4) umgeben ist.
3. Bleiakkumulator nach Anspruch 1, dadurch gekennzeichnet dass die elektrische Zuleitung (2) zur Referenzelektrode, wenigstens im Bereich des elektrochemisch aktiven Materials, aus Silber besteht.
4. Bleiakkumulator nach Anspruch 1, dadurch gekennzeichnet dass die elektrische Zuleitung (2) zur Referenzelektrode dicht durch die Wand des Batteriegehäuses (6), oder des Batteriedeckels (6), oder eines dazugehörenden Teils (7), geführt ist.
5. Bleiakkumulator nach Anspruch 2, dadurch gekennzeichnet, dass die Kunststoffhülle (4) eine Oeffnung (11) aufweist, welche mit einem mikroporösen, saugfähigen Separatormaterial (10) ausgefüllt ist, welch letzteres mit Schwefelsäurelösung getränkt ist und eine elektrolytische Verbindung zum Batterieelektrolyten (12) herstellt.
6. Bleiakkumulator nach Anspruch 2, dadurch gekennzeichnet, dass die Kunststoffhülle (4) teilweise oder ganz aus säureund oxidationsbeständigem, mikroporösem Separatormaterial besteht.
7. Bleiakkumulator nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die elektrische Zuleitung (2) in eine Kunststoffisolation (8) eingebettet ist.
8. Verfahren zur Herstellung der Referenzelektrode nach Anspruch 1, welches folgende Schritte einschliesst : a) Herstellung einer Paste aus Silberpulver, Silberoxid und wässeriger Schwefelsäurelösung b) Einführen einer dosierten Menge von Paste in eine Hülle aus oxidationsbeständigem und säurebeständigem Kunststoff.
9. Bleiakkumulator mit Referenzelektrode gemäss Anspruch 1, gekennzeichnet dadurch, dass die elektrische Potentialdifferenz zwischen Referenzelektrode und einer positiven Akkumulatorelektrode zur Ueberwachung und Steuerung der Ladung, beziehungsweise Entladung, des Akkumulators dient, sodass vorgegebene Grenzwerte für diese Potentialdifferenz nicht überschritten, beziehungsweise unterschritten, werden.
10. Bleiakkumulator mit Referenzelektrode nach Anspruch 1, gekennzeichnet dadurch, dass die elektrische Potentialdifferenz zwischen Referenzelektrode und einer negativen Akkumulatorelektrode zur Ueberwachung und Steuerung der Ladung des Akkumulators dient, sodass die negative Elektrode genügend Ladung erhält, um Sulfatation zu vermeiden.
11. Bleiakkumulator mit einer oder mehreren Referenzelektroden nach Anspruch l, wobei die Potentialdifferenz zwischen zwei Referenzelektroden, oder die Potentialdifferenz zwischen einer Referenzelektrode und einer Batterieelektrode, dazu verwendet wird, die lokale Säuredichte zu ermitteln.
12. Bleiakkumulator mit Referenzelektroden nach Anspruch 11, wobei aus der Säuredichte der Ladezustand der Batterie ermittelt wird.
Description:
Beschreibung Bleiakkumulator mit integrierter Referenzelektrode Die Erfindung betrifft einen Bleiakkumulator mit permanent eingebauter Referenz- elektrode. Referenzelektroden dienen dazu, das Elektrodenpotential der Plusplatten, und/oder dasjenige der Minusplatten, individuell zu messen. Referenzelektroden können unter gewissen Voraussetzungen auch zur Messung der (lokalen) Säuredichte verwendet werden. Im nachfolgenden werden die Ausdrücke"Akkumulator"und"Batterie" gleichbedeutend verwendet.

Im weiteren betrifft die Erfindung Verfahren zur Herstellung erfindungsgemässer Referenzelektroden. Bevorzugte Ausführungsformen ergeben sich aus den abhängigen Ansprüchen.

Des weiteren umfasst die Erfindung verschiedene Arten der Nutzung und Verwendung der erfindungsgemässen Referenzelektroden. Nutzung und Verwendung sind in den Nebenansprüchen beschrieben.

Bisher wurde für Potentialmessungen in Bleiakkumulatoren entweder ein Kadmiumstab, oder eine Quecksiiber/Quecksilbersulfat Elektrode verwendet. Die Kadmiumstab-Elektrode eignet sich jedoch nicht für präzise Messungen, da ihr Elektrodenpotential nicht genau definiert ist. Das Potential hängt nämlich von der jeweiligen (variablen) Kadmiumionenkonzentation im Elektrolyten an der Oberfläche der Kadmiumstab-Elektrode ab. Des weiteren eignet sich der Kadmiumstab nicht für Langzeitmessungen ; dies wegen der Oxidationsempfmdlichkeit dieser Elektrode. Im weiteren ist Kadmium infolge seiner Toxizität unerwünscht.

Die im Handel erhältlichen Quecksilber/Quecksilbersulfat Elektroden haben zwar ein genau definiertes Elektrodenpotential, sind jedoch mechanisch fragil, da sie als Behälter ein Glasrohr verwenden. Sie eignen sich deshalb ebenfalls nicht zum dauerhaften Einbau in einen Akkumulator. Des weiteren sind die käuflich erhältlichen

Quecksilber/Quecksilbersulfat Referenzelektroden relativ teuer, da sie einen Platin- Kontakt zur elektrochemisch aktiven Substanz benötigen. Ferner sind diese Elektroden wegen ihrer Gefährlichkeit für die Umwelt unerwünscht.

Bis heute ist kein Bleiakkumulator mit permanent eingebauter Referenzelektrode im Handel, da eine geeignete, präzise, robuste und kostengünstige Referenzelektrode fehlte. Wie im nachfolgenden beschrieben wird, kann eine erfindungsgemässe, permanent eingebaute Referenzelektrode zur Ueberwachung und Steuerung der Ladungs-und Entladungsprozesse des Akkumulators verwendet werden.

Aufgabe der Erfindung ist ein Akkumulator mit integrierter Referenzelektrode, welch letztere zum Batterie-Management dient. Das heisst z. B., dass die Spannung zwischen der Referenzelektrode und einer Batterieelektrode, oder einem Batteriepol, zur Definition der Lade-und/oder Entlade-Kennlinie des Akkumulators verwendet wird. Der Strom wird dann z. B. nicht mehr in Funktion der Gesamtspannung der Batterie reguliert, sondern in Funktion des mittels Referenzelektrode gemessenen Potentials.

Die Aufgabe wird durch Verwendung einer Silber/Silbersulfat Referenzelektrode gelöst. Dieses elektrochemische System wurde bisher in Bleiakkumulatoren noch nie verwendet. Die erfindungsgemässe Silber/Silbersulfat Elektrode ist mechanisch äusserst robust und schockbeständig, da ihr Behälter aus Plastik besteht. So kann man die erfindungsgemässe Elektrode zum Beispiel aus zwei Metern Höhe auf einen Steinboden fallen lassen, ohne dass sie Schaden nimmt. Im weiteren enthält diese Elektrode keine umweltgefährdenden Stoffe. Die erfindungsgemässe Referenzelektrode hat ein präzis definiertes, reproduzierbares Elektrodenpotential. Sie weist keine Selbst-Entladung auf und eignet sich deshalb zum Langzeiteinsatz in Bleiakkumulatoren. Sie kann für die gesamte Lebensdauer des Akkumulators eingebaut bleiben.

Ein Bleiakkumulator besteht normalerweise aus einer Reihe von einzelnen, galvanischen Zellen, die in Serie geschaltet sind. Gemäss Erfindung enthält wenigstens eine Zelle des Akkumulators eine erfindungsgemässe Referenzelektrode.

Falls der Akkumulator aus mehreren, in Serie geschalteten Batterieblöcken besteht enthält vorzugsweise wenigstens eine Zelle jedes Blockes eine erfindungsgemässe Referenzelektrode. Besteht der Akkumulator z. B. aus drei 12-Volt Batterieblöcken, welche in Serie geschaltet sind (wobei eine Gesamtspannung von 36 Volt resultiert), so enthält vorzugsweise jeder der drei Batterieblöcke in wenigstens einer Zelle eine Referenzelektrode. Je mehr Referenzelektroden eingesetzt werden, desto preziser wird die Ueberwachung. Mit der Zahl der Referenzelektroden steigen aber auch die Kosten.

Das elektrochemisch aktive Material der Referenzelektrode gemäss Erfindung enthält metallisches Silber und Silbersulfat. Die elektrische Zuleitung besteht, wenigstens im Bereich des elektrochemisch aktiven Materials, aus metallischem Silber, beispielsweise in Form eines Silberdrahtes oder einer Silberlamelle. In einer bevorzugten Ausführung ist wenigstens ein Teil der elektrischen Zuleitung dicht in eine Kunststoffisolation eingebettet. Diese Kunststoffisolation kann integraler Teil der Durchführung durch die Wand des Batteriegehäuses, oder des Batteriedeckels, oder eines abnehmbaren Teils im Batteriedeckel sein. Die Kunststoffisolation kann auch integraler Teil des Batteriegehäuses oder des Batteriedeckels selbst sein. Die Kunststoffisolation ist vorzugsweise mit einem Durchfiihrungsteil, oder direkt mit dem Batteriegehäuse, oder dem Batteriedeckel, thermisch verschweissbar. Die Kunststoffisolation muss säure-und oxidytionsbeständig sein und kann zum Beispiel aus Polypropylen bestehen, falls das Batteriegehäuse auch aus Polypropylen besteht. Das Material der Kunststoffisolation sollte vorzugsweise mit dem Material des Durchfiihrungsteils oder des Batteriegehäuses, oder Batteriedeckels, kompatibel sein.

Die elektrochemisch aktive Masse der Referenzelektrode, bestehend aus aus Silber und Silbersulfat, ist vorzugsweise von einer schockbeständigen Kunststoffhülle umgeben.

Die Kunststoffhülle kann röhrenförmig, knopfförmig oder taschenförmig ausgebildet sein.

Kunststoffe, welche sich hierzu eignen, müssen säurebeständig und oxidadionsbeständig sein, wie z. B. Teflon, Polypropylen oder Polyethylen. Die erfindungsgemässe Referenzelektrode eignet sich zur Miniaturisierung.

Die Kunststoffhülle hat wenigstens eine Oeffnung, welche ihrerseits von einen ionendurchlässigen Separator ausgefüllt ist. Dieser Separator trennt den Elektrolyten

der Referenzelektrode vom Elektrolyten in der Batterie. Der Separator kann aus Mikro- Glasfasern bestehen, einem handelsüblichen Material, welches als Separator in wartungsfreien Akkumulatoren verwendet wird. Der Separator wirkt als Diffusions- Barriere für gelöstes Silbersulfat. Der Separator wirkt auch als Filter, welcher verhindert, dass kleine suspendierte Festkörper-Teilchen von Silber oder Silbersulfat in den Batterie-Elektrolyten gelangen. Je grösser die Oeffnung in der Kunststoffhülle, desto effektiver muss die Diffusionsbarriere sein, um dies zu verhindern. Die Kunststoffhülle kann gegebenenfalls ganz oder teilweise aus mikroporösem Separatormaterial bestehen.

Ein Ausführungsbeispiel für die Erfindung ist in der Figur 1 dargestellt.

Fig. 1 stellt ein Schnittbild durch eine erfindungsgemässe Anordnung der Referenzelektrode im erfindungsgemässen Akkumulator (1) dar. In Fig. 1 ist nur ein Teil des Akkumulatore dargestellt. Die elektrochemisch aktive Masse (3) der erfindungsgemässen Referenzelektrode besteht im wesentlichen aus Silber und Silbersulfat. Sie ist in einer röhrchenförmigen Kunststoffhülle (4) aus z. B. Teflon, Polypropylen oder Polyethylen, untergebracht. Anstelle eines Röhrchens kann als Hülle ein Schlauch, oder eine flache Tasche verwendet werden. Ein dünner Silberdraht (2) oder eine Silberlamelle dient als Kontakt zur elektrochemisch aktiven Masse (3). Der Silberdraht (2) ist dicht von einer Kunststoffisolation (8) umschlossen. Zwischen dem Draht (2) und der Isolation (8) gibt es, wenigstens über einen Teil seiner Länge, keinerlei Luftspalt. In der Ausführung nach Fig 1 ist die Kunststoffisolation (8), über einen Teil ihrer Länge, dicht in ein Durchführungsteil (7) eingeschweisst oder eingeklebt.

Kunststoffisolation (8) und Durchführungsteil (7) können auch aus einem einzigen Stück geformt sein. Die Kunststoffisolation (8) kann allenfalls auch direkt in das entsprechend ausgebildete Batteriegehäuse (6), oder in den entsprechend ausgebildeten Batteriedeckel (6), eingeschweisst sein. In der Ausführung nach Fig. 1 ist der Durchführungsteil (7) dicht in das Batteriegehäuse (6), oder den Batteriedeckel (6), eingeschweisst, eingeklebt, eingeschraubt oder auf andersartige Weise dicht eingefügt. Zur Abdichtung können auch elastische Dichtungselemente Verwendung finden. Kunststoffisolation (8) und/oder Durchführungsteil (7) können auch integrale Bestandteile der Batteriegehäuses (6) oder des Batteriedeckels (6) sein. Die elektrische Durchführung kann also zum Beispiel schon

bei der Spritzguss-Herstellung des Batteriedeckels realisiert werden. Das Material der Kunststoffisolation (8) und des Durchführungsteils (7) müssen dem Material des Batteriegehäuses oder des Batteriedeckels (6) so angepasst sein, damit eine möglichst hermetische Eindichtung erreicht werden kann In der Ausführung nach Fig. 1 ist die röhrchenförmige Kunststoffhülle (4) am unteren Ende mit einem Separator-Pfropfen (10) aus Mikro-Fiber Glasfasern verschlossen. Die Glasfasern haben einen Durchmesser in der Grössenordnung von 1 Mikrometer. Dieser Pfropfen dient als Diffusionsbarriere. Die Länge des Pfropfens (10) kann den jeweiligen Anforderungen, hinsichtlich Diffusionswiderstand gegen die Diffusion von gelöstem Silbersulfat, angepasst werden. Die Separator-Schicht (10) ist saugfähig ausgebildet, und steht im Kontakt mit Batterie-Elektrolyt (12), sodass die notwendige elektrolytische Leitfähigkeit zur Referenzelektrode gewährleistet ist. Das Elektrolyt-Niveau der Batterie, oder das Niveau der Elektrolyt-getränkten Batterie Separatoren, ist mit (5) bezeichnet. Für 10 den Separator-Pfropfen (10) kann, statt Mikro- Fiber Glas, auch ein anderes, mikroporöses, benetzbares Separatormaterial verwendet werden. Die mit Separatormaterial abgedeckte Oeffnung (11) der Hülle (4) kann auch auf deren Seite, statt an deren Ende, angebracht sein. Die Oeffnung der Hülle kann auch wesentlich kleiner sein als deren Durchmesser. Die Oeffnung ist aber in jedem Fall mit einer Separator-Schicht ausgefüllt oder bedeckt.

In der Ausführung nach Fig. 1 ist das elektrochemisch aktive Material (3) zwischen zwei Separator-Schichten (9) und (10) aus Mikrofiber-Glas eingebettet. Das elektrochemisch aktive Material (3) besteht aus einem Gemisch aus feinem Silberpulver und feinem Silbersulfatpulver. Die elektrochemisch aktive Masse (3), sowie die Mikrofiber Glasfaser Pfropfen (9) und (10) können Zusätze von gröberen Glasfasern, säurebeständigen Kunststofffasern, Bindemitteln oder Gelierungsmitteln enthalten. Ein bekanntes Gelierungsmittel ist staubförrniges Silicium Dioxid (Sie), welches unter dem Namen Cabosil von der Firma Cabot vertrieben wird.

Für das Ausführungsbeispiel von Fig. 1 wurde das elektrochemisch aktive Materiel wie folgt hergestellt : 3 g Cabosil wurden in einem Porzellanmörser vorsichtig in 30 g destilliertes Wasser eingerührt. Dann wurden 23.18 g Silberoxid (Ag2O) und 21. 85 g

feines Silberpulver (beide analysenrein) zugegeben. In die entstandene Paste wurden langsam und unter Umrühren 25.0 cm3 wässerige Schwefelsäurelösung (30%) zugetropft.

Dabei wurde darauf geachtet, dass die Temperatur der Paste nicht über 40 °C anstieg. Die Schwefelsäure reagiert mit Silberoxid zu Silbersulfat. Es entsteht eine 1 : 1 (molare) Mischung von Silber und Silbersulfat. Es bleibt ein geringer Uberschuss von Schwefelsäure, sodass die Paste sauer wirkt. Am Schluss muss alles Silberoxid in Silbersulfat umgewandelt sein.

Als Kunststoffhülle (4) diente ein kurzes Teflonröhrchen. Mittels eines Stöpsels wurde zuerst ein erster Pfropfen aus handelsüblichem Mikrofiber-Separatormaterial in das Teflonröhrchen gedrückt, hernach eine Schicht von elektrochemisch aktivem Material (etwa 200 mg), gemäss obenbeschriebenem Rezept, hernach noch ein zweiter Pfropfen aus Mikrofiber-Glass. Die Paste aus aktivem Material wurde anschliessend in der Kunststoffhülle (4) getrocknet. Sie kann vor dem Trocknen nötigenfalls mit destilliertem Wasser ausgewaschen werden.

Im Ausführungsbeispiel nach Fig. 1 ragt der Silber-Kontaktdraht (2) am oberen sowie am unteren Ende aus dem Isolationsmantel (8) heraus. Der Silber-Kontaktdraht (2) mit Isolationsmantel (8) wird dann in die röhrchenförmige Hülle (4) hineingesteckt, dass der Silber-Kontaktdraht (2) in die elektrochemisch aktive Masse (3) eindringt, wodurch der elektrische Kontakt gewährleistet wird. Die röhrchenförmige Hülle (4) wird durch den Isolationsmantel (8) dicht verschlossen. Wenn sowohl die röhrchenförmige Hülle (4), sowohl als auch der Isolationsmantel (8) z. B. aus Polypropylen bestehen, können Isolationsmantel (8) und Hülle (4) thermisch miteinander verschweisst werden, sodass eine perfekte Eindichtung erreicht wird. Isolationsmantel (8) und Hülle (4) können, je nach verwendetem Material, auch durch Kleben, oder durch andere mechanische Mittel, miteinander verbunden sein.

Bei Verwendung einer Hülle (4) in Form einer flachen Tasche, anstelle eines Röhrchens, besteht der elektrische Zuleiter (2) vorzugsweise aus einer Silberlamelle.

Diese ist, zwecks Isolation, beispielsweise zwischen zwei Lamellen aus Polypropylenfolie eingesiegelt. Die Referenzelektrode kann dann als sehr flache Tasche ausgebildet sein.

Vorliegende Erfindung schliesst auch andere Verfahren zur Herstellung der Silber- Silbersulfat Referenzelektrode ein. So kann die Elektrode durch Anodisieren eine Silberdrahtes, oder einer Silberfolie, in einem sauren Sulfatelektrolyten erzeugt werden.

Es kann zur Herstellung der Elektrode auch eine Mischung aus Silberpulver und chemisch gefälltem Silbersulfat Verwendung finden.

Vorliegende Erfindung betrifft ferner die Verwendung der erfindungsgemässen Referenzelektroden zur Steuerung und Ueberwachung der Batterieströme und/oder Spannungen. Beim Laden der Batterie kann dann z. B. eine"IURI"Kennlinie verwendet werden, wobei UR nicht die Gesamtspannung der Batterie, sondern z. B. die Spannung zwischen der Referenzelektrode und der positiven Elektrode derselben Zelle, oder des positiven Poles des betreffenden Batterieblocks, oder des positiven Poles der betreffenden Gesamtbatterie, bezeichnet. Die Batterie wird also zunächst mit einem konstanten (grossen) Strom"I"geladen, bis das gewünschte Elektrodenpotential"UR"erreicht ist.

Hernach wird bei konstantem Elektrodenpotential"UR"weitergeladen. Schlussendlich kann noch, wenn nötig, eine zweite"I"-Phase (mit kleinem Strom) angefügt werden.

Wird die Spannung"UR"zwischen der Referenzelektrode und der positiven Elektrode der gleichen Zelle gemessen, so ergibt sich, bei offenem Stromkreis, je nach Säuredichte und Temperatur, ein Wert von etwa 1.1 Volt. Die erwünschte Lade-Spannung für die "UR"-Phase würde dann, im Falle von Schwebeladung, z. B. bei etwa 1.15 Volt liegen, für Hochstromladung bei etwa 1.25 bis 1.45 Volt. Die zu verwendenden Werte sind für jeden Fall genau zu ermitteln. Sie hängen von Säuredichte und Temperatur ab.

Wird die Spannung"UR"zwischen der Referenzelektrode und dem positiven Pol eines Batterieblocks gemessen, so kommt es darauf an, in welcher Zelle des Batterieblocks sich die Referenzelektrode befindet. Befindet sie sich in der ersten Zelle, gezählt vom positiven Pol, so gelten Werte, wie oben angegeben. Befindet sich die Referenzelektrode aber in der zweiten Zelle, vom positiven Pol aus gezählt, so wäre die gemessene Spannung bei offenem Stromkreis etwa 2.1 + 1. 1 = 3.2 Volt, die Schwebeladungsspannung etwa 2.25 + 1.15 = 3.40 Volt, und die Ladespannung für hohe Ladeströme etwa 2.45 + 1.25 = 3.7 Volt. Entsprechend höher wären die

entsprechenden Spannuungen"UR"für Zellen, die noch weiter vom positiven Pol entfernt sind.

Die Erfindung erlaubt, die Ladung so auszuführen, dass die positive Elektrode ein festgesetztes Potential nicht überschreitet. Dadurch wird die positive Elektrode vor Ueberladung geschützt. Da die Geschwindigkeit der Gitterkorrosion vom Potential der positiven Elektrode abhängt, kann bei Verwendung der erfindungsgemässen Einrichtung die Batterie so geladen werden, dass die Korrosionsrate minimal ist. Bei Verwendung der totalen Batteriespannung als Strombegrenzungs-Kriterium dagegen, beeinflusst das (variable) Potential der negativen Batterieelektrode das Potential der positiven Elektrode, wodurch das letztere nicht mehr genau definiert ist.

Die Erfindung gestattet auch, die Entladung der Batterie so zu steuern, dass die Abschaltung dann erfolgt, wenn ein vorgewähltes, bestimmtes Elektrodenpotential der positiven Elektrode unterschritten wird. Damit kann die positive Elektrode vor zu tiefer Entladung geschützt werden. Da die Anzahl der Entladezyklen stark davon abhängt, wie tief die positive Elektrode bei jedem Zyklus entladen wird, gelingt es, mit der erfindungsgemässen Einrichtung die Zyklen-Lebensdauer zu verbessern.

Auch bei wartungsfreien (ventil-gesteuerten) Akkumulatoren, in denen der Elektrolyt in gelierter Form vorliegt, oder in Mikro-Fiber Glas Separatoren absorbiert ist, lassen sich die erfindungsgemässen Referenzelektroden mit Vorteil einsetzen. Bei wartungsfreien Akkumulatoren ist die negative Elektrode sehr anfällig für irreversible Sulfatation. Das heisst, dass sich in der negativen Elektrode Bleisulfatkristalle bilden, welche sich nicht mehr in metallisches Blei umwandeln lassen. Dies bedeutet einen entsprechenden Kapazitätsverlust. Die Anfälligkeit für Sulfatation rührt daher, dass in wartungsfreie Bleiakkumulatoren der sogenannte Sauerstoffzyklus stattfindet. Sauerstoff, welcher sich an der positiven Elektrode entwickelt, diffundiert zur negativen Elektrode und wird dort elektrochemisch zu Wasser reduziert. Insbesonders bei Schwebeladung kann es vorkommen, dass gewisse Teile der negativen Platten dann nicht genug Ladestrom erhalten. Das heisst, dass sich dann in den negativen Platten (infolge Selbstentladung durch Sauerstoffreduktion) Sulfatkristalle bilden.

Bei Verwendung einer erfindungsgemässen Referenzelektrode kann das Potential der negativen Batterieelektroden kontinuierlich überwacht werden. Wird die kathodische Polarisation der negativen Elektrode zu klein, kann der Schwebeladestrom entsprechend erhöht werden. Eine zu geringe kathodische Polarisation kann auch auftreten, wenn die Batterie durch Elektrolyse Wasser verloren hat. Eine zu geringe Polarisation könnte also ein Warnsignal dafür sein, dass eventuell Wasser nachgefüllt werden sollte.

Die Referenzelektrode gemäss Erfindung kann insbesonders auch mit Vorteil in Akkumulatoren verwendet werden, welche aus mehreren Batterieblöcken bestehen und welche an ein Ladegerät mit automatischer Umschaltung angeschlossen werden. Bei dieser Art von Ladung wird jeder einzelne Batterieblock (z. B. jeder 12 V Block) separat für kurze Zeit (etwa 60 Sekunden) mit hohem Strom geladen. Dann wird der Strom unterbrochen und automatisch auf den nächsten Batterieblock umgeschaltet. So wird ein Block nach dem andern, separat, in Sequenz, geladen. Dann kommt wieder der erste Batterieblock an die Reihe, und so fort. Gemäss Erfindung muss in jedem Batterieblock wenigstens eine Zelle mit Referenzelektrode ausgerüstet sein. So kann jeder Batterieblock einzeln bis zum gewünschten Potential seiner positiven Elektroden geladen werden.

Anderseits kann bei Verwendung einer Referenzelektrode gemäss Erfindung bei wartungsfreien (ventil-gesteuerten) Akkumulatoren das Potential der negativen Elektrode in jedem Block überwacht werden. Der Strom kann dann so reguliert werden, dass für jeden Block eine genügende kathodische Polarisation gewährleistet ist. Der Gebrauch der erfindungsgemässen Referenzelektrode ist also besonders vorteilhaft bei Akkumulatoren höherer Spannung, z. B. in 36-42 Volt Systemen.

Die beschriebenen erfindungsgemässen Verwendungen der Referenzelektrode können auch kombiniert werden mit konventionellen (auf die Gesamtspannung ansprechenden) Ladetechniken, dies z. B. zur Erhöhung der Sicherheit der Ueberwachung.

Referenzelektroden gemäss Erfindung lassen sich auch zur Ermittlung der lokalen Säuredichte verwenden. Wenn z. B. dafür gesorgt ist, dass der Konzentrationsausgleich zwischen dem Elektrolyten der Referenzelektrode einerseits, und dem Batterie- Elektrolyten anderseits, genügend schnell erfolgt, lässt sich aus der gemessenen Spannung

E (Volt) zwischen positiver Batterieelektrode und Referenzelektrode in der gleichen Zelle der Quotient (as/aw) zwischen Säureaktivität as und Wasseraktivität aW (bei z. B. bei 25 °C) aus der Beziehung E (Volt) = 1.033 + 0. 05916 log (as/aW) ermitteln. Zwischen dem Quotient (as/aW) und der Säuredichte besteht eine genau bekannte Relation.

Eine Ermittlung der Säurekonzentration ist auch möglich aus der Potentialdifferenz zwischen zwei in dieselbe Zelle eingebauten Referenzelektroden, wobei die eine für einen schnellen Säureausgleich zwischen Batterieelektrolyt und Elektrolyt der Referenzelektrode konzipiert ist, die andere dagegen für extrem langsamen Säureausgleich.

Aus der Säuredichte lässt sich in bekannter Weise auf den Ladezustand der Batterie schliessen. Die Erfindung schliesst den Gedanken ein, die erfindungsgemässe Referenzelektrode zur Ermittlung des Ladezustandes zu gebrauchen.

Die voligende Erfindung schliesst auch den Gedanken ein, aus der Potentialdifferenz zwischen zwei erfindungsgemässen Referenzelektroden, welche an örtlich verschiedenen Stellen in die gleiche Zelle eingebaut sind, Schlüsse auf allällige Unterschiede in der Säurekonzentration zu ziehen. Dies erlaubt es, z. B., eine allfällige Säure-Stratifikation zu entdecken, und sie hernach mit bekannten Mitteln wirkungsvoll zu eliminieren.