Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LLDPE-BASED THERMOSHRINKABLE FILMS
Document Type and Number:
WIPO Patent Application WO/1997/022664
Kind Code:
A1
Abstract:
Thermoshrinkable films based on polyolefin compositions comprising: (i) a linear copolymer of ethylene with one or more 'alpha'-olefins (LLDPE); (ii) a copolymer of propylene having particular composition and characteristics. The films are characterized by good optical and mechanical properties and, in particular, by a high tear resistance.

Inventors:
PERDOMI GIANNI
COMETTO CLAUDIO
BECCARINI ENRICO
Application Number:
PCT/EP1996/005590
Publication Date:
June 26, 1997
Filing Date:
December 13, 1996
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
MONTELL TECHNOLOGY COMPANY BV (NL)
International Classes:
C08J5/18; C08L23/08; C08L23/14; (IPC1-7): C08L23/16; C08J5/18
Domestic Patent References:
WO1995020009A11995-07-27
Foreign References:
EP0350859A21990-01-17
EP0260038A21988-03-16
EP0556815A11993-08-25
US4643945A1987-02-17
Download PDF:
Claims:
CLAIMSThermoshrinkable film comprising a polyolefin composi¬ tion containing: (i) from 80 to 100 parts by weight of a copolymer of ethylene with one or more CH2=CHR α- olefins, where R is a hydrocarbon radical having
1. 10 carbon atoms, the said copolymer containing up to 20 mol% of CH,=CHR α. olefin and having a density between 0.88 and 0.945 g/cπt3 ; and (ii) from 5 to 30 parts by weight of a copolymer of propylene with one or more CK^CHR1 α. olefins, where R1 is a hydrocarbon radical having from 2 to 10 carbon atoms, and possibly with ethylene, the said copolymer containing from 60 ro 98% by weight of units derived from propylene, from 2 to 40% by weight of units derived from the CH =CHR1 α. olefin, and from 0 to 10% by weight of units derived from ethylene, and having a xylene. insoluble fraction greater than 70%. Thermoshrinkable film according to Claim 1, in which copolymer (ii) contains from 70 to 95% by weight of units derived from propylene and from 5 to 30% by weight of units derived from the CK2=CHR1 α. olefin, the said copolymer (ii) having a xylene. insoluble fraction greater than 80%. Thermoshrinkable film according to Claim 1, in which copolymer (ii) contains from 80 to 98% by weight of units derived from propylene, from 1 to 10% by weight of units derived from the CK2=CHR1 α. olefin and from 1 to 10% bv weight of units derived from ethylene, the said copolymer (ii) having a xylene. insoluble fraction greater than 80%.
2. 4 Thermoshrinkable film according to Claim 1, in which the said polyolefin composition contains from 90 to 100 parts by weight of the said copolymer (i) and from 10 to 25 parts by weight of the said copolymer (ii) .
3. 5 Thermoshrinkable film according to one or more of the preceding claims, in which the CH2=CHR α. olefin is selected from propylene, 1. butene, 1. pentene, 4. methyl. 1. pentene, 1. hexene and 1. octene, and the CH:=CHR α. olefin is selected from 1. butene, 1. pentene, 4. methyl. 1. pentene, 1. hexene and 1. octene.
4. Thermoshrinkable film according to Claim 1, in which the said polyolefin composition is produced by a sequential polymerization process carried out in at least two stages, where, in any order, ethylene and one or more CH,=CHR α. olefins are polymerized in one stage, obtaining a copolymer (i) containing up to 20 mol% of CH,=CHR α. olefin and having a density between 0.88 and 0.945 g/cm3, and propylene, one or more CH,=CHR α. olefins and possibly ethylene are polymerized in another stage, obtaining a copolymer (ii) containing from 60 to 98% by weight of units derived from propylene, from 2 to 40% by weight of units derived from the CK,=CHR] α. olefin and from 0 to 10% by weight of units derived from ethylene, and having a xylene. insoluble fraction greater than 70%.
5. Thermoshrinkable film according to Claim 6, in which copolymer (ii) contains from 70 to 95% by weight of units derived from propylene and from 5 to 30% by weight of units derived from the CH^CH 1 α. olefin, the said copolymer (ii) having a xylene. insoluble fraction greater than 80%.
6. Thermoshrinkable film according to Claim 6, in which copolymer (ii) contains from 80 to 98% by weight of units derived from propylene, from 1 to 10% by weight of units derived from the CH2=CHR α. olefin and from 1 to 10% by weight of units derived from ethylene, the said copolymer (ii) having a xylene. insoluble fraction greater than 80%.
7. Thermoshrinkable film according to one of Claims 7 and 8, in which the CH2=CHR α. olefin is 1. butene and the CH =CHR! α. olefin is 1. butene.
8. Single. layer thermoshrinkable film comprising a polyolefin composition containing: (i) from 80 to 100 parts by weight of a copolymer of ethylene with one or more Ch\=CHR α. olefins, where R is a hydrocarbon radical having 1. 10 carbon atoms, the said copolymer containing up to 20 mol% of CK2=CHR α. olefin and having a density between 0.88 and 0.945 g/c 3 ; and (ii) from 5 to 30 parts by weight of a copolymer of propylene with one or more CH =CHR1 α. olefins, where R1 is a hydrocarbon radical having from 2 to 10 carbon atoms, and possibly with ethylene, the said copolymer containing from 60 to 98% by weight of units derived from propylene, from 2 to 40% by weight cf units derived from the CK:=CHR1 α. olefin, and from 0 to 10% by weight of units derived from ethylene, and having a xylene. insoluble fraction greater than 70%.
9. Single. layer thermoshrinkable film comprising a polyolefin composition produced by a sequential polymerization process as described in Claim .
10. Thermoshrinkable film according to Claim 11, in which the CK2=CHR α. olefin is 1. butene and the CH. ^CHR1 α. olefin is 1. butene.
11. Multi. layer thermoshrinkable film in which at least one layer comprises a polyolefin composition containing: (i) from 80 to 100 parts by weight of a copolymer of ethylene with one or more CH2=CHR α. olefins, where R is a hydrocarbon radical having 1. 10 carbon atoms, the said copolymer containing up to 20 mol% of CH2=CHR α. olefin and having a density between 0.88 and 0.945 g/cm3; and (ii) from 5 to 30 parts by weight cf a copolymer cf propylene with one or more CH^CHR1 α. olefins, where R1 is a hydrocarbon radical having from 2 to 10 carbon atoms, and possibly with ethylene, the said copolymer containing from 60 to 98% by weight of units derived from propylene, from 2 to 40% by weight of units derived from the CH2=CHR α. olefin, and from 0 to 10% by weight of units derived from ethylene, and having a xylene. insoluble fraction greater than 70%.
12. Multi. layer thermoshrinkable film comprising a pol¬ yolefin composition produced by a sequential polymerization process carried out as described in Claim 6. Thermoshrinkable film according to Claim 14, in which the CH2=CHR α. olefin is 1. butene and the CH =CHR1 α. olefin is 1. butene.
Description:
"LLDPE-BASED THERMOSHRIN AB E FILMS" This invention relates to thermoshrinkable films based on polyolefin compositions comprising linear copolymers of ethylene with α-olefins having from 3 to 12 carbon atoms (LLDPE) and particular propylene copolymers, the said polyolefin compositions having particular mechanical properties.

The use of LLDPE in the production of single- or multi-layer thermoshrinkable films is widely known in the art. The said films are usually produced by extrusion of the polymer, obtaining a primary film which is then oriented by stretching under temperature conditions such that there is molecular orientation without there being any problems of tearing and breakage. The polymer used in the production of the film must therefore be plastic enough to be stretched, within the temperature range in which the orientation process takes place, and at the same time strong enough to withstand the stretching force. In addition, the temperature range within which these two properties co-exist must be as wide as possible, as narrow temperature ranges would make it difficult to manage the stretching and orientation process. The orientation can either be in a single direction or in two directions, usually perpendicular to each other (biaxial orientation) . Biaxial orientation is generally carried out using, for example, the twin-bubble or tenter frame method. Once it has been oriented, the film has the ability - when subjected to a certain temperature - to shrink or to exert a shrinkage force when actual shrinkage is prevented, thus adhering perfectly to the object to be packaged.

In the case of single-layer films based on LLDPE, or in multi¬ layer films in which the various layers are made up essentially of LLDPE, it is usually necessary to cross-link the film, at least partially, before subjecting it to the orientation process, so as to give it adequate mechanical properties to withstand the stretching force. The cross-linking is usually effected by irradiating the film. As an alternative or in addition to cross-linking, LLDPE is blended with other polymers, such as ethylene/vinyl acetate (EVA) or VLDPE/ULDPE copolymers, to obtain films which have adequate mechanical properties and are easy to work. These techniques affect the economics of the production process and thus the final cost of the film.

Non-cross-linked thermoshrinkable films based exclusively on LLDPE can only be produced when LLDPE is a copolymer of ethylene with a higher α-olefin, for example 1-octene. With other olefins, for example 1-butene or 1-hexene, the temperature needed for orientation is so close to the melting point of the polymer that in practice it is not possible to stretch the film, even at low speed, without there being breakages in the film itself. US Patent 4597920 describes a process for the production of thermoshrinkable films in which the polymer used is a copolymer of ethylene with an α-olefin having 8-18 carbon atoms. The copolymer is characterized by two different melting points which allow the production of films on a commercial basis without cross-linking the polymer. The working range, however, is restricted; it can be seen in fact from the examples that the film can only be stretched with good results at temperatures between 115 and 120°C. In

addition, LLDPEs modified with 1-octene or higher α-olefins have significantly higher costs than conventional LLDPEs modified with 1-butene.

Patent application EP-A-434322 describes the use of blends of ethylene/1-hexene copolymers or ethylene/l-octene copolymers with significant quantities of LDPE. According to the description in the patent, the addition of LDPE to LLDPE modified with 1-hexene (which cannot be used as such in the production of thermoshrinkable films) makes it possible to use the mixture which is obtained in the production of thermoshrinkable films; the mixture of LDPE with LLDPE modified with 1-octene is claimed, instead, to allow to increase the extrusion rate and thus the productivity of the process. The working range remains very restricted, however. Patent application WO 94/21726 describes single-layer bioriented thermoshrinkable films obtained from polymer compositions comprising an ethylene/σ olefin copolymer, a polymeric alloy (made up of a heterophasic composition in which an amorphous ethylene/propylene copolymer is dispersed in a ho opolymeric propylene matrix) and/or a random copolymer of propylene with ethylene, and possibly a crystallization inhibitor. According to what is reported in the said patent application, the compositions described allow good management of the blowing and orientation phase in twin-bubble processes. The preferred ethylene/α-olefin copolymer is an LLDPE modified with 1-octene; no examples are reported in which LLDPE is modified with 1-butene or 1-hexene.

It has now been found that by using particular polymer compositions based on LLDPE it is possible to produce

thermoshrinkable films having very good mechanical properties (in some cases superior to those of cross-linked films) without using cross-linking treatments and without encountering any problems during the orientation process. Surprisingly, it has in fact been seen that polyolefin compositions comprising LLDPE and particular propylene copolymers can be used in the orientation processes without problems of tearing or breakages even when LLDPE is made up of an ethylene/1-butene copolymer. The films of this invention are also characterized by a good set of optical and mechanical properties, in particular high tear resistance, which makes them particularly suited to use on high-speed packaging lines.

The thermoshrinkable films of this invention comprise a polyolefin composition containing: (i) from 80 to 100 parts by weight of a copolymer of ethylene (LLDPE) with one or more CH 2 =CHR α-olefins, where R is a hydrocarbon radical having 1-10 carbon atoms, the said copolymer containing up to 20 ιmol% of CH 2 =CHR α-olefin and having a density between 0.88 and 0.945 g/cm 3 ; and (ii) from 5 to 30 parts by weight of a copolymer of propylene with one or more CH 2 =CHR 1 α-olefins, where R 1 is a hydrocarbon radical having from 2 to 10 carbon atoms, and possibly with ethylene, the said copolymer containing from 60 to 98% by weight of units derived from propylene, from 2 to 40% by weight of units derived from the CH 2 =CHR 1 α-olefin, and from 0 to 10% by weight of units derived from ethylene, and having a xylene-insoluble fraction greater than 70%.

Copolymer (i) is preferably present in amounts between 90 and 100 parts by weight and has a density preferably between 0.89

and 0.94 g/cm 3 . More preferably these values are between 0.90 and 0.935.

The Melt Index (determined by the ASTM D-1238 method, condition E) of copolymer (i) has values which are usually between 0.1 and 10 g/10 minutes, preferably between 0.2 and 5 g/10 minutes, more preferably between 0.2 and 3 g/10 minutes.

The CH 2 =CHR α-olefin can for example be selected from propylene, 1-butene, 1-hexene, 1-octene and 4-methyl-l-pentene; 1-butene or 1—hexene is preferably used. In the production of component (i) the CH 2 =CHR α-olefins can also be used mixed. Copolymer (i) can be produced by copolymerization of ethylene with a CH 2 =CHR α-olefin, in the presence of a catalyst of the Ziegler-Natta type obtained from the reaction of an organometallic compound of a metal in Groups II and III of the Periodic System with a catalytic component comprising a compound of a transition metal belonging to Groups IV, V or VI of the Periodic System. The transition metal compound is preferably supported on a solid support comprising a magnesium halide in an active form. Examples of catalysts that can be used in the production of copolymer (a) are described in U.S.P. 4.218.339 and U.S.P. 4.472.520, the description of which is included here for reference purposes. The catalysts can also be produced by the methods described in the patents U.S.P. 4.748.221 and 4.803.251.

Other examples of catalysts are described in the patent applications EP-A-395083, EP-A-553805 and EP-A-553806. Copolymer (ii) is preferably present in amounts between 10 and 25 parts by weight.

Copolymer (ii) can for example be a α-olefin copolymer, containing from 70 to 95% by weight of units derived from propylene and from 5 to 30% by weight of units derived from the CH 2 =CHR 1 α-olefin. The said copolymer is preferably a terpolymer of propylene with ethylene and a CH 2 =CHR α-olefin. In this case its content of units derived from propylene is between 80 and 98% by weight, preferably between 85 and 96% by weight, the content of units derived from ethylene is between 1 and 10% by weight, preferably between 2 and 7% by weight, and the content of units derived from the CH 2 =CHR α-olefin is between 1 and 10% by weight, preferably between 2 and 8% by weight. The content of the various components is determined by IR and NMR analysis.

The CH 2 =CHR 1 α-olefin can for example be selected from 1-butene, 1-hexene, 1-octene and 4—methyl-1-pentene, and is preferably I- butene or 1-hexene.

The xylene-insoluble fraction, determined by the method described later, is preferably greater than 80%, more preferably greater than 85%. The enthalpy of melting of copolymer (ii) is generally higher than 50 J/g, preferably higher than 60 J/g, more preferably higher than 70 J/g. The melting temperature of copolymer (ii) is less than 140°C and preferably between 120 and 140°C.

The crystallinity index of copolymer (ii) is generally higher than 50%.

The Melt Index (determined by the ASTM D-1238 method, condition L) of copolymer (ii) has values which are generally between 1 and 1000, preferably between 2 and 100, more preferably between 2 and 30.

The copolymers (ii) can be conveniently produced using a highly stereospecific catalyst, for example of the type described in patent application EP-A-395083, the description from which is included here for reference purposes.

The polyolefin compositions containing components (i) and (ii) can be produced by mixing the components in the molten state, for example in a mixer having a high homogenizing power. The said polyolefin composition is preferably produced by a sequential polymerization process carried out in at least two stages, where, in any order, ethylene and one or more CH 2 =CHR α- olefins are polymerized in one stage, obtaining a copolymer (i) containing up to 20 mol% of CH 2 =CHR α-olefin and having a density between 0.88 and 0.945 g/cm 3 , and propylene, one or more CH 2 =CHR 1 α-olefins and possibly ethylene are polymerized in another stage, obtaining a copolymer (ii) containing from 60 to 98% by weight of units derived from propylene, from 2 to 40% by weight of units derived from the CH 2 =CHR α-olefin and from 0 to 10% by weight of units derived from ethylene, and having a xylene-insoluble fraction greater than 70%. The polymerization is conveniently carried out in a gas phase, using fluidized-bed reactors. Examples of processes of this type and of products made by this method are described in the international patent applications WO 93/03078 and WO 95/20009, the description from which is included here for reference purposes.

The thermoshrinkable films of the invention can be conveniently produced using methods known in the art, such as the tenter frame or twin-bubble method. In the latter case, the method involves the production of a primary tubular film by extrusion of the polymer components through an annular slot. The primary

film is calibrated and rapidly cooled and then heated (by IR or hot air) and oriented in the longitudinal and transverse directions by blowing with compressed air (transverse orientation) and increasing the speed of the take-up roll (longitudinal orientation) . The bioriented film is then rapidly cooled to stabilize the molecular orientation of the film. By this method it is possible to produce both single- layer and multi-layer films in which the various layers can have the same composition or different compositions. A particular embodiment of the invention relates to single- layer thermoshrinkable films comprising polyolefin compositions containing components (i) and (ii) as previously described. It has in fact been seen that by using the said polyolefin compositions (particularly when these are produced directly by synthesis using a sequential polymerization process) it is possible to produce films having good optical and mechanical properties, without cross-linking the film, even when copolymer (i) is a copolymer of ethylene with 1-butene; this result is certainly surprising as it is known that until now copolymers of this type have not been used as essential components of non- cross-linked thermoshrinkable films, in view of the well-known processability problems.

Another embodiment of this invention relates to multi-layer thermoshrinkable films in which at least one layer comprises polyolefin compositions containing components (i) and (ii) as previously described. For example, it is possible to produce 3-layer films, with a structure AAA, in which all the layers are obtained from compositions containing components (i) and (ii), or with a structure BAB, in which the middle layer is

obtained from compositions containing components (i) and (ii) and the outer layers are obtained from other olefin polymers, as reported in the patents US 4532189, EP-A-586160 and EP-A-

595252.

The films of this invention, both single- and multi-layer, are characterized by a good set of physicomechanical properties, in particular optimum tear resistance, and by improved processability compared with films of the prior art having a similar structure. The film can in fact be easily oriented, without problems due to bubble instability, in a temperature range which is wider than the conventionally used temperatures, thus allowing the working window to be widened.

The weight ranges described relate to the weight ratios of components (i) and (ii). As is known to experts in the field, and as can be easily determined by routine tests, it is obviously possible to add further polymer components, additives

(such as adhesion enhancers, stabilizers, antioxidants, anticorrosives, nucleating agents, processing aids, etc.) and both organic and inorganic fillers which can give specific properties to the films of the invention.

The films of this invention have broad applications in the packaging sector, particularly the packaging of small objects, foods, etc.

The following examples are given as illustrations and do not restrict the invention.

EXAMPLES

The properties indicated were determined by the following methods:

- Composition of polymers: percentage by weight of the various monomers determined by I.R.;

- Xylene-insoluble fraction: 2 g of polymer are dissolved in 250 cm 3 of xylene at 135°C, with stirring. After 20 minutes the solution is left to cool, while still stirring, until the temperature reaches 25°C. After 30 minutes the precipitated insoluble polymer is separated by filtration. The solvent is removed from the solution by evaporation in a stream of nitrogen and the residue is dried under vacuum at 80°C to constant weight. In this way the percentage of polymer soluble in xylene at 25°C is calculated and the percentage of polymer that is insoluble is thus determined; Enthalpy of melting: ASTM D 3418-82;

Density: ASTM D 1505;

Melt Index E (MIE : ASTM D 1238, condition E; Melt Index F fMIFi : ASTM D 1238, condition F; Melt Index L fMILϊ : ASTM D 1238, condition L;

- F/E: ratio between Melt Index F and Melt Index E;

- Tear resistance: ASTM D 1004

- Elongation at Break: ASTM D 882 Strength at Break: ASTM D 882 Dart test: ASTM D 1709/A

Haze: ASTM D 1003 Production of the film: general procedure

The films were produced by the twin-bubble method with the following steps:

- extrusion of the polymer composition in a single-screw extruder with head temperatures of about 190-195°C;

- cooling of the primary tubular film to temperatures around 25°C;

- heating of the primary film in an oven with IR rays;

- biorientation with a 6/6 longitudinal/transverse stretch ratio;

- cooling of the bioriented tubular film to ambient temperature.

EXAMPLE 1

A single-layer film was produced using a (i) + (ii) polyolefin composition obtained directly in the polymerization process, operating in two gas-phase reactors as described in the international patent application WO 95/20009. The composition comprised 85% of an ethylene/1-butene copolymer [component (i)] and 15% of a terpolymer of propylene (92.1%) with ethylene (2.3%) and 1-butene (5.6%) having a xylene-insoluble fraction greater than 70% [component (ii)]. The resultant composition had an MIE of 0.57 and a density of 0.9073. Operating as described in the general methodology for production of the film, a film 15 am thick was obtained, the characteristics of which are shown in Table 1. EXAMPLE 2

A single-layer film was produced using a (i) + (ii) polyolefin composition obtained directly in the polymerization process, operating in two gas-phase reactors as described in the international patent application WO 95/20009. The composition comprised 85% of an ethylene/1-butene copolymer [component (i)] and 15% of a terpolymer of propylene (92.1%) with ethylene (2.3%) and 1-butene (5.6%) having a xylene-insoluble fraction greater than 70% and an MIL of 13.2 [component (ii)]. The

resultant composition had an MIE of 1.06 and a density of 0.910.

Operating as described in the general methodology fox- production of the film, a film 15 am thick was obtained, the characteristics of which are shown in Table 1. EXAMPLE 3 (comparison)

For comparison purposes, a commercial film 15 ^m thick (GRACE MR) was characterized and compared with the films of this invention. The results are shown in Table 1. EXAMPLE 4

A single-layer film was produced using a polymer composition comprising:

50% by weight of a (i) + (ii) polyolefin composition, obtained directly in the polymerization process and having a MIE of 1 and a density of 0.901, comprised of 85% of an ethylene/1- butene copolymer [component (i)] and 15% of a terpolymer of propylene (90.8% b.w.) with ethylene (2.7% b.w.) and 1-butene (6.5% b.w.) having a xylene-insoluble fraction greater than 70% and a MIL of 13 [component (ii)];

25% by weight of an ethylene-1-hexene copolymer having a MIE of 0.8 and a density of 0.921 marketed by Sabic under the name SABIC 6821N;

25% by weight of an ethylene-1-octene copolymer having a MIE of 1 and a density of 0.923 marketed by Enichem under the name FG 308.

The film, of 15 a m thick, was obtained operating according the procedure of Example 1 and its characteristics are shown in Table 1.




 
Previous Patent: DRIVE BELT

Next Patent: COATING COMPOSITION