Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LIQUID TEXTILE TREATMENT AGENT
Document Type and Number:
WIPO Patent Application WO/2008/128817
Kind Code:
A1
Abstract:
The invention provides liquid textile treatment agents, containing photo-catalytic material and cation surfactant. The same enable a cleaning, care, finishing, softening and/or conditioning of textiles using light at a wavelength range of 10-1200 nm. Among others, they enable a removal, deactivation, or reduction of microorganisms in textiles to a harmless level, and also a reduction of the adhesion ability of soil on fibers. Further, they may prevent fetid odors on textiles, and may provide the same with a self-cleaning ability.

Inventors:
MAYER, Konstanze (Am Broichgraben 70, Düsseldorf, 40589, DE)
MEINE, Georg (Hofstadt 4, Mettmann, 40822, DE)
Application Number:
EP2008/052698
Publication Date:
October 30, 2008
Filing Date:
March 06, 2008
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
HENKEL AG & CO. KGAA (Henkelstr. 67, Düsseldorf, 40589, DE)
MAYER, Konstanze (Am Broichgraben 70, Düsseldorf, 40589, DE)
MEINE, Georg (Hofstadt 4, Mettmann, 40822, DE)
International Classes:
C11D1/62; C11D3/12; D06M11/46; D06M13/463; D06M16/00
Download PDF:
Claims:

Patentansprüche:

1. Flüssiges Textilbehandlungsmittel, dadurch gekennzeichnet, dass es photokatalytisches Material und Kationtensid enthält.

2. Textilbehandlungsmittel nach Anspruch 1 , dadurch gekennzeichnet, dass als Kationtensid eine quartäre Ammonium-Verbindung, insbesondere Esterquat enthalten ist, vorzugsweise in Mengen von > 0,1 Gew.-%, vorteilhafterweise 1 bis 40 Gew.-%, insbesondere 3 bis 30 Gew.-%, bezogen auf das gesamte Textilbehandlungsmittel.

3. Textilbehandlungsmittel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass als photokatalytisches Material Titandioxid enthalten ist, insbesondere ein modifiziertes Titandioxid, vorzugsweise ein mit Kohlenstoff modifiziertes Titandioxid.

4. Textilbehandlungsmittel nach einem der Ansprüche 1-3, dadurch gekennzeichnet, dass ein Feuchthaltemittel enthalten ist, vorzugsweise Glycerin, Dimere und Trimere von Glycerin, Ethylenglykol, Propylenglykol, Zuckeralkohole, wie vorzugsweise Glucitol, Xylitol, Mannitol, Alkylpolyglucoside, Fettsäureglucamide, Saccharoseester, Sorbitane, Polysorbate, Polydextrose, Polyethylenglykol, vorzugsweise mit mittleren Molekulargewichten von 200 bis 8000, Propandiole, Butandiole, Triethylenglycol, hydrierter Glucosesirup und/oder Gemische aus vorgenannten, vorzugsweise in Mengen von 0,01 bis 10 Gew.-%, vorteilhafterweise 0,1 bis 5 Gew.-%, insbesondere 0,5 bis 2 Gew.-%, Gew.-% jeweils bezogen auf das gesamte Mittel.

5. Verfahren zum Aufbringen photokatalytischen Materials auf Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad enthaltend ein Textilbehandlungsmittel nach einem der Ansprüche 1-4.

6. Verfahren zur Reinigung, Pflege, Ausrüstung, Avivage und/oder Konditionierung von Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad enthaltend ein Textilbehandlungsmittel nach einem der Ansprüche 1-4, bei und/oder gefolgt von einer Exponierung der Textilien an Licht im Wellenlängenbereich von 10-1200 nm.

7. Verfahren nach einem der vorigen Ansprüche 5 oder 6 zur Beseitigung, Deaktivierung oder Verminderung von Mikroorganismen, insbesondere Bakterien und Keimen, in Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.

8. Verfahren nach einem der vorigen Ansprüche 5 bis 7 zur Prophylaxebehandlung von Textilien in Form einer vorauseilenden Abwehr und Hemmung von Anschmutzungen und Flecken unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.

9. Verfahren nach einem der vorigen Ansprüche 5 bis 8 zur Ausrüstung von Textilien mit photokatalytischem Material zur Erleichterung der Entfern barkeit von farbigem Schmutz (farbige Flecken) von Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.

10. Verfahren nach einem der vorigen Ansprüche 5 bis 9 zur Ausrüstung von Textilien mit photokatalytischem Material zur Reduzierung des Faserhaftungsvermögens von Schmutz, vorzugsweise farbigen Flecken, auf Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.

11. Verfahren nach einem der vorigen Ansprüche 5 bis 10 zur Ausrüstung von Textilien mit photokatalytischem Material zur Erhöhung der Wasserlöslichkeit von Schmutz, vorzugsweise farbigen Flecken, auf Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.

12. Verfahren nach einem der vorigen Ansprüche 5 bis 11 zur Ausrüstung von Textilien mit photokatalytischem Material zur Verhinderung des Entstehens fötider Gerüche auf den Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.

13. Verfahren nach einem der vorigen Ansprüche 5 bis 12 zur Ausrüstung von Textilien mit photokatalytischem Material zur Ausstattung der Textilien mit einem Selbstreinigungsvermögen, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.

14. Verfahren nach einem der vorigen Ansprüche 5 bis 13 zur Entfernung oder Reduktion von Anschmutzungen und Flecken auf Textilien, die insbesondere zurückgehen auf: rote bis blaue Anthocyanfarbstoffe, wie z.B. Cyanidin, z.B. aus Kirschen oder

Heidelbeeren, rotes Betanidin aus der roten Beete, orangerote Carotinoide wie z.B. Lycopin, beta-Carotin, z.B. aus Tomaten oder Möhren, gelbe Curcumafarbstoffe, wie z.B. Curcumin, z.B. aus Curry und Senf, braune Gerbstoffe, z.B. aus Tee, Obst, Rotwein tiefbraune Huminsäure, z.B. aus Kaffee, Tee, Kakao, grünes Chlorophyll, z.B, aus grünen Gräsern, technische Farbstoffe aus Kosmetika, Tinten, Farbstiften

farbige Stoffwechselprodukte und/oder Ausscheidungsprodukte von Schimmelpilzen oder anderer Mirkoflora oder mikrobiellem Bewuchs oder Mikroben, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm.

15. Verfahren gemäß einem der Ansprüche 5 bis 14 unter Verwendung einer automatischen Waschmaschine, vorzugsweise einer automatischen Waschmaschine mit Lichtquelle, wobei das Textilbehandlungsmittel insbesondere im Nachspülgang zugegeben wird.

Description:

Flüssiges Textilbehandlungsmittel

Die vorliegende Erfindung betrifft ein flüssiges Textilbehandlungsmittel, enthaltend photokatalytisches Material und Kationtensid. Ferner betrifft sie ein Verfahren zum Aufbringen photokatalytischen Materials auf Textilien, ferner ein Verfahren zur Reinigung, Pflege, Ausrüstung, Avivage und/oder Konditionierung von Textilien.

Durch Sauberkeit und Hygiene konnte die Lebensqualität und -erwartung der Menschen entscheidend verbessert werden. Einen wichtigen Beitrag hierzu liefern Textilbehandlungsmittel, wie z.B. Waschmittel zur Reinigung von Textilien. Textilbehandlungsmittel werden daher in den vielfältigsten Ausführungsformen für den gewerblichen und technischen Bedarf wie auch für den Privatbedarf der Haushalte von der Industrie bereitgestellt.

Während die Entfernung des Schmutzes und unangenehmer Gerüche aus den Textilien für den Verbraucher mit seinen Sinnen wahrnehmbar ist, kann er die Beseitigung von Mikroorganismen im Regelfall nicht überprüfen. Der Verbraucher hat aber dennoch ein starkes Interesse daran, bei der Textilbehandlung eine Keimverminderung auf ein gesundheitlich unbedenkliches Maß zu erreichen. Er ist daher generell an Textilbehandlungsmitteln interessiert, welche eine gute Wäschehygiene ermöglichen.

Die Aufgabe der vorliegenden Erfindung bestand daher darin, ein Mittel bereit zustellen, welches dazu beiträgt, eine gute Wäschehygiene zu ermöglichen.

Der Gegenstand der Erfindung ist ein flüssiges Textilbehandlungsmittel, vorzugsweise Textilnachbehandlungsmittel, insbesondere Weichspüler, enthaltend photokatalytisches Material und Kationtensid.

Das enthaltene photokatalytische Material, welches vorzugsweise feinpartikulär ist, also vorzugsweise Teilchengrößen < 500 nm aufweist, bedient sich elektromagnetischer Strahlung eines geeigneten Wellenlängenbereichs, vermöge welcher eine allgemeine Reinigungsleistung erbracht wird, vermöge welcher z.B. Verschmutzungen oder Mikroben durch photokatalytische oder photochemische Reaktion, z.B. durch Oxidation oder durch Reduktion, abbaubar, deaktivierbar oder reduzierbar sind.

Das photokatalytische Material ist insbesondere ein tageslichtaktives Material, insbesondere ein tageslichtaktives Bleichmittel, nutzt also die elektromagnetische Strahlung des Tageslichts. Für

eine bevorzugte Entfaltung der Wirksamkeit des photokatalytischen Materials ist die Anwesenheit von vorzugsweise Sauerstoff und/oder Wasser erforderlich. Dazu genügt z.B. der in Wasser anwesende, gelöste Sauerstoff bzw. das in der Luft enthaltene Wasser (Luftfeuchte).

Die photokatalytische Aktivität des photokatalytischen Materials bezieht sich vorteilhafterweise auf natürliches oder künstliches Licht im Wellenlängenbereich von 10-1200 nm, vorzugsweise von 300-1200 nm, insbesondere zwischen 380 und 800 nm. Wenn das photokatalytische Material insbesondere die vom menschlichen Auge wahrnehmbare Strahlung des sichtbaren Bereichs des Spektrums mit Wellenlängen zwischen 380 und 800 nm für die o.g. Zwecke des Abbaus, der Deaktivierung oder der Reduzierung von Verunreinigungen ausnutzt, dann liegt eine bevorzugte Ausführungsform der Erfindung vor. Auch UV-Licht ist sehr vorteilhaft.

Vorteilhafterweise reicht sogar das Licht, welches durch Glasfenster in geschlossene Wohnräume einfällt (diffuses Tageslicht) aus, um die gewünschte photokatalytische Aktivität des photokatalytischen Materials zu gewährleisten. Selbst Licht aus technischen Lichtquellen (Kunstlicht), wie z.B. aus handelsüblichen Glühlampen (Glühbirnen), Halogenlampen, Leuchtstoffröhren, Kompaktleuchtstofflampen (Energiesparlampen) sowie aus Lichtquellen auf Basis von Leuchtdioden, reicht aus, um die gewünschte Wirkung zu bewirken. Insbesondere das natürliche Sonnenlicht führt zu sehr guten Effekten.

Das photokatalytischen Material kann auf mehreren Wegen bei und nach der Textilbehandlung seine Wirkung entfalten.

Zuerst sei die Wirkung im Textilbehandlungsbad genannt. Wenn man z.B. die zu behandelnden Textilien in einen Bottich gibt, der eine Waschlauge enthält, in welche zuvor das erfindungsgemäße Textilbehandlungsmittel gegeben wurden, und dieses Textilbehandlungsbad dann beispielsweise Licht aussetzt, z.B. in die Sonne stellt, dann entfaltet das photokatalytische Material in dem Textilbehandlungsbad eine allgemeine Reinigungsleistung. Solches ist auch möglich bei der Textilbehandlung in einer automatischen Waschmaschine welche ein Sichtfenster (Bullauge) aufweist, wie es zumindest bei Frontladern üblich ist und/oder in Waschmaschine mit interner Lichtquelle.

Zum zweiten sei die Wirkung bei der Textiltrocknung genannt. Das im Rahmen der Textilbehandlung auf die zu trocknenden Textilien aufgezogene photokatalytische Material vermag im Zusammenspiel mit einer Lichteinstrahlung, z.B. durch Sonnenlicht bei der Trocknung auf der Leine im Freien, eine allgemeine Reinigungsleistung zu entfalten. Solches ist auch möglich bei der Textiltrocknung in einem automatischen Wäschetrockner mit interner Lichtquelle.

Zum dritten ist die Wirkung nach der Textiltrocknung zu nennen. Die getrockneten Textilien sind im eigentlichen Sinne nicht wirklich trocken, sondern beinhalten eine Restfeuchte, welche im Gleichgewicht mit der Umgebungsfeuchte steht (Raumfeuchte, Körperfeuchte). Diese Bedingungen reichen aus, um bei Lichteinstrahlung, z.B. durch Sonnenlicht, eine allgemeine Reinigungsleistung, hervorgerufen durch das auf den Textilien abgelagerte photokatalytische Material, zu entfalten. Diese letztgenannte Wirkung ist besonders vorteilhaft, weil die behandelten Kleidungsstücke gleichsam mit einem Langzeitschutz versehen werden, so dass die Kleidung mit einem Selbstreinigungsvermögen ausstattet wird.

Dieses Selbstreinigungsvermögen ist z.B. vorteilhaft, um dem Entstehen fötider Gerüche entgegenzuwirken, welche sich auf der Kleidung z.B. nach schweißtreibenden Aktivitäten (z.B. sportliche Aktivitäten) schnell bilden. Dieses Selbstreinigungsvermögen ist z.B. vorteilhaft, um die Ansiedlung von Mikroben auf Textilien zu verhindern oder zumindest zu erschweren. Dieses Selbstreinigungsvermögen ist z.B. vorteilhaft, um ein Aufziehen und festes Anhaften von insbesondere farbigen Anschmutzungen auf Fasern abzuwehren oder zu erschweren.

Vorteilhafterweise ist auch die Wiederauswaschbarkeit farblicher Anschmutzungen aus Textilien, die mit dem erfindungsgemäßen Textilbehandlungsmittel gewaschen wurden, erleichtert. Gewöhnlich ist bei der Entfernung von Flecken auf Textilien schnelles Handeln das oberste Gebot, denn je frischer ein Fleck ist, desto leichter läßt er sich entfernen. Ein Antrocknen von Flecken oder anderen Verschmutzungen, beispielsweise Blut-, Kaffe-, Tee-, Kugelschreiber-, Obst-, Rotweinoder Teerflecken, insbesondere über mehrere Tage soll üblicherweise vermieden werden, damit es nicht zu einer möglicherweise irreversiblen Faserhaftung kommt. Die vorliegende Erfindung bringt hier Erleichterung, denn Textilien, die mit erfindungsgemäßen Textilbehandlungsmitteln behandelt wurden, zeigten, dass die Faserhaftung von Flecken oder anderen Verschmutzungen so abgeschwächt wurde, dass sie leichter wieder ausgewaschen werden konnten.

Das photokatalytisch aktive Material ist also vorteilhaft, um die Wiederauswaschbarkeit von farbigen Anschmutzungen zu verbessern. Das photokatalytisch aktive Material vermag nämlich unter Einwirkung von Licht die Struktur von insbesondere farbigen Anschmutzungen (Farbstoffen) z. B durch Oxidation zu zerstören.

Die konjugierten Doppelbindungen, die bei den Farbstoffen für die Absorption von sichtbarem Licht und damit für die Farbgebung verantwortlich sind, werden gespalten oder hydroxyliert. Der Farbstoff verliert seine farbgebenden Eigenschaften und auch seine starkes Faserhaftungsvermögen. Gleichzeitig wird die Wasserlöslichkeit erhöht. So kann verhindert werden, dass sich ein farbiger Fleck gleichsam ins Textil „hineinfrißt" und dieses auf Dauer entwertet.

Außerdem wird durch die Anwendung des erfindungsgemäßen Textilbehandlungsmittels bei der Textilbehandlung auch ein gleichmäßiges Aufziehen des photokatalytischen Materials auf die zu behandelnden Textilien ermöglicht. Wir konnten finden, dass die Anwesenheit von Kationtensid, insbesondere in Gestalt von Esterquat, in den Textilbehandlungsmitteln zu einem sehr guten und gleichmäßigen Aufziehverhalten des photokatalytischen Materials auf die zu behandelnden Textilien führt. Das Kationtensid, insbesondere Esterquat, führt auch zu einer vergrößerten Haftung des photokatalytischen Materials auf den Textilien und verlängert so seinen Wirkungszeitraum. Insgesamt wird dadurch eine Verbesserung der Reinigungsleistung ermöglicht.

Das erfindungsgemäße Textilbehandlungsmittel ermöglicht ferner eine sehr textilschonende Textilbehandlung, z.B. Fleckenbehandlung.

Ein weiterer Vorteil des erfindungsgemäßen Textilbehandlungsmittels liegt, wie schon angesprochen, darin, dass es zur Verminderung, Beseitigung oder Neutralisierung fötider Gerüche beiträgt. Der fötide Geruch kann dabei vorteilhafterweise so gemindert werden, dass eine vormals existierende Geruchsbelästigung nicht mehr vorliegt. Das Entstehen fötider Gerüche kann für einen längeren Zeitraum verhindert werden. Dies ist auch ein großer Vorteil, da insgesamt eine allgemeine Reinigungsleistung mit der Beseitigung schädlicher Mikroben in einem Behandlungsschritt kombiniert werden kann und zusätzlich ein Blocken bzw. Verhindern fötider Gerüche mit Langzeitwirkung erbracht wird. Dies geht über die Funktion bisheriger Textilbehandlungsmittel deutlich hinaus. Die Entstehung von Schlechtgerüchen kann also vermindert werden.

Vorteilhafterweise wird nicht nur die Beseitigung herkömmlicher Verschmutzungen, sondern auch die Beseitigung, Deaktivierung, Denaturierung oder Verminderung von Mikroben, insbesondere von Keimen, Pilzen, Hefen, Milben, vorzugsweise Hausstaubmilben, bzw. ganz allgemein von (lnnenraum-)Noxen mit allergenem Potential ermöglicht.

Unter Noxen werden hier Faktoren verstanden, die den menschlichen Organismus schädigen, zumindest aber den Menschen in seinem Wohlbefinden beeinträchtigen können. Dies sind insbesondere die gerade genannten Faktoren, vor allem mikrobiologische Faktoren wie Viren, Bakterien, Pilze usw.

Die Entfaltung der allgemeinen Reinigungswirkung, welche bei der Anwendung des erfindungsgemäßen Textilbehandlungsmittels beobachtet werden kann, ist besonders effektiv hinsichtlich farbiger Verunreinigungen bzw. Anschmutzungen, die insbesondere zurückgehen auf rote bis blaue Anthocyanfarbstoffe, wie z.B. Cyanidin, z.B. aus Kirschen oder Heidelbeeren, rotes Betanidin aus der roten Beete, orangerote Carotinoide wie z.B. Lycopin, beta-Carotin, z.B. aus Tomaten oder Möhren, gelbe Curcumafarbstoffe, wie z.B. Curcumin, z.B. aus Curry und Senf, braune Gerbstoffe, z.B. aus Tee, Obst, Rotwein tiefbraune Huminsäure, z.B. aus Kaffee, Tee, Kakao, grünes Chlorophyll, z.B, aus grünen Gräsern, technische Farbstoffe aus Kosmetika, Tinten, Farbstiften, farbige Stoffwechsel produkte und/oder Ausscheidungsprodukte von Schimmelpilzen oder anderer Mirkoflora oder mikrobiellem Bewuchs oder Mikroben.

Das erfindungsgemäße Textilbehandlungsmittel kommt auch den heutigen Waschgewohnheiten der Verbraucher entgegen. Diese bevorzugen zunehmend ein Waschen bei niedrigeren Temperaturen, z.B. < 4O 0 C. Ein deutliches Absterben von Keimen beginnt allerdings erst bei Temperaturen > 4O 0 C, erst oberhalb einer Temperatur von 55 0 C werden die meisten Bakterien abgetötet. Wird also längere Zeit nur bei 3O 0 C gewaschen, läßt sich unter Umständen keine ausreichende hygienische Reinheit mehr garantieren. Die Anwendung des erfindungsgemäßen Textilbehandlungsmittels ermöglicht dem Verbraucher das konsequente Waschen bei T < 4O 0 C bei verbesserter Hygienewirkung.

Ein erfindungsgemäßes Textilbehandlungsmittel vereinigt außerdem vorzugsweise die Vorzüge eines Hygienespülers und eines Weichspülers in einer Angebotsform und erleichtert dem Verbraucher dadurch die Textilpflege und -behandlung, da er statt zwei verschiedener Nachbehandlungsmittel nur ein einziges, nämlich das erfindungsgemäße Textilbehandlungsmittel einsetzen muß, wenn er eine weichmachende und hygienefördernde Nachbehandlung seiner Wäsche für geboten hält. Die Weichheitsleistung wird vorteilhafterweise von dem Kationtensid erbracht.

Die erfindungsgemäßen Textilbehandlungsmittel enthalten nämlich als zwingenden Bestandteil Kationtensid. Kationtenside sind dem Fachmann bekannt. Es handelt sich dabei um grenzflächenaktive Verbindungen, in der Regel aus einem gegebenenfalls substituierten Kohlenwasserstoff-Gerüst, mit einer oder mehreren kationischen (positiv geladenen) Gruppen, die in wäßriger Lösung vorzugsweise dissoziieren, vorteilhafterweise an Grenzflächen adsorbieren und vorzugsweise oberhalb der kritischen Micellbildungskonzentration zu positiv geladenen Micellen agg regieren.

Bekannte Beispiele für Kationtenside sind insbesondere quartäre Ammonium-Verbindungen mit einem oder zwei hydrophoben Alkyl-Resten.

Bei Kationtensiden mit zwei hydrophoben Gruppen, die über Ester-Bindungen mit einem quaternierten Di(Tri-)ethanolamin oder einer analogen Verbindung verknüpft sind, spricht man von Esterquats. Diese sind erfindungsgemäß besonders bevorzugt. Andere Beispiele für Kationtenside sind z.B. quartäre Phosphonium-Salze, tertiäre Sulfonium-Salze, Imidazolinium-Salze oder N- Alkylpyridinium-Salze. Kationtenside können auch durch Protonierung von primären Fettaminen oder Fettamin-N-oxiden erhalten werden.

Am meisten bevorzugt sind erfindungsgemäß jedoch quaternäre Ammoniumverbindungen wie Monoalk(en)yltrimethylammonium-Verbindungen, Dialk(en)yldimethylammonium-Verbindungen, Mono-, Di- oder Triester von Fettsäuren mit Alkanolaminen.

Geeignete Beispiele für quaternäre Ammoniumverbindungen sind beispielsweise in den Formeln (I) und (II) gezeigt:

wobei in (I) R für einen acyclischen Alkylrest mit 12 bis 24 Kohlenstoffatomen, R 1 für einen gesättigten C 1 -C 4 Alkyl- oder Hydroxyalkylrest steht, R 2 und R 3 entweder gleich R oder R 1 sind oder für einen aromatischen Rest stehen. X ~ steht entweder für ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen. Beispiele für kationische Verbindungen der Formel (I) sind Monotalgtrimethylammoniumchlorid, Monostearyltrimethylammoniumchlorid, Didecyldimethylammoniumchlorid, Ditalgdimethyl- ammoniumchlorid oder Dihexadecylammoniumchlorid.

Verbindungen der Formel (II), (IM) und (IV) sind so genannte Esterquats. Esterquats zeichnen sich durch eine hervorragende biologische Abbaubarkeit aus. In Formel (II) steht R 4 für einen aliphatischen Alk(en)ylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen und/oder gegebenenfalls mit Substituenten; R 5 steht für H, OH oder 0(CO)R 7 , R 6 steht unabhängig von R 5 für H, OH oder 0(CO)R 8 , wobei R 7 und R 8 unabhängig voneinander jeweils für einen aliphatischen Alk(en)ylrest mit 12 bis 22 Kohlenstoffatomen mit O, 1 , 2 oder 3 Doppelbindungen steht, m, n und p können jeweils unabhängig voneinander den Wert 1 , 2 oder 3 haben. X kann entweder ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen Anionen sein. Bevorzugt sind Verbindungen, bei denen R 5 die Gruppe 0(CO)R 7 darstellt. Besonders bevorzugt sind Verbindungen, bei denen R 5 die Gruppe 0(CO)R 7 darstellt und R 4 und R 7 Alk(en)ylreste mit 16 bis 18 Kohlenstoffatomen sind. Insbesondere bevorzugt sind Verbindungen, bei denen R 6 zudem für OH steht. Beispiele für Verbindungen der Formel (I) sind Methyl-N-(2-hydroxyethyl)-N,N-di(talgacyloxyethyl)ammonium-m ethosulfat, Bis-(palmitoyloxyethyl)- hydroxyethyl-methyl-ammonium-methosulfat, 1 ,2-Bis-[talgacyloxy]-3-trimethylammoniumpro- panchlorid oder Methyl-N,N-bis(stearoyloxyethyl)-N-(2-hydroxyethyl)ammonium- methosulfat.

Werden quaternierte Verbindungen der Formel (II) eingesetzt, die ungesättigte Alkylketten aufweisen, sind die Acylgruppen bevorzugt, deren korrespondierenden Fettsäuren eine Jodzahl zwischen 1 und 100, bevorzugt zwischen 5 und 80, mehr bevorzugt zwischen 10 und 60 und insbesondere zwischen 15 und 45 aufweisen und die ein cis/trans-lsomerenverhältnis (in Gew.-%) von größer als 30 : 70, vorzugsweise größer als 50 : 50 und insbesondere gleich oder größer als 60 : 40 haben. Handelsübliche Beispiele sind die von Stepan unter dem Warenzeichen Stepantex ® vertriebenen Methylhydroxyalkyldialkoyloxyalkylammoniummethosulfate oder die unter Dehyquart ® bekannten Produkte von Cognis, die unter Rewoquat ® bekannten Produkte von Degussa bzw. die unter Tetranyl® bekannten Produkte von Kao. Weitere bevorzugte Verbindungen sind die Diesterquats der Formel (III), die unter dem Namen Rewoquat® W 222 LM bzw. CR 3099 erhältlich sind.

R 21 und R 22 stehen dabei unabhängig voneinander jeweils für einen aliphatischen Rest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen.

Anstelle der Estergruppe 0(CO)R, wobei R für einen langkettigen Alk(en)ylrest steht, können weichmachende Verbindungen eingesetzt werden, die folgende Gruppen aufweisen: RO(CO), N(CO)R oder RN(CO) weisen, wobei von diesen Gruppen N(CO)R-Gruppen bevorzugt sind.

Geeignete Kationtenside sind beispielsweise auch quaternäre Imidazoliniumverbindungen der Formel (IV),

wobei R 9 für H oder einen gesättigten Alkylrest mit 1 bis 4 Kohlenstoffatomen, R 10 und R 11 unabhängig voneinander jeweils für einen aliphatischen, gesättigten oder ungesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen, R 10 alternativ auch für 0(CO)R 20 stehen kann, wobei R 20 einen aliphatischen, gesättigten oder ungesättigten Alkylrest mit 12 bis 18 Kohlenstoffatomen bedeutet, und Z eine NH-Gruppe oder Sauerstoff bedeutet und X ~ ein Anion ist. q kann ganzzahlige Werte zwischen 1 und 4 annehmen.

Weitere besonders bevorzugte Kationtenside sind durch Formel (V) beschrieben, R13 H

R12 N-(CH 2 V C 0(C0)R15 X " (V);

R14 CH 2 — 0(C0)R16 wobei R 12 , R 13 und R 14 unabhängig voneinander für eine C-ι_ 4 -Alkyl-, Alkenyl- oder Hydroxyalkyl- gruppe steht, R 15 und R 16 jeweils unabhängig ausgewählt eine C 8 . 28 -Alkylgruppe darstellt, X ~ ein Anion ist und r eine Zahl zwischen O und 5 ist. Ein bevorzugtes Beispiel einer kationischen Abscheidungshilfe gemäß Formel (V) ist 2,3-Bis[talgacyloxy]-3-trimethylammoniumpropanchlorid.

Weitere erfindungsgemäß verwendbare Kationtenside stellen die quaternisierten Proteinhydrolysate oder protonierte Amine dar.

Weiterhin sind auch kationische Polymere erfindungsgemäß als Kationtensid einsetzbar. Zu den geeigneten kationischen Polymeren zählen die Polyquaternium-Polymere, wie sie im CTFA Cosmetic Ingredient Dictionary (The Cosmetic, Toiletry and Fragrance, Inc., 1997), insbesondere die auch als Merquats bezeichneten Polyquaternium-6-, Polyquaternium-7-, Polyquaternium-10-

Polymere (Polymer JR, LR und KG Reihe von Amerchol), Polyquaternium-4-Copolymere, wie Pfropfcopolymere mit einen Cellulosegerüst und quartären Ammoniumgruppen, die über Allyldimethylammoniumchlorid gebunden sind, kationische Cellulosederivate, wie kationisches Guar, wie Guarhydroxypropyltriammoniumchlorid, und ähnliche quaternierte Guar-Derivate (z.B. Cosmedia Guar von Cognis oder die Jaguar Reihe von Rhodia), kationische quaternäre Zuckerderivate (kationische Alkylpolyglucoside), z.B. das Handelsprodukt Glucquat® 100, gemäß CTFA-Nomenklatur ein "Lauryl Methyl Gluceth-10 Hydroxypropyl Dimonium Chloride", Copolymere von PVP und Dimethylaminomethacrylat, Copolymere von Vinylimidazol und Vinylpyrrolidon, Aminosiliconpolymere und Copolymere.

Ebenfalls als erfindungsgemäße Kationtenside einsetzbar sind polyquaternierte Polymere (z.B. Luviquat® Care von BASF) und auch kationische Biopolymere auf Chitinbasis und deren Derivate, beispielsweise das unter der Handelsbezeichnung Chitosan® (Hersteller: Cognis) erhältliche Polymer.

Einige der genannten kationischen Polymere weisen zusätzlich haut- und/oder textilpflegende Eigenschaften auf, was vorteilhaft ist.

Ebenfalls einsetzbare Kationtenside sind Verbindungen der Formel (VI),

R 17 kann ein aliphatischer Alk(en)ylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen sein, s kann Werte zwischen 0 und 5 annehmen. R 18 und R 19 stehen unabhängig voneinander jeweils für H, C-ι_ 4 -Alkyl oder Hydroxyalkyl und X ~ ist ein Anion.

Weitere geeignete Kationtenside umfassen protonierte oder quaternierte Polyamine.

Besonders bevorzugte Kationtenside sind alkylierte quaternäre Ammoniumverbindungen, von denen mindestens eine Alkylkette durch eine Estergruppe und/oder Amidogruppe unterbrochen ist. Ganz besonders bevorzugt sind N-Methyl-N-(2-hydroxyethyl)-N,N-(ditalgacyloxyethyl)ammonium - methosulfat oder Bis-(palmitoyloxyethyl)-hydroxyethyl-methyl-ammonium-methosu lfat.

Nach einer bevorzugte Ausführungsform der Erfindung enthält ein erfindungsgemäßes Textilbehandlungsmittel als Kationtensid eine quartäre Ammonium-Verbindung, insbesondere Esterquat, vorzugsweise in Mengen von > 0,1 Gew.-%, vorteilhafterweise 1 bis 40 Gew.-%, insbesondere 3 bis 30 Gew.-%, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.

Sinnvolle Obergrenzen für die Menge des eingesetzten Kationtensids können auch bei 25 Gew.-%,

20 Gew.-%, 15 Gew.-% oder 10 Gew.-% liegen.

Sinnvolle Untergrenzen für die Menge des eingesetzten Kationtensids können auch bei 4 Gew.-%,

5 Gew.-% oder 10 Gew.-% liegen, Gew.-% jeweils bezogen auf das gesamte

Textilbehandlungsmittel.

Als photokatalytisches Material ist nach einer bevorzugten Ausführungsform der Erfindung Titandioxid enthalten, insbesondere ein modifiziertes Titandioxid, vorzugsweise ein mit Kohlenstoff modifiziertes Titandioxid.

Das photokatalytische Material, insbesondere das (vorzugsweise modifizierte) Titandioxid, ist nach einer bevorzugten Ausführungsform der Erfindung in dem erfindungsgemäßen Textilbehandlungsmittel in Mengen von vorteilhafterweise 0,0001 bis 30 Gew.-%, vorzugsweise 0,001 bis 20 Gew.-%, vorteilhafterweise 0,01 bis 15 Gew.-% enthalten, in weiter vorteilhafter Weise 0,1 bis 10 Gew.-%, noch vorteilhafter 1 bis 5 Gew.-% enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.

Nach einer bevorzugten Ausführungsform handelt es sich bei dem (vorzugsweise modifizierten) Titandioxid um ein mit Kohlenstoff modifiziertes Titandioxid. Es können aber auch anders modifizierte Titandioxide eingesetzt werden, beispielsweise mit Stickstoff modifiziertes Titandioxid oder z.B. mit Rhodium und/oder Platinionen dotiertes Titandioxids. Es ist aber erfindungsgemäß besonders bevorzugt, dass es sich um mit Nichtmetallen modifiziertes Titandioxid handelt.

Der Kohlenstoffgehalt des vorteilhafterweise mit Kohlenstoff modifizierten Titandioxids kann nach einer bevorzugten Ausführungsform im Bereich von 0,01 bis 10 Gew.-% vorzugsweise von 0,05 bis 5,0 Gew.-%, vorteilhafterweise von 0,3 bis 1 ,5 Gew.%, insbesondere von 0,4 bis 0,8 Gew.% liegen. Vorteilhafterweise liegt der TiO 2 -Gehalt des mit Kohlenstoff modifizierten Titandioxids z.B. über 95 Gew.-%, 96 Gew.-%, 97 Gew.-%, 98 Gew.-% oder 99 Gew.-%, bezogen auf das gesamte mit Kohlenstoff modifizierte Titandioxid.

Wenn der Kohlenstoff nur in einer Oberflächenschicht der Titandioxid-Partikel eingelagert ist, so liegt eine bevorzugte Ausführungsform vor. Das modifizierte Titandioxid kann vorteilhafterweise zusätzlich Stickstoff enthalten.

Wenn die spezifische Oberfläche des Titandioxids, vorzugsweise des modifizierten Titandioxids, nach BET (BET vorteilhafterweise nach DIN ISO 9277: 2003-05 bestimmt, vorzugsweise vereinfacht auch nach DIN 66132: 1975-07) vorzugsweise 50 bis 500 m 2 /g, vorteilhafterweise 100 bis 400 m 2 /g, in weiter vorteilhafter Weise 200 bis 350 m 2 /g, insbesondere 250 bis 300 m 2 /g beträgt, so liegt ebenfalls eine bevorzugte Ausführungsform vor.

Das mit Kohlenstoff modifizierte Titandioxid kann nach einer bevorzugten Ausführungsform z.B. dadurch erhalten werden, dass man eine Titanverbindung, welche eine spezifische Oberfläche von vorzugsweise mindestens 50 m 2 /g nach BET aufweist, mit einer organischen Kohlenstoffverbindung innig vermischt und die Mischung bei einer Temperatur von bis zu 35O 0 C thermisch behandelt wird.

Die dabei einsetzbare kohlenstoffhaltige Substanz kann nach einer bevorzugten Ausführungsform eine Kohlenstoffverbindung sein, welche zumindest eine funktionell Gruppe enthält, vorzugsweise ausgewählt aus OH, CHO, COOH, NHx, SHx. Insbesondere kann es sich bei der Kohlenstoffverbindung um eine Verbindung aus der Gruppe Ethylenglykol, Glycerin, Bernsteinsäure, Pentaerythrit, Kohlehydrate, Zucker, Stärke, Alkylpolyglucoside, Organoammoniumhydroxide oder Mischungen davon handeln. Es ist auch möglich, dass als kohlenstoffhaltige Substanz Ruß oder Aktivkohle eingesetzt wird.

Es kann auch bevorzugt sein, dass die kohlenstoffhaltige Substanz, welche mit der Titanverbindung vorteilhafterweise gemischt wird, um nach der thermischen Behandlung zu dem modifizierten Titandioxid zu gelangen, eine Zersetzungstemperatur von höchstens 400 0 C bevorzugt < 35O 0 C und insbesondere bevorzugt < 300 0 C aufweist.

Die zur Herstellung des modifizierten Titandioxids vorzugsweise einsetzbare Titanverbindung, welche gemäß zuvor genannter bevorzugter Ausführungsform mit einer organischen Kohlenstoffverbindung innig vermischt wird, kann ein amorphes, teilkristallines oder kristallines Titanoxid bzw. wasserhaltiges Titanoxid oder ein Titanhydrat oder ein Titanoxyhydrat sein, was wiederum einer bevorzugten Ausführungsform entspricht.

Die thermische Behandlung der Mischung aus der Titanverbindung und der Kohlenstoffverbindung kann nach einer bevorzugten Ausführungsform vorteilhafterweise in einem kontinuierlich zu betreibenden Calcinieraggregat, vorzugsweise einem Drehrohrofen durchgeführt werden.

Das modifizierte Titandioxid läßt sich, insbesondere im Kontext des zuvor Beschriebenen, vorzugsweise z.B. dadurch erhalten, dass man ein Titandioxid (z.B. mit einer Teilchengröße im Bereich zwischen 2 bis 500 nm oder z.B. 3 bis 150 nm oder z.B. 4 bis 100 nm oder z.B. 5 bis 75 nm oder z.B. 10 bis 30 nm oder z.B. 200 bis 400 nm ), wie etwa handelsüblich erhältlich in Pulveroder Schlammform, hernimmt und aus diesem eine Suspension in einer Flüssigkeit, wie vorzugsweise Wasser, herstellt. Zu der Suspension wird dann vorteilhafterweise eine kohlenstoffhaltige Substanz zugegeben und es wird gemischt. Das Mischen kann unterstützt werden durch den Einsatz von Ultraschall. Der Mischvorgang (z.B. Rühren) kann vorzugsweise mehrere Stunden andauern, vorzugsweise 2, 4, 6, 8, 10 oder 12 Stunden oder sogar länger. Bezogen auf die Feststoffe der Suspension beträgt die Menge der Kohlenstoffverbindung vorteilhafterweise 1-40 Gew.-%, dementsprechend die Menge der Titanverbindung vorzugsweise 60-99 Gew.-%.

Danach wird die Flüssigkeit entfernt, beispielsweise durch Filtration, Abdampfen im Vakuum oder Dekantieren, und der Rückstand wird vorzugsweise getrocknet (z.B. vorzugsweise bei Temperaturen von 70-200 0 C, vorteilhafterweise über mehrere Stunden, beispielsweise mindestens 12 Stunden) und anschließend calziniert, beispielsweise bei einer Temperatur von mindestens 26O 0 C, vorzugsweise z.B. bei 300 0 C, vorzugsweise über einen Zeitraum von mehreren Stunden, vorzugsweise 1-4 Stunden, insbesondere 3 Stunden. Die Calcinierung kann vorteilhafterweise in einem geschlossenen Gefäß stattfinden.

Es kann vorteilhaft sein, dass die Calcinierungstemperatur, z.B. 300 0 C, innerhalb einer Stunde erreicht wird (langsames Aufheizen auf 300 0 C).

Dabei ist vorzugsweise ein Farbwechsel des Pulvers von weiß über dunkelbraun nach beige bzw. leicht gelb-bräunlich festzustellen. Zu langes Erhitzen führt zu inaktiven, farblosen Pulvern. Der Fachmann kann dies mit wenigen Routineversuchen abschätzen. Die Calcinierung kann z.B. vorteilhafterweise so lange erfolgen, bis nach einem Farbwechsel des Pulvers von weiß über dunkelbraun ein weiterer Farbwechsel auf beige bzw. leicht gelb-bräunlich stattfindet.

Eine maximale Temperatur von 35O 0 C sollte dabei vorzugsweise nicht überschritten werden. Bei der thermischen Behandlung kommt es zu einer Zersetzung der organischen Kohlenstoffverbindung an der Oberfläche der Titanverbindung, so dass vorzugsweise ein modifiziertes Titandioxid entsteht, das vorzugsweise 0,005-4 Gew.-% Kohlenstoff enthält.

Nach der thermischen Behandlung wird das Produkt mit bekannten Verfahren vorteilhafterweise deagglomeriert, beispielsweise in einer Stiftmühle, Strahlmühle oder Gegenstrahlmühle. Die zu erzielende Kornfeinheit hängt von der Korngöße der Ausgangstitanverbindung ab. Die Kornfeinheit oder spezifische Oberfläche des Produkts liegt nur geringfügig niedriger, aber in der gleichen

Größenordnung wie die des Edukts. Die angestrebte Kornfeinheit des Photokatalysators hängt von dem Einsatzbereich des Photokatalysators ab. Sie liegt üblicherweise im Bereich wie bei TiO 2 - Pigmenten, kann aber auch darunter oder darüber liegen.

Das im erfindungsgemäßen Textilbehandlungsmittel enthaltene photokatalytische Material, vorzugsweise modifizierte Titandioxid kann vorteilhafterweise eine Teilchengröße im Bereich zwischen 2 bis 500 nm aufweisen, also z.B. 3 bis 150 nm oder z.B. 4 bis 100 nm oder z.B. 5 bis 75 nm oder z.B. 10 bis 30 nm oder z.B. 200 bis 400 nm . Die Teilchengröße des photokatalytischen Materials, vorzugsweise modifizierten Titandioxids, kann zwar vorzugsweise im Bereich von 100- 500 nm, vorteilhafterweise 200-400 nm liegen. Es kann auch bevorzugt sein, dass die Teilchengröße sehr klein ist, z.B. im Bereich von 2-150 nm, vorzugsweise 3-100 nm, vorteilhafterweise 4-80 nm oder z.B. 5-50 nm oder z.B. 8-30 nm oder z.B. 10-20 nm liegt. Sehr kleine Teilchen, z.B. mit einer Teilchengröße von insbesondere 2, 3, 4, 5 oder 10 nm sind bevorzugt enthalten, diese können auch miteinander Agglomerate bilden, die dann entsprechend größer sind, z.B. bis zu 600 nm oder bis zu 500 nm oder bis zu 400 nm oder bis zu 300 nm groß, usw.

Die Teilchengröße kann z.B. vorteilhafterweise bei Werten wie 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm oder 60 nm liegen. Insbesondere sehr kleine Teilchengrößen unter 50 nm, unter 40 nm, unter 30 nm oder unter 20 nm können bevorzugt sein. Es kann vorteilhaft sein, bei der Herstellung des modifizierten Titandioxids von mikronisiertem Titandioxid auszugehen, also von Titandioxid mit sehr geringer Teilchengröße, z.B. zwischen 2 und 150 nm oder z.b. zwischen 5 und 100 nm. Die Teilchengröße kann dann z.B. vorteilhafterweise bei Werten wie 2 nm, 3 nm, 4 nm, 5 nm, 10 nm, 15 nm, 20 nm, 25 nm, 30 nm, 35 nm, 40 nm, 45 nm, 50 nm oder 60 nm liegen. Solche Werte sind bevorzugt.

Die Schüttdichte des vorzugsweise modifizierten Titandioxids liegt vorzugsweise im Bereich von 100 bis 800 g/l, vorteilhafterweise von 200 bis 600 g/l, insbesondere von 300-500 g/l. Beispielsweise kann die Schüttdichte 350 g/l, 400 g/l oder 500 g/l betragen. Nach einer bevorzugten Ausführungsform liegt das (vorzugsweise modifizierte) Titandioxid in der Kristallmodifikation Anatas vor.

Das vorstehend beschriebene modifizierte Titandioxid zeichnet sich durch eine sehr gute photokatalytische Aktivität, insbesondere unter Nutzung von Tageslicht, aus. Insbesondere die vom menschlichen Auge wahrnehmbare Strahlung des sichtbaren Bereichs des Spektrums mit Wellenlängen zwischen 380 und 800 nm werden für die Zwecke des Abbaus, der Deaktivierung oder der Reduzierung von Verunreinigungen von dem beschriebenen modifizierten Titandioxid sehr gut genutzt. Auch die UV-Strahlung zwischen 10-380 nm kann sehr gut genutzt werden.

Nach einer bevorzugten Ausführungsform der Erfindung enthält das erfindungsgemäße Textilbehandlungsmittel ein Feuchthaltemittel, vorzugsweise Glycerin, Dimere und Trimere von Glycerin, Ethylenglykol, Propylenglykol, Zuckeralkohole, wie vorzugsweise Glucitol, Xylitol, Mannitol, Alkylpolyglucoside, Fettsäureglucamide, Saccharoseester, Sorbitane, Polysorbate, Polydextrose, Polyethylenglykol, vorzugsweise mit mittleren Molekulargewichten von 200 bis 8000, Propandiole, Butandiole, Triethylenglycol, hydrierter Glucosesirup und/oder Gemische aus vorgenannten, vorzugsweise in Mengen von 0,01 bis 10 Gew.-%, vorteilhafterweise 0,1 bis 5 Gew.- %, insbesondere 0,5 bis 2 Gew.-%, Gew.-% jeweils bezogen auf das gesamte Textilbehandlungsmittel.

Es konnte gefunden, dass, wenn Feuchthaltemittel enthalten ist, eine weiter verbesserte Ablagerung des feinteiligen photoaktiven Materials im Rahmen einer herkömmlichen Textilbehandlung auf den Textilien resultierte. Ein besonders geeignetes Feuchthaltemittel ist Glycerin sowie seine Dimere und Trimere und/oder Gemischen hievon. Wir konnten finden, dass bei Anwesenheit des, vorzugsweise organischen, Feuchthaltemittels eine ganz besonders gute Wirkung des Mittels gegen Verunreinigungen resultierte, insbesondere bei Einsatz von Glycerin.

Nach einer bevorzugten Ausführungsform enthält das erfindungsgemäße Textilbehandlungsmittel a) photokatalytisches Material, vorzugsweise solches, wie zuvor beschrieben, insbesondere in Mengen wie zuvor beschrieben b) Kationtensid, vorzugsweise solches, wie zuvor beschrieben, insbesondere in Mengen wie zuvor beschrieben c) optional Riechstoffe, vorzugsweise in Mengen > 0,01 Gew.-%, vorteilhafterweise 0,05 bis 10 Gew.-%, insbesondere 0,1 bis 5 Gew.-%, d) Wasser, vorzugsweise in Mengen > 50 Gew.-%, vorteilhafterweise > 60 Gew.-%, insbesondere > 70 Gew.-% e) optional Lösungsmittel, vorzugsweise einwertige Alkohole, insbesondere 2-Propanol, vorteilhafterweise in Mengen von 0,05 bis 5 Gew.-%, vorzugsweise 0,1 bis 4 Gew.-%, insbesondere 0,3 - 3 Gew.-%, f) optional Feuchthaltemittel, vorzugsweise solches, wie zuvor beschrieben, insbesondere in Mengen wie zuvor beschrieben, g) optional Emulgatoren, vorzugsweise Niotenside, vorteilhafterweise in Mengen von 0 bis 8 Gew.- %, insbesondere 0,1 bis 5 Gew.-% h) optional pH-Stellmittel, vorzugsweise 0,01 bis 5 Gew.-%, insbesondere 0,02 bis 1 Gew.-% i) optional Elektrolyte, vorzugsweise aus der Gruppe der anorganischen Salze, vorteilhafterweise MgCI 2 oder NaCI, 0,01 bis 5 Gew.-%, insbesondere 0,05 bis 2 Gew.-%,

j) optional hautpflegende Aktivstoffe, vorzugsweise in einer Menge von 0 bis 15 Gew.-%, vorteilhafterweise 0,1 - 10 Gew.-%, insbesondere 0,5 bis 5 Gew.-%, j) optional Verdicker, z.B. auf Polyacrylat-Basis, vorzugsweise in Mengen von 0,01 bis 3 Gew.-%, insbesondere 0,1 bis 1 Gew.-%,

Gew.-% jeweils bezogen auf das gesamte Textilbehandlungsmittel.

Vorzugsweise in einem erfindungsgemäßen Textilbehandlungsmittel nach vorstehender Ausführungsform einsetzbare Verdicker, hautpflegende Aktivstoffe, Elektrolyt^, pH-Stellmittel, Lösungsmittel, Riechstoffe und/oder Niotenside werden im weiteren Verlauf noch beschrieben.

Die Textilbehandlungsmittel, vorzugsweise Nachbehandlungsmittel, insbesondere Weichspüler, können vorzugsweise auch nichtionische weichmachende Komponenten enthalten, wie vor allem Polyoxyalkylenglycerolalkanoate, Polybutylene, langkettige Fettsäuren, ethoxylierte Fettsäureethanolamide, Alkylpolyglucoside, insbesondere Sorbitanmono,-di- und -triester, und Fettsäureester von Polycarbonsäuren enthalten. Aber auch ein weichmachender Ton (beispielsweise Bentonit) kann enthalten sein.

Als optionale nichtionische Tenside können vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt werden, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen. Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, zum Beispiel aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C 12 -i 4 -Alkohole mit 3 EO, 4 EO oder 7 EO, C^-Alkohol mit 7 EO, C 13 . 15 -Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C 12 -i 8 -Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C 12 -i 4 -Alkohol mit 3 EO und C 12 -i 8 -Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind Taigfettalkohol mit 14 EO, 25 EO, 30 EO oder 40 EO. Auch nichtionische Tenside, die EO- und PO-Gruppen zusammen im Molekül enthalten, sind erfindungsgemäß einsetzbar. Hierbei können Blockcopolymere mit EO-PO-Blockeinheiten bzw.

PO-EO-Blockeinheiten eingesetzt werden, aber auch EO-PO-EO-Copolymere bzw. PO-EO-PO- Copolymere. Selbstverständlich sind auch gemischt alkoxylierte Niotenside einsetzbar, in denen EO- und PO-Einheiten nicht blockweise, sondern statistisch verteilt sind. Solche Produkte sind durch gleichzeitige Einwirkung von Ethylen- und Propylenoxid auf Fettalkohole erhältlich.

Außerdem können als weitere optionale nichtionische Tenside auch Alkylglykoside der allgemeinen Formel RO(G) x eingesetzt werden, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G das Symbol ist, das für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglykosiden angibt, ist eine beliebige Zahl zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4. Alkylglykoside sind bekannte, milde Tenside und werden deshalb bevorzugt in dem Tensidgemisch eingesetzt.

Eine weitere Klasse bevorzugt einsetzbarer, optionaler nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden einsetzbar sind, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fettsäurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester.

Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanolamide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.

Weitere geeignete Tenside sind Polyhydroxyfettsäureamide der Formel (VII),

R 1

R-CO-N-[Z] (VII)

in der RCO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R1 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und [Z] für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht. Bei den Polyhydroxyfettsäureamiden handelt es sich um bekannte Stoffe, die üblicherweise durch reduktive Aminierung eines reduzierenden Zuckers mit Ammoniak, einem Alkylamin oder einem Alkanolamin und nachfolgende Acylierung mit einer Fettsäure, einem Fettsäurealkylester oder einem Fettsäurechlorid erhalten werden können.

Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (VIII),

R 1 -O-R 2

R-CO-N-[Z] (VIII)

in der R für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R 1 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest mit 2 bis 8 Kohlenstoffatomen und R 2 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C-ι_ 4 -Alkyl- oder Phenylreste bevorzugt sind und [Z] für einen linearen Polyhydroxyalkylrest steht, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxylierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes.

[Z] wird vorzugsweise durch reduktive Aminierung eines Zuckers erhalten, beispielsweise Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose. Die N-Alkoxy- oder N-Aryloxy- substituierten Verbindungen können dann durch Umsetzung mit Fettsäuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.

Die nichtionischen Tensiden können in den erfindungsgemäßen Textilbehandlungsmitteln, insbesondere Weichspülern, vorzugsweise in Mengen von 0-8 Gew.-% enthalten sein. Jedoch ist es auch möglich, insbesondere wenn es sich bei den Textilbehandlungsmitteln um flüssige

Waschmittel handeln sollte, dass diese beispielsweise 5 bis 30 Gew.-%, vorzugsweise 7 bis 20 Gew.-% und insbesondere 9 bis 15 Gew.-% Niotensid enthalten können, Gew.-% jeweils bezogen auf das gesamte Textilbehandlungsmittel. Dies ist aber weniger bevorzugt.

Nach einer bevorzugten Ausführungsform der Erfindung sind auch Hautpflegemittel bzw. hautpflegende Aktivstoffe in dem erfindungsgemäßen Textilbehandlungsmittel enthalten, insbesondere in Mengen > 0,01 Gew.-%, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.

Hautpflegemittel (hautpflegende Aktivstoffe ) können insbesondere solche Mittel sein, welche der Haut einen sensorischen Vorteil verleihen, z.B. indem sie Lipide und/oder Feuchthaltefaktoren zuführen. Hautpflegemittel können z.B. Proteine, Aminosäuren, Lecithine, Lipoide, Phosphatide, Pflanzenextrakte, Vitamine sein; ebenso können Fettalkohole, Fettsäuren, Fettsäureester, Wachse, Vaseline, Paraffine als Hautpflegemittel wirken.

Hautpflegende Aktivstoffe sind alle solchen Aktivstoffe die der Haut einen sensorischen und/oder kosmetischen Vorteil verleihen. Hautpflegende Aktivstoffe sind bevorzugt ausgewählt aus den nachfolgenden Substanzen: a) Wachse wie beispielsweise Carnauba, Spermaceti, Bienenwachs, Lanolin und/oder Derivate derselben und andere. b) Hydrophobe Pflanzenextrakte c) Kohlenwasserstoffe wie beispielsweise Squalene und/oder Squalane d) Höhere Fettsäuren, vorzugsweise solche mit wenigstens 12 Kohlenstoffatomen, beispielsweise Laurinsäure, Stearinsäure, Behensäure, Myristinsäure, Palmitinsäure, ölsäure, Linolsäure, Linolensäure, Isostearinsäure und/oder mehrfach ungesättigte Fettsäuren und andere. e) Höhere Fettalkohole, vorzugsweise solche mit wenigstens 12 Kohlenstoffatomen, beispielsweise Laurylalkohol, Cetylalkohol, Stearylalkohol, Oleylalkohol, Behenylalkohol, Cholesterol und/oder 2-Hexadecanaol und andere. f) Ester, vorzugsweise solche wie Cetyloctanoate, Lauryllactate, Myristyllactate, Cetyllactate, Isopropylmyristate, Myristylmyristate, Isopropylpalmitate, Isopropyladipate, Butylstearate, Decyloleate, Cholesterolisostearate, Glycerolmonostearate, Glyceroldistearate, Glyceroltristearate, Alkyllactate, Alkylcitrate und/oder Alkyltartrate und andere. g) Lipide wie beispielsweise Cholesterol, Ceramide und/oder Saccharoseester und andere h) Vitamine wie beispielsweise die Vitamine A und E, Vitaminalkylester, einschließlich Vitamin

C Alkylester und andere, i) Sonnenschutzmittel j) Phospholipide k) Derivate von alpha-Hydroxysäuren

m) Germizide für den kosmetischen Gebrauch, sowohl synthetische wie beispielsweise

Salicylsäure und/oder andere als auch natürliche wie beispielsweise Neemöl und/oder andere n) Silikone sowie Mischungen jeglicher vorgenannter Komponenten.

Bevorzugt einsetzbare hautpflegende Aktivstoffe sind vorzugsweise auch etherische öle, insbesondere ausgewählt aus der Gruppe der Angelica fine - Angelica archangelica, Anis - Pimpinella Anisum, Benzoe siam - Styrax tokinensis, Cabreuva - Myrocarpus fastigiatus, Cajeput - Melaleuca leucadendron, Cistrose - Cistrus ladaniferus, Copaiba-Balsam - Copaifera reticulata, Costuswurzel - Saussurea discolor, Edeltannennadel - Abies alba, Elemi - Canarium luzonicum, Fenchel - Foeniculum dulce Fichtennadel - Picea abies, Geranium - Pelargonium graveolens, Ho- Blätter - Cinnamonum camphora, Immortelle (Strohblume) Helichrysum ang., Ingwer extra - Zingiber off., Johanniskraut - Hypericum perforatum, Jojoba, Kamille deutsch - Matricaria recutita, Kamille blau fine - Matricaria chamomilla, Kamille röm. - Anthemis nobilis, Kamille wild- Ormensis multicaulis, Karotte - Daucus carota, Latschenkiefer - Pinus mugho, Lavandin - Lavendula hybrida, Litsea Cubeba - (May Chang), Manuka - Leptospermum scoparium, Melisse - Melissa officinalis, Meerkiefer - Pinus pinaster,, Myrrhe - Commiphora molmol, Myrthe - Myrtus communis, Neem - Azadirachta, Niaouli - (MQV) Melaleuca quin, viridiflora, Palmarosa - Cymbopogom martini, Patchouli - Pogostemon patschuli, Perubalsam - Myroxylon balsamum var. pereirae, Raventsara aromatica, Rosenholz - Aniba rosae odora, Salbei - Salvia officinalis Schachtelhalm - Equisetaceae, Schafgarbe extra - Achillea millefolia, Spitzwegerich - Plantago lanceolata, Styrax - Liquidambar orientalis, Tagetes (Ringelblume) Tagetes patula, Teebaum - Melaleuca alternifolia, Tolubalsam - Myroxylon Balsamum L., Virginia-Zeder - Juniperus virginiana, Weihrauch (Olibanum) - Boswellia carteri, Weißtanne - Abies alba. Der Einsatz von etherischen ölen entspricht einer bevorzugten Ausführungsform der Erfindung.

Bevorzugte einsetzbare hautpflegende Aktivstoffe sind vorzugsweise auch hautschützende öle, insbesondere ausgewählt aus der Gruppe Algenöl Oleum Phaeophyceae, Aloe-Vera öl Aloe vera brasiliana, Aprikosenkernöl Prunus armeniaca, Arnikaöl Arnica montana, Avocadoöl Persea americana, Borretschöl Borago officinalis, Calendulaöl Calendula officinalis, Camelliaöl Camellia oleifera, Distelöl Carthamus tinctorius, Erdnuß-öl Arachis hypogaea, Hanföl Cannabis sativa, Haselnußöl Corylus avellana/, Johanniskrautöl Hypericum perforatum, Jojobaöl Simondsia chinensis, Karottenöl Daucus carota, Kokosöl Cocos nucifera, Kürbiskernöl Curcubita pepo, Kukuinußöl Aleurites moluccana, Macadamianußöl Macadamia ternifolia, Mandelöl Prunus dulcis, Olivenöl Olea europaea, Pfirsichkernöl Prunus persica, Rapsöl Brassica oleifera, Rizinusöl Ricinus communis, Schwarzkümmelöl Nigella sativa, Sesamöl Sesamium indicum, Sonnenblumenöl

Helianthus annus, Traubenkernöl Vitis vinifera, Walnußöl Juglans regia, Weizenkeimöl Triticum sativum. Der Einsatz von hautschützenden ölen entspricht einer bevorzugten Ausführungsform der Erfindung.

Die optional enthaltenen hautpflegenden Aktivstoffe können bei der Textilbehandlung auf das Textil übergehen und dann wiederum vom Textil auf die Haut übergehen, wenn das Textil mit der Haut in Kontakt kommt, z.B. beim Tragen von Kleidung. Auf diese Weise gereichen hautpflegende Aktivstoffe in den erfindungsgemäßen Textilbehandlungsmitteln der Haut des Verbrauchers zum Vorteil. Bei Einsatz erfindungsgemäßer Textilbehandlungsmittel, welche optional hautpflegende Aktivstoffe enthalten, in einem manuellen Textilbehandlungsverfahren, gereichen die hautpflegenden Aktivstoffe der Haut des Verbrauchers unmittelbar zum Vorteil, nämlich bei Kontakt der Hand mit der Waschlauge. Der Einsatz hautpflegender Aktivstoffe ist jedoch rein optional.

Bevorzugt ist es, wenn das erfindungsgemäße Textilbehandlungsmittel in einer lichtundurchlässigen Verpackung enthalten ist. Dies entspricht einer bevorzugten Ausführungsform der Erfindung. Bevorzugt sind auch Einmalportionen, z.b. in Form von Pouches.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zum Aufbringen photokatalytischen Materials auf Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad enthaltend ein erfindungsgemäßes Textilbehandlungsmittel. Es ist auch möglich, dass Textil direkt mit dem Textilbehandlungsmittel zu kontaktieren.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Reinigung, Pflege, Ausrüstung, Avivage und/oder Konditionierung von Textilien durch Behandlung dieser Textilien in einem Textilbehandlungsbad enthaltend ein erfindungsgemäßes Textilbehandlungsmittel, bei und/oder gefolgt von einer Exponierung der Textilien an Licht im Wellenlängenbereich von 10-1200 nm. Es ist auch möglich, dass Textil direkt mit dem Textilbehandlungsmittel zu kontaktieren.

Wenn das erfindungsgemäße Verfahren auf die Beseitigung, Deaktivierung oder Verminderung von Mikroorganismen, insbesondere Bakterien und Keimen, in Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm gerichtet ist, so liegt eine bevorzugte Ausführungsform der Erfindung vor.

Ein erfindungsgemäßes Verfahren zur Prophylaxebehandlung von Textilien in Form einer vorauseilenden Abwehr und Hemmung von Anschmutzungen und Flecken unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm stellt wiederum eine bevorzugte Ausführungsform der Erfindung dar.

Ein erfindungsgemäßes Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Erleichterung der Entfernbarkeit von farbigem Schmutz (farbige Flecken) von Textilien unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm stellt auch eine bevorzugte Ausführungsform der Erfindung dar.

Ein erfindungsgemäßes Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Reduzierung des Faserhaftungsvermögens von Schmutz, vorzugsweise farbigen Flecken, auf Textilien unter Einsatz von Licht imt Wellenlängenbereich von 10-1200 nm stellt ebenfalls eine bevorzugte Ausführungsform der Erfindung dar.

Ein erfindungsgemäßes Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Erhöhung der Wasserlöslichkeit von Schmutz, vorzugsweise farbigen Flecken, auf Textilien, unter Einsatz von Licht imt Wellenlängenbereich von 10-1200 nm stellt wiederum eine bevorzugte Ausführungsform der Erfindung dar.

Ein erfindungsgemäßes Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Verhinderung des Entstehens fötider Gerüche auf den Textilien, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm entspricht einer weiteren bevorzugte Ausführungsform der Erfindung.

Ein erfindungsgemäßes Verfahren zur Ausrüstung von Textilien mit photokatalytischem Material zur Ausstattung der Textilien mit einem Selbstreinigungsvermögen, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm stellt ebenfalls eine bevorzugte Ausführungsform der Erfindung dar.

Ein erfindungsgemäßes Verfahren zur Entfernung oder Reduktion von farbigen Anschmutzungen oder Flecken auf Textilien, die insbesondere zurückgehen auf: rote bis blaue Anthocyanfarbstoffe, wie z.B. Cyanidin, z.B. aus Kirschen oder

Heidelbeeren, rotes Betanidin aus der roten Beete, orangerote Carotinoide wie z.B. Lycopin, beta-Carotin, z.B. aus Tomaten oder Möhren, gelbe Curcumafarbstoffe, wie z.B. Curcumin, z.B. aus Curry und Senf, braune Gerbstoffe, z.B. aus Tee, Obst, Rotwein tiefbraune Huminsäure, z.B. aus Kaffee, Tee, Kakao, grünes Chlorophyll, z.B, aus grünen Gräsern, technische Farbstoffe aus Kosmetika, Tinten, Farbstiften

farbige Stoffwechsel produkte und/oder Ausscheidungsprodukte von Schimmelpilzen oder anderer Mirkoflora oder mikrobiellem Bewuchs oder Mikroben, unter Einsatz von Licht im Wellenlängenbereich von 10-1200 nm, stellt wiederum eine bevorzugte Ausführungsform der Erfindung dar.

Ein erfindungsgemäßes Verfahren unter Verwendung einer automatischen Waschmaschine, vorzugsweise einer automatischen Waschmaschine mit Lichtquelle, wobei das Textilbehandlungsmittel insbesondere im Nachspülgang zugegeben wird, stellt abermals eine bevorzugte Ausführungsform der Erfindung dar.

Ein erfindungsgemäßes Verfahren, bei dem es sich um ein manuelles Verfahren handelt, welches in einem offenen Bottich ausgeführt wird, insbesondere Handwäsche und/oder Einweichen, wobei man den Bottich, nachdem die zu behandelnden Textilien mit der Waschlauge penetriert sind, Licht im Wellenlängenbereich von 10-1200 nm aussetzt, insbesondere Sonnenlicht, vorzugsweise für einen Zeitraum > 5 Minuten, stellt ebenso eine bevorzugte Ausführungsform der Erfindung dar.

Alle vorstehend beschriebenen Verfahren sind besonders wirkungsvoll unter Ausnutzung von Licht im sichtbaren Bereich (380-800 nm) und/oder im UV-Bereich (10-380 nm). Es entspricht, also, bezogen auf alle vorgenannten Verfahren, jeweils einer bevorzugten Ausführungsform, wenn Licht im Wellenlängenbereich 380-800 nm und/oder im Bereich 10-380 zur Anwendung kommt.

Die erfindungsgemäßen Textiklbehandlungsmittel können neben den zwingenden Bestandteilen Kationtensid und photokatalytischem Material noch weitere optionale Inhaltsstoffe enthalten. Diese werden im Folgenden z.T. näher beschrieben.

Ein erfindungsgemäßes Textilbehandlungsmittel kann optional auch anionisches Tensid umfassen, wenngleich dies weniger bevorzugt ist. Stärker bevorzugt ist es, wenn ein erfindungsgemäßes Textilbehandlungsmittel frei von Aniontensid ist, also weniger als 5 Gew.-%, 2 Gew.-% oder 1 Gew.-% an anionischem Tensid, insbesondere aber 0 Gew.-% an anionischem Tensid umfaßt, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.

Als anionisches Tensid kann beispielsweise solches vom Typ der Sulfonate und Sulfate eingesetzt werden. Als Tenside vom Sulfonat-Typ kommen dabei vorzugsweise C 9 . 13 -Alkylbenzolsulfonate, Olefinsulfonate, d.h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C 12 -i 8 -Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonierungsprodukte erhält, in Betracht. Geeignet sind auch Alkansulfonate, die aus C 12 -i 8 -

Alkanen beispielsweise durch Sulfochlorierung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden. Ebenso sind auch die Ester von α-Sulfofettsäuren (Estersulfonate), zum Beispiel die α-sulfonierten Methylester der hydrierten Kokos-, Palmkernoder Taigfettsäuren geeignet.

Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester. Unter Fettsäureglycerinestern sind die Mono-, Di- und Triester sowie deren Gemische zu verstehen, wie sie bei der Herstellung durch Veresterung von einem Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden. Bevorzugte sulfierte Fettsäureglycerinester sind dabei die Sulfierprodukte von gesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen, beispielsweise der Capronsäure, Caprylsäure, Caprinsäure, Myristinsäure, Laurinsäure, Palmitinsäure, Stearinsäure oder Behensäure.

Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C 12 -C 18 -Fettalkohole, beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myri- styl-, Cetyl- oder Stearylalkohol oder der C 10 -C 2 o-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlängen bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemischer Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind die C 12 -C 16 -Alkyl- sulfate und C 12 -C 15 -Alkylsulfate sowie C 14 -C 15 -Alkylsulfate bevorzugt. Auch 2,3-Alkylsulfate, welche als Handelsprodukte der Shell OiI Company unter dem Namen DAN ® erhalten werden können, sind geeignete Aniontenside.

Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C 7 . 21 -Alkohole, wie 2-Methyl-verzweigte C^-Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C 12 . 18 -Fettalkohole mit 1 bis 4 EO, sind geeignet.

Weitere geeignete Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sulfosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobernsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C 8 . 18 -Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen

Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbernsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der Alk(en)ylkette oder deren Salze einzusetzen.

Insbesondere bevorzugte anionische Tenside sind Seifen. Geeignet sind gesättigte und ungesättigte Fettsäureseifen, wie die Salze der Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, (hydrierten) Erucasäure und Behensäure sowie insbesondere aus natürlichen Fettsäuren, zum Beispiel Kokos-, Palmkern-, Olivenöl- oder Taigfettsäuren, abgeleitete Seifengemische.

Die anionischen Tenside einschließlich der Seifen können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Triethanolamin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.

Sollte ein Einsatz anionischer Tenside in den Textilbehandlungsmittel erwünscht sein, so könnte der Gehalt solcher Textilbehandlungsmittel an anionischen Tensiden in besonderen Ausführungsformen z.B. 2 bis 30 Gew.-%, vorzugsweise 4 bis 25 Gew.-% und insbesondere 5 bis 22 Gew.-%, jeweils bezogen auf das gesamte Textilbehandlungsmittel, betragen. Vorzugsweise sind in den erfindungsgemäßen Textilbehandlungsmitteln jedoch gar keine Aniontenside enthalten, was einer bevorzugten Ausführungsform der Erfindung entspricht.

Auch der Einsatz amphoterer Tenside, umfassend Ampholyte und Betaine, ist möglich, z.B. in Mengen > 0,01 Gew.-%, bezogen auf das gesamte Textilbehandlungsmittel. Geeignete amphotere Tenside sind z.B. N-(Acylamidoalkyl)betaine, N-Alkyl-ß-aminopropionate, N-Alkyl-ß- iminopropionate sowie die üblicherweise im Zusammenhang mit Waschmitteln einsetzbaren amphoteren Tenside. In einer bevorzugten Ausführungsform der Erfindung ist das erfindungsgemäße Textilbehandlungsmittel jedoch ganz frei von amphoterem Tensid.

Auch der Einsatz von Gemini-Tensiden ist möglich, z.B. in Mengen > 0,01 Gew.-%, bezogen auf das gesamte Textilbehandlungsmittel. Gemini-Tenside sind Tenside, die je zwei hydrophobe und hydrophile Gruppen im Molekül enthalten. Sie zeichnen sich durch eine ungewöhnlich hohe

Grenzflächenaktivität aus. In einer bevorzugten Ausführungsform der Erfindung ist das erfindungsgemäße Textilbehandlungsmittel jedoch ganz frei Gemini-Tensiden.

Zusätzlich zum Kationtensid und photokatalytischen Material können die erfindungsgemäßen Textilbehandlungsmittel optional noch weitere Inhaltsstoffe, welche z.T. auch schon genannt wurden, wie z.B. Feuchthaltemittel, enthalten, insbesondere solche optionale Inhaltsstoffe, welche die anwendungstechnischen und/oder ästhetischen Eigenschaften des Textilbehandlungsmittels weiter verbessern. Im Rahmen der vorliegenden Erfindung enthalten bevorzugte Textilbehandlungsmittel zusätzlich einen oder mehrere Stoffe aus der Gruppe der Gerüststoffe (builder), Bleichmittel, Bleichaktivatoren, Enzyme, Elektrolyt^, Feuchthaltemittel, nichtwässrigen Lösungsmittel, pH-Stellmittel, Parfüme, Parfümträger, Fluoreszenzmittel, Farbstoffe, Hydrotope, Schauminhibitoren, Silikonöle, Antiredepositionsmittel, optischen Aufheller, Vergrauungsinhibitoren, Einlaufverhinderer, Knitterschutzmittel, Farbübertragungsinhibitoren, antimikrobiellen Wirkstoffe, Germizide, Fungizide, Antioxidantien, Konservierungsmittel, Korrosionsinhibitoren, Antistatika, Bittermittel, Bügelhilfsmittel, Phobier- und Imprägniermittel, Quell- und Schiebefestmittel, neutrale Füllsalze sowie ggf. UV-Absorber.

Als Gerüststoffe, die in den Textilbehandlungsmitteln optional enthalten sein können, sind beispielsweise Silikate, Aluminiumsilikate (insbesondere Zeolithe), Carbonate, Salze organischer Di- und Polycarbonsäuren sowie Mischungen dieser Stoffe zu nennen.

Geeignete kristalline, schichtförmige Natriumsilikate besitzen die allgemeine Formel NaMSi x O 2x+I H 2 O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1 ,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilikate der angegebenen Formel sind solche, in denen M für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl ß- als auch δ-Natriumdisilikate Na 2 Si 2 O 5 • yH 2 O bevorzugt. Vorzugsweise ist das erfindungsgemäße Textilbehandlungsmittel jedoch frei von kristallinen, schichtförmigen Natriumsilikaten, enthält also vorzugsweise weniger als 3 Gew.-%, 2 Gew.-% oder 1 Gew.-% an kristallinen, schichtförmigen Natriumsilikaten, insbesondere ist überhaupt kein kristallines, schichtförmiges Natriumsilikat, also 0 Gew.-%, enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.

Einsetzbar sind auch amorphe Natriumsilikate mit einem Modul Na 2 O : SiO 2 von 1 : 2 bis 1 : 3,3, vorzugsweise von 1 : 2 bis 1 : 2,8 und insbesondere von 1 : 2 bis 1 : 2,6, welche löseverzögert sind

und Sekundärwascheigenschaften aufweisen. Die Löseverzögerung gegenüber herkömmlichen amorphen Natriumsilikaten kann dabei auf verschiedene Weise, beispielsweise durch Oberflächenbehandlung, Compoundierung, Korn paktierung/ Verdichtung oder durch übertrocknung hervorgerufen worden sein. Im Rahmen dieser Erfindung wird unter dem Begriff „amorph" auch „röntgen- amorph" verstanden. Dies heißt, dass die Silikate bei Röntgenbeugungsexperimenten keine scharfen Röntgenreflexe liefern, wie sie für kristalline Substanzen typisch sind, sondern allenfalls ein oder mehrere Maxima der gestreuten Röntgenstrahlung, die eine Breite von mehreren Gradeinheiten des Beugungswinkels aufweisen. Es kann jedoch sehr wohl sogar zu besonders guten Buildereigenschaften führen, wenn die Silikatpartikel bei Elektronenbeugungsexperimenten verwaschene oder sogar scharfe Beugungsmaxima liefern. Dies ist so zu interpretieren, dass die Produkte mikrokristalline Bereiche der Größe 10 bis einige Hundert nm aufweisen, wobei Werte bis maximal 50 nm und insbesondere bis maximal 20 nm bevorzugt sind. Insbesondere bevorzugt sind verdichtete/kompaktierte amorphe Silikate, compoundierte amorphe Silikate und übertrocknete röntgenamorphe Silikate.

Vorzugsweise ist das erfindungsgemäße Textilbehandlungsmittel jedoch frei von amorphen Natriumsilikaten, enthält also vorzugsweise weniger als 3 Gew.-%, 2 Gew.-% oder 1 Gew.-% an amorphen Natriumsilikaten, insbesondere ist überhaupt kein, also 0 Gew.-% amorphes Natriumsilikat enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel

Ein einsetzbarer feinkristalliner, synthetischer und gebundenes Wasser enthaltender Zeolith ist vorzugsweise Zeolith A und/oder P. Als Zeolith P wird Zeolith MAP® (Handelsprodukt der Firma Crosfield) besonders bevorzugt. Geeignet sind jedoch auch Zeolith X sowie Mischungen aus A, X und/oder P. Kommerziell erhältlich und im Rahmen der vorliegenden Erfindung bevorzugt einsetzbar ist beispielsweise auch ein Co-Kristallisat aus Zeolith X und Zeolith A (ca. 80 Gew.-% Zeolith X), das von der Firma SASOL unter dem Markennamen VEGOBOND AX ® vertrieben wird und durch die Formel

nNa 2 O (1-n)K 2 O AI 2 O 3 (2 - 2,5)SiO 2 (3,5 - 5,5) H 2 O n = 0,90 - 1 ,0

beschrieben werden kann. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrock- nete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, dass der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an

nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C 12 -C 18 -Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen, C 12 -C 14 - Fettalkoholen mit 4 bis 5 Ethylenoxidgruppen oder ethoxylierten Isotridecanolen. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22 Gew.-%, insbesondere 20 bis 22 Gew.-% an gebundenem Wasser.

Vorzugsweise ist das erfindungsgemäße Textilbehandlungsmittel jedoch frei von Zeolith, enthält also vorzugsweise weniger als 3 Gew.-%, 2 Gew.-% oder 1 Gew.-% an Zeolith, insbesondere ist überhaupt kein, also 0 Gew.-%, Zeolith enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.

Selbstverständlich ist auch ein Einsatz der allgemein bekannten Phosphate als Buildersubstanzen möglich, sofern ein derartiger Einsatz nicht aus ökologischen Gründen vermieden werden sollte. Geeignet sind insbesondere die Natriumsalze der Orthophosphate, der Pyrophosphate und insbesondere der Tripolyphosphate.

Vorzugsweise ist das erfindungsgemäße Textilbehandlungsmittel jedoch frei von Phosphat, enthält also vorzugsweise weniger als 3 Gew.-%, 2 Gew.-% oder 1 Gew.-% an Phosphat, insbesondere ist überhaupt kein, also 0 Gew.-%, Phosphat enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.

Organische Builder, welche in dem Textilbehandlungsmittel vorhanden sein können, umfassen Polycarboxylatpolymere wie Polyacrylate und Acrylsäure/Maleinsäure-Copolymere, Polyaspartate und monomere Polycarboxylate wie Citrate, Gluconate, Succinate oder Malonate, die bevorzugt als Natriumsalze eingesetzt werden. Wenn Builder eingesetzt werden sollen, dann sind organische Builder zu bevorzugen.

Möglich ist auch der Einsatz zusätzlicher Bleichmittel. Unter den als Bleichmittel dienenden, in Wasser H 2 O 2 liefernden Verbindungen haben das Natriumperborattetrahydrat und das Natriumperboratmonohydrat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Natriumpercarbonat, Peroxypyrophosphate, Citratperhydrate sowie H 2 O 2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthalo- iminopersäure oder Diperdodecandisäure.

Vorzugsweise ist das erfindungsgemäße Textilbehandlungsmittel jedoch frei von zusätzlichem Bleichmittel, enthält also vorzugsweise weniger als 3 Gew.-%, 2 Gew.-% oder 1 Gew.-% an zusätzlichem Bleichmittel, insbesondere ist überhaupt kein, also 0 Gew.-%, zusätzliches Bleichmittel enthalten, Gew.-% bezogen auf das gesamte Textilbehandlungsmittel.

Um beim Waschen bei Temperaturen von 6O 0 C und darunter eine verbesserte Bleichwirkung zu erreichen, können Bleichaktivatoren in die Textilbehandlungsmittel eingearbeitet werden. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C-Atomen, und/- oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N-Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgruppen tragen. Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5- Diacetyl-2,4-dioxohexahydro-1 ,3,5-triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N-Acylimide, insbesondere N-Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso- NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat und 2,5-Diacetoxy-2,5-dihydrofuran. Vorzugsweise enthalten die erfindungsgemäßen Textilbehandlungsmittel jedoch gar keine Bleichaktivatoren.

Zusätzlich zu den konventionellen Bleichaktivatoren oder an deren Stelle können auch sogenannte Bleichkatalysatoren in die Textilbehandlungsmittel eingearbeitet werden. Bei diesen Stoffen handelt es sich um bleichverstärkende übergangsmetallsalze bzw. übergangsmetallkomplexe wie beispielsweise Mn-, Fe-, Co-, Ru- oder Mo-Salenkomplexe oder -carbonylkomplexe. Auch Mn-, Fe- , Co-, Ru-, Mo-, Ti-, V- und Cu-Komplexe mit stickstoffhaltigen Tripod-Liganden sowie Co-, Fe-, Cu- und Ru-Amminkomplexe sind als Bleichkatalysatoren verwendbar. Vorzugsweise enthalten die erfindungsgemäßen Textilbehandlungsmittel jedoch gar keine Bleichkatalysatoren.

Ein erfindungsgemäßes Textilbehandlungsmittel kann ein Verdickungsmittel enthalten. Dies entspricht einer bevorzugten Ausführungsform der Erfindung. Das Verdickungsmittel kann beispielsweise einen Polyacrylat-Verdicker, Xanthan Gum, Gellan Gum, Guarkernmehl, Alginat, Carrageenan, Carboxymethylcellulose, Bentonite, Wellan Gum, Johannisbrotkernmehl, Agar-Agar,

Tragant, Gummi arabicum, Pektine, Polyosen, Stärke, Dextrine, Gelatine und Casein umfassen. Aber auch abgewandelte Naturstoffe wie modifizierten Stärken und Cellulosen, beispielhaft seien hier Carboxymethylcellulose und andere Celluloseether, Hydroxyethyl- und -propylcellulose sowie Kernmehlether genannt, können als Verdickungsmittel eingesetzt werden.

Zu den Polyacryl- und Polymethacryl-Verdickern zählen beispielsweise die hochmolekularen mit einem Polyalkenylpolyether, insbesondere einem Allylether von Saccharose, Pentaerythrit oder Propylen, vernetzten Homopolymere der Acrylsäure (INCI- Bezeichnung gemäß „International Dictionary of Cosmetic Ingredients" der „The Cosmetic, Toiletry and Fragrance Association (CTFA)": Carbomer), die auch als Carboxyvinylpolymere bezeichnet werden. Solche Polyacrylsäuren sind u.a. von der Fa. 3V Sigma unter dem Handelsnamen Polygel®, z.B. Polygel DA, und von der Fa. B. F. Goodrich unter dem Handelsnamen Carbopol® erhältlich, z.B. Carbopol 940 (Molekulargewicht ca. 4.000.000), Carbopol 941 (Molekulargewicht ca. 1.250.000) oder Carbopol 934 (Molekulargewicht ca. 3.000.000). Weiterhin fallen darunter folgende Acrylsäure- Copolymere: (i) Copolymere von zwei oder mehr Monomeren aus der Gruppe der Acrylsäure, Methacrylsäure und ihrer einfachen, vorzugsweise mit C-ι_ 4 -Alkanolen gebildeten, Ester (INCI Acrylates Copolymer), zu denen etwa die Copolymere von Methacrylsäure, Butylacrylat und Methylmethacrylat (CAS- Bezeichnung gemäß Chemical Abstracts Service: 25035-69-2) oder von Butylacrylat und Methylmethacrylat (CAS 25852-37-3) gehören und die beispielsweise von der Fa. Rohm & Haas unter den Handelsnamen Aculyn® und Acusol® sowie von der Firma Degussa (Goldschmidt) unter dem Handelsnamen Tego® Polymer erhältlich sind, z.B. die anionischen nichtassoziativen Polymere Aculyn 22, Aculyn 28, Aculyn 33 (vernetzt), Acusol 810, Acusol 820, Acusol 823 und Acusol 830 (CAS 25852-37-3); (ii) vernetzte hochmolekulare Acrylsäurecopolymere, zu denen etwa die mit einem Allylether der Saccharose oder des Pentaerythrits vernetzten Copolymere von C 10 - 30 -Alkylacrylaten mit einem oder mehreren Monomeren aus der Gruppe der Acrylsäure, Methacrylsäure und ihrer einfachen, vorzugsweise mit C-ι_ 4 -Alkanolen gebildeten, Ester (INCI Acrylates/C-ιo- 30 Alkyl Acrylate Crosspolymer) gehören und die beispielsweise von der Fa. B. F. Goodrich unter dem Handelsnamen Carbopol® erhältlich sind, z.B. das hydrophobierte Carbopol ETD 2623 und Carbopol 1382 (INCI Acrylates/Ci O - 3O Alkyl Acrylate Crosspolymer) sowie Carbopol Aqua 30 (früher Carbopol EX 473).

Ein weiteres bevorzugt einsetzbares polymeres Verdickungsmittel ist Xanthan Gum, ein mikrobielles anionisches Heteropolysaccharid, das von Xanthomonas campestris und einigen

anderen Species unter aeroben Bedingungen produziert wird und eine Molmasse von 2 bis 15 Millionen Dalton aufweist. Xanthan wird aus einer Kette mit ß-1 ,4-gebundener Glucose (Cellulose) mit Seitenketten gebildet. Die Struktur der Untergruppen besteht aus Glucose, Mannose, Glucuronsäure, Acetat und Pyruvat, wobei die Anzahl der Pyruvat-Einheiten die Viskosität des Xanthan Gums bestimmt.

Als Verdickungsmittel kommt insbesondere auch ein Fettalkohol in Frage. Fettalkohole können verzweigt oder nichtverzweigt sowie nativen Ursprungs oder petrochemischen Ursprungs sein. Bevorzugte Fettalkohole haben eine C-Kettenlänge von 10 bis 20 C-Atomen, bevorzugt 12 bis 18. Bevorzugt werden Mischungen unterschiedlicher C-Kettenlängen, wie talgfettalkohol oder Kokosfettalkohol, eingesetzt. Beispiele sind Lorol ® Spezial (C 12 -i 4 -ROH) oder Lorol® Technisch (C- 12 - 18 -ROH) (beide ex Cognis).

Bevorzugte erfindungsgemäße Textilbehandlungsmittel enthalten bezogen auf das gesamte Textilbehandlungsmittel vorteilhafterweise 0,01 bis 3 Gew.-% und vorzugsweise 0,1 bis 1 Gew.-% Verdickungsmittel. Die Menge an eingesetztem Verdickungsmittel ist dabei abhängig von der Art des Verdickungsmittels und dem gewünschten Grad der Verdickung.

Das Textilbehandlungsmittel kann Enzyme in verkapselter Form und/oder direkt in dem Textilbehandlungsmittel enthalten. Als Enzyme kommen insbesondere solche aus der Klassen der Hydrolasen wie der Proteasen, Esterasen, Lipasen bzw. lipolytisch wirkende Enzyme, Amylasen, Cellulasen bzw. andere Glykosylhydrolasen, Hemicellulase, Cutinasen, ß-Glucanasen, Oxidasen, Peroxidasen, Perhydrolasen und/oder Laccasen und Gemische der genannten Enzyme in Frage. Alle diese Hydrolasen tragen in der Wäsche zur Entfernung von Verfleckungen wie protein-, fett- oder stärkehaltigen Verfleckungen und Vergrauungen bei. Cellulasen und andere Glykosylhydrolasen können darüber hinaus durch das Entfernen von Pilling und Mikrofibrillen zur Farberhaltung und zur Erhöhung der Weichheit des Textils beitragen. Zur Bleiche bzw. zur Hemmung der Farbübertragung können auch Oxireduktasen eingesetzt werden. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen wie Bacillus subtilis, Bacillus licheniformis, Streptomyceus griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und

Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere α-Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugsweise Cellobiohydrolasen, Endoglucanasen und ß-Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich verschiedene Cellulase-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden. Besonders vorteilhaft ist es, wenn die erfindungsgemäßen Textilbehandlunsgmittel Mannanase enthalten, und zwar insbesondere inkorporiert in Mikrokaspeln und/oder Speckies. Dies entspricht einer bevorzugten Ausführungsform der Erfindung Es konnte gefunden werden, dass die Mannanase im Verbund mit dem photokatalytischen Material eine besonders gute Wirkung bei der Schmutzablösung von galactomannanhaltigen Rückständen auf Textilien erbrachte. Auch der Einsatz von Tannase ist bevorzugt.

Die Enzyme können an Trägerstoffe adsorbiert sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, der Enzymflüssigformulierung(en) oder der Enzymgranulate direkt in dem Textilbehandlungsmittel kann beispielsweise etwa 0,01 bis 5 Gew.-%, vorzugsweise 0,12 bis etwa 2,5 Gew.-% betragen.

Es ist aber stärker bevorzugt, dass das Textilbehandlungsmittel gar keine Enzyme enthält. Dies entspricht einer bevorzugten Ausführungsform.

Als Elektrolyt^ aus der Gruppe der anorganischen Salze kann eine breite Anzahl der verschiedensten Salze eingesetzt werden. Bevorzugte Kationen sind die Alkali- und Erdalkalimetalle, bevorzugte Anionen sind die Halogenide und Sulfate. Aus herstellungstechnischer Sicht ist der Einsatz von NaCI oder MgCI 2 in den Textilbehandlungsmitteln bevorzugt. Der Anteil an Elektrolyten in den Textilbehandlungsmittel kann z.B. üblicherweise 0,1 bis 5 Gew.-% betragen.

Nichtwässrige Lösungsmittel, die in den erfindungsgemäßen Textilbehandlungsmitteln eingesetzt werden können, stammen beispielsweise aus der Gruppe der ein- oder mehrwertigen Alkohole, Alkanolamine oder Glykolether. Vorzugsweise werden die Lösungsmittel ausgewählt aus Ethanol, n- oder i-Propanol, Butanolen, Glykol, Propan- oder Butandiol, Glycerin, Diglykol, Propyl- oder Butyldiglykol, Hexylenglycol, Ethylenglykolmethylether, Ethylenglykolethylether, Ethylenglykolpropylether, Ethylenglykolmono-n-butylether, Diethylenglykolmethylether, Diethylenglykolethylether, Propylenglykolmethyl-, -ethyl- oder -propylether, Dipropylenglykolmono- methyl- oder -ethylether, Di-isopropylenglykolmonomethyl- oder -ethylether, Methoxy-, Ethoxy- oder Butoxytriglykol, 1-Butoxyethoxy-2-propanol, 3-Methyl-3-methoxybutanol, Propylen-glykol-t- butylether sowie Mischungen dieser Lösungsmittel. Nichtwässrige Lösungsmittel können in den erfindungsgemäßen Textilbehandlungsmitteln vorzugsweise in Mengen zwischen 0,5 und 15 Gew.- %, bevorzugt aber unter 12 Gew.-% und insbesondere unterhalb von 9 Gew.-% eingesetzt werden.

Die Viskosität der erfindungsgemäßen Textilbehandlungsmittel (insbesondere in Form von flüssigen Waschmitteln oder Weichspülern) kann mit üblichen Standardmethoden (beispielsweise Brookfield-Viskosimeter LVT-II bei 20 U/min und 2O 0 C, Spindel 3) gemessen werden und liegt insbesondere für flüssige Waschmittel vorzugsweise im Bereich von 500 bis 5000 mPas. Bevorzugte Textilbehandlungsmittel in Form von flüssigen Waschmitteln haben Viskositäten von vorzugsweise 700 bis 4000 mPas, wobei Werte zwischen 1000 und 3000 mPas besonders bevorzugt sind. Die Viskosität von erfindungsgemäßen Textilbehandlungsmitteln in Form von Weichspülern, welche erfindungsgemäß bevorzugt sind, beträgt vorzugsweise 20 bis 4000 mPas, wobei Werte zwischen 40 und 2000 mPas besonders bevorzugt sind. Insbesondere bevorzugt liegt die Viskosität von Weichspülern von 40 bis 1000 mPas.

Um den pH-Wert der erfindungsgemäßen Textilbehandlungsmittel in den gewünschten Bereich zu bringen, kann der Einsatz von pH-Stellmitteln angezeigt sein. Einsetzbar sind hier sämtliche bekannten Säuren bzw. Laugen, sofern sich ihr Einsatz nicht aus anwendungstechnischen oder ökologischen Gründen bzw. aus Gründen des Verbraucherschutzes verbietet. üblicherweise überschreitet die Menge dieser Stellmittel 7 Gew.-% oder vorzugsweise 5 Gew.-% der Gesamtformulierung nicht.

Der pH-Wert des erfindungsgemäßen Textilbehandlungsmittels in Form eines flüssigen Waschmittels liegt bevorzugt zwischen 4 und 10 und bevorzugt zwischen 5,5 und 8,5. Der pH-Wert

des erfindungsgemäßen Textilbehandlungsmittels in Form eines Weichspülers, was erfindungsgemäß bevorzugt ist, liegt vorzugsweise zwischen 1 und 6 und bevorzugt zwischen 1 ,5 und 3,5.

In einer bevorzugten Ausführungsform enthält das Textilbehandlungsmittel gegebenenfalls ein oder mehrere Parfüms (Parfümöle, Riechstoffe) in einer Menge von üblicherweise bis 10 Gew.-%, vorzugsweise 0,01 bis 5 Gew.-%, insbesondere 0,05 bis 3 Gew.-%, besonders bevorzugt 0,1 bis 2 Gew.-% und äußerst bevorzugt 0,4 bis 0,8 Gew.-%. Dabei ist die Menge an eingesetztem Parfüm auch von der Art des Textilbehandlungsmittels abhängig.

Als Parfümöle (Riechstoffe, Duftstoffe) können einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe verwendet werden. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Solche Parfümöle können auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind.

Mit dem Begriff Parfümöl sind vorzugsweise in sich abgeschlossene Duftstoffkompositionen gemeint, welche gemeinhin zur Produktbeduftung eingesetzt werden und insbesondere nach menschlichem Ermessen wohlriechend sind. Dies sei an einem Beispiel erläutert. Will ein Fachmann z.B. ein Reinigungsmittel wohlriechend machen, so fügt er ihm für gewöhnlich nicht nur eine (wohl-)riechende Substanz, sondern ein Kollektiv (wohl-)riechender Substanzen bei. Ein solches Kollektiv besteht gewöhnlich aus einer Vielzahl einzelner Riechstoffe, z.B. mehr als 10 oder 15, vorzugsweise bis zu 100 oder mehr. Diese Riechstoffe formen zusammenwirkend ein gewünschtes wohlriechendes, harmonisches Geruchsbild.

Ein einsetzbares Parfümöl kann einzelne Riechstoffverbindungen, z.B. die synthetischen Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe enthalten. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.- Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat (DMBCA), Phenylethylacetat, Benzylacetat, Ethylmethylphenylglycinat, Allylcyclohexyl-propionat, Styrallylpropionat, Benzylsalicylat, Cyclohexylsalicylat, Floramat, Melusat und Jasmecyclat. Zu den Ethern zählen beispielsweise Benzylethylether und Ambroxan , zu den Aldehyden z.B. die linearen Alkanale mit 8 - 18 C-Atomen, Citral, Citronellal, Citronellyloxy-acetaldehyd, Cyclamenaldehyd, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-|somethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu

den Kohlenwasserstoffen gehören hauptsächlich die Terpene wie Limonen und Pinen. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote des gebildeten Parfümöl erzeugen.

Die Parfümöle können aber auch natürliche Riechstoffgemische enthalten, wie sie aus pflanzlichen Quellen zugänglich sind, z.B. Pine-, Citrus-, Jasmin-, Patchouly-, Rosen- oder Ylang-Ylang-öl. Ebenfalls geeignet sind Muskateller-Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeeröl, Vetiveröl, Olibanumöl, Galbanumöl und Labdanumöl sowie Orangenblütenöl, Neroliol, Orangenschalenöl und Sandelholzöl. Um wahrnehmbar zu sein, muß ein Riechstoff flüchtig sein, wobei neben der Natur der funktionellen Gruppen und der Struktur der chemischen Verbindung auch die Molmasse eine wichtige Rolle spielt. So besitzen die meisten Riechstoffe Molmassen bis etwa 200 Dalton, während Molmassen von 300 Dalton und darüber eher eine Ausnahme darstellen. Aufgrund der unterschiedlichen Flüchtigkeit von Riechstoffen verändert sich der Geruch eines aus mehreren Riechstoffen zusammengesetzten Parfüms während des Verdampfens, wobei man die Geruchseindrücke in „Kopfnote" (top note), „Herz- bzw. Mittelnote" (middle note bzw. body) sowie „Basisnote" (end note bzw. dry out) unterteilt.

Haftfeste Riechstoffe, die im Rahmen der vorliegenden Erfindung vorteilhafterweise einsetzbar sind, sind beispielsweise die ätherischen öle wie Angelikawurzelöl, Anisöl, Arnikablütenöl, Basilikumöl, Bayöl, Champacablütenöl, Edeltannenöl, Edeltannenzapfenöl, Elemiöl, Eukalyptusöl, Fenchelöl, Fichtennandelöl, Galbanumöl, Geraniumöl, Gingergrasöl, Guajakholzöl, Gurjunbalsamöl, Helichrysumöl, Ho-öl, Ingweröl, Irisöl, Kajeputöl, Kalmusöl, Kamillenöl, Kampferöl, Kanagaöl, Kardamomenöl, Kassiaöl, Kiefernnadelöl, Kopaϊvabalsamöl, Korianderöl, Krauseminzeöl, Kümmelöl, Kuminöl, Lemongrasöl, Moschuskörneröl, Myrrhenöl, Nelkenöl, Neroliol, Niaouliöl, Olibanumöl, Origanumöl, Palmarosaöl, Patschuliöl, Perubalsamöl, Petitgrainöl, Pfefferöl, Pfefferminzöl, Pimentöl, Pine-öl, Rosenöl, Rosmarinöl, Sandelholzöl, Sellerieöl, Sternanisöl, Thujaöl, Thymianöl, Verbenaöl, Vetiveröl, Wacholderbeeröl, Wermutöl, Wintergrünöl, Ylang -Ylang-öl, Ysop-öl, Zimtöl, Zimtblätteröl sowie Zypressenöl.

Aber auch die höhersiedenden bzw. festen Riechstoffe natürlichen oder synthetischen Ursprungs können im Rahmen der vorliegenden Erfindung vorteilhafterweise als haftfeste Riechstoffe bzw. Riechstoffgemische eingesetzt werden. Zu diesen Verbindungen zählen die nachfolgend genannten Verbindungen sowie Mischungen aus diesen: Ambrettolid, α-Amylzimtaldehyd, Anethol, Anisaldehyd, Anisalkohol, Anisol, Anthranilsäuremethylester, Acetophenon, Benzylaceton, Benzaldehyd, Benzoesäureethylester, Benzophenon, Benzylakohol, Borneol, Bornylacetat, α- Bromstyrol, n-Decylaldehyd, n-Dodecylaldehyd, Eugenol, Eugenolmethylether, Eukalyptol, Farnesol, Fenchon, Fenchylacetat, Geranylacetat, Geranylformiat, Heliotropin,

Heptincarbonsäuremethylester, Heptaldehyd, Hydrochinon-Di-methylether, Hydroxyzimtaldehyd, Hydroxyzimtalkohol, Indol, Iron, Isoeugenol, Isoeugenolmethylether, Isosafrol, Jasmon, Kampfer, Karvakrol, Karvon, p- Kresolmethylether, Cumarin, p-Methoxyacetophenon, Methyl-n-amylketon, Methylanthranilsäuremethylester, p-Methylacetophenon, Methylchavikol, p-Methylchinolin, Methyl- ß-naphthylketon, Methyl-n-nonylacetaldehyd, Methyl-n-nonylketon, Muskon, ß-Naphtholethylether, ß-Naphthol-methylether, Nerol, Nitrobenzol, n-Nonylaldehyd, Nonylakohol, n-Octylaldehyd, p-Oxy- Acetophenon, Pentadekanolid, ß-Phenylethylakohol, Phenylacetaldehyd-Dimethylacetal, Phenyles- sigsäure, Pulegon, Safrol, Salicylsäureisoamylester, Salicylsäuremethylester, Salicylsäure- hexylester, Salicylsäurecyclohexylester, Santalol, Skatol, Terpineol, Thymen, Thymol, γ- Undelacton, Vanilin, Veratrumaldehyd, Zimtaldehyd, Zimtalkohol, Zimtsäure, Zimtsäureethylester, Zi mtsäu rebenzylester.

Zu den leichter flüchtigen Riechstoffen, die im Rahmen der vorliegenden Erfindung vorteilhaft einsetzbar sind, zählen insbesondere die niedriger siedenden Riechstoffe natürlichen oder synthetischen Usprung, die allein oder in Mischungen eingesetzt werrden können. Beispiele für leichter flüchtige Riechstoffe sind Alkyisothiocyanate (Alkylsenföle), Butandion, Limonen, Linalool, Linaylacetat und -propionat, Menthol, Menthon, Methyl-n-hep-tenon, Phellandren, Phenylacetaldehyd, Terpinylacetat, Zitral, Zitronellal.

Alle vorgenannten Riechstoffe sind alleine oder in Mischung gemäß der vorliegenden Erfindung mit den bereits genannten Vorteilen einsetzbar.

In einer bevorzugten Ausführungsform enthält das erfindungsgemäße Textilbehandlungsmittel bestimmte Minimalwerte an Parfümöl (Riechstoffen), nämlich zumindest 0,00001 Gew.-%, vorteilhafterweise zumindest 0,0001 Gew.-%, in beträchtlich vorteilhafter weise zumindest 0,001 Gew.-%, in vorteilhafterer Weise zumindest 0,01 Gew.-%, in weiter vorteilhafter Weise zumindest 0,1 Gew.-%, in noch weiter vorteilhafter Weise zumindest 0,2 Gew.-%, in sehr vorteilhafter Weise zumindest 0,3 Gew.-%, in besonders vorteilhafter Weise zumindest 0,4 Gew.-%, in ganz besonders vorteilhafter Weise zumindest 0,45 Gew.-%, in erheblich vorteilhafter Weise zumindest 0,5 Gew.-%, in ganz erheblich vorteilhafter Weise zumindest 0,55 Gew.-%, in äußerst vorteilhafter Weise zumindest 0,6 Gew.-%, in höchst vorteilhafterweise zumindest 0,65 Gew.-%, in überaus vorteilhafterweise zumindest 0,7 Gew.-%, in ausnehmend vorteilhafter Weise zumindest 0,75 Gew.-%, in außergewöhnlich vorteilhafter Weise zumindest 0,8 Gew.-%, in außerordentlich vorteilhafter Weise zumindest 0,85 Gew.-%, insbesondere zumindest 0,9 Gew.-% an Parfümöl, bezogen auf das gesamte Textilbehandlungsmittel.

In einer bevorzugten Ausführungsform enthalten die Parfümöle weniger als 8 , vorteilhafterweise weniger als 7, in vorteilhafterer Weise weniger als 6, in wiederum vorteilhafterer Weise weniger als 5, in weiter vorteilhafterweise weniger als 4, noch vorteilhafter weniger als 3, vorzugsweise weniger

als 2, insbesondere keine Duftstoffe aus der Liste Amylcinnamal, Amylcinnamylalkohol, Benzylalkohol, Benzylsalicylat, Cinnamylalkohol, Cinnamal, Citral, Cumarin, Eugenol, Geraniol, Hydroxycitronellal, Hydroxymethylpentylcyclohexencarboxaldehyd, Isoeugenol, Anisylalkohol, Benzylbenzoat, Benzylcinnamat, Citronellol, Farnesol, Hexylcinnamaldehyd, Lilial, d-Limonen, Linalool, Methylheptincarbonat, 3-Methyl-4-(2,6,6-trimethyl-2-cyclohexen-1-yl)-3-buten-2-on, Eichenmoosextrakt, Baummoosextrakt.

Nach einer weiteren speziellen Ausführungsform kann das erfindungsgemäße Textilbehandlungsmittel ganz frei von Parfümöl (Riechstoffen) sein. Es ist aber deutlich mehr bevorzugt, dass Riechstoffe enthalten sind.

Um den ästhetischen Eindruck der Textilbehandlungsmittel zu verbessern, können sie mit geeigneten Farbstoffen eingefärbt werden. Bevorzugte Farbstoffe, deren Auswahl dem Fachmann keinerlei Schwierigkeit bereitet, besitzen eine hohe Lagerstabilität und Unempfindlichkeit gegenüber den übrigen Inhaltsstoffen der Textilbehandlungsmittel und gegen Licht sowie keine ausgeprägte Substantivität gegenüber Textilfasern, um diese nicht anzufärben.

Als Schauminhibitoren, die in den Textilbehandlungsmitteln eingesetzt werden können, kommen beispielsweise Seifen, Paraffine oder Silikonöle in Betracht, die gegebenenfalls auf Trägermaterialien aufgebracht sein können.

Geeignete Soil-Release-Polymere, die auch als „Antiredepositionsmittel" bezeichnet werden, sind beispielsweise nichtionische Celluloseether wie Methylcellulose und Methylhydroxypropylcellulose mit einem Anteil an Methoxygruppen von 15 bis 30 Gew.-% und an Hydroxypropylgruppen von 1 bis 15 Gew.-%, jeweils bezogen auf den nichtionischen Celluloseether sowie die aus dem Stand der Technik bekannten Polymere der Phthalsäure und/oder Terephthalsäure bzw. von deren Derivaten, insbesondere Polymere aus Ethylenterephthalaten und/oder Polyethylen- und/oder Polypropylenglykolterephthalaten oder anionisch und/oder nichtionisch modifizierten Derivaten von diesen. Geeignete Derivate umfassen die sulfonierten Derivate der Phthalsäure- und Terephthalsäure-Polymere.

Optische Aufheller (so genannte „Weißtöner") können den Textilbehandlungsmitteln zugesetzt werden, um Vergrauungen und Vergilbungen der behandelten Textilen Flächengebilden zu beseitigen. Diese Stoffe ziehen auf die Faser auf und bewirken eine Aufhellung und vorgetäuschte Bleich-

Wirkung, indem sie unsichtbare Ultraviolettstrahlung in sichtbares längerwelliges Licht umwandeln, wobei das aus dem Sonnenlicht absorbierte ultraviolette Licht als schwach bläuliche Fluoreszenz abgestrahlt wird und mit dem Gelbton der vergrauten bzw. vergilbten Wäsche reines Weiß ergibt. Geeignete Verbindungen stammen beispielsweise aus den Substanzklassen der 4,4 ' -Diamino- 2,2 ' -stilbendisulfonsäuren (Flavonsäuren), 4,4 ' -Distyryl-biphenylen, Methylumbelliferone, Cumarine, Dihydrochinolinone, 1 ,3-Diarylpyrazoline, Naphthalsäureimide, Benzoxazol-, Benzisoxazol- und Benzimidazol-Systeme sowie der durch Heterocyclen substituierten Pyrenderivate. Die optischen Aufheller werden üblicherweise in Mengen zwischen 0% und 0,3 Gew.-%, bezogen auf das gesamte Textilbehandlungsmittel, eingesetzt. Nach einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Textilbehandlungsmittel ganz frei von optischem Aufheller.

Vergrauungsinhibitoren haben die Aufgabe, den von der Faser abgelösten Schmutz in der Flotte suspendiert zu halten und so das Wiederaufziehen des Schmutzes zu verhindern. Hierzu sind wasserlösliche Kolloide meist organischer Natur geeignet, beispielsweise Leim, Gelatine, Salze von Ethersulfonsäuren der Stärke oder der Cellulose oder Salze von sauren Schwefelsäureestern der Cellulose oder der Stärke. Auch wasserlösliche, saure Gruppen enthaltende Polyamide sind für diesen Zweck geeignet. Weiterhin lassen sich lösliche Stärkepräparate und andere als die oben genannten Stärkeprodukte verwenden, zum Beispiel abgebaute Stärke, Aldehydstärken usw. Auch Polyvinylpyrrolidon ist brauchbar. Bevorzugt werden jedoch Celluloseether wie Carboxymethylcellulose (Na-SaIz), Methylcellulose, Hydroxyalkylcellulose und Mischether wie Methylhydroxyethylcellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Textilbehandlungsmittel, eingesetzt.

Nach einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Textilbehandlungsmittel ganz frei von Vergrauungsinhibitoren.

Um während des Waschens und/oder des Reinigens von gefärbten Textilien die Farbstoffablösung und/oder die Farbstoffübertragung auf andere Textilien wirksam zu unterdrücken, kann das Textilbehandlungsmittel einen Farbübertragungsinhibitor enthalten. Es ist bevorzugt, dass der Farbübertragungsinhibitor ein Polymer oder Copolymer von cyclischen Aminen wie beispielsweise Vinylpyrrolidon und/oder Vinylimidazol ist. Als Farbübertragungsinhibitor geeignete Polymere umfassen Polyvinylpyrrolidon (PVP), Polyvinylimidazol (PVI), Copolymere von Vinylpyrrolidon und Vinylimidazol (PVP/PVI), Polyvinylpyridin-N-oxid, Poly-N-carboxymethyl-4-vinylpyridiumchlorid

sowie Mischungen daraus. Besonders bevorzugt werden Polyvinylpyrrolidon (PVP), Polyvinylimidazol (PVI) oder Copolymere von Vinylpyrrolidon und Vinylimidazol (PVP/PVI) als Farbübertragungsinhibitor eingesetzt. Die eingesetzten Polyvinylpyrrolidone (PVP) besitzen bevorzugt ein mittleres Molekular gewicht von 2.500 bis 400.000 und sind kommerziell von ISP Chemicals als PVP K 15, PVP K 30, PVP K 60 oder PVP K 90 oder von der BASF als Sokalan® HP 50 oder Sokalan® HP 53 erhältlich. Die eingesetzten Copolymere von Vinylpyrrolidon und Vinylimidazol (PVP/PVI) weisen vorzugsweise ein Molekulargewicht im Bereich von 5.000 bis 100.000 auf. Kommerziell erhältlich ist ein PVP/PVI-Copolymer beispielsweise von der BASF unter der Bezeichnung Sokalan® HP 56.

Die Menge an einsetzbarem Farbübertragungsinhibitor bezogen auf die Gesamtmenge des Textilbehandlungsmittels reicht z.B. vorzugsweise von 0,01 bis 2 Gew.-%, vorzugsweise von 0,05 bis 1 Gew.-% und mehr bevorzugt von 0,1 bis 0,5 Gew.-%. Nach einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Textilbehandlungsmittel ganz frei von Farbübertragungsinhibitoren.

Alternativ können aber auch enzymatische Systeme, umfassend eine Peroxidase und Wasserstoffperoxid beziehungsweise eine in Wasser Wasserstoffperoxid-Iiefernde Substanz, als Farbübertragungsinhibitor eingesetzt werden. Der Zusatz einer Mediatorverbindung für die Peroxidase, zum Beispiel eines Acetosyringons, eines Phenolderivats oder eines Phenotiazins oder Phenoxazins, ist in diesem Fall bevorzugt, wobei auch zusätzlich die oben genannten polymeren Farbübertragungsinhibitoren eingesetzt werden können.

Da textile Flächengebilde, insbesondere aus Reyon, Zellwolle, Baumwolle und deren Mischungen, zum Knittern neigen können, weil die Einzelfasern gegen Durchbiegen, Knicken, Pressen und Quetschen quer zur Faserrichtung empfindlich sind, können die Textilbehandlungsmittel synthetische Knitterschutzmittel enthalten. Hierzu zählen beispielsweise synthetische Produkte auf der Basis von Fettsäuren, Fettsäureestern, Fettsäureamiden, -alkylolestern, -alkylolamiden oder Fettalkoholen, die meist mit Ethylenoxid umgesetzt sind, oder Produkte auf der Basis von Lecithin oder modifizierter Phosphorsäureester.

Zur weiteren Bekämpfung von Mikroorganismen können die Textilbehandlungsmittel zusätzlich antimikrobielle Wirkstoffe enthalten. Hierbei unterscheidet man je nach antimikrobiellem Spektrum

und Wirkungsmechanismus zwischen Bakteriostatika und Bakteriziden, Fungistatika und Fungiziden usw. Wichtige Stoffe aus diesen Gruppen sind beispielsweise Benzalkoniumchloride, Alkylarylsulfonate, Halogenphenole und Phenolmercuriacetat, wobei bei den erfindungemäßen Textilbehandlungsmitteln auch gänzlich auf diese Verbindungen verzichtet werden kann.

Die erfindungsgemäßen Textilbehandlungsmittel können Konservierungsmittel enthalten, wobei vorzugsweise nur solche eingesetzt werden, die kein oder nur ein geringes hautsensibilisierendes Potential besitzen. Beispiele sind Sorbinsäure und seine Salze, Benzoesäure und seine Salze, Salicylsäure und seine Salze, Phenoxyethanol, 3-lodo-2-propynylbutylcarbamat, Natrium N- (hydroxymethyl)glycinat, Biphenyl-2-ol sowie Mischungen davon. Ein geeignetes Konservierungsmittel stellt die lösungsmittelfreie, wässrige Kombination von Diazolidinylharnstoff, Natriumbenzoat und Kaliumsorbat (erhältlich als Euxyl® K 500 ex Schuelke & Mayr) dar, welches in einem pH-Bereich bis 7 eingesetzt werden kann. Insbesondere eignen sich Konservierungsmittel auf Basis von organischen Säuren und/oder deren Salzen zur Konservierung der erfindungsgemäßen, hautfreundlichen Textilbehandlungsmittel.

Um unerwünschte, durch Sauerstoffeinwirkung und andere oxidative Prozesse verursachte Veränderungen an den Textilbehandlungsmitteln und/oder den behandelten textilen Flächengebilden zu verhindern, können die Textilbehandlungsmittel Antioxidantien enthalten. Zu dieser Verbindungsklasse gehören beispielsweise substituierte Phenole, Hydrochinone, Brenzcatechine und aromatische Amine sowie organische Sulfide, Polysulfide, Dithiocarbamate, Phosphite, Phosphonate und Vitamin E. Nach einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Textilbehandlungsmittel ganz frei von Antioxidantien.

Ein erhöhter Tragekomfort kann aus der zusätzlichen Verwendung von Antistatika resultieren, die den Textilbehandlungsmitteln zusätzlich beigefügt werden. Antistatika vergrößern die Oberflächenleitfähigkeit und ermöglichen damit ein verbessertes Abfließen gebildeter Ladungen. äußere Antistatika sind in der Regel Substanzen mit wenigstens einem hydrophilen Molekülliganden und geben auf den Oberflächen einen mehr oder minder hygroskopischen Film. Diese zumeist grenzflächenaktiven Antistatika lassen sich in stickstoffhaltige (Amine, Amide, quartäre Ammoniumverbindungen), phosphorhaltige (Phosphorsäureester) und schwefelhaltige (Alkylsulfonate, Alkylsulfate) Antistatika unterteilen. Lauryl- (bzw. Stearyl-)dimethylbenzyl-

ammoniumchloride eignen sich als Antistatika für textile Flächengebilde bzw. als Zusatz zu Textilbehandlungsmitteln, wobei zusätzlich ein Avivageeffekt erzielt wird.

Zur Verbesserung des der Wiederbenetzbarkeit der behandelten textilen Flächengebilde und zur Erleichterung des Bügeins der behandelten textilen Flächengebilde können in den Textilbehandlungsmitteln beispielsweise Silikonderivate eingesetzt werden. Diese verbessern zusätzlich das Ausspülverhalten der Textilbehandlungsmittel durch ihre schauminhibierenden Eigenschaften. Bevorzugte Silikonderivate sind beispielsweise Polydialkyl- oder Alkylarylsiloxane, bei denen die Alkylgruppen ein bis fünf C-Atome aufweisen und ganz oder teilweise fluoriert sind. Bevorzugte Silikone sind Polydimethylsiloxane, die gegebenenfalls derivatisiert sein können und dann aminofunktionell oder quaterniert sind bzw. Si-OH-, Si-H- und/oder Si-Cl-Bindungen aufweisen. Die Viskositäten der bevorzugten Silikone liegen bei 25 0 C im Bereich zwischen 100 und 100.000 mPas, wobei die Silikone vorzugsweise in Mengen zwischen 0,2 und 5 Gew.-%, bezogen auf das gesamte Textilbehandlungsmittel eingesetzt werden können.

Schließlich können die Textilbehandlungsmittel auch UV-Absorber enthalten, die auf die behandelten textilen Flächengebilde aufziehen und die Lichtbeständigkeit der Fasern verbessern. Verbindungen, die diese gewünschten Eigenschaften aufweisen, sind beispielsweise die durch strahlungslose Desaktivierung wirksamen Verbindungen und Derivate des Benzophenons mit Substituenten in 2- und/oder 4-Stellung. Weiterhin sind auch substituierte Benzotriazole, in 3- Stellung Phenyl-substituierte Acrylate (Zimtsäurederivate), gegebenenfalls mit Cyanogruppen in 2- Stellung, Salicylate, organische Ni-Komplexe sowie Naturstoffe wie Umbelliferon und die körpereigene Urocansäure geeignet. Nach einer weiteren bevorzugten Ausführungsform ist das erfindungsgemäße Textilbehandlungsmittel jedoch ganz frei von solchen UV-Absorbern.

Um die durch Schwermetalle katalysierte Zersetzung bestimmter Waschmittel-Inhaltsstoffe zu vermeiden, können Stoffe eingesetzt werden, die Schwermetalle komplexieren. Geeignete Schwermetallkomplexbildner sind beispielsweise die Alkalisalze der Ethylendiamintetraessigsäure (EDTA) oder der Nitrilotriessigsäure (NTA) sowie Alkalimetallsalze von anionischen Polyelektrolyten wie Polymaleaten und Polysulfonaten.

Eine bevorzugte Klasse von Komplexbildnern sind die Phosphonate, die in bevorzugten Textilbehandlungsmitteln in Mengen von vorteilhafterweise 0,01 bis 2,5 Gew.-%, vorzugsweise

0,02 bis 2 Gew.-% und insbesondere von 0,03 bis 1 ,5 Gew.-% enthalten sein können. Zu diesen bevorzugten Verbindungen zählen insbesondere Organophosphonate wie beispielsweise 1- Hydroxyethan-1 ,1-diphosphonsäure (HEDP), Aminotri(nnethylenphosphonsäure) (ATMP), Diethylentriamin-penta(methylenphosphonsäure) (DTPMP bzw. DETPMP) sowie 2- Phosphonobutan-1 ,2,4-tricarbonsäure (PBS-AM), die zumeist in Form ihrer Ammonium- oder Alkalimetallsalze eingesetzt werden.

Geeignet sind insbesondere die folgenden gemäß INCI bezeichneten Komplexbildner, die beispielsweise im International Cosmetic Ingredient Dictionary and Handbook näher beschrieben sind: Aminotrimethylene Phosphonic Acid, Beta-Alanine Diacetic Acid, Calcium Disodium EDTA, Citric Acid, Cyclodextrin, Cyclohexanediamine Tetraacetic Acid, Diammonium Citrate, Diammonium EDTA, Diethylenetriamine Pentamethylene Phosphonic Acid, Dipotassium EDTA, Disodium Azacycloheptane Diphosphonate, Disodium EDTA, Disodium Pyrophosphate, EDTA, Etidronic Acid, Galactaric Acid, Gluconic Acid, Glucuronic Acid, HEDTA, Hydroxypropyl Cyclodextrin, Methyl Cyclodextrin, Pentapotassium Triphosphate, Pentasodium Aminotrimethylene Phosphonate, Pentasodium Ethylenediamine Tetramethylene Phosphonate, Pentasodium Pentetate, Pentasodium Triphosphate, Pentetic Acid, Phytic Acid, Potassium Citrate, Potassium EDTMP, Potassium Gluconate, Potassium Polyphosphate, Potassium Trisphosphonomethylamine Oxide, Ribonic Acid, Sodium Chitosan Methylene Phosphonate, Sodium Citrate, Sodium Diethylenetriamine Pentamethylene Phosphonate, Sodium Dihydroxyethylglycinate, Sodium EDTMP, Sodium Gluceptate, Sodium Gluconate, Sodium Glycereth-1 Polyphosphate, Sodium Hexametaphosphate, Sodium Metaphosphate, Sodium Metasilicate, Sodium Phytate, Sodium Polydimethylglycinophenolsulfonate, Sodium Trimetaphosphate, TEA-EDTA, TEA-Polyphos-phate, Tetrahydroxyethyl Ethylenediamine, Tetrahydroxypropyl Ethylenediamine, Tetrapotassium Etidronate, Tetrapotassium Pyrophosphate, Tetrasodium EDTA, Tetrasodium Etidronate, Tetrasodium Pyrophosphate, Tripotassium EDTA, Trisodium Dicarboxymethyl Alaninate, Trisodium EDTA, Trisodium HEDTA, Trisodium NTA und Trisodium Phosphate.

Bevorzugte Komplexbildner sind tertiäre Amine, insbesondere tertiäre Alkanolamine (Ami- noalkohole). Die Alkanolamine besitzen sowohl Amino- als auch Hydroxy- und/oder Ether-gruppen als funktionelle Gruppen. Besonders bevorzugte tertiäre Alkanolamine sind Tri-ethanolamin und Tetra-2-hydroxypro-pylethylendiamin (N,N,N',N'-Tetrakis-(2-hydroxy-pro-pyl)ethylendiamin). Besonders bevorzugte Kombinationen tertiärer Amine mit Zinkricinoleat und einem oder mehreren ethoxylierten Fettalkoholen als nichtionische Lösungsvermittler sowie ggf. Lösungsmittel sind im Stand der Technik beschrieben.

Ein besonders bevorzugter Komplexbildner ist die Etidronsäure (1-Hydroxyethyliden-1 ,1-

diphosphon-säure, 1-Hydroxyethyan-1 ,1-diphosphonsäure, HEDP, Acetophosphonsäure, INCI Etidronic Acid) einschließlich ihrer Salze. In einer bevorzugten Ausführungsform enthält das erfindungsgemäße Textilbehandlungsmittel demgemäß als Komplexbildner Etidronsäure und/oder eines oder mehrere ihrer Salze.

In einer besonderen Ausführungsform enthält das erfindungsgemäße Textilbehandlungsmittel eine Komplexbildnerkombination aus einem oder mehreren tertiären Aminen und einer oder mehreren weiteren Komblexbildnern, vorzugsweise einer oder mehreren Komplexbildnersäuren oder deren Salzen, insbesondere aus Triethanolamin und/oder Tetra-2-hydroxypropylethylendiamin und Etidronsäure und/oder einem oder mehrerer ihrer Salze.

Die Herstellung der erfindungsgemäßen Textilbehandlungsmittel kann nach allen dem Fachmann geläufigen Techniken zur Herstellung von flüssigen Textilbehandlungsmitteln erfolgen.

Die Herstellung eines erfindungsgemäßen Weichspülers kann also nach dem Fachmann geläufigen Techniken zur Herstellung von Weichspülern erhalten werden. Dies kann beispielsweise durch Aufmischen der Rohstoffe, gegebenenfalls unter Einsatz von hochscherenden Mischapparaturen, geschehen. Es empfiehlt sich ein Aufschmelzen der weichmachenden Komponente(n) und ein nachfolgendes Dispergieren der Schmelze in einem Lösungsmittel, vorzugsweise Wasser. Die weiteren Inhaltsstoffe inklusive z.B. des photokatalytischen Materials können durch einfaches Zumischen in die Weichspüler integriert werden.

Die Herstellung eines erfindungsgemäßen flüssigen Waschmittel als Textilbehandlungsmittel erfolgt beipsielsweise mittels üblicher und bekannter Methoden und Verfahren in dem beispielsweise die Bestandteile einfach in Rührkesseln vermischt werden, wobei Wasser, ggf. nichtwässrige Lösungsmittel und Tenside, zweckmäßigerweise vorgelegt werden und die weiteren Bestandteile inklusive z.B. des photokatalytischen Materials portionsweise hinzugefügt werden. Ein gesondertes Erwärmen bei der Herstellung ist nicht erforderlich, wenn es gewünscht ist, sollte die Temperatur der Mischung 8O 0 C nicht übersteigen.

Beispiele

Esterquat: 13 Gew.-%

Propanol-2: 1 ,3 Gew.-%

Ameisensäure: 0,05 Gew.-%

Photokat. Material*: 0,1 Gew.-%

MgCI 2 : 0,09 Gew.-%

Wasser: auf 100 Gew.-%

Esterquat: 13 Gew.-%

Propanol-2: 1 ,3 Gew.-%

Ameisensäure: 0,05 Gew.-%

Photokat. Material* 1 %

MgCI 2 : 0,09 Gew.-%

Polyacrylat: 0,1 Gew.-%

Wasser: auf 100 Gew.-%

#: Als photokatalytisches Material wurde ein feinpartikuläres, mit Kohlenstoff modifiziertes Titandioxid eingesetzt, mit einer Teilchengröße < 50 nm, mit TiO 2 -Gehalt von ca. 97 Gew.-%.