Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LIGHT DEVICE WITH BEACON FOR POSITIONING
Document Type and Number:
WIPO Patent Application WO/2019/192855
Kind Code:
A1
Abstract:
The invention relates to a method for operating a transmission device in connection with a communication unit (20), in which: - a transmission device (12) wirelessly transmits a radio signal (14) comprising identification data (16) specific to the transmission device (12) via at least two radio channels, and a communication unit (20) receives the radio signal (14), ascertains and evaluates reception-side signal properties of the radio signal (14) and the specific identification data (16) contained in the received radio signal (14), wherein the transmission device (12) transmits the radio signal (14) which is transmitted via the respective one of the at least two radio channels and having channel data regarding said respective one of the at least two radio channels and/or - a transmission power of the radio signal (14) which is transmitted via the respective one of the at least two radio channels is adjusted depending on transmission properties of the respective radio channel.

Inventors:
PEITZ CHRISTOPH (DE)
WALLWITZ ANDREJ (DE)
WALLWITZ KARL-HEINZ (DE)
ZAGGL ANDREAS (DE)
STUTZ MICHEL (DE)
FEIL HENRY (DE)
Application Number:
PCT/EP2019/057155
Publication Date:
October 10, 2019
Filing Date:
March 21, 2019
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
OSRAM GMBH (DE)
International Classes:
H04W4/02; G01S5/02; H04W4/80
Foreign References:
US20120013509A12012-01-19
US20160105761A12016-04-14
US20150289207A12015-10-08
DE102016104485A12017-09-14
Other References:
None
Attorney, Agent or Firm:
HOFSTETTER SCHURACK & PARTNER (DE)
Download PDF:
Claims:
Patentansprüche

1. Verfahren zum Betreiben einer Sendeeinrichtung (12), die ein Funksignal (14) mit für die Sendeeinrichtung (12) spezifischen Identifikationsdaten (16) über wenigstens zwei Funkkanäle drahtlos aussendet,

dadurch gekennzeichnet, dass

das über den jeweiligen der wenigstens zwei Funkkanäle ausgesendete Funksignal (14) Kanaldaten bezüglich dieses jeweiligen der wenigstens zwei Funkkanäle enthält.

2. Verfahren nach Anspruch 1,

dadurch gekennzeichnet, dass

eine Sendeleistung des über den jeweiligen der wenigstens zwei Funkkanäle ausgesendeten Funksignals (14) abhängig von Übertragungseigenschaften des jeweiligen Funkkanals

eingestellt wird.

3. Verfahren zum Betreiben einer Sendeeinrichtung (12), die ein Funksignal (14) mit für die Sendeeinrichtung (12) spezifischen Identifikationsdaten (16) über wenigstens zwei Funkkanäle drahtlos aussendet,

dadurch gekennzeichnet, dass

eine Sendeleistung des über den jeweiligen der wenigstens zwei Funkkanäle ausgesendeten Funksignals (14) abhängig von Übertragungseigenschaften des jeweiligen Funkkanals

eingestellt wird.

4. Verfahren nach Anspruch 3,

dadurch gekennzeichnet, dass

das über den jeweiligen der wenigstens zwei Funkkanäle ausgesendete Funksignal (14) Kanaldaten bezüglich dieses jeweiligen der wenigstens zwei Funkkanäle enthält.

5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass

die spezifischen Identifikationsdaten vom Funkkanal abhängig sind, auf dem das Funksignal ausgesendet wird.

6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass

das Funksignal (14) zeitlich versetzt auf den jeweiligen der wenigstens zwei Funkkanäle ausgesendet wird.

7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass

das Funksignal (14) kanalselektiv nur auf einem ausgewählten der wenigstens zwei Funkkanäle ausgesendet wird.

8. Verfahren zum Betreiben eines Kommunikationsgeräts (20), welches ein über wenigstens zwei Funkkanäle von einer

Sendeeinrichtung (12) ausgesendetes Funksignal (14) mit für die Sendeeinrichtung (12) spezifischen Identifikationsdaten (16) empfängt, empfangsseitige Signaleigenschaften des

Funksignals (14) und die in dem empfangenen Funksignal (14) enthaltenen spezifischen Identifikationsdaten (16) ermittelt und auswertet,

dadurch gekennzeichnet, dass

aus dem Funksignal Kanaldaten bezüglich des jeweiligen

Funkkanals ermittelt werden und das Auswerten abhängig von den Kanaldaten erfolgt.

9. Verfahren nach Anspruch 8,

dadurch gekennzeichnet, dass

das Funksignal (14) kanalselektiv über einen ausgewählten der wenigstens zwei Funkkanäle empfangen wird.

10. Verfahren zum Betreiben eines Kommunikationsgeräts (20), welches ein über wenigstens zwei Funkkanäle von einer

Sendeeinrichtung (12) ausgesendetes Funksignal (14) mit für die Sendeeinrichtung (12) spezifischen Identifikationsdaten (16) empfängt, empfangsseitige Signaleigenschaften des

Funksignals (14) und die in dem empfangenen Funksignal (14) enthaltenen spezifischen Identifikationsdaten (16) ermittelt und auswertet,

dadurch gekennzeichnet, dass das Funksignal kanalselektiv empfangen und abhängig vom selektierten Funkkanal ausgewertet wird.

11. Verfahren zum Betreiben einer Sendeeinrichtung in

Verbindung mit einem Kommunikationsgerät (20) , bei dem:

- eine Sendeeinrichtung (12) ein Funksignal (14) mit für die Sendeeinrichtung (12) spezifischen Identifikationsdaten (16) über wenigstens zwei Funkkanäle drahtlos aussendet, und

- ein Kommunikationsgerät (20) das Funksignal (14) empfängt, empfangsseitige Signaleigenschaften des Funksignals (14) und die in dem empfangenen Funksignal (14) enthaltenen spezifischen Identifikationsdaten (16) ermittelt und

auswertet ,

dadurch gekennzeichnet, dass

die Sendeeinrichtung (12)

das über den jeweiligen der wenigstens zwei Funkkanäle ausgesendete Funksignal (14) mit Kanaldaten bezüglich dieses jeweiligen der wenigstens zwei Funkkanäle aussendet und/oder

- eine Sendeleistung des über den jeweiligen der

wenigstens zwei Funkkanäle ausgesendeten Funksignals (14) abhängig von Übertragungseigenschaften des jeweiligen

Funkkanals eingestellt wird.

12. Verfahren nach einem der Ansprüche 8 bis 11,

dadurch gekennzeichnet, dass

das Kommunikationsgerät (20) Übertragungsdaten zu

Übertragungseigenschaften für die wenigstens zwei Funkkanäle speichert .

13. Sendeeinrichtung (12), die ausgebildet ist, ein

Funksignal (14) mit für die Sendeeinrichtung (12)

spezifischen Identifikationsdaten (16) über wenigstens zwei Funkkanäle drahtlos auszusenden,

dadurch gekennzeichnet, dass

die Sendeeinrichtung (12) ausgebildet ist, das über den jeweiligen der wenigstens zwei Funkkanäle auszusendende

Funksignal (14) mit Kanaldaten bezüglich dieses jeweiligen der wenigstens zwei Funkkanäle auszusenden.

14. Sendeeinrichtung (12), die ausgebildet ist, ein

Funksignal (14) mit für die Sendeeinrichtung (12)

spezifischen Identifikationsdaten (16) über wenigstens zwei Funkkanäle drahtlos auszusenden,

dadurch gekennzeichnet, dass

die Sendeeinrichtung (12) ausgebildet ist, eine Sendeleistung des über den jeweiligen der wenigstens zwei Funkkanäle auszusendende Funksignal (14) abhängig von

Übertragungseigenschaften des jeweiligen Funkkanals

einzustellen .

15. Kommunikationsgerät (20), welches ausgebildet ist, ein über wenigstens zwei Funkkanäle von einer Sendeeinrichtung (12) ausgesendetes Funksignal (14) mit für die

Sendeeinrichtung (12) spezifischen Identifikationsdaten (16) zu empfangen, empfangsseitige Signaleigenschaften des

Funksignals (14) und die in dem empfangenen Funksignal (14) enthaltenen spezifischen Identifikationsdaten (16) zu ermitteln und auszuwerten,

dadurch gekennzeichnet, dass

das Kommunikationsgerät (20) ausgebildet ist, aus dem

Funksignal Kanaldaten bezüglich des jeweiligen Funkkanals zu ermitteln und das Auswerten abhängig von den Kanaldaten durchzuführen und/oder das Funksignal kanalselektiv zu empfangen und das Auswerten abhängig von

Übertragungseigenschaften des selektierten Funkkanals durchzuführen .

16. System (10) mit einer Sendeeinrichtung nach einem der Ansprüche 13 oder 14 und einem Kommunikationsgerät (20) nach Anspruch 15.

17. System (10) nach Anspruch 16,

dadurch gekennzeichnet, dass

das Kommunikationsgerät (20) eine Geräteantenneneinheit und die Sendeeinrichtung eine Einrichtungsantenneneinheit aufweisen, wobei die Geräteantenneneinheit und die Einrichtungsantenneneinheit hinsichtlich ihrer funkspezifischen Antenneneigenschaften komplementär zueinander ausgebildet sind. 18. Leuchteinrichtung (28) mit zumindest einer

Sendeeinrichtung (12) des Systems (10) nach einem der Ansprüche 16 oder 17.

Description:
LICHTEINRICHTUNG MIT BEACON ZUR POSITIONIERUNG

BESCHREIBUNG

Die Erfindung betrifft Verfahren zum Betreiben einer

Sendeeinrichtung, die ein Funksignal mit für die

Sendeeinrichtung spezifischen Identifikationsdaten über wenigstens zwei Funkkanäle drahtlos aussendet. Ferner

betrifft die Erfindung Verfahren zum Betreiben eines

Kommunikationsgeräts, welches ein über wenigstens zwei

Funkkanäle von einer Sendeeinrichtung ausgesendetes

Funksignal mit für die Sendeeinrichtung spezifischen

Identifikationsdaten empfängt, empfangsseitige

Signaleigenschaften des Funksignals und die in dem

empfangenen Funksignal enthaltenen spezifischen

Identifikationsdaten ermittelt und auswertet. Weiterhin betrifft die Erfindung ein Verfahren zum Betreiben einer Sendeeinrichtung in Verbindung mit einem Kommunikationsgerät, bei dem eine Sendeeinrichtung ein Funksignal mit für die Sendeeinrichtung spezifischen Identifikationsdaten über wenigstens zwei Funkkanäle drahtlos aussendet, und ein

Kommunikationsgerät das Funksignal empfängt, empfangsseitige Signaleigenschaften des Funksignals und die in dem

empfangenen Funksignal enthaltenen spezifischen

Identifikationsdaten ermittelt und auswertet. Darüber hinaus betrifft die Erfindung Sendeeinrichtungen, die ausgebildet sind, ein Funksignal mit für die Sendeeinrichtung

spezifischen Identifikationsdaten über wenigstens zwei

Funkkanäle drahtlos auszusenden. Die Erfindung betrifft auch ein Kommunikationsgerät, welches ausgebildet ist, ein über wenigstens zwei Funkkanäle von einer Sendeeinrichtung

ausgesendetes Funksignal mit für die Sendeeinrichtung

spezifischen Identifikationsdaten zu empfangen,

empfangsseitige Signaleigenschaften des Funksignals und die in dem empfangenen Funksignal enthaltenen spezifischen

Identifikationsdaten zu ermitteln und auszuwerten. Ferner betrifft die Erfindung auch ein System mit einer Sendeeinrichtung und einem Kommunikationsgerät. Schließlich betrifft die Erfindung auch eine Leuchteinrichtung.

Verfahren, Systeme, Sendeeinrichtungen, Kommunikationsgeräte sowie Leuchteinrichtungen der gattungsgemäßen Art sind dem Grunde nach im Stand der Technik umfänglich bekannt, sodass es eines gesonderten druckschriftlichen Nachweises hierfür nicht bedarf. Mit Leuchteinrichtungen werden Räume,

beispielsweise außerhalb oder auch innerhalb von Gebäuden, in vorgebbarer Weise ausgeleuchtet, um eine bestimmungsgemäße Nutzung zu ermöglichen oder zu unterstützen. Es kommen vermehrt Leuchteinrichtungen zum Einsatz, die neben der bestimmungsgemäßen Funktion der Lichtabgabe auch eine

Sendeeinrichtung aufweisen, die zumindest dazu ausgebildet ist, spezifische Identifikationsdaten drahtlos auszusenden, beispielsweise nach Art von Rundfunk. Vorzugsweise ist diese Sendeeinrichtung dazu ausgebildet, das Funksignal nach Art von Nahfunk auszusetzen. Eine derartige Sendeeinrichtung wird im Stand der Technik auch als „Beacon" bezeichnet.

Sogenannte Beacons können mit Leuchteinrichtungen kombiniert sein, um leuchtenspezifische oder auch andere Informationen mittels ihres Funksignals bereitstellen zu können. Die

Beacon-Technologie basiert auf einem Sendersystem

beziehungsweise auf einem Sender-Empfänger-System. Ein Beacon (zu Deutsch auch Leuchtfeuer, Barke, Peilsender oder

dergleichen) ist ein kleiner, meist batteriebetriebener Sender, der ein Funksignal, vorzugsweise in definierbaren Zeitintervallen, aussendet, beispielsweise basierend auf einem Bluetooth-Low-Energy-Standard (BLE) , ZigBee oder dergleichen .

Das Funksignal eines Beacon zeichnet sich durch die

Identifikationsdaten aus, die beispielsweise eine einmalige Identifikationsnummer, englisch auch Universally Unique Identifier (UUID) genannt, umfasst. Beacons können dazu verwendet werden, Objekten und/oder Orten eine, insbesondere digitale, Identifikation zuzuordnen. Objekte, an denen ein Beacon installiert ist, sowie auch Orte, an denen ein Beacon, zum Beispiel an einer Wand oder einer Decke, installiert ist, können auf diese Weise von Kommunikationsgeräten,

insbesondere Kommunikationsendgeräten, beispielsweise

Smartphones, Laptops und/oder dergleichen, im Signalfeld des Beacon identifiziert werden.

Mit Hilfe des Beacon kann auf diese Weise zum Beispiel ein Ort identifiziert werden, beziehungsweise eine Ortung

durchgeführt werden. Durch Anordnen von einem oder mehreren Beacon in einem vorgegebenen Bereich, beispielsweise einem Gebäudebereich oder dergleichen, kann eine Art funkbasiertes Raster bereitgestellt werden, dass es einem sich in diesem Bereich befindlichen Kommunikationsgerät mittels seiner

Funkschnittstelle, insbesondere einer BLE-Schnittstelle, sowie entsprechenden Auswertemöglichkeiten erlaubt, eine eigene Position ermitteln zu können. Die individuellen

Identifikationsdaten der installierten Beacon ordnen einem jeweiligen Ort dabei eine Kennung zu, anhand der das

Kommunikationsgerät, zumindest näherungsweise, seine Position ermitteln kann. Grundsätzlich kann jedenfalls ein

Kommunikationsbereich eines jeweiligen Beacon ermittelt werden .

Durch geeignete Auswertung, beispielsweise unter Nutzung vorgegebener Algorithmen oder dergleichen, kann die

Genauigkeit der ermittelten Position, beispielsweise unter Auswerten einer Signalstärke des Funksignals und/oder

dergleichen verbessert werden. Vorzugsweise kann das

Kommunikationsgerät hierfür auf Daten eines Datenspeichers zugreifen, zum Beispiel über ein separates

Kommunikationsnetzwerk wie dem Internet, einem

Mobilfunknetzwerk und/oder dergleichen. Der Datenspeicher kann beispielsweise ein Cloud-Server oder dergleichen sein. Hier können zum Beispiel die Identifikationsdaten und

zugeordnete Positionsdaten in einer entsprechenden Datenbank nach Art von Kartendaten vermerkt sein. Kommt das Kommunikationsgerät in Kommunikationsreichweite mit der Sendeeinrichtung beziehungsweise dem Beacon, kann das Kommunikationsendgerät anhand der ermittelten

Identifikationsdaten somit beispielsweise über eine

Serverabfrage den eigenen Standort ermitteln. Unter Nutzung weiterer Funksignale von weiteren Sendeeinrichtungen

beziehungsweise Beacon kann mittels Ortungsalgorithmen die Genauigkeit weiter verbessert werden, insbesondere kann aus einer Empfangsfeldstärke eines jeweiligen der Funksignale der Sendeeinrichtungen beziehungsweise der Beacon ein Abstand zu den jeweiligen Sendeeinrichtungen beziehungsweise zum

jeweiligen Beacon ermittelt werden.

Grundsätzlich können in der Lichttechnik bei

Beleuchtungssystemen an Leuchteinrichtungen

Sendeeinrichtungen beziehungsweise Beacon installiert sein. Dabei wird insbesondere der Vorteil genutzt, dass eine

Lichtinstallation einen permanenten Energiezugang

bereitstellen kann, um die Sendeeinrichtung beziehungsweise den Beacon mit elektrischer Energie versorgen zu können.

Daraus ergibt sich der Vorteil, dass die Sendeeinrichtung beziehungsweise der Beacon keine eigene Energieversorgung in Form einer Batterie oder dergleichen zu haben braucht und somit ein entsprechender Wartungsaufwand zumindest teilweise vermieden werden kann. Darüber hinaus erlaubt es diese

Ausgestaltung, dass auch Einstellungen der Sendeeinrichtung beziehungsweise des Beacon gewählt werden können, die einen hohen Energieverbrauch zur Folge haben können, ohne dass dies Auswirkungen auf eine Betriebsdauer der Sendeeinrichtung beziehungsweise des Beacon zu haben braucht. Darüber hinaus können Installationsprozesse von derartigen

Sendeeinrichtungen beziehungsweise Beacon und der

Lichttechnik vereinheitlicht werden. Ein weiterer Vorteil ist eine definierte Arretierungsposition der Sendeeinrichtung beziehungsweise des Beacon, die vorzugsweise derart gewählt ist dass die Sendeeinrichtung beziehungsweise der Beacon vor Manipulation geschützt ist. Dadurch kann einem Ort somit eine zuverlässig sichere Kennung zugeordnet werden. Einen Überblick über Nutzungspotenziale der Integration einer Sendeeinrichtung beziehungsweise eines Beacon in eine

Leuchteinrichtung ergibt sich aus folgender, nicht

abschließender Aufzählung:

- Es kann die Energieversorgung der Lichtinstallation

anstelle einer Energieversorgung durch eine Batterie genutzt werden, um zum Beispiel Lebenszykluskosten der Sendeeinrichtung beziehungsweise des Beacon zu

reduzieren .

- Die elektrische Energieversorgung des

Beleuchtungssystems beziehungsweise der

Leuchteinrichtung kann genutzt werden, um Sendeparameter des Signals der Sendeeinrichtung beziehungsweise des Beacon an einen Dienst und nicht an eine verfügbare Restenergiemenge beziehungsweise Parameter der Batterie anzupassen. Beispielsweise erzeugen häufige Sendezyklen eine hohe Genauigkeit eines jeweiligen Dienstes, jedoch kann dies auch zu einem erhöhten Energieverbrauch führen .

- Der Austausch der Batterie konventioneller

Sendeeinrichtungen beziehungsweise Beacons birgt

Risiken, beispielsweise im Hinblick auf Fehler bei der Handhabung .

- Eine Nicht-Verfügbarkeit von Diensten kann durch eine unterbrechungsfreie Energieversorgung der

Sendeeinrichtung beziehungsweise des Beacon vermieden werden .

Ein Installationsort unterhalb einer Decke kann

vorteilhaft für eine Signalausbreitung des Signals der Sendeeinrichtung beziehungsweise des Beacon sein. - Ein Installationsort unterhalb der Decke kann das

Gesamtsystem robuster gegen Störungen beziehungsweise Abschattungen durch andere Objekte auf Höhe einer

Flurebene im Gegensatz zu einer Installation der

Sendeeinrichtung beziehungsweise des Beacon selbst auf Höhe der Flurebene machen.

- Die Sendeeinrichtung beziehungsweise der Beacon kann vor Manipulationen beziehungsweise Fremdzugriffen - ob versehentlich oder mutwillig - geschützt werden.

- Das Beleuchtungssystem sowie auch Dienste, wie zum

Beispiel Ortungsdienste oder dergleichen, können als Gesamtsystem „aus einer Hand" angeboten werden.

- Es besteht darüber hinaus die Möglichkeit einer Nutzung eines sicheren Kommunikationsnetzwerkes des

Beleuchtungssystems, um beispielsweise die

Sendeeinrichtung beziehungsweise den Beacon zu

konfigurieren oder die Sendeeinrichtungen

beziehungsweise die Beacon untereinander zu vernetzen.

- Eine Vereinheitlichung von Installationsprozessen von Sendeeinrichtungen beziehungsweise Beacon und dem

Beleuchtungssystem kann ermöglicht werden.

- Weiterhin besteht die Möglichkeit des Koppelns mit

weiteren Systemelementen einer peripheren

Gebäudeinfrastruktur über das Kommunikationsnetzwerk des Beleuchtungssystems, zum Beispiel mit Elementen der Sicherheitstechnik und/oder dergleichen.

- Es kann ein optisch ansprechendes Beleuchtungssystem

bereitgestellt werden, da die Sendeeinrichtung

beziehungsweise der Beacon nicht sichtbar in der jeweiligen Leuchteinrichtung beziehungsweise im

Beleuchtungssystem angeordnet sein kann. Ein Beacon kann als Sendeeinrichtung in die Leuchteinrichtung integriert sein. Die Leuchteinrichtung umfasst dann neben dem Beacon beziehungsweise der Sendeeinrichtung auch ein oder mehrere Leuchtmittel, um die gewünschte Beleuchtungsfunktion bereit stellen zu können. Vorzugsweise können der Beacon beziehungsweise die Sendeeinrichtung einerseits und die

Leuchteinrichtung andererseits miteinander in

Kommunikationsverbindung stehen. Der Beacon beziehungsweise die Sendeeinrichtung ist vorzugsweise in die

Leuchteinrichtung integriert angeordnet, insbesondere in einem gemeinsamen Gehäuse. Es braucht also für den Beacon beziehungsweise die Sendeeinrichtung kein separates Gehäuse vorgesehen zu sein. Dadurch kann der Beacon beziehungsweise die Sendeeinrichtung zugleich geschützt angeordnet sein, sodass die bestimmungsgemäße Funktion mit hoher

Zuverlässigkeit bereitgestellt werden kann.

Der Beacon beziehungsweise die Sendeeinrichtung ist

ausgebildet, das Funksignal mit den für den Beacon

beziehungsweise die Sendeeinrichtung spezifischen

Identifikationsdaten drahtlos auszusenden. Vorzugsweise erfolgt das Aussenden per Funk unter Nutzung des BLE- Standards . Der Beacon beziehungsweise die Sendeeinrichtung umfasst ferner vorzugsweise eine Steuereinheit, die eine Rechnereinheit sowie eine Speichereinheit umfassen kann. In der Speichereinheit kann ein ablauffähiges Rechnerprogramm gespeichert sein, welches für die Rechnereinheit bereitsteht, sodass mittels der Rechnereinheit eine vorgegebene

Steuerfunktionalität realisiert werden kann, insbesondere auch bezüglich des Aussendens des Funksignals.

Der Beacon beziehungsweise die Sendeeinrichtung kann ferner mit weiteren lokalen Beacon beziehungsweise

Sendeeinrichtungen in Kommunikationsverbindung stehen. Die Kommunikationsverbindung kann ebenfalls als drahtlose

Kommunikationsverbindung, vorzugsweise auch nach dem BLE- Standard, ausgebildet sein. Es kann aber auch eine

leitungsgebundene Kommunikationsverbindung vorgesehen sein. Die Kommunikationsverbindung zwischen dem Beacon beziehungsweise der Sendeeinrichtung und den weiteren Beacon beziehungsweise Sendeeinrichtungen ist vorzugsweise

bidirektional, sodass Signale, insbesondere Daten,

ausgetauscht werden können.

Darüber hinaus kann die Sendeeinrichtung beziehungsweise der Beacon über eine weitere Kommunikationsverbindung an eine Dateninfrastruktureinrichtung angeschlossen sein. Die

Dateninfrastruktureinrichtung kann der Steuerung eines

Systems aus einer Mehrzahl an Leuchteinrichtungen dienen. Die Dateninfrastruktureinrichtung kann zum Beispiel zumindest teilweise auch das Internet, eine Zentrale, insbesondere auch einen zentralen DienstServer, und/oder dergleichen umfassen. Die Dateninfrastruktureinrichtung kann ferner zur Steuerung und/oder Übermittlung von Daten dienen.

Der Beacon beziehungsweise die Sendeeinrichtung kann als reine Sendeeinrichtung zum Aussenden von Funksignalen nach Art von Rundfunk oder auch als kombinierte Sende- Empfangseinrichtung ausgebildet sein, die neben dem Aussenden von Funksignalen nach Art eines Rundfunkbetriebs auch einen Empfang von Funksignalen ermöglicht oder sogar eine

bidirektionale Kommunikation mit dem Kommunikationsgerät ermöglicht. Das Funksignal der Sendeeinrichtung

beziehungsweise des Beacon kann mittels des

Kommunikationsgeräts empfangen werden.

Gemäß einem Nutzungsbeispiel können Nutzer beziehungsweise Geräte gegebenenfalls die Herausforderung haben, sich

innerhalb eines Bereichs orientieren zu müssen, zu navigieren oder andere lokale digitale Dienste aufzufinden

beziehungsweise nutzen zu wollen, wie zum Beispiel Apps, App- Funktionen, Google-Maps, Lightify, eine Lichtsteuerung und/oder dergleichen. Das Beleuchtungssystem mit integrierten Beacon in einem vorgegebenen Bereich kann für diese

Nutzungspotenziale zu einem Ortungs- beziehungsweise

Orientierungssystem werden. Mit einer damit realisierbaren Selbstortung des Kommunikationsgerätes können nun Dienste bereitgestellt werden, beispielsweise eine Navigation, eine Bereitstellung von ortsspezifischen Informationen, Diensten und/oder dergleichen.

Ein Aspekt der Beacon-Technologie ist die Möglichkeit zur Konfiguration typischer Parameter, wie beispielsweise eine Signalstärke, ein Sendeintervall und/oder dergleichen des Beacon. Mit unterschiedlichen Konfigurationen können

verschiedene Anwendungsszenarien individuell unterstützt werden. Wenn zum Beispiel eine hohe Servicequalität in Bezug auf eine genaue Lokalisierung in kurzen Abständen gewünscht ist, beispielsweise bei einer Indoor-Navigation, können zum Beispiel sehr kurze Sendeintervalle zu konfigurieren sein.

Insbesondere bei digital gesteuerten Beleuchtungssystemen, zum Beispiel unter Nutzung von Digital Addressable Lighting Interfaces (DALI), sollte eindeutig identifiziert werden können, welches Leuchtmittel beziehungsweise welche

Leuchteinrichtung an welchem Ort angeordnet ist, um mittels der digitalen Lichtsteuerung eine exakte Ansteuerung der Leuchteinrichtungen beziehungsweise von deren Leuchtmittel in einem bestimmten Bereich zu ermöglichen. Die

Leuchteinrichtungen benötigen hierzu eine eindeutige Adresse, welche ihre Position in einem vorgegebenen Bereich

wiederspiegelt. Der Fachmann nennt eine derartige Zuordnung von Leuchteinrichtungen zu entsprechenden Positionen

beziehungsweise Adressen auch „kommissionieren". Hierbei sollten vorzugsweise mehrere Informationen zusammengeführt werden, nämlich eine eindeutige Identifikationsinformation einer jeweiligen Leuchteinrichtung, vorzugsweise nach Art von eindeutigen spezifischen Identifikationsdaten, ein

Installationsort der jeweiligen Leuchteinrichtung in einem vorgegebenen Bereich, das heißt, eine physikalische Adresse der Leuchteinrichtung, sowie eine Kennung der

Leuchteinrichtung, das heißt, zum Beispiel ihre digitale Adresse . Die digitale Adresse einer Leuchteinrichtung kann zum

Beispiel über eine Powerline-Kommunikation oder eine ähnliche leistungsbasierte Kommunikationslösung über die

Energieverteilung an eine Steuerung beziehungsweise

Datenverarbeitung übermittelt werden. Die Leuchteinrichtung beziehungsweise ein Vorschaltgerät der Leuchteinrichtung kann sich somit mit der digitalen Adresse bei der Steuerung anmelden. Damit ist jedoch noch nicht die Information verfügbar, an welcher physikalischen Stelle im vorgegebenen Bereich die Leuchteinrichtung tatsächlich angeordnet ist. Diese Information ist aber erforderlich, wenn nur ein definierter Bereich beleuchtet werden soll, beispielsweise nur ein Besprechungsraum oder ein Teil davon oder

dergleichen .

Derzeit können Leuchteinrichtungen beziehungsweise

Leuchtmittel und gleichzeitig deren Standort in der Regel nicht ohne weiteres elektronisch identifiziert werden.

Typischerweise kann nur über einen Aufkleber oder eine

Aufprägung erkannt werden, beispielsweise auf einem Gehäuse der Leuchteinrichtung, um was für einen Typ der

Leuchteinrichtung beziehungsweise des Leuchtmittels es sich handelt. Eine andere aufwendige Möglichkeit ist es, jede digital angemeldete Leuchteinrichtung im Rahmen des

Beleuchtungssystems einzeln blinken zu lassen und manuell eine Positionsinformation in einem Layout zu markieren.

Um Leuchteinrichtungen und/oder Leuchtmittel im Rahmen des Beleuchtungssystems effizient mit einem Lichtmanagementsystem (LMS) zu verbinden, wäre es vorteilhaft, eine oder mehrere elektronische beziehungsweise digitale Identifikationsnummern zur Erkennung des Gesamtsystems oder einzelner Komponenten des Gesamtsystems zur Verfügung zu haben.

Eine spezifische Problematik besteht ferner darin, dass in der Regel in einem Installationsplan Positionen der

Leuchteinrichtungen beziehungsweise Leuchtmittel für einen Beleuchtungsbereich beziehungsweise einen Service-Bereich festgelegt werden. Dies gibt einem Installateur vor, welcher der angelieferten beziehungsweise kommissionierten

Leuchteinrichtungen, zum Beispiel bezüglich eines

Leuchtentyps oder dergleichen, an welcher Position des

Bereichs, beispielsweise des Gebäudes, entsprechend dem Installationsplan angeordnet werden sollen.

Ortsbezogene Dienste beziehungsweise Services, wie zum

Beispiel Navigation eines Nutzers oder dergleichen, mittels Beacon sollten dem Nutzer in einem vorgegebenen Bereich vorzugsweise permanent und ohne Einschränkung zur Verfügung stehen. Dies erfordert neben einer unterbrechungsfreien elektrischen Energieversorgung auch eine regelmäßige Wartung beziehungsweise gegebenenfalls auch Aktualisierung von

Rechnerprogrammen wie zum Beispiel der Firmware oder

dergleichen .

Dienste unter Nutzung eines Beacon, wie zum Beispiel eine Navigation mittels eines Kommunikationsgerätes, sollten den Nutzern vorzugsweise permanent und möglichst ohne

Einschränkung zur Verfügung stehen. Dies erfordert unter anderem eine unterbrechungsfreie Energieversorgung für die Beacon. Gleichwohl hat sich als Hindernis herausgestellt, dass Kommunikationsendgeräte in der Regel für ein

vorgegebenes, insbesondere proprietäres,

Kommunikationsprotokoll ausgebildet sind. Die

Kommunikationsprotokolle, die mittlerweile im Einsatz sind, basieren in aller Regel auf dem BLE-Standard als Funk- Standard. Abhängig vom jeweiligen

kommunikationsendgerätespezifischen Kommunikationsprotokoll reagieren die Kommunikationsendgeräte teilweise recht unterschiedlich. Ein dabei etabliertes Beacon-Protokoll ist zum Beispiel das „iBeacon"-Protokoll® der Firma Apple Inc. Kommunikationsendgeräte basierend auf dem Betriebssystem iOS® der Firma Apple Inc. können beispielsweise ein Funksignal gemäß dem iBeacon-Protokoll® empfangen und verarbeiten.

Darüber hinaus sind weitere derartige Beacon-Protokolle bekannt, so beispielsweise „Eddiestone"® der Firma Google oder das Beacon-Protokoll „AltBeacon", welches ein Open- Source-Protokoll ist. Um eine möglichst breite Anwendung der Beacon-Technologie ermöglichen zu können, kann es somit notwendig sein, mehrere Beacon-Protokolle parallel

einzusetzen. Dies erhöht die Problematik für die Herstellung der Beacon, insbesondere mit Blick auf deren

Energieversorgung sowie der etwaigen zuverlässigen

Bereitstellung eines jeweiligen Dienstes und dergleichen. Natürlich besteht die Möglichkeit, für jedes Beacon-Protokoll einen eigenen, angepassten Beacon bereitzustellen. Dies erweist sich jedoch als aufwändig, insbesondere in Bezug auf die Energieversorgung und/oder konstruktive Aspekte, die die räumliche Anordnung des Beacon betreffen. Darüber hinaus wäre die Anzahl der spezifischen Identifikationsdaten entsprechend erhöht .

Möchte zum Beispiel ein Betreiber eines Supermarkts

sicherstellen, dass die angebotenen Dienste, wie

beispielsweise eine Navigation eines Kunden durch den

Supermarkt oder dergleichen, für jeden Kunden mit einem beliebigen Kommunikationsgerät uneingeschränkt zur Verfügung steht, wären entsprechend der möglichen

herstellerspezifisehen beziehungsweise

betriebssystemspezifischen Kommunikationsgeräte angepasste Beacon zu installieren. Dies führt jedoch dazu, dass

beispielsweise bei zwei Beacon-Protokollen mindestens doppelt so viele Beacons installiert werden müssten. Dadurch ergeben sich hohe Investitionskosten, hohe Lebenszykluskosten

aufgrund eines jeweiligen Batteriewechsels, ein hoher

Installationsaufwand sowie auch ein hoher Einrichtungsaufwand zur Festlegung eines jeweiligen Beacon-Protokolls und

dergleichen. Darüber hinaus können sich auch Probleme bei der Signalverarbeitung durch die Kommunikationsgeräte ergeben, wenn die unterschiedlichen Beacon beispielsweise nicht mit Blick auf einen Sendezeitpunkt und eine Funksignalstärke aufeinander abgestimmt sind oder dergleichen. Um die Ortungsfunktionalität unter Nutzung von

Sendeeinrichtungen beziehungsweise Beacon realisieren zu können, kann es vorgesehen sein, dass ein Abstand des

Kommunikationsgeräts zu einer jeweiligen der

Sendeeinrichtungen beziehungsweise Beacon ermittelt wird. Beispielsweise unter Nutzung von Trilateration oder

dergleichen kann dann eine Position des Kommunikationsgeräts ermittelt werden. Um einen jeweiligen Abstand ermitteln zu können, nutzt das Kommunikationsgerät Signaleigenschaften des jeweils empfangenen Funksignals sowie die in dem jeweiligen Funksignal enthaltenen Referenzdaten. Mit den Referenzdaten ist es möglich, anhand der Signaleigenschaften, die auf Basis des empfangenen Funksignals ermittelt worden sind, den

Abstand zur jeweiligen Sendeeinrichtung beziehungsweise zum jeweiligen Beacon zu ermitteln.

Die Praxis hat jedoch gezeigt, dass das Ermitteln des

Abstands durch das Kommunikationsgerät Ungenauigkeiten unterworfen ist. So erweist es sich einerseits als

problematisch, dass die Sendeeinrichtungen beziehungsweise die Beacon in der Regel mehrere Funkkanäle nutzen, um ihr jeweiliges Funksignal auszusenden. Dabei hat sich gezeigt, dass in den jeweiligen Funkkanälen die Sendeleistung des Funksignals, das durch die Sendeeinrichtung beziehungsweise den Beacon abgegeben wird, nicht gleichmäßig ist und daher vielmehr in Bezug auf die Funkkanäle voneinander abweichen kann. Darüber hinaus kann sich auch ein Montageort der

Sendeeinrichtung beziehungsweise des Beacon als störend bemerkbar machen, indem zum Beispiel Reflexionen erzeugt werden können, das Funksignal gedämpft wird und/oder

dergleichen. Neben weiteren Einflüssen kann dies zu teilweise großen Abweichungen beim Ermitteln des Abstands zwischen der Sendeeinrichtung beziehungsweise dem Beacon einerseits und dem Kommunikationsgerät andrerseits führen. Dabei erweist es sich als nachteilig, dass die Sendeeinrichtung

beziehungsweise der Beacon bereits herstellungsseitig auf vorgegebene Werte eingestellt wird. Ein Kalibrieren findet somit allenfalls nur einmalig während des Herstellprozesses statt. Daten, mittels denen Informationen bezüglich des

Funksignals zur Verfügung gestellt werden können, sind in der Regel nicht vorgesehen.

Der Erfindung liegt deshalb die Aufgabe zugrunde, das das Betreiben der Sendeeinrichtung beziehungsweise des Beacon, insbesondere im Verbund in einem System mit dem

Kommunikationsgerät zu verbessern.

Als Lösung werden mit der Erfindung Verfahren,

Sendeeinrichtungen, ein Kommunikationsgerät, ein System und eine Leuchteinrichtung gemäß den unabhängigen Ansprüchen vorgeschlagen .

Vorteilhafte Weiterbildungen ergeben sich anhand von

Merkmalen der abhängigen Ansprüche.

Bezüglich eines gattungsgemäßen Verfahrens zum Betreiben einer Sendeeinrichtung wird gemäß einem ersten Aspekt

insbesondere vorgeschlagen, dass das über den jeweiligen der wenigstens zwei Funkkanäle ausgesendete Funksignal Kanaldaten bezüglich dieses jeweiligen der wenigstens zwei Funkkanäle enthält .

Bezüglich eines gattungsgemäßen Verfahrens zum Betreiben einer Sendeeinrichtung wird gemäß einem zweiten Aspekt insbesondere vorgeschlagen, dass eine Sendeleistung des über den jeweiligen der wenigstens zwei Funkkanäle ausgesendeten Funksignals abhängig von Übertragungseigenschaften des jeweiligen Funkkanals eingestellt wird.

Bezüglich eines gattungsgemäßen Verfahrens zum Betreiben eines Kommunikationsgeräts wird gemäß dem ersten Aspekt insbesondere vorgeschlagen, dass aus dem Funksignal

Kanaldaten bezüglich des jeweiligen Funkkanals ermittelt werden und das Auswerten abhängig von den Kanaldaten erfolgt. Bezüglich eines gattungsgemäßen Verfahrens zum Betreiben eines Kommunikationsgeräts wird gemäß dem zweiten Aspekt insbesondere vorgeschlagen, dass das Funksignal kanalselektiv empfangen und abhängig vom selektierten Funkkanal ausgewertet wird.

Bezüglich eines gattungsgemäßen Verfahrens zum Betreiben einer Sendeeinrichtung in Verbindung mit einem

Kommunikationsgerät wird insbesondere vorgeschlagen, dass die Sendeeinrichtung das über den jeweiligen der wenigstens zwei Funkkanäle ausgesendete Funksignal mit Kanaldaten bezüglich dieses jeweiligen der wenigstens zwei Funkkanäle aussendet und/oder eine Sendeleistung des über den jeweiligen der wenigstens zwei Funkkanäle ausgesendeten Funksignals abhängig von Übertragungseigenschaften des jeweiligen Funkkanals eingestellt wird.

Bezüglich einer gattungsgemäßen Sendeeinrichtung wird gemäß dem ersten Aspekt insbesondere vorgeschlagen, dass die

Sendeeinrichtung ausgebildet ist, das über den jeweiligen der wenigstens zwei Funkkanäle auszusendende Funksignal mit

Kanaldaten bezüglich dieses jeweiligen der wenigstens zwei Funkkanäle auszusenden.

Bezüglich einer gattungsgemäßen Sendeeinrichtung wird gemäß dem zweiten Aspekt insbesondere vorgeschlagen, dass die Sendeeinrichtung ausgebildet ist, eine Sendeleistung des über den jeweiligen der wenigstens zwei Funkkanäle auszusendende Funksignal abhängig von Übertragungseigenschaften des jeweiligen Funkkanals einzustellen.

Bezüglich eines gattungsgemäßen Kommunikationsgeräts wird insbesondere vorgeschlagen, dass das Kommunikationsgerät ausgebildet ist, aus dem Funksignal Kanaldaten bezüglich des jeweiligen Funkkanals zu ermitteln und das Auswerten abhängig von den Kanaldaten durchzuführen und/oder das Funksignal kanalselektiv zu empfangen und das Auswerten abhängig von Übertragungseigenschaften des selektierten Funkkanals durchzuführen .

Systemseitig wird für ein gattungsgemäßes System insbesondere vorgeschlagen, dass das System eine Sendeeinrichtung und ein Kommunikationsgerät gemäß der Erfindung umfasst.

Bezüglich einer gattungsgemäßen Leuchteinrichtung wird insbesondere vorgeschlagen, dass die Leuchteinrichtung eine Sendeeinrichtung des Systems gemäß der Erfindung aufweist.

Die Erfindung basiert auf dem Gedanken, dass das Nutzen der spezifischen Identifikationsdaten durch das

Kommunikationsgerät deutlich verbessert werden kann, wenn Informationen beziehungsweise Daten verfügbar sind, die die Übertragungseigenschaften des jeweiligen Funkkanals

betreffen. Diese Informationen beziehungsweise Daten können dadurch verfügbar gemacht werden, dass beispielsweise gemäß dem ersten Aspekt das von der Sendeeinrichtung ausgesendete Funksignal neben den spezifischen Identifikationsdaten ergänzend Kanaldaten bezüglich des jeweiligen der wenigstens zwei Funkkanäle enthält, über den das Funksignal ausgesendet wurde. Dies berücksichtigt, dass im Stand der Technik diese Information beim Kommunikationsgerät in der Regel nicht vorhanden ist. Solche Daten werden zum Beispiel bei dem

Bluetooth-Standard in der Regel nicht übertragen. Das

Kommunikationsgerät kann daher lediglich das Funksignal als solches empfangen und die in dem Funksignal enthaltenen Daten ermitteln. Auf welcher Frequenz das Funksignal ausgesendet wird, beziehungsweise über welchen Funkkanal das Funksignal ausgesendet wird, ist in der Regel kommunikationsgeräteseitig nicht ermittelbar.

Dadurch, dass die Kanaldaten nunmehr

kommunikationsgeräteseitig zur Verfügung stehen, kann dies kommunikationsgeräteseitig bei der Auswertung des Funksignals berücksichtigt werden. Dadurch können insbesondere

Übertragungseigenschaften des Funkkanals berücksichtigt werden, sodass die Auswertung insgesamt genauer erfolgen kann. Besonders vorteilhaft wirkt sich dies bei der

Ermittlung des Abstandes zwischen dem Kommunikationsgerät und der Sendeeinrichtung beziehungsweise dem Beacon aus, wenn dies unter Nutzung einer Empfangsfeldstärke des Funksignals erfolgt .

Darüber hinaus können die Informationen beziehungsweise Daten bezüglich des jeweiligen der Funkkanäle auch

sendeeinrichtungsseitig dazu genutzt werden, eine

Sendeleistung des über den jeweiligen der wenigstens zwei Funkkanäle ausgesendeten Funksignals abhängig von den

Übertragungseigenschaften des jeweiligen Funkkanals

einzustellen. Dadurch können funkkanalspezifische

Abweichungen von Übertragungseigenschaften

sendeeinrichtungsseitig zumindest teilweise ausgeglichen werden, sodass eine entsprechende ergänzte Auswertung kommunikationsgeräteseitig vereinfacht, wenn nicht sogar entfallen kann. Es braucht also kommunikationsgeräteseitig nicht mehr darauf anzukommen, auf welchem Funkkanal das Funksignal empfangen wird, weil nämlich

sendeeinrichtungsseitig die jeweilige Sonderleistung so eingestellt sein kann, dass im Wesentlichen unabhängig vom jeweils gewählten Kanal für die Übermittlung des Funksignals das Auswerten gleichermaßen zuverlässig im

Kommunikationsgerät realisiert werden kann.

Dem Grunde nach können diese beiden Aspekte natürlich auch miteinander kombiniert sein, beispielsweise wenn eine vorgegebene Anzahl von Funkkanälen hinsichtlich ihrer

Übertragungseigenschaften so ausgewählt werden, dass sie im Wesentlichen gleiche Übertragungseigenschaften aufweisen und somit als Gruppe von gleichartigen Funkkanälen behandelt werden können. Darüber hinaus können natürlich auch weitere Ausgestaltungen vorgesehen sein, die beide Aspekte der

Erfindung verwirklichen können. Die Übertragungseigenschaften des Funkkanals können unter andrem eine Dämpfung, eine Bandbreite, Störungen,

Modulationsverfahren, ausgewählte Trägerfrequenzen und/oder dergleichen umfassen. Vorzugsweise umfassen die

Übertragungseigenschaften solche Daten, die dazu geeignet sind, eine Anpassung bezüglich des Aussendens und/oder

Empfangens und Auswertens des Funksignals zu ermöglichen beziehungsweise zu verbessern, sodass

kommunikationsgeräteseitig die bestimmungsgemäße

Funktionalität durch das Auswerten des Funksignals

gewährleistet werden kann. Zu diesem Zweck können die

Übertragungseigenschaften zum Beispiel Dämpfungswerte,

Frequenzbänder, Mittelfrequenzen, Störsender und/oder dergleichen umfassen. Die Übertragungseigenschaften können zumindest teilweise als Übertragungsdaten bereitgestellt sein .

Die Erfindung erlaubt es dadurch, dass insbesondere

montagespezifische und/oder bauspezifische Besonderheiten berücksichtigt werden können, die sich auf die Funkkanäle insbesondere ungleichmäßig auswirken und dadurch die

Genauigkeit des Auswertens durch das Kommunikationsgerät beeinträchtigen können.

Mit der Erfindung wird eine Möglichkeit eröffnet, die

kanalspezifischen Besonderheiten eines jeweiligen der

Funkkanäle spezifischer berücksichtigen zu können, sodass insgesamt das Auswerten des Funksignals auf der Seite des Kommunikationsgeräts verbessert werden kann. Besonders vorteilhaft wirkt sich dies bei der Abstandsermittlung auf Basis des Funksignals zwischen dem Kommunikationsgerät und der Sendeeinrichtung beziehungsweise dem Beacon aus. Die Übertragungseigenschaften des jeweiligen Funkkanals können in der Sendeeinrichtung und/oder im Kommunikationsgerät als Übertragungsdaten gespeichert sein. Darüber hinaus können diese Übertragungseigenschaften natürlich auch von einer Datenbank, beispielsweise einer Zentrale oder einem zentralen Server über eine geeignete Kommunikationsverbindung durch das Kommunikationsgerät und/oder der Sendeeinrichtung abgerufen werden, über die die Sendeeinrichtung beziehungsweise der Beacon beziehungsweise das Kommunikationsgerät mit der

Zentrale beziehungsweise dem zentralen Server in

Kommunikationsverbindung steht. Diese

Kommunikationsverbindung kann vorzugsweise eine drahtlose Kommunikationsverbindung sein.

Das Funksignal als solches, welches in der Regel

beispielsweise durch ein Trägersignal bereitgestellt sein kann, kann also beispielsweise hinsichtlich der Sendeleistung für den entsprechend ausgewählten Funkkanal

funkkanalspezifisch angepasst ausgesendet werden und/oder entsprechende Kanaldaten enthalten, die es

kommunikationsgeräteseitig erlauben, den ausgewählten

Funkkanal ermitteln zu können. Zu diesem Zweck können die Kanaldaten mittels einer geeigneten Modulation auf das

Funksignal aufmoduliert sein, vorzugsweise mit der gleichen Modulation, mit der auch die spezifischen

Identifikationsdaten auf das Funksignal aufmoduliert werden. Dadurch kann beispielsweise eine Anpassung der

Sendeeinrichtung beziehungsweise des Beacon an lokale

Gegebenheiten vermieden werden, wobei zugleich das Auswerten des Funksignals seitens des Kommunikationsgeräts weitgehend unbeeinträchtigt bleiben kann. Ferner ist natürlich möglich, dass unter Nutzung der spezifischen Übertragungsdaten, die die Übertragungseigenschaften repräsentieren, eine

Sendeleistung sendeeinrichtungsseitig entsprechend angepasst wird, sodass eine Kompensation empfangsseitig beim

Kommunikationsgerät erreicht werden kann. Für das

Kommunikationsgerät kann somit erreicht werden, dass es unabhängig vom Kanal, auf dem das Funksignal übermittelt wird, sein Auswerten zuverlässig ausführen kann.

Die Erfindung erlaubt es darüber hinaus sogar, auch noch nachträgliche Einwirkungen beziehungsweise Veränderungen der Funkkanäle zu berücksichtigen, die zum Beispiel während des bestimmungsgemäßen Betriebs der Sendeeinrichtung beziehungsweise des Beacon auftreten können, beispielsweise, wenn bauliche Veränderungen oder dergleichen vorgenommen werden. Dadurch eignet sich die Erfindung natürlich

insbesondere auch für den Fall einer Nachrüstung

beziehungsweise einem Umbau.

Die Erfindung hat somit insbesondere auch den Vorteil, dass hardwareseitige Veränderungen an der Sendeeinrichtung

beziehungsweise dem Beacon insbesondere in Bezug auf den ersten Aspekt weitgehend nicht vorgenommen zu werden

brauchen. Es brauchen lediglich die Kanaldaten ergänzend zu den spezifischen Identifikationsdaten auf das Funksignal aufmoduliert werden, sodass die entsprechenden Daten

kommunikationsgeräteseitig zur Verfügung stehen und für das Auswerten des Funksignals genutzt werden können.

Die Kanaldaten können beispielsweise eine Nummer eines

Funkkanals, eine Trägerfrequenz und/oder dergleichen

umfassen. Dem Grunde nach besteht natürlich auch die

Möglichkeit, dass die Kanaldaten zumindest einen Teil der Übertragungseigenschaften des jeweiligen Kanals, über den das Funksignal übermittelt wird, umfassen. Die Kanaldaten können insbesondere natürlich auch eine jeweilige kanalspezifische Sendeleistung der Sendeeinrichtung oder dergleichen umfassen. Bei einer Abstandsmessung kann somit in einem ungestörten Fall aus einer Empfangsfeldstärke am Kommunikationsgerät einen Abstand zwischen dem Kommunikationsgerät und der

Sendeeinrichtung beziehungsweise dem Beacon ermitteln. Dabei kann berücksichtigt werden, dass im ungestörten Fall gemäß einer vorgegebenen Charakteristik der unterschiedlichen

Funkkanäle die Empfangsfeldstärke abhängig sein kann.

Störeinflüsse können durch das Anpassen der Sendeleistung beziehungsweise durch das Übermitteln von Kanaldaten besser berücksichtigt werden. Wird zum Beispiel das Funksignal in unerwünschter Weise durch bauliche Einrichtungen oder

dergleichen kanalspezifisch gedämpft, kann dies durch

Anpassen der Kanaldaten beziehungsweise der Sendeleistung entsprechend berücksichtigt werden. Dadurch ist es kommunikationsgeräteseitig möglich, gegebenenfalls unter Nutzung der Kanaldaten den tatsächlichen Abstand zwischen dem Kommunikationsgerät und der Sendeeinrichtung beziehungsweise dem Beacon auf Basis des Funksignals erheblich genauer zu bestimmen. Die entsprechenden Übertragungseigenschaften können als Übertragungsdaten in einer Speichereinheit der Sendeeinrichtung beziehungsweise des Beacon oder auch des Kommunikationsgeräts gespeichert sein.

Die Erfindung ermöglicht es darüber hinaus, auch spezifische Eigenschaften bezüglich des Aussendens und/oder des

Empfangens des Funksignals zu berücksichtigen, beispielsweise Übertragungseigenschaften einer Antenne und/oder dergleichen. Gerade die Berücksichtigung von Eigenschaften von einer sendeeinrichtungsseitigen Einrichtungsantenneneinheit sowie eine kommunikationsgeräteseitigen Geräteantenneneinheit können dadurch besser berücksichtigt werden. In der Regel zeigt sich, dass die Übertragungseigenschaften der

Antenneneinheiten vom jeweiligen Funkkanal abhängig sein können. Insbesondere kann sich das dann auswirken, wenn die Funkkanäle durch unterschiedliche Trägerfrequenzen

bereitgestellt werden. Selbst bei Nutzung von

Breitbandantenneneinheiten können hier signifikante

Abweichungen hinsichtlich des ausgesendeten Funksignals beziehungsweise des empfangenen Funksignals auftreten, die zu unerwünschten Auswirkungen beim Auswerten des Funksignals durch das Kommunikationsgerät führen können. Mit der

Erfindung besteht die Möglichkeit, diese unerwünschten

Auswirkungen zu ermitteln und entsprechend

kommunikationsgeräteseitig auswerten und/oder

sendeeinrichtungsseitig beim Aussenden des Funksignals zu berücksichtigen .

Durch die Erfindung kann zum Beispiel gemäß dem ersten Aspekt kommunikationsgeräteseitig ein Korrekturwert unter Nutzung der Kanaldaten ermittelt werden, der dazu dienen kann, das Auswerten entsprechend genauer zu realisieren. Im einfachsten Fall umfassen die Kanaldaten lediglich eine Nummer des verwendeten Funkkanals. Die genutzten Funkkanäle können zu diesem Zweck beispielsweise hinsichtlich der Nummerierung standardisiert sein. Dadurch stehen die entsprechenden

Detailinformationen bezüglich der Funkkanäle allgemein zur Verfügung. Durch das Übertragen der Nummer des verwendeten Funkkanals können somit auf einfache Weise die zugehörigen Übertragungseigenschaften des jeweiligen Funkkanals ermittelt werden. Aus diesen Übertragungseigenschaften kann dann der Korrekturwert ermittelt werden.

Das übermitteln der Kanalnummer kann auch bei einem bereits bekannten Kommunikationsstandard wie dem Bluetooth-Standard oder dergleichen genutzt werden. Das Übermitteln der Nummer des Funkkanals kann auch darin bestehen, dass lediglich eine Nummer bezogen auf einen Referenzfunkkanal übermittelt wird. Der Referenzfunkkanal wird zuvor festgelegt und ist somit sendeeinrichtungsseitig beziehungsweise beaconseitig

beziehungsweise kommunikationsgeräteseitig verfügbar. Die übermittelte Nummer des Funkkanals kann sich nun auf eine fortlaufende Nummerierung oder dergleichen beziehen, die die Funkkanäle ausgehend von dem Referenzfunkkanal nummeriert. Auch andere Methoden zur Identifizierung der Nummer des Funkkanals können hierzu genutzt werden.

Gemäß dem zweiten Aspekt brauchen keine Kanaldaten

übermittelt zu werden, nämlich dann, wenn die

Sendeeinrichtung selbst kanalspezifisch ihre Sendeleistung derart anpasst, dass die Auswertung des Kommunikationsgerätes kanalunabhängig mit großer Zuverlässigkeit gewährleistet werden kann. Zu diesem Zweck kann vorgesehen sein, dass die Sendeeinrichtung beziehungsweise der Beacon eine Sendeeinheit aufweist, die ihre Leistung funkkanalspezifisch zum Aussenden des Funksignals über den jeweiligen der Funkkanäle

entsprechend anpasst. Natürlich kann auch vorgesehen sein, dass die Sendeeinheit hierfür eine entsprechende

Übertragungsfunktionalität bereitstellt , sodass das

Funksignal im Wesentlichen kanalunabhängig mit der gleichen Funksignalstärke ausgesendet wird. Zu diesem Zweck können entsprechende Filterschaltungen oder dergleichen in der Sendeeinheit vorgesehen sein. Natürlich kann auch eine

Einrichtungsantenneneinheit der Sendeeinrichtung

beziehungsweise des Beacon entsprechend ausgebildet sein und eine entsprechende Charakteristik aufweisen. Auch

Kombinationen hiervon können vorgesehen sein.

Zum Auswerten des Funksignals seitens des

Kommunikationsgeräts können Signaleigenschaften des

Funksignals berücksichtigt werden. Derartige

Signaleigenschaften können insbesondere eine

Empfangsfeldstärke, eine Amplitude, eine Leistung, eine Frequenz, ein Modulationsverfahren und/oder dergleichen umfassen .

Die Erfindung ermöglicht es also auf einfache Weise, es dem Kommunikationsgerät zu ermöglichen, das Auswerten des

Funksignals verbessert durchzuführen.

Gemäß einer vorteilhaften Weiterbildung wird vorgeschlagen, dass die spezifischen Identifikationsdaten vom Funkkanal abhängig sind, auf dem das Funksignal ausgesendet wird. So kann vorgesehen sein, dass funkkanalspezifisch der

Sendeeinrichtung unterschiedliche Identifikationsdaten zugeordnet sind. Die Sendeeinrichtung kann also mehr als eine Identifikation aufweisen. Durch die spezifischen

Identifikationsdaten kann also die Information bezüglich des Funkkanals, über den das Funksignal ausgesendet wird, bereitgestellt werden. Hierbei kann vorgesehen sein, dass für jeden der Funkkanäle die spezifischen Identifikationsdaten individuell sind. Natürlich kann auch vorgesehen sein, dass die spezifischen Identifikationsdaten für zwei oder mehrere der Funkkanäle gleich sind, beispielsweise wenn die

Übertragungseigenschaften dieser Funkkanäle im Wesentlichen gleich sind. Natürlich können auch Gruppen von Funkkanälen gebildet sein, denen gemeinsame spezifische

Identifikationsdaten zugeordnet sind. Vorzugsweise haben die Funkkanäle einer solchen Gruppe im Wesentlichen gleiche

Übertragungseigenschaften. Dies braucht aber nicht zwingend vorgesehen zu sein. Es kann darüber hinaus vorgesehen sein, dass für eine Gruppe von Funkkanälen die Sendeleistung entsprechend angepasst ist, sodass empfangsseitig bezüglich des Kommunikationsgeräts eine zuverlässige Auswertung des Funkkanals gewährleistet werden kann.

Es kann ferner vorgesehen sein, dass das Funksignal zeitlich versetzt auf den jeweiligen der wenigstens zwei Funkkanäle ausgesendet wird. Vielmehr kann durch das zeitliche Versetzen des Aussendens des Funksignals bezüglich der Funkkanäle auch eine Identifikationsmöglichkeit für den Funkkanal, über den das Funksignal ausgesendet wird, erreicht werden.

Beispielsweise kann vorgesehen sein, dass die Funksignale in einer vorgegebenen Abfolge über die Funkkanäle zeitversetzt ausgesendet werden. Das zeitlich versetzte Aussenden kann nach einem vorgegebenen Muster erfolgen, sodass vorzugsweise unter Berücksichtigung dieses Musters eine Identifikation eines jeweiligen der wenigstens zwei Funkkanäle erreicht werden kann. Das Funksignal braucht bei dieser Weiterbildung also nicht gleichzeitig über die Funkkanäle ausgesendet zu werden. Das Aussenden der zeitversetzen Funksignale kann zyklisch wiederholt werden. Um einen ersten der Funkkanäle ermitteln zu können, kann vorgesehen sein, dass eine

Synchronisierungspause oder dergleichen vorgesehen ist. Auf diese Weise kann für das Kommunikationsgerät erreicht werden, dass der Funkkanal, über den das Funksignal ausgesendet wird, ermittelt werden kann. Es brauchen dann lediglich die

Funksignale entsprechend abgezählt zu werden.

Darüber hinaus besteht natürlich die Möglichkeit, dass das Funksignal kanalselektiv nur auf einem ausgewählten der wenigstens zwei Funkkanäle ausgesendet wird. Diese

Weiterbildung hat den Vorteil, dass eine Anpassung lediglich bezüglich eines einzigen der Funkkanäle erforderlich ist. So kann vorgesehen sein, dass lediglich Kanaldaten für den einen Funkkanal übermittelt werden. Entsprechend kann auch vorgesehen sein, dass lediglich die Sendeleistung für diesen einen Funkkanal auf einen vorgegebenen Wert eingestellt wird, der vorzugsweise davon abhängig ist, welche

Übertragungseigenschaften dieser Funkkanal hat. Insgesamt kann die Erfindung dadurch auf besonders einfache Weise realisiert werden.

Es kann ferner vorgesehen sein, dass das Funksignal

kanalselektiv über einen ausgewählten der wenigstens zwei Funkkanäle empfangen wird. Bei dieser Weiterbildung ist das Kommunikationsgerät vorzugsweise dazu ausgebildet, das

Funksignal kanalselektiv zu empfangen. Dadurch ist

kommunikationsgeräteseitig der spezifische Funkkanal bekannt, dessen Funksignal zur Auswertung herangezogen wird. Dadurch, dass zugleich auch die Übertragungseigenschaften bekannt sind, beispielsweise auch eine Sendeleistung der

Sendeeinrichtung, kann das Auswerten des Funksignals

besonders zuverlässig realisiert werden. Zu diesem Zweck kann vorgesehen sein, dass das Kommunikationsgerät eine geeignete Empfangseinheit aufweist, die es ermöglicht, das Funksignal kanalselektiv über einen jeweiligen ausgewählten Funkkanal zu empfangen .

Es kann ferner vorgesehen sein, dass das Kommunikationsgerät Übertragungsdaten zu Übertragungseigenschaften für die wenigstens zwei Funkkanäle speichert. Dies kann es dem

Kommunikationsgerät ermöglichen, das Funksignal verbessert auszuwerten. Die Übertragungsdaten der Funkkanäle stehen somit dem Kommunikationsgerät unmittelbar zur Verfügung.

Darüber hinaus kann natürlich vorgesehen sein, dass die

Übertragungsdaten von der Zentrale beziehungsweise einem zentralen Server über eine gegebenenfalls separate

Kommunikationsverbindung zur Verfügung gestellt und

gespeichert werden. Es besteht auch die Möglichkeit, die Übertragungsdaten während des bestimmungsgemäßen Betriebs zu aktualisieren. Dadurch kann eine höhere Zuverlässigkeit im bestimmungsgemäßen Betrieb erreicht werden. Bezüglich eines Systems gemäß der Erfindung wird ferner vorgeschlagen, dass das Kommunikationsgerät eine

Geräteantenneneinheit und die Sendeeinrichtung eine

Einrichtungsantenneneinheit aufweisen, wobei die

Geräteantenneneinheit und die Einrichtungsantenneneinheit hinsichtlich ihrer funkspezifischen Antenneneigenschaften komplementär zueinander ausgebildet sind. Dadurch kann erreicht werden, dass funkkanalspezifische Besonderheiten, die durch eine oder beide der Antenneneinheiten begründet sein können, kompensiert werden können. Die

Übertragungseigenschaften beziehungsweise die entsprechenden Übertragungsdaten können dadurch hinsichtlich des Umfangs reduziert werden.

Die für die erfindungsgemäßen Verfahren angegebenen Vorteile und Wirkungen gelten gleichermaßen für die erfindungsgemäßen Einrichtungen, Systeme und Leuchteinrichtungen und umgekehrt. Insofern können für Verfahrensmerkmale auch

Vorrichtungsmerkmale und umgekehrt formuliert sein.

Weitere Vorteile und Merkmale ergeben sich aus den folgenden Ausführungsbeispielen anhand der beigefügten Figuren. In den Fig. zeigen gleiche Bezugszeichen gleiche Merkmale und

Funktionen .

Es zeigen:

Fig. 1 in einer schematischen Blockdarstellung ein System gemäß der Erfindung, bei dem ein Beacon unmittelbar an einer Leuchteinrichtung angeordnet ist und;

Fig. 2 eine schematische Darstellung eines Funksignals des

Beacon gemäß Fig. 1.

Fig. 1 zeigt in einer schematischen Blockdarstellung ein System 10 gemäß der Erfindung mit einem Beacon als

Sendeeinrichtung 12 sowie einem Kommunikationsgerät 20. Der Beacon 12 ist unmittelbar an einer Leuchteinrichtung 28 angeordnet und wird über die Leuchteinrichtung 28 mit

elektrischer Energie für den bestimmungsgemäßen Betrieb versorgt. Die Leuchteinrichtung 28 verfügt über nicht weiter dargestellte Leuchtmittel zur Bereitstellung einer

vorgegebenen Beleuchtungsfunktion .

Der Beacon 12 ist ausgebildet, ein Funksignal 14 mit für den Beacon 12 spezifischen Identifikationsdaten 16 und

Referenzdaten 18 drahtlos auszusenden (Fig. 2) . Das

Funksignal 14 wird vom Beacon 12 mit Kanaldaten 18

ausgesendet, die vorliegend einen von mehreren Funkkanälen repräsentieren, sodass dieser anhand der Kanaldaten

identifiziert werden kann. Vorliegend handelt es sich bei den Kanaldaten 18 um eine Nummer desjenigen der Funkkanäle, über die das Funksignal 14 ausgesendet wird.

Fig. 2 zeigt exemplarisch einen schematischen Aufbau des Funksignals 14, wie es intermittierend in einem vorgegebenen zeitlichen Abstand von etwa 20 Millisekunden kontinuierlich als Rundfunksignal vom Beacon 12 über mehrere Funkkanäle ausgesendet wird. Das Funksignal 14 umfasst einen nicht dargestellten Träger nach Art einer elektromagnetischen Welle mit einer vorgegebenen Frequenz, auf der mittels eines

Modulationsverfahrens die entsprechenden Daten auf moduliert sind. Vorliegend ist vorgesehen, dass als

Modulationsverfahren eine QAM-Modulation zum Einsatz kommt. Modulationsverfahren sind dem Fachmann dem Grunde nach bekannt, sodass von einer ausführlichen Erläuterung an dieser Stelle abgesehen werden kann.

Die Daten des Funksignals sind vorliegend digitale Daten, die in geeigneter Weise kodiert sind, sodass das Funksignal 14 mittels des Modulationsverfahrens entsprechend der Daten moduliert werden kann. Aus Fig. 2 ist ersichtlich, dass die Daten einen Header 34 aufweisen, der für das Funksignal 14 typisch gewählt ist und dem Kommunikationsgerät 20

ermöglicht, mittels einer Empfangseinheit 26 des

Kommunikationsgeräts 20 das Funksignal 14 zu empfangen und den Beginn des Funksignals zu ermitteln, um das Funksignal 14 in bestimmungsgemäßer Weise zu demodulieren . Damit können die im Funksignal 14 enthaltenen Daten ermittelt werden. Zu diesem Zweck kann ergänzend eine geeignete Decodierung vorgesehen sein.

Wie aus Fig. 2 ersichtlich ist, schließt sich an den Header 34 ein Datenbereich mit spezifischen Identifikationsdaten 16 an, die individuell für den Beacon 12 vergeben worden sind. Dadurch kann der Beacon 12 identifiziert werden.

Gefolgt werden die Identifikationsdaten 16 von den Kanaldaten 18, die, wie im Folgenden erläutert wird, vom

Kommunikationsgerät 20 genutzt werden, um dem

Kommunikationsgerät 20 zu ermöglichen, den Funkkanal, über den das Funksignal 14 ausgesendet wurde, ermitteln zu können.

Es ist vorliegend vorgesehen, dass das Kommunikationsgerät 20 mittels einer Empfangseinheit 26 das Funksignal 14 empfängt und unter Nutzung von empfangsseitigen Signaleigenschaften und den aus dem empfangenen Funksignal 14 ermittelten

Kanaldaten 18 den Abstand ermittelt. Zu diesem Zweck wird als empfangsseitige Signaleigenschaft die Empfangsfeldstärke des Funksignals 14 ermittelt. Dies kann mittels der

Empfangseinheit 26 erfolgen. Eine erste Auswerteeinheit 36 empfängt von der Empfangseinheit 26 ein Signal entsprechend der Empfangsfeldstärke des Funksignals 14 sowie die aus dem Funksignal 14 ermittelten Kanaldaten 18. Anhand der

ermittelten Kanaldaten 18 und der Empfangsfeldstärke wird mittels eines vorgegebenen Algorithmus der Abstand 22

ermittelt. Dies kann das Kommunikationsgerät 20 dazu nutzen, seine Position in Bezug auf den Beacon 12 zu ermitteln.

Die Kanaldaten ermöglichen es, spezifische

Übertragungseigenschaften des Funkkanals zu ermitteln, die dem jeweiligen der Funkkanäle zugeordnet werden können.

Dadurch ist es dem Kommunikationsgerät 20 möglich, einen Korrekturfaktor zu ermitteln, um mittels des Korrekturfaktors den Abstand genauer ermitteln zu können. Die Kanaldaten 18 ermöglichen es, unerwünschte Effekte auf das Funksignal 14 beim ermitteln des Abstands berücksichtigen zu können.

Neben den voranstehend erläuterten Daten kann das Funksignal 14 auch noch weitere Daten bei Bedarf umfassen.

Die Kanaldaten 18 sind vorliegend in einer nicht

dargestellten Speichereinheit des Beacon 12 gespeichert. Eine Sende-/Empfangseinheit 40 ist ausgebildet, das Funksignal 14 unter Nutzung der Kanaldaten 18 zu erzeugen und als

Rundfunksignal 14 über denjenigen der Funkkanäle auszusenden, der den Kanaldaten 18 zugeordnet ist.

Es hat sich gezeigt, dass durch Umgebungseinflüsse das

Funksignal 14 beeinträchtigt, insbesondere kanalspezifisch gedämpft beziehungsweise auch gestört werden kann, sodass das Ermitteln des Abstands 22 mit dem Kommunikationsgerät 20 abhängig vom jeweiligen der Funkkanäle, über die das

Funksignal 14 ausgesendet wird, ungenau wird oder sogar ein unbrauchbares Ergebnis zur Folge haben kann. Es besteht deshalb der Wunsch, hier eine Verbesserung zu erreichen.

Die Erfindung schlägt als Verbesserung vor, den Beacon 12 derart weiterzubilden, dass Informationen bezüglich des jeweils ausgewählten der Funkkanäle zur Verfügung stehen.

Der Beacon 12 sendet das Funksignal 14 aus, das von der

Empfangseinheit 26 des Kommunikationsgeräts 20 empfangen wird. Hier wird die Empfangsfeldstärke als empfangsseitige Signaleigenschaft durch das Kommunikationsgerät 20 ermittelt. Zum Zwecke des Auswertens werden nun die Kanaldaten 18 des Funksignals 14 herangezogen. Anhand der Kanaldaten 18

ermittelt eine zweite Auswerteeinheit 42, die vorliegend im Kommunikationsgerät 20 angeordnet ist, Übertragungsdaten bezüglich des ermittelten Funkkanals. Die Übertragungsdaten werden dazu genutzt, einen Korrekturfaktor zu ermitteln, der für die Ermittlung des Abstands 22 berücksichtigt wird. Hierzu kann eine mathematische Formel herangezogen werden, die die physikalischen Ausbreitungsbedingungen für

elektromagnetische Wellen im betroffenen Bereich hinreichend zuverlässig beschreibt.

Die hierfür erforderlichen Übertragungsdaten werden über eine nicht weiter dargestellte Kommunikationsverbindung mittels einer Sendeeinheit 44 des Kommunikationsgeräts 20 und einer Empfangseinheit 38 der Sende-/Empfangseinheit 40 des Beacon 12 abgerufen. Die Sende-/Empfangseinheit 40 empfängt ein Abfragesignal des Kommunikationsgeräts 20 mit den Kanaldaten 18 und übermittelt als Reaktion die kanalspezifischen

Übertragungsdaten an das Kommunikationsgerät 20, welches diese in einer Speichereinheit speichert . Damit stehen die Übertragungsdaten im Kommunikationsgerät 20 zur Verfügung.

In einer Abwandlung des vorgenannten Ausführungsbeispiels kann vorgesehen sein, dass die Kanaldaten 18 über eine

Zentrale 30 bereitgestellt werden, die über eine

Kommunikationsverbindung 32 mit dem Beacon 12 in

Kommunikationsverbindung steht. In diesem Fall braucht der Beacon 12 lediglich eine Sendeeinheit, die ausgebildet ist, das Funksignal 14 kanalspezifisch abhängig von den

Übertragungsdaten auszusenden. Dies kann zum Beispiel über ein Kommunikationsnetzwerk wie das Mobilfunknetz oder dergleichen erfolgen.

Das Kommunikationsgerät 20 ist vorliegend ein Smartphone, welches zum Zwecke des Ermittelns des Abstands 22 eine entsprechende App umfasst. Ebenso ist vorgesehen, dass zum Kalibrieren des Beacon 12 eine entsprechende App auf dem Smartphone installiert ist.

In der vorliegenden Ausgestaltung ist vorgesehen, dass der Beacon 12 des Systems 10 in einem nicht weiter dargestellten Gehäuse der Leuchteinrichtung 28 angeordnet sind, wodurch der Beacon 12 nicht ohne weiteres erreichbar ist. Der Beacon 12 ist vorliegend dazu ausgebildet, den BLE-Standard hinsichtlich des Aussendens des Funksignals 14 zu nutzen. Alternativ kann auch ein WiFi-Standard oder dergleichen genutzt werden. Dabei ist der Beacon 12 derart ausgelegt, dass er über das Kommunikationsgerät 20 angesprochen werden kann. Sowohl das Kommunikationsgerät 20 als auch der Beacon 12 können hierzu entsprechende Steuereinheiten umfassen, die eine Datenverarbeitung sowie einen Datenspeicher

bereitstellen können. Dies ist in den Fign. jedoch nicht dargestellt .

Mittels eines Algorithmus zur Repräsentation des Modells, Formeln zur Berechnung und/oder dergleichen können die

Kanaldaten 18 ermittelt werden. Dies kann unter Nutzung von Datenverarbeitung erfolgen.

Das Kommunikationsgerät 20 weist ferner die Empfangseinheit 26 sowie die Sendeeinheit 42 auf, die entsprechend des vorgenannten Kommunikationsstandards ausgelegt sind, damit eine Kommunikationsverbindung zwischen dem Beacon 12 und dem Kommunikationsgerät 20 hergestellt werden kann. Dies kann vorzugsweise über eine App gesteuert werden.

Die Zentrale 30 kann zum Beispiel einen externen Server inklusive eines Datenspeichers umfassen. Die Zentrale 30 kann insofern auch Daten, insbesondere die Übertragungsdaten sowie auch Tabellen, Routinen, Formeln und/oder Modelle umfassen, die dazu dienen können, die Übertragungsdaten zu ermitteln.

Es wird die Empfangsfeldstärke durch das Kommunikationsgerät 20 gemessen. Mittels Auswertung in der zweiten

Auswerteeinheit 42 können unter Nutzung des Algorithmus aus der Empfangsfeldstärke und dem gemessenen Abstand 22 die Übertragungsdaten ermittelt werden. Hierzu kann vorgesehen sein, dass gemäß einer ersten Variante in einer Tabelle entsprechende Übertragungsdaten abhängig von der

Empfangsfeldstärke und dem ermittelten Abstand angeführt sind. Zwischenwerte können durch Interpolation ermittelt werden. Gemäß einer zweiten Variante kann eine mathematische Berechnungsfunktion vorgesehen sein, in der die

entsprechenden Werte eingesetzt werden, um die

Übertragungsdaten zu ermitteln. Eine dritte Variante kann vorsehen, dass aus einem Simulationsmodell die Werte für die Übertragungsdaten abgelesen werden können. Natürlich können auch Kombinationen der Varianten oder dergleichen vorgesehen sein. Die Übertragungsdaten können an den Beacon 12

übermittelt werden, die diese übernimmt und bei der Erzeugung und Aussendung des Funksignals 14 nutzt.

Bei der Erfindung geht es dem Grunde nach somit um

Sendeeinrichtungen beziehungsweise Beacon in Verbindung mit Empfangsgeräten beziehungsweise Kommunikationsgeräten, die zum Beispiel durch ein Smartphone, eine lokale Bluetooth- Sendeeinheit-Empfangseinheit oder dergleichen gebildet sein können. Die Sendeeinrichtung beziehungsweise der Beacon nutzt vorzugsweise eine Mehrzahl von Funkkanälen. Entsprechend können auch die Kommunikationsgeräte eine Mehrzahl von

Funkkanälen nutzen. Das von der Sendeeinrichtung

beziehungsweise dem Beacon ausgesendete Funksignal kann bei unterschiedlichen Funkkanälen unterschiedliche Eigenschaften aufweisen, beispielsweise unterschiedliche Feldstärken, so dass die Nutzung durch das Kommunikationsgerät,

beispielsweise bei einer sendeleistungsbasierten

Distanzmessung Ungenauigkeiten entstehen können.

Eine kanalbasierte Funktechnologie kann sich sequentiell beziehungsweise gleich verteilt mehrerer verschiedener

Funkkanäle beziehungsweise Funkfrequenzen bedienen, die zum Beispiel die gleiche Antenneneinheit der Sendeeinrichtung beziehungsweise des Kommunikationsgeräts nutzen.

Dabei zeigt es sich, dass unter anderem eine Empfangsleistung beziehungsweise eine Empfangsfeldstärke des Funksignals abhängig von der Funkfrequenz beziehungsweise dem Kanal aufgrund einer Charakteristik der gemeinsam genutzten

Antenneneinheit unterschiedlich stark ausgeprägt sein kann. Die Empfangsfeldstärke sowie auch die Sendeleistung des von der Antenneneinheit abgegebenen Funksignals können je nach Kanal beziehungsweise Frequenz variieren. Eine Charakteristik der Antenneneinheit, insbesondere die Abhängigkeit der

Signalfeldstärke es Funksignals von der Frequenz

beziehungsweise dem Kanal kann durch die Geometrie der

Antenneneinheit und einer Reihe weiterer Parameter wie die Elektrik, insbesondere in Bezug auf eine Einbaulage,

Leiterplattentoleranzen, Temperatur, Luftfeuchtigkeit und/oder dergleichen abhängig sein. Bei WLAN können zum

Beispiel 11 bis 14 unterschiedliche Funkkanäle vorgesehen sein. Bei Bluetooth können zum Beispiel 79 unterschiedliche Funkkanäle vorgesehen sein. Bei Bluetooth Low Energy können 40 Funkkanäle vorgesehen sein, wovon eine vorgegebene Anzahl von Funkkanälen für Beaconing beziehungsweise Advertisement genutzt sein können. Bei Bluetooth 5BLE können sämtliche Funkkanäle beziehungsweise die weiteren 37 Funkkanäle für ein so genanntes Secondary Advertising (Beaconing) genutzt werden .

Soll zum Beispiel eine Signalstärke des Funksignals je

Sendeantenne ausgewertet werden, wie zum Beispiel bei

Beaconing, insbesondere beispielsweise für

Entfernungsmessungen, können durch die Variation der

Sendeleistungen des Funksignals in Bezug auf die

unterschiedlichen Funkkanäle beziehungsweise Trägerfrequenzen unterschiedliche Ergebnisse, beziehungsweise auch

Schwankungen in Bezug auf die Auswertung durch das

Kommunikationsgerät die Folge sein.

Dabei erweist es sich als Problematisch, dass eine

Information über den genutzten Funkkanal beziehungsweise die genutzte Trägerfrequenz für das Funksignal zum Beispiel gemäß dem Bluetooth-Standard nicht zwingend übertragen wird.

Entsprechend kann kommunikationsgeräteseitig auf diese

Information beziehungsweise auf diese Daten auch nicht zugegriffen werden, um die Auswertung

kommunikationsgeräteseitig durchzuführen . Um die Nutzung des Funksignals für unterschiedliche

Anwendungszwecke durch das Kommunikationsgerät zu verbessern, sieht die Erfindung gemäß einem ersten Aspekt vor, dass die Sendeeinrichtung beziehungsweise der Beacon das Funksignal über mehrere Funkkanäle beziehungsweise Trägerfrequenzen an das Kommunikationsgerät übermittelt. Die Sendeleistung braucht bei dieser Ausgestaltung sendeeinrichtungsseitig beziehungsweise beaconseitig nicht in Abhängigkeit des jeweiligen Funkkanals beziehungsweise der jeweiligen

Trägerfrequenz variiert zu werden. Dabei wird in Kauf

genommen, dass sendeeinrichtungsseitig beziehungsweise beaconseitig die unterschiedlichen Funkkanäle beziehungsweise Trägerfrequenzen das jeweilige Funksignal mit einer

unterschiedlichen Leistung beziehungsweise Feldstärke

übermitteln, obwohl das Signal aus einer einzigen

Sendeeinheit der Sendeeinrichtung beziehungsweise des Beacon kommen kann. Dadurch leidet natürlich die Auswertung des Funksignals durch das Kommunikationsgerät. Die Auswertung kann auch nicht ohne weiteres verbessert werden.

Die Sendeeinrichtung beziehungsweise der Beacon speichert Daten darüber, welche Charakteristik die Sendeeinrichtung beziehungsweise der Beacon in Bezug auf das Aussenden des Funksignals in Abhängigkeit der Funkkanäle beziehungsweise der Trägerfrequenzen aufweist. Darüber hinaus sendet die Sendeeinrichtung beziehungsweise der Beacon Kanaldaten mittels des Funksignals aus, die zum Beispiel ein Datenpaket sein können, das mittels des Funksignals übertragen wird. Es wird also zusätzlich eine Kennung des Funkkanals

beziehungsweise der Trägerfrequenz mittels des Funksignals übermittelt, sodass kommunikationsgeräteseitig beim Empfangen des Funksignals über einen jeweiligen der Funkkanäle zugleich auch festgestellt werden kann, über welchen der Funkkanäle das Funksignal nun empfangen worden ist. Die Kanaldaten können dabei den spezifischen Identifikationsdaten der

Sendeeinrichtung beziehungsweise des Beacon, die ohne dies mit dem Funksignal übermittelt werden, lediglich einfach hinzugefügt werden. Anhand der übermittelten Kanaldaten und der damit verbundenen Charakteristik der jeweiligen Antenneneinheit, die

vorzugsweise im Kommunikationsgerät ebenfalls gespeichert ist, kann das Kommunikationsgerät nun eine genauere

Auswertung, insbesondere in Bezug auf eine Abstandsberechnung durchführen. Das Kommunikationsgerät kann anhand der

bekannten Charakteristik beziehungsweise einer Kennlinie eine Empfangsleistung beziehungsweise eine Empfangsfeldstärke des Funksignals unter Berücksichtigung des nunmehr bekannten Funkkanals in eine Distanz umrechnen. Es braucht sich nunmehr nicht mehr an Durchschnittswerten von sämtlichen genutzten Funkkanälen orientiert zu werden.

Eine vorteilhafte Weiterbildung der Erfindung besteht darin, dass sendeeinrichtungsseitig beziehungsweise beaconseitig einerseits und kommunikationsgeräteseitig andererseits gleiche Antenneneinheiten verwendet werden. Dadurch sind kommunikationsgeräteseitig die jeweiligen Charakteristiken der Antenneneinheit bekannt . Da die

kommunikationsgeräteseitige Antenneneinheitscharakteristik bekannt ist, kann für das Auswerten angenommen werden, dass die gleiche Antenneneinheitscharakteristik auch

sendeeinrichtungsseitig beziehungsweise beaconseitig

vorliegt. Dadurch kann das Auswerten insgesamt vereinfacht werden .

Vorteilhaft erweist es sich ferner, wenn die Antenneneinheit eine konstante beziehungsweise gleichmäßige Charakteristik aufweist, sodass eine Abhängigkeit von den genutzten

Funkkanälen beziehungsweise Trägerfrequenzen möglichst gering ist, vorzugsweise kompensiert wird.

Es kann ferner vorgesehen sein, dass das Auswerten des

Funksignals eine Glättung umfasst, die unter Nutzung von statistischen Methoden erfolgt. Zu diesem Zweck können mehrere Funksignale über einen vorgegebenen entsprechenden Zeitraum aufgenommen werden, um beispielsweise unter Berechnung eines Mittelwerts das Auswerten verbessern zu können .

Darüber hinaus besteht die Möglichkeit, dass für jeden

Funkkanal das ausgesendete Funksignal modifiziert wird, sodass kommunikationsgeräteseitig die unterschiedlichen

Funksignale dazu genutzt werden können, die Funkkanäle unterscheiden beziehungsweise identifizieren zu können. Dies kann beispielsweise durch unterschiedliche spezifische

Identifikationsdaten, eine unterschiedliche Sendeadresse der Sendeinrichtung beziehungsweise des Beacon und/oder

dergleichen erreicht werden.

Sendet die Sendeeinrichtung beziehungsweise der Beacon lediglich auf einem einzigen Funkkanal können die Kanaldaten mit einem Scan-Response gesendet werden. Die Übermittlung der Kanaldaten an das Kommunikationsgerät kann auf

Applikationsebenen erfolgen. Zu diesem Zweck kann das

Datenpaket vorgesehen sein, welches die Kanaldaten umfasst.

Der vorliegende erste Aspekt der Erfindung kann auch als empfängerseitige Glättung bezeichnet werden.

Ein zweiter erfindungsgemäßer Aspekt basiert auf einer senderseitigen Glättung beziehungsweise Anpassung

beziehungsweise Kalibrierung einer Sendeleistung der

Sendeeinrichtung beziehungsweise des Beacon. Dabei erfolgt die Anpassung der Sendeleistung derart, dass das ausgesendete Funksignal bezüglich der unterschiedlichen Funkkanäle möglichst die gleiche Sendeleistung beziehungsweise

Sendefeldstärke aufweist. Zu diesem Zweck kann die

Sendeleistung für einen jeden Funkkanal bezogen auf eine konstante Energie beziehungsweise Leistung des Funksignals unter Berücksichtigung eines konstanten Abstands für jeden der Funkkanäle beziehungsweise jede der Trägerfrequenzen ermittelt werden. Gemäß einer ersten Variante kann dies unter Nutzung einer Kennlinie beziehungsweise einer bekannten Charakteristik erfolgen. Gemäß einer zweiten Variante kann hierfür ein ortsfester Empfänger genutzt werden.

Die unterschiedlichen kanalspezifischen Sendeleistungen können gespeichert werden. Dadurch sind die unterschiedlichen Sendeleistungen bekannt und können gegebenenfalls auch berechnet werden. Zum Aussenden der Funksignale über die jeweiligen Funkkanäle beziehungsweise Trägerfrequenzen können individuelle Routinen vorgesehen sein. Beim Aussenden eines zum Beispiel für eine Abstandsmessung vorgesehenen

Funksignals brauchen die Funkkanäle beziehungsweise

Trägerfrequenzen nun nicht mehr mit gleicher Leistung

beziehungsweise Energie erzeugt zu werden, sondern sie werden nun auf eine konstante Sendeleistung beziehungsweise

Sendefeldstärke des Funksignals gesteuert beziehungsweise kalibriert. Dabei können die folgenden drei Varianten

unterschieden werden.

Gemäß einer ersten Variante wird die Sendeleistung

beziehungsweise die Sendefeldstärke auf Basis der Kennlinien und bekannten Charakteristiken angepasst, sodass sich

rechnerisch eine Konstante Sendeleistung beziehungsweise Sendefeldstärke für das Funksignal ergibt.

Gemäß einer zweiten Variante wird die Sendeleistung zum

Beispiel in einem Labor kalibriert, sodass in einer Test- Umgebung die Funkkanäle beziehungsweise die Trägerfrequenzen individuell angepasst werden können, sodass sich eine nahezu konstante Sendeleistung beziehungsweise Sendefeldstärke in Bezug auf sequentiell ablaufende Funkkanäle ergibt. Die daraus abgeleiteten unterschiedlichen Leistungen je Funkkanal beziehungsweise Trägerfrequenz können in einer Firmware, beispielsweise auf einer Applikationsebene, gespeichert und entsprechend aufgerufen werden.

Gemäß einer dritten Variante kann im Umfeld der

Sendeeinrichtung beziehungsweise des Beacon in einer

konstanten Entfernung und in einem im Wesentlichen ungestörten Zustand ein Kommunikationsgerät angeordnet sein, dass die Funksignale über die unterschiedlichen Funkkanäle beziehungsweise Trägerfrequenzen stets aufnimmt und ein Feedback nach Art eines Regelkreises an die Sendeeinrichtung beziehungsweise den Beacon gibt. Dabei kann eine

Energieversorgung beziehungsweise ein Generator für das Funksignal hinsichtlich der Leistung auf einen Soll-Wert geregelt werden, um damit eine nahezu konstante Sendeleistung beziehungsweise Sendefeldstärke für das Funksignal seitens der Sendeeinrichtung beziehungsweise des Beacons erreichen zu können .

Die Ausführungsbeispiele dienen ausschließlich dem Erläutern der Erfindung und sollen diese nicht beschränken.

BEZUGSZEICHENLISTE

10 System

12 Sendeeinrichtung

14 Funkeinrichtung

1 6 Identifikationsdaten

18 Kanaldaten

20 Kommunikationsgerät

22 Abstand

2 6 Empfangseinheit

28 Leuchteinrichtung

30 Zentrale

32 KommunikationsVerbindung

34 Header

36 erste Auswerteeinheit

38 Empfangseinheit

40 Sende-/Empfangseinheit

42 zweite Auswerteeinheit

44 Sendeeinheit