Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LOGARITHMIC CIRCUITS
Document Type and Number:
WIPO Patent Application WO/2011/137358
Kind Code:
A1
Abstract:
An embodiment of a logarithmic circuit may include a logging transistor, a guard circuit arranged to force an input current into an input terminal of the logging transistor, and a positioning circuit arranged to maintain a voltage of the logging transistor. The guard and positioning circuits may include first and second feedback loops, respectively. Another embodiment of a logarithmic circuit may include a logging transistor arranged to generate a logarithmic output in response to an input current, and a feedback loop arranged to provide adaptive compensation to the logging transistor. The feedback loop may be arranged to provide compensation in response to the magnitude of the input current. Another embodiment of a logarithmic circuit may include first and second logging transistors having collectors arranged to receive input currents, and first and second feedback amplifier arranged to drive emitters of the logging transistors.

Inventors:
GILBERT BARRIE (US)
Application Number:
PCT/US2011/034594
Publication Date:
November 03, 2011
Filing Date:
April 29, 2011
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
ANALOG DEVICES INC (US)
GILBERT BARRIE (US)
International Classes:
G06G7/24
Foreign References:
US6507233B12003-01-14
US6249170B12001-06-19
US5410273A1995-04-25
US20020153937A12002-10-24
US5471132A1995-11-28
US6225850B12001-05-01
US5432474A1995-07-11
Attorney, Agent or Firm:
MAKUCH, Joseph, S. et al. (P.C.210 Sw Morrison Street, Suite 40, Portland OR, US)
Download PDF:
Claims:
CLAIMS

1. A circuit comprising:

a logging transistor;

a guard circuit arranged to force an input current into an input terminal of the logging transistor; and

a positioning circuit arranged to maintain a voltage of the logging transistor.

2. The circuit of claim 1 where:

the guard circuit comprises a first feedback loop; and

the positioning circuit comprises a second feedback loop.

3. The circuit of claim 1 where the guard circuit comprises a buffer amplifier.

4. The circuit of claim 3 where:

the input terminal of the logging transistor comprises a collector; and

the buffer amplifier includes an input coupled to the collector and an output coupled to a base of the logging transistor.

5. The circuit of claim 1 where the positioning circuit comprises an operational amplifier.

6. The circuit of claim 5 where the operational amplifier includes a first input coupled to a base of the logging transistor, a second input coupled to a reference signal, and an output coupled to an emitter of the logging transistor.

7. The circuit of claim 1 further comprising a second logging transistor coupled to the first logging transistor and arranged to provide log-ratio operation.

8. The circuit of claim 7 further comprising a second guard circuit arranged to force a second input current into an input terminal of the second logging transistor.

9. The circuit of claim 8 where the guard circuit comprises a second buffer amplifier.

10. The circuit of claim 8 where:

the first logging transistor includes an emitter coupled to an emitter of the second logging transistor; and

the first and second logging transistors are arranged to provide a AVBE output between the bases of the first and second logging transistors.

11. A circuit comprising:

a logging transistor arranged to generate a logarithmic output in response to an input current; and

a feedback loop arranged to provide adaptive compensation to the logging transistor.

12. The circuit of claim 11 where the feedback loop is arranged to provide compensation in response to the magnitude of the input current.

13. The circuit of claim 12 where the feedback loop comprises an amplifier.

14. The circuit of claim 13 where the amplifier comprises a feedback network having an adaptive compensation component.

15. The circuit of claim 13 where the amplifier includes an internal adaptive compensation component.

16. The circuit of claim 13 where the amplifier includes a capacitor arranged to provide adaptive compensation in response to an output current of the amplifier.

17. The circuit of claim 16 where the amplifier includes:

an output transistor arranged to provide the output current of the amplifier; and a monitor transistor arranged to generate a scaled current in response to the output current of the amplifier.

18. The circuit of claim 17 where the monitor transistor is arranged to cause the amount of compensation provided by the capacitor to vary in response to the scaled current.

19. A logarithmic circuit comprising:

a first logging transistor having a collector arranged to receive a first input current; a second logging transistor having a collector arranged to receive a second input current;

a first feedback amplifier arranged to drive an emitter of the first logging transistor; and

a second feedback amplifier arranged to drive an emitter of the second logging transistor.

20. The logarithmic circuit of claim 19 where the first and second logging transistors are arranged to provide a logarithmic output at the emitters of the first and second logging transistors.

21. The logarithmic circuit of claim 20 where the bases of the first and second logging transistors are coupled together.

22. The logarithmic circuit of claim 20 where:

the first feedback amplifier includes a first input terminal coupled to the collector of the first logging transistor, a second input terminal coupled to a summing node, and an output terminal coupled to the emitter of the first logging transistor; and

the second feedback amplifier includes a first input terminal coupled to the collector of the second logging transistor, a second input terminal coupled to the summing node, and an output terminal coupled to the emitter of the second logging transistor.

23. The logarithmic circuit of claim 22 further comprising a resistor coupled between the summing node and the bases of the logging transistors.

24. The logarithmic circuit of claim 23 further comprising a correction current generator coupled to the resistor to impart a correction voltage across the resistor.

25. The logarithmic circuit of claim 19 further comprising a monitor transistor coupled to the first logging transistor and arranged to provide a detector bias current in response to an input current applied to the first logging transistor.

Description:
LOGARITHMIC CIRCUITS

RELATED APPLICATION

This PCT application claims priority to U.S. Non-Provisional Application No.

12/772,093, filed April 30, 2010.

BACKGROUND

Fig. 1 illustrates a prior art logarithmic amplifier (log amp) that utilizes the

logarithmic properties of a bipolar junction transistor (BJT) to measure a signal having a large dynamic range. The operational amplifier (op amp) OA1 forces the collector current Ic of transistor Ql to equal the input current Ιχ while maintaining the collector-base voltage very close to zero. The output signal VLOG is then equal to the base-emitter voltage of transistor Ql . Because the output has a logarithmic relation to the input as explained below, the large dynamic range of the input signal is reduced to relatively smaller dynamic range at the output for ease of further processing.

The circuit of Fig. 1 , which is known as a transdiode connection or Patterson diode, takes advantage of the very reliable mathematical relationship between the collector current (Ic) and the base-emitter voltage (VBE) which may be expressed as follows:

V BE = V K ln(l c / I s + l) (Eq. 1) where VK is the thermal voltage kT/q which is about 26mV at 300°K, and ¾ is commonly called the "saturation current" which is a basic scaling parameter for a BJT. (The thermal voltage has traditionally been indicated by VT in the literature, but the use of VK is generally being adopted to distinguish from the threshold voltage VT of a field-effect transistor.) In most practical situations, Ic»Is, so Equation 1 may be simplified by eliminating the +1 term from the argument of the In function as follows:

V BE - V K ln(l (Eq. 2)

The approximation of Equation 2 is generally valid for most operating conditions except at very low currents and high temperatures as described in more detail below. Therefore,

Equation 2 and other mathematical relationships related to it may be written herein with an equal sign with the understanding that it is an approximation that is valid under most conditions.

Base- 10 logarithms are commonly used to characterize the output of a log amp directly in terms of decibel (dB) changes in the input signal. It is also common to

characterize the operation of a log amp in terms of a "slope voltage," defined as the amount of change in the output for each decade change in the input magnitude, and an "intercept," which is the value of input at which the extrapolation of the output in Equation 2 passes through zero. Therefore, using the expression and substituting I x for Ic and V LO G for V BE , Equation 2 may be rearranged as follows:

V LOG = V Y log 10 (l x /I z ) (Eq. 3) where V LO G is the output voltage, I x is the input current, V Y is the slope voltage, and I z is the intercept. From Equations 2 and 3, it is apparent that the log amp of Fig. 1 has a slope voltage V Y of-Vic and an intercept I z of ¾.

At any given calibration temperature, the circuit of Fig. 1 can provide a remarkably accurate measure of the logarithm of a fixed-polarity, constant or varying input current, and the op amp OA1 allows the output to be loaded while preserving accuracy. However, the saturation current ¾ is an extremely strong function of temperature, while the thermal voltage V K is proportional to absolute temperature (PTAT). Accordingly, further refinements are needed to ensure the calibration is essentially independent of temperature.

Fig. 2 illustrates a prior art elaboration of the Paterson diode connection providing a stable log- intercept through elimination of the temperature dependence of ¾. This scheme uses a second transistor Q2, nominally identical to Ql, and a second op amp OA2 configured as a unity-gain buffer (voltage follower) with its output fed back to its inverting (-) input terminal. With this topology, the output is the difference of the two base-emitter voltages:

V L OG = -V K log(Iz I s ) + V K log(I x /I s ) (Eq. 4a)

= V K log(I x /Iz) (Eq. 4b) = V Y logio(Ix/Iz) (Eq. 4c) where the inputs have been swapped to make V LO G turn out positive. Therefore, the uncertain value of ¾ has been eliminated, and the intercept is now determined by the reference current Iz which, using well-known techniques, can be supplied by an accurate and temperature- stable current source. This scheme offers "log-ratio" operation. The logarithmic output V LO G still has a temperature-dependent slope V K = kT/q, alternatively written V Y = (kT/q)log(10). Temperature compensation of the slope is typically achieved through the use of an analog multiplier as shown in Fig. 3. A translinear multiplier cell 10 is used to form the feedback loop with the logging transistors Ql and Q2. The temperature compensation of the slope is achieved by using a PTAT current I t , and a

temperature-stable current I r for biasing the two halves of the multiplier cell. This circuit and further refinements are described more fully in U.S. Patent No. 4,604,532, by the same inventor as the present patent disclosure.

Fig. 4 illustrates another prior art logarithmic circuit that operates on the same

fundamental principles as the Patterson diode, but with the emitter of the log transistor referenced to a ground node. The base of Ql, from which the logarithmic output signal V BE is taken, is driven by a differential-input amplifier 14, preferably a high-gain, FET-input operational amplifier (op amp), which has its noninverting (+) input coupled to the collector of Ql and its inverting (-) input coupled to a voltage Vsuivithat sets the voltage at the input ("summing") node.

As with a Patterson diode arrangement, the circuit of Fig. 4 can be combined with a reference cell to form a differential-output, log-ratio circuit, as shown in Fig. 5. The

reference cell is implemented with a second log transistor Q2 having its emitter grounded and its collector arranged to receive a second input current I 2 . A second amplifier 16 has its noninverting (+) input coupled to the collector of Q2 and its inverting (-) input coupled to the same reference voltage VS UM as the first amplifier 14. In this embodiment, amplifiers 14 and 16 are preferably high-gain op amps, and VS UM is typically 0.5 volts. The logarithmic output signal AV BE is taken as the difference between the base voltages of Ql and Q2 and behaves according to the following equation:

Δν ΒΕ = V BE1 - V BE2 = V K logft / 1 2 ) (Eq. 5)

If the second input current I 2 is stable with temperature, and transistors Ql and Q2 are isothermal and nominally identical, the circuit of Fig. 5 provides a log amp in which the intercept has been temperature stabilized. That is, the highly temperature and process dependent saturation current ¾ for Ql cancels the ¾ of Q2, so the intercept depends only on the value of I 2 . The temperature variability in the slope remains, introduced by the thermal voltage V K = kT/q in Equation 5. This remaining temperature-dependency can be eliminated by using a translinear multiplier cell to implement the temperature compensation of the thermal voltage V K in Equation 5, thereby stabilizing the slope. The second input terminal in the circuit of Fig. 5 can also be used to realize log-ratio operation rather than a log amp having a fixed intercept. This circuit and further refinements are described more fully in U.S. Patent No. 7,310,656 by the same inventor as the present patent disclosure.

BRIEF DESCRIPTION OF THE DRAWINGS

Figs. 1 through 6 illustrate prior art logarithmic circuits.

Fig. 7 illustrates an embodiment of a logarithmic circuit according to some inventive principles of this patent disclosure.

Fig. 8 illustrates another embodiment of a logarithmic circuit according to some inventive principles of this patent disclosure.

Fig. 9 illustrates another embodiment of a logarithmic circuit according to some inventive principles of this patent disclosure.

Figs. 10 and 11 illustrate prior art techniques for providing high-frequency

stabilization to a translinear log amp.

Fig. 12 illustrates an embodiment of a logarithmic circuit having compensation according to some inventive principles of this patent disclosure.

Fig. 13 illustrates another embodiment of a logarithmic circuit having compensation according to some inventive principles of this patent disclosure.

Fig. 14 illustrates an embodiment of an adaptive compensation amplifier showing some example implementation details according to the inventive principles of this patent disclosure.

Fig. 15 illustrates another embodiment of an adaptive compensation amplifier showing some additional example implementation details according to the inventive principles of this patent disclosure.

Fig. 16 illustrates an embodiment of a hyper-tanh circuit according to some inventive principles of this patent disclosure.

Fig. 17 illustrates another embodiment of a hyper-tanh circuit according to some inventive principles of this patent disclosure.

Fig. 18 illustrates an embodiment of a multi-tanh PTAT-to-ZTAT converter according to some inventive principles of this patent disclosure.

Fig. 19 illustrates another embodiment of a multi-tanh PTAT-to-ZTAT converter according to some inventive principles of this patent disclosure. Figs. 20 and 21 illustrate the operation of an embodiment of a multi-tanh PTAT-to- ZTAT converter according to some inventive principles of this patent disclosure.

Fig. 22 illustrates another embodiment of a multi-tanh PTAT-to-ZTAT converter according to some inventive principles of this patent disclosure.

Fig. 23 illustrates an aspect of the operation of the embodiment of Fig. 22.

Fig. 24 illustrates the form of a correction voltage V CBZ for compensating a logging transistor.

Fig. 25 illustrates an embodiment of a circuit for providing low-current, high- temperature compensation to a log amp according to some inventive principles of this patent disclosure.

Fig. 26 illustrates the AV BE error that may be encountered at low currents and at various temperatures for a typical logging transistor.

Fig. 27 illustrates another embodiment of a circuit for providing low-current, high- temperature compensation to a log amp according to some inventive principles of this patent disclosure.

Fig. 28 illustrates how a correction current may be introduced into a translinear log amp according to some inventive principles of this patent disclosure.

Fig. 29 illustrates an embodiment of a current generator according to some inventive principles of this patent disclosure.

Fig. 30 illustrates an embodiment of a dynamic photodiode biasing circuit according to some inventive principles of this patent disclosure.

Fig. 31 illustrates an embodiment of a complete translinear log amp system according to some inventive principles of this patent disclosure.

Fig. 32 illustrates an embodiment of a logging core according to some inventive principles of this patent disclosure.

DETAILED DESCRIPTION

The log amps described above with respect to Figs. 1 -5 are known as translinear log amps because they exploit the reliable logarithmic relation between the collector current (Ic) and the base-emitter voltage (V BE ) of a bipolar junction transistor (BJT). This relationship remains accurate for input signals that vary over many orders of magnitude (or decades when expressed in decibel (dB) notation). A limitation of the translinear log amps described above, however, is that they tend to have limited bandwidth, especially at low input currents where the circuit becomes

progressively slower as the collector current decreases.

At the low end of the operating range, the bandwidth of a translinear log amp is typically determined by the collector current Ic and the capacitance at the collector terminal. This may be understood with reference to Fig. 6 which illustrates the collector-junction capacitance (C JC ) and the incremental emitter resistance (r e ) of the logging transistor Ql of Fig. 4. The incremental emitter resistance is: kT

r e =— (Eq. 6) where kT/q is the thermal voltage V K which is ~ 26mV at 300K. (The thermal voltage has traditionally been indicated by V T in the literature, but the use of V K is generally being adopted to distinguish from the threshold voltage V T of a field-effect transistor.)

When the base is driven as shown in Fig. 6, the collector-junction capacitance and the incremental emitter resistance form a time constant x 6 which is given by: 6 = C Jc r e (Eq. 7) The log amp then has a resulting cutoff (-3dB) frequency f c which is given by: fc = ^ 2πτ- 6 (Eq- 8)

From Equation 6, it is apparent that the emitter resistance r e takes on very high values at low input current levels. For example, at lOOp A of collector current, r e = 2.6x10 " ohms, or 260 ΜΩ. Assuming a junction capacitance of 0.3pF, Equations 7 and 8 indicate a bandwidth of about 2 KHz. Attempting to reduce the input current to lpA would increase r e to an

extremely high value of 26 ΘΩ and reduce the bandwidth to about 20 Hz. Similar loop dynamics apply to the Patterson diode configuration of Fig. 1. Thus, ΙΟΟρΑ is typically about the lower limit of usable input currents for commercially available translinear log amps. This, in turn, limits the overall dynamic range of the log amp.

Fig. 6 also illustrates a stray capacitance Cs which may represent the capacitance of a cable used to connect the log amp to a sensor, the capacitance of a photo diode detector, etc. This stray capacitance may further degrade the frequency response of the log amp. Logarithmic Circuit With Separate Feedback Loops

Fig. 7 illustrates an embodiment of a logarithmic circuit according to some inventive principles of this patent disclosure. The embodiment of Fig. 7 includes a logging transistor 18 which may be any device that exhibits a logarithmic relationship between input and output signals. A guard circuit 20 is arranged in a first feedback loop with the logging transistor to prevent inaccuracies due to variation of one or more signals. A positioning circuit 22 is arranged in a second feedback loop with the logging transistor to maintain one or more circuit parameters at a suitable operating point.

Fig. 8 illustrates some example details that may be used to implement the circuit of

Fig. 7 according to some inventive principles of this patent disclosure. In the embodiment of Fig. 8, the logging transistor is realized as a bipolar junction transistor (BJT) Q N . The guard circuit is implemented with a buffer amplifier 24 having an input connected to the collector of Q and an output arranged to drive the base of Q - The buffer amplifier may be realized, for example, as an operational amplifier (op-amp) having its noninverting (+) input connected to the collector of Q N and its output connected back to its inverting (-) input in a unity gain (+1) configuration.

The positioning circuit may also be implemented with an op-amp 26 which, in the example of Fig. 8, has its inverting (-) input connected to the base of Q N , its noninverting (+) input arranged to receive a reference voltage V REF and its output arranged to drive the emitter

The guard circuit has a very high input impedance and drives the base in a manner that forces all of the input current Ic to flow into the collector of Q N . With all of the input current guided into the collector of Q N , the base-emitter voltage of Q N varies solely as the logarithm of the input current Ic. The positioning circuit drives the emitter of Q N to maintain the voltage at the collector node of Q N at V REF - The output V BE is obtained from the base- emitter junction of Q N .

The operation of the embodiment of Fig. 8 may be better understood by first examining the operation of the prior art circuits described above. In the circuits of Figs. 1 and 4, the op-amp OA1 actually performs two separate functions which may not be readily apparent. First, it attempts to force all of the input current Ic into the collector of Ql .

Second, it attempts to maintain the collector of Ql at a fixed potential. However, as explained above with respect to Fig. 6, the loop dynamics may degrade the operation of the circuit. For example, rather than flowing into the collector of Ql, some of the input current Ic may be diverted to the base node in the form of displacement currents flowing through the collector-junction capacitance CJC.

By splitting these two functions into separate loops, the embodiment of Fig. 8 may provide improved performance. For example, referring to Fig. 6, the time constant τ 6 , as set forth in Equation 7 above, is determined by the product of r e and the collector-junction capacitance CJC. However, in the embodiment of Fig. 8, the guard circuit (which includes buffer amp 24) is arranged in a manner that maintains the collector-base voltage at a constant potential, thereby reducing or eliminating the effects of CJC. With the collector-junction capacitance CJC essentially cancelled, the time constant is now determined by the product of r e and the emitter-junction capacitance CJE, which is typically much smaller than the

collector-junction capacitance CJC. Thus, the time constant x 8 for the embodiment of Fig. 8 is: 8 = C JE r e (Eq. 9)

The reduced time constant provides a correspondingly higher cutoff frequency and

bandwidth. Depending on the implementation details and operating conditions, the

bandwidth improvement may be measured in orders of magnitude.

With the collector-base voltage essentially nulled by the guard circuit, the collector- emitter voltage of Q also changes logarithmically in response to the input current.

Therefore, the positioning circuit, which in the example of Fig. 8 is implemented with op- amp 26, drives the emitter of QN to maintain the collector node at VREF- Maintaining the collector node at a fixed potential may be beneficial in applications where the source of the input current Ic is sensitive to voltage variations at the input node. It may also reduce or eliminate adverse effects from the capacitance of the source of the input current, or any stray capacitance from cabling or the like that may be present at the collector node of QN.

The dual-loop arrangement of Fig. 8 may also provide flexibility in the positioning of the various transistor terminals relative to one or more power supply voltages. For example, in a single supply embodiment, VREF may be set to about 1 volt above ground to assure that the emitter of QN always remains at least about 200mV above ground. In such an

embodiment, the op amp 24 maybe implemented with an output having high current sinking capability. Alternatively, in a dual-supply embodiment, VREF may be set to power supply common (zero volts, or ground), while the emitter of QN takes on a negative voltage. Fig. 9 illustrates another embodiment of a logarithmic circuit according to some inventive principles of this patent disclosure. The embodiment of Fig. 9 includes a logging transistor Q with dual feedback loops as in the embodiment of Fig. 8, but also includes a second logging transistor Q D arranged to provide log-ratio operation with the input current I N to Q N providing the numerator, and the input current I D to Q D providing the denominator. The base of transistor Q D is driven by another buffer amplifier 28 which, in this embodiment, is configured as a unity gain amplifier. The output is in the form of the differential base- emitter voltage VBE between Q N and Q D which may be buffered by differential amplifier 30.

The embodiment of Fig. 9 may be configured for single-ended operation with a reference current applied to one of the inputs and the measured signal applied to the other input, or it may be configured for log-ratio operation with the two inputs applied as I N and I D . If properly matched transistors are used for Q N and Q D , the log-intercept is stabilized through the elimination of the temperature dependency of ¾. The slope may also be temperature compensated through any suitable technique include any of the PTAT-to-ZTAT conversion techniques described below.

Adaptive Compensation

Another factor that tends to limit the bandwidth of a translinear log amp is the need for a compensation network to stabilize the circuit at higher operating frequencies. The feedback path through Ql in the circuits of Figs. 1 and 4 has a very high voltage gain. Under some operating conditions, the polarity of the feedback may actually change and cause positive feedback. At high frequencies, the incremental emitter resistance r e and stray capacitance Cs form an additional pole. Moreover, a typical op-amp is designed to be stable only down to unity gain by direct connection of the output back to the inverting input. Thus, the inclusion of additional voltage gain in the feedback path tends to de-stabilize the loop.

Fig. 10 illustrates a prior art technique for providing high-frequency (HF) stabilization to a translinear log amp. Capacitor C E and resistor E essentially act to limit the feedback gain at high frequencies. E is chosen so that the maximum negative output from OA1 can still support the largest input current. At the upper end of the input range R E »r e and the time constant formed by these components is very close to C E R E - At a value of I X =V K /R E , the time-constant is doubled. At very low currents, it becomes C E r e . To prevent resonance, damping must be included, which tends to reduce the bandwidth of the overall system.

Moreover, a translinear log amp is inherently slow for small input currents as explained above, and the HV compensation network further degrades frequency response at the low end.

Another prior art HF stabilization scheme used with the circuit of Fig. 4 is shown in Fig. 11. The user includes an HF stabilization network including l and CI, which are typically external components, to stabilize the system over the full range of expected input currents and operating frequencies. This generally involves trial and error to select the optimum component values for a given application. More optimum values may be determined for smaller subranges, but if the circuit must operate over a relatively wide input range, tradeoffs between performance and stability at different input currents and operating frequencies may reduce the overall performance of the system.

Fig. 12 illustrates an embodiment of a logarithmic circuit having compensation according to some inventive principles of this patent disclosure. The embodiment of Fig. 12 includes one or more logging transistors 32 and an amplifier 34 which includes adaptive compensation 36 to stabilize the circuit by providing compensation that varies in response to an operating parameter of the logging transistor. A typical implementation of the adaptive compensation may vary the compensation in response to the input current to the logging transistor, but the adaptive compensation may also respond to temperature, frequency and/or other parameters.

The logging transistors 32 may be arranged as a Patterson diode, a grounded emitter transistor, a dual-loop configuration as described above, or any other suitable configuration.

The amplifier 34 and adaptive compensation 36 are not limited to any specific arrangement, but Fig. 13 illustrates an example embodiment of an amplifier suitable for use in the circuit of Fig. 12. The embodiment of Fig. 13 includes an operational amplifier 38 having a feedback network 40. Variable compensation elements 42 and 44 may be included internally in the op amp and/or as part of the feedback network. In other embodiments, one or more variable compensation elements may be included in series with the input and/or output of the op amp, or in any other suitable place in the circuit. In a typical

implementation, the variable compensation elements may be realized as capacitors and/or other filter elements arranged to provide a frequency response that varies with the input current to the logging transistor, but the inventive principles are not limited to these details.

Fig. 14 illustrates an embodiment of an adaptive compensation amplifier showing some example implementation details according to the inventive principles of this patent disclosure. In the embodiment of Fig. 14, the op amp includes an input stage having a transconductance (g m ) cell 46 loaded by a current mirror 48. An intermediate stage 50 drives an output transistor Q29 in response to the single-ended output signal from the input stage at node Nl . Transistor Q29 provides a current sink for the logging transistor Ql . The collector of Ql is connected back to the inverting (-) input of the op amp, thereby forming a feedback loop that forces all of the input current I NUM into the collector of Ql . A first compensation capacitor C5 is connected between the collector of Ql and node Nl, while a second compensation capacitor C6 is connected between the collector of Q29 and node Nl .

Operational amplifiers typically include internal compensation capacitors to assure stable operation down to unity gain. The embodiment of Fig. 14 includes capacitors C5 and C6 which compensate the op amp, but which are arranged to vary the compensation in response to the current through the logging transistor. This can be understood by considering the electronic emitter resistance r e of the logging transistor Ql . When the input current I NUM through Ql is large, r e is small, and the influence of C6 is minimal because there is little voltage variation at the collector of Q29. Thus, the compensation is determined primarily by C5 which provides the dominant pole compensation.

At lower values of I NUM , however, r e becomes very large, and the feedback through

C5 becomes weak, so the compensation is determined primarily by C6. Thus, as the input current is swept through its operating range, the compensation function is handed off between the two capacitors which may be selected so the roll-off (-3dB) point of the op amp is positioned at a suitable frequency for any given current level.

The embodiment of Fig. 14 includes an additional adaptive compensation path through transistor Q30, capacitor C7 and resistor R29. The base and emitter Q30 are connected in parallel with the base and emitter of Q29 so the collector current through Q30 is a scaled replica of the current through Q29. If the relative emitter areas of Q29 and Q30 are scaled by a factor K, the current through Q30 is KI NUM - In a typical implementation, K may be a fractional value less than one so Q30 operates at a much lower current than Q29. The current KI NUM is applied to R29 which is anchored to an AC ground, for example, a power supply rail. Capacitor C7 is connected between the collector of Ql and a node N2, which is located between the collector of Q30 and 29.

This additional compensation path provides a nonlinear HF correction that tracks the input current to compensate for the loop dynamics that change with the value of I NUM - AS I NUM increases, KI NUM increases, thereby causing the voltage at node N2 to change linearly with I NUM , which, in turn, provides additional HF current feedback through C7 to the input of the op amp. That is, as I NUM increases, the voltage gain from the base to the collector of Q30 becomes progressively larger, so the compensation effect of C7 becomes progressively stronger. The magnitude of the r e of Q30 varies in response to the value of I N UM to provide a feedback component that is proportional to INUM- Thus, at moderate and lower currents, the r e of Q30 becomes relatively large and the influence of the feedback path through C7 is reduced or eliminated.

As with the compensation paths through C5 and C6, the components in the additional compensation path through C7 may be rearranged within the scope of the inventive principles. For example, in some other embodiments, the compensation capacitor C7 may be connected to node Nl .

By varying the compensation in response to the input current, the inventive principles relating to adaptive compensation may enable a logarithmic circuit to preserve bandwidth at the lower end of the operating range while ensuring stability at the high end. The adaptive compensation may be arranged to limit the phase around the loop including the logging transistor to a point where the system has good phase margin under all operating conditions. Moreover, the inventive principles relating to adaptive compensation may eliminate or reduce the need for a dedicated compensation circuit that typically requires additional components and may need to be customized for a particular application.

Fig. 15 illustrates another embodiment of an adaptive compensation amplifier showing some additional example implementation details according to the inventive principles of this patent disclosure. In the embodiment of Fig. 15, the op amp is implemented as an electrometer-grade amplifier with an input stage with a gm cell having JFET inputs and a current mirror load formed by NPN transistors Q20 and Q21. The gm cell includes JFET input transistors J4 and J5 and PNP transistors Q 16 and Q 17. The output signal from the input stage is taken at node Nl between the collectors of Q21 and Q 17.

Transistors Q8, Q9, Q25 and Q26 provide bias currents in response to bias voltage VBZ- Transistor Q 12 drives the bases of the PNP transistors Q 16 and Q 17 in the gm cell. The base connection to the mirror transistors Q20 and Q21 is provided by a first emitter- follower transistor Q 14 and a second emitter- follower transistor Q 13 to minimize input currents to the current mirror Q20 and Q21. Transistor Q24, which forms a drive stage with Q27 as explained below, is matched with Q 13 to provide symmetry. Transistors Q24 and Q 13 are both biased by zero temperature coefficient currents and their base currents cancel to provide improved accuracy.

Transistor Q24 forms an intermediate stage with Q27 which, in turn, forms what may be described as a super Darlington with Q29 to provide adequate base drive to Q29 which must sink all of the current through the logging transistor Ql at the high end of the measurement range.

Transistors Q29 and Q30 and capacitors C5-C7 operate as described above with respect to Fig. 14. To provide maximum accuracy at the op amp inputs, the offset may be trimmed with resistors RIO and Rl 1, while the arrangement including JFET Jl and the accompanying circuitry Q1-Q5 provide gate current cancellation. In a typical

implementation, the input JFETS and PNPs and the current mirror transistors may be realized with matched and cross-quadded transistors. Hvper-Tanh

In a translinear log amp, the use of a second logging transistor converts the output to a log-ratio form which may be used to remove the temperature dependency of the log-intercept. The resulting log-ratio output, however, still includes a temperature dependent slope voltage that is PTAT. Prior art systems typically use a translinear multiplier cell inside the control loop to remove the temperature dependency of the slope. A prior art translinear multiplier may provide adequate PTAT-to-ZTAT conversion in log amps with moderately wide dynamic range, but as the usable dynamic range is pushed to greater levels, it becomes increasingly difficult to accommodate the entire signal range with a multiplier cell having only a +/-50mV input range. Offset voltages, for example, may degrade or destroy the accuracy of the temperature compensation.

Some additional inventive principles of this patent disclosure relate to PTAT-to- ZTAT converters that utilize a multiplicity of tanh cells arranged to provide a wide input signal range and improved noise performance. Transistor cells that utilize more than one tanh cell to increase the linear input range of an amplifier are known as multi-tanh cells. Second and third-order multi-tanh cells (i.e., cells that include two or three tanh cells, respectively), and even some fourth-order cells, are known and used in various applications. The utility of higher-order multi-tanh cells, however, has been questioned. See, e.g., B.

Gilbert, The Multi-Tanh Principle: A Unified Overview, 1997, page 2.

The inventive principles of this patent disclosure contemplate the use of multi-tanh circuits having large numbers of tanh cells, that is, in some embodiment, about nine or more cells, and in some other embodiments about twelve or more tanh cells. These circuits will be referred to as hyper-tanh circuits to distinguish them from the more simplistic, lower-order multi-tanh cells. Fig. 16 illustrates an embodiment of a hyper-tanh circuit according to some inventive principles of this patent disclosure. This embodiment may be used, for example, as a PTAT- to-ZTAT converter for any of the translinear log amps described above. The inventive principles, however, are not limited to these details or applications.

Referring to Fig. 16, the output from the log cell is applied to the hyper-tanh circuit as a differential voltage-mode signal at the +/- AV BE terminals. This input signal is applied directly to a central tanh cell QO-1 and QO-2. The input signal is also applied to additional pairs of tanh cells such as Q 1-1 through Ql-4 and Q2-1 through Q2-4 which are arranged with equal and opposite offsets from the central tanh cell. The additional pairs can be visualized as a stack in which the pair of tanh cells in each layer (or stage) of the stack has progressively greater offsets from the central tanh cell. The tail currents Iz applied to the tanh cells are temperature stable ZTAT currents.

In one example embodiment, the number of stages N stacked above the central tanh cell QO-1, QO-2 may be 9, and thus, the hyper-tanh circuit includes a total of 2N+1 = 19 tanh cells. However, any number of cells greater than about 12 may be used.

The offsets are provided by resistor strings Rl-1, R2-1 ... RN-1 and Rl-2, R2-2 ... RN-2, which are driven by PTAT current sources I P1 and Ip 2 . The differential outputs from all of the tanh cells are summed at nodes Ni and N 2 and applied to a current mirror 52, which is preferable of the low drop-out type known as a V-mirror where the input terminal shown with a circle outline indicates the "input" or diode-connected side, while the input terminal shown with a solid dot indicates the "output" side of the mirror. The output is provided by a transimpedance amplifier (TZA) 54 which converts the output current from node N 2 to a voltage VOUT-

One advantage of a hyper-tanh circuit stems from the recognition that the differential output from the log cell is in precisely the right form to be applied to a differential pair of transistors. This simplifies implementation of the individual cells because now only a ZTAT current is required rather than both PTAT and ZTAT currents as in prior art multiplier circuits used for temperature compensating the slope of a log amp.

Another advantage is that a wide input signal range, e.g., 200dB, may be distributed across many cells. A further advantage is the reduction in noise that may result from the use of a multiplicity of tanh cells. This is because each individual cell only contributes noise in the portion of the signal range in which it is active, then contributes no noise when it is off. Thus, the compensation circuit has the benefit of the very large dynamic range afforded by having many tanh cells, but the noise is never greater than that provided by a single tanh cell. The inventive principles relating to hyper-tanh circuits are not limited to the details described above. The tanh cells may be series-connected, parallel-connected, or arranged in a hybrid configuration. The tanh cells may include simple gm cells as shown in Fig. 16, or other, more complex cells. The use of an odd number of cells enables one of the cells to be positioned at the center of the input voltage range, but even numbers of cells may be used, and the entire hyper-tanh circuit need not be arranged symmetrically around the zero input point.

Fig. 17 illustrates a more general embodiment of a hyper-tanh circuit showing that the tanh cells TANHo-TANH ±N can be arranged in any suitable manner that distributes the input ranges of the individual cells along the input signal axis, which in this example is shown as V IN . The trace below the cells shows the sech incremental transconductance of each tanh cell which contributes to the overall transconductance of the hyper-tanh circuit. The sech curves are not necessarily shown to scale, and the ripple in the composite curve is

exaggerated to show the effects of the individual cells. Depending on the implementation details, the linear input range of a hyper-tanh circuit may extend to hundreds of millivolts and beyond.

Multi-Tanh PTAT-ZTAT Converter

Fig. 18 illustrates another embodiment of a PTAT-to-ZTAT converter according to some inventive principles of this patent disclosure. The embodiment of Fig. 18 includes a multi-tanh cell 56 in which the output signal is taken from fewer than all of the transistors. The transistors Ql-QN may be arranged in any suitable multi-tanh configuration including a parallel connection, series connection, hybrid connection, etc., with or without a common emitter connection. The transistors may be biased by one or more bias currents. The outputs from some of the transistors are routed through one or more output nodes 58 and used as the actual signal output or outputs of the cell. The unused outputs may be routed through one or more nodes 60 and diverted to a power supply, a reference node, or any other suitable point.

By diverting the outputs from some of the multi-tanh transistors away from the signal outputs of the cell, various effects may be achieved. For example, since some of the cell bias current is diverted from the outputs, the remaining quiescent current through the output transistors may be reduced, thereby reducing noise. As another example, the input signal range may be spread among the various transistors and distributed throughout cell, thereby extending the input signal range, while reducing the noise contribution from the transistors having diverted outputs. The embodiment of Fig. 18 may be adapted to provide PTAT-to- ZTAT conversion, i.e., eliminate the temperature dependency of the log-slope, for any type of log amp.

Fig. 19 illustrates another embodiment of a multi-tanh PTAT-to-ZTAT converter according to some inventive principles of this patent disclosure. The embodiment of Fig. 19 includes a four-transistor, common-emitter multi-tanh cell Q1-Q4 in which the outer transistors Ql and Q4 have an emitter area of "e", while the inner transistors Q2 and Q3 have an emitter area of "Ae". The output from the log cell is applied to the bases of the outer transistors as a differential voltage-mode signal at the +/- AV BE terminals. Depending on the implementation, it may be beneficial to provide buffering and/or level shifting between the logging transistor core to the PTAT-to-ZTAT converter. The bases of Q1-Q4 are connected through a string of resistors having values k , R, and kR. The emitters of Q1-Q4 are connected together at a common-emitter node N19. The entire cell is biased by a

temperature-stable tail current I ZT A T which may actually have a slight temperature coefficient built in to accommodate the temperature coefficients of the resistors used in a monolithic implementation as discussed below.

The signal outputs +Ιουτ and -Ιουτ are taken from the collectors of the outer transistors Ql and Q4. The output currents from the collectors of the inner transistors Q2 and Q3 are diverted to any suitable point such as a power supply, a DC reference source, or any other AC ground. As described in more detail below, the collectors of Q2 and Q3 may be maintained at the same voltage as the collectors of Ql and Q4 to counteract the effect of Early voltages.

The embodiment of Fig. 18 performs a direct PTAT-to-ZTAT conversion. That is, the AV BE from the logging core is PTAT, so by using a ZTAT bias current, it provides the correct voltage to generate a ratiometric output between the collector currents that is stable with temperature.

Some additional aspects of the operation of the embodiment of Fig. 19 may be better understood by comparison to a simple differential pair of common-emitter transistors. The dashed curve in Fig. 20 illustrates the output current as a function of input voltage AV BE for a simple differential pair of transistors biased by the same tail current I ZT A T - The output current is the classic tanh function having a value of I ZT A T /2 at AV BE = 0. That is, with zero differential input signal, the tail current is split equally between the two halves of the differential pair. The transconductance (gm) of the differential pair is proportional to the first derivative of the tanh, which is a sech function that has a peak at AV BE = 0, and rapidly falls off to an unusably low value at a AV BE of about +/- 40mV. In contrast, the output current -Ιουτ through Q4 in the embodiment of Fig. 19 rises much more gradually to the maximum value of I ZT A T - Moreover, the value of the quiescent current IQ through Q4 (i.e., at AV BE = 0) is now given by: where A is the area ratio of the inner and outer transistors. Thus, the quiescent current is lower than for a differential pair, and the noise may be reduced accordingly. Also, since the sloping portion of the curve for Q4 extends over a greater range of input voltages, the region over which the derivative of the curve of Q4 has an appreciable value also extends over a greater range of input voltages. The output current +Ιουτ through Ql likewise rises gradually over an extended range of input voltages in the opposite direction. Therefore, the

transconductance of the multi-tanh cell of Fig. 19 has a usably high value over an extended range of input voltages as shown in Fig. 21. The gain ripple illustrated in Fig. 21 is exaggerated to show the four peaks attributed to each of the four transistors as the input voltage is swept through the operating range. Though not shown to scale, the usable input range of the embodiment of Fig 19 is much greater than the +/-40mV available from a simple differential pair.

Another aspect of the embodiment of Fig. 19 is that the input voltage range is distributed over the string of resistors between the bases of Q1-Q4, with the AV BE spread over the multi-tanh cell so each section gets a different sample of the input range. This essentially extends the input range of the cell in a manner that may reduce the quiescent current and its accompanying noise.

A further aspect of the embodiment of Fig. 19 is that, because the output is taken only from the two outer transistors, there is a class AB characteristic. Referring to Fig. 20, the output is provided primarily by Ql for negative values of AV BE , while Q4 provides most of the output for positive values of AV BE , with a low quiescent current crossover at AV BE = 0. Thus, the circuit may be configured for push-pull operation with relatively high current capability at high input levels, but without requiring a large current at low input levels.

Although analytical expressions for the embodiment of Fig. 19 may be derived, contemporary simulation and modeling systems may typically provide a more effective technique for optimizing the various system parameters. For example, values of A, K, I ZT A T , etc., may be determined through trial and error to balance the tradeoffs between gain ripple, quiescent current, linear input range, etc. Fig. 22 illustrates another embodiment of a multi-tanh PTAT-to-ZTAT converter according to some inventive principles of this patent disclosure. The embodiment of Fig. 22 includes a six-transistor, common-emitter multi-tanh cell Q1-Q6 that is similar to the four- transistor cell of Fig. 19, but with two additional intermediate transistors interposed between the inner and outer transistors. A resistor having a value R is connected between the bases of the inner transistors, while resistors with values kiR and k 2 R are connected between the bases of the outer and intermediate transistors, and intermediate and inner transistors, respectively. Input resistors k 0 R are connected between the bases of the outer transistors and the inputs to the circuit. The outer transistors have a unit emitter area "e", while the intermediate and outer transistors have areas of Ae and Be, respectively.

The signal outputs UP and DN from the multi-tanh cell are once again taken from the outer transistors Ql and Q6. The output currents from the collectors of the inner and intermediate transistors Q2, Q3, Q4 and Q5 are diverted to a reference voltage V REF which is described below. In this embodiment, the UP and DN outputs are applied to a current mirror 62 to convert the output to a single-ended current Ιουτ- The output current is applied to an op amp 64 that has a feedback resistor RS LOPE configured to convert the output current to an output voltage V OUT - The value of RS LOPE may be adjusted to set the log-slope.

Not only does the reference voltage V REF provide a convenient point to divert the unused outputs from Q2, Q3, Q4 and Q5, but it also sets up a reference point for maintaining the collector voltages of Q1-Q6 at the same potential. Specifically, op amp 64 forces the collector of Q6 to the same voltage as V REF - If the current mirror 62 is implemented with a low-dropout mirror, the collectors of Ql and Q6 are also forced to the same voltage. Thus, all of the collectors of Q1-Q6 are held at the same potential in a neatly integrated loop, thereby reducing or eliminating Early voltage effects and improving the accuracy of the circuit.

The reference voltage V REF may be set to any suitable value. For example, in a single supply system with PNP transistors in the multi-tanh cell as shown in Fig. 22, a suitable level may be 1 volt. In a system with dual supplies, 0 volts or power supply common may be more appropriate.

The six -transistor embodiment illustrated in Fig. 22 may provide even further extension of input voltage range without becoming overly complicated or unwieldy.

Depending on the implementation details, a linear input signal range of +/-300mV or more may be realized as shown in Fig. 23 where six peaks corresponding to the individual transistors in the multi-tanh core are shown on an exaggerated scale. The emitter area ratios and resistor ratios may be adjusted to any suitable values for the particular application, but in one practical embodiment, values of e=34, Ae=80, Be=268, Ko=0.75, Ki=0.25 and K 2 =0.5 may provide a transfer function having as little as +/-.05dB of gain ripple. Values of are preferably kept low to prevent base currents from degrading the accuracy of the multi-tanh cell and to reduce noise which is multiplied by the gm of the cell. For example, in an

example monolithic implementation, unit resistor values of /2=50Ω. may be suitable.

Low-Current, High-Temperature Compensation

Some additional inventive principles of this patent disclosure relate to compensating for temperature effects at the low end of the operating range of a translinear log amp.

The essential relationship between the base-emitter voltage VBE and collector current I c in a BJT is given by Equation 1 above and reproduced here as follows: V BE = V K ln(l c / I s + l) (Eq. 1 1) where ¾ is the saturation current. Under most operating conditions, Ic»Is, so the 1 term can be eliminated from the argument of the In function, and the simplified approximation of

Equation 2 is valid.

At very low input currents and high operating temperatures, however, the magnitude of the saturation current 1 $ may begin to approach the magnitude of Ic, and therefore, ¾ is no longer negligible. The measured value of VBE develops an error term with a magnitude that increases as the input current decreases and temperature increases, thereby introducing an inaccuracy in the logarithmic response.

This low-current, high-temperature effect may be compensated by applying a

correction voltage VCBZ to the collector of the logging transistor relative to the base. In prior art log amps, adequate compensation was provided by using a correction voltage that was derived from the basic Ebers-Moll modeling of collector current. For a transistor having a forward alpha αρ close to unity: where aR is the inverse alpha. Assuming that aR is also close to unity (high inverse beta), then

When V is zero, this reduces directly to the form of Equation 11 because the second term is negligible. In the practical case in which < is less than one, a useful expression can be found when V satisfies the following condition: which may be solved fro V as follows:

V CB z = -V K /«(l-a R ) (Eq. 15)

In prior art log amps, which operate down to fairly low levels of input current, the

compensation provided by Equation 15 was adequate. Thus, a correction voltage V

having a PTAT form was used.

When the value of the input current Ic reaches extremely low levels, however, the compensation provided by Equation 15 becomes inadequate. This may be caused, for example, by the value of < itself taking on a temperature dependency. Regardless of the cause, however, the form of the required correction voltage becomes a more aggressive function of temperature. For example, Fig. 24 illustrates the form of the correction voltage V that might be required to compensate a logging transistor operating at lpA. At 90 degrees C, a few millivolts may provide adequate compensation, while at 100 degrees C, a correction voltage of about 14 millivolts may be required. Thus, not only is the form of the correction voltage no longer PTAT, but it is even more aggressive than a simple exponential form.

Fig. 25 illustrates an embodiment of a circuit for providing low-current, high- temperature compensation to a log amp according to some inventive principles of this patent disclosure. In this example, the collector of the logging transistor Ql is anchored at ground by operation of the op amp 66. A temperature stable voltage Vz is applied to the base of a transistor Q - The transistor Q F ix generates a current I F1X which creates a correction voltage V across a resistor R F rx. Because R and the collector of Ql are both anchored to V applying the correction voltage V to the base of Ql causes the correction voltage to appear across the collector-base junction. By implementing Q F ix with a transistor of the same type as Ql and scaling it appropriately, the transistor Q F ix can be made to provide a current I F rx that generates a correction voltage V CBZ that closely tracks the form shown in Fig. 24 which may be needed to compensate the logging transistor at low input currents and high operating temperatures.

Fig. 26 illustrates the AV BE error that may be encountered at low currents and at various temperatures for a typical logging transistor. Although analytical solutions may be derived for the form of the correction voltage needed to compensate for these errors as a function of input current and temperature, the availability of accurate device modeling and circuit simulation may enable empirical solutions to be obtained more efficiently. For example, in one embodiment, simulation may indicate a current I F1X on the order of ΙΟΟμΑ and resistor R FF x on the order of 112 ohms.

Fig. 27 illustrates another embodiment of a circuit for providing low-current, high- temperature compensation to a log amp according to some inventive principles of this patent disclosure. COM is a power supply common node, VPOS is a power supply rail that is at a positive potential with respect to COM, and VNEG is an optional power supply rail that is negative with respect to COM for dual supply operation.

Node A provides a reference point that enables the circuit to operate properly regardless of whether the negative power supply is present. The circuitry beneath node A is a switching arrangement that holds node A at either the common potential COM, or a negative potential depending on the presence of the negative supply. If the negative supply VNEG is not present, resistor R3 causes Q14 to saturate and hold node A at about 20mV above COM. If a negative supply is present, however, diode-connected transistors Q12 and Q13 provide two VBE voltage drops and cause emitter-follower transistor Q10 to maintain node A about 600mV below COM.

The low-current, high-temperature correction current I Fr x is generated by the parallel combination of transistors Q3 and Q5, which forms a translinear loop with transistors Ql, Q2, Q3 and Q4. Transistors Ql and Q2 split a PTAT current Ιρχ equally between Q4 and the Q3,Q5 combination. A ZTAT current Ιζτ is reflected in the current mirror formed by Q6 and Q7 and subtracted from the portion of Ιρχ that splits through Ql . Thus, the temperature correction current I F1X is generated by subtracting a ZTAT current from a portion of a PTAT current in a translinear loop.

An emitter follower transistor Q9 drives the bases of Q6 and Q7, and the arrangement of Rl, R2 and Q8 provide beta correction to help maintain the collectors of Q6 and Q7 at the same voltage. Fig. 28 illustrates how the correction current I F1X generated by the circuits of Figs. 25 and 27 may be introduced into a translinear log amp having dual logging transistors Q and Q D arranged for log-ratio operation. The output voltage AV BE is taken as the difference between VNU M and V DE N from loop amplifiers 68 and 70 respectively. The collectors of QN and Q D are determined by the voltage VS UM at node N28 which sets the reference potential for the loop amplifiers.

The correction current I F ix is applied to FIX which is connected between VS UM and the common connection at the bases of Q N and Q D . Thus, the correction voltage V CBZ is applied across the collector-base junctions of Q N and Q D while the collectors of Q N and Q D are maintained at a stable voltage.

The circuit of Fig. 28 may be configured to measure the ratio of two input currents where I NUM represents the numerator and I DEN represents the denominator. Alternatively, the circuit may be configured to measure a single input current with scaling relative to a reference current applied to one of the two inputs. For example, a temperature stable reference current may be applied as I DE N, and the value of INU M may be measured relative to the reference current. In either configuration, the use of matched logging transistors eliminates the temperature dependency of the log-intercept.

In the embodiments of Figs. 25 and 28, the correction voltage V CBZ is applied directly across the collector-base junction, but in other embodiments, it may be introduced in any suitable manner, for example, if the base of a logging transistor is held at a constant voltage, the correction voltage may be introduced at the non-inverting input of the loop amplifier.

Reference Current Generator

Some additional inventive principles of this patent disclosure relate to generating small reference currents. For example, the inventive principles may be used to generate currents in the range of a few microamps down to a hundred nanoamps and even lower. A small reference current may be useful for setting the midpoint of the input range of a log amp. For example, as described above, the logging transistors Q N and Q D shown in Fig. 28 may be configured to measure a single input signal I NUM by applying a reference current to Q D as I DEN - If the intended measurement range is lpA to 10mA, then a reference current of lOOnA is needed if the reference current is to be set at the geometric mean of the input range.

A reference current in an integrated circuit is typically generated by applying a bias voltage to the base of a transistor, and scaling the emitter to provide the reference current. Emitter degeneration may be used to improve the accuracy of the current source. However, generating a very small current using this conventional technique may be impracticable because the required emitter area becomes too small and the value of the degeneration resistor becomes too large to manufacture and/or trim accurately. Moreover, if the current source is adjusted by trimming the resistor, the current density in the emitter changes, and the current is no longer temperature stable.

Fig. 29 illustrates an embodiment of a current generator according to some inventive principles of this patent disclosure. For purposes of illustration, the embodiment of Fig. 29 is described in the context of some specific currents, voltages, ratios, component values, etc., but the inventive principles are not limited to these details.

The circuit of Fig. 29 begins by generating a current I 22 that is significantly larger than the final output current I REF . Example values of 12.4μΑ and ΙΟΟηΑ will be used for I 22 and I REF , respectively. The first current I 22 is generated by an emitter degenerated transistor QZ22 in response to a bias voltage V BZ which is designed to produce a ZTAT current in QZ22.

In the context of integrated circuits (ICs), a current may be described as having zero temperature coefficient (ZTAT) even though it has a slight temperature dependency (e.g., -25 ppm) because this temperature dependency in the current precisely cancels the slight temperature coefficient (TCR) of the resistors used throughout the integrated circuit such as RZ22. In the embodiment of Fig. 29, however, it may be beneficial to remove even the slight temperature dependency because the current I REF may be used by external components that do not have the same inherent temperature coefficient (TCR) of the resistors in the IC. Also, if the current I REF is used as an absolute reference for measuring other currents (e.g., used as I DEN in the embodiment of Fig. 28), it should not have any temperature dependency.

To remove the slight temperature dependency that would otherwise appear in I 22 , the emitter area of QZ22 may be skewed to change the current density, thereby nulling the temperature coefficient.

As a further refinement, alpha correction may be provided to QZ22 to compensate for the effects of finite beta. As one example, an alpha correction resistor RZ12 may be connected between the base of QZ22 to provide a beta-boosted bias line.

Having generated a precise and stable current I 22 , the embodiment of Fig. 29 next divides this current through an arrangement of transistors having ratioed emitter areas to provide the final output I REF - In the embodiment of Fig. 29, transistor QZ25 has a unit emitter area of "e", while transistors QZ23 and QZ24 have emitter areas of Ce and De.

Although any suitable values may be used, in this example, C and D are assumed to be 62 and 61 respectively. Therefore, QZ23, QZ24 and QZ25 implement a divide-by- 124 current splitter that divides the 12.4μΑ of I 22 down to ΙΟΟηΑ for I REF which is a precise and stable current suitable for use as an absolute value reference. The remaining 12.3μΑ flowing out of the collectors of QZ23 and QZ24 may be diverted to any suitable point. For example, if the current I REF is used as a reference current I DEN in the circuit of Fig. 28, the collectors of QZ23 and QZ24 may be connected to VS UM SO they are maintained at the same voltage as the collector of QZ25.

To trim the absolute value of I REF , a trimming voltage may be applied across the bases of QZ23, QZ24 and QZ25. The trimming voltage should be PTAT to cause the current splitting effect to be trimmed in a temperature stable manner. The PTAT trimming voltage is generated by applying a PTAT current I P to a trimming network including RZ40-RZ43, RZ36 and RZ37. The cross-quadded arrangement of RZ42-RZ43 provides a PTAT voltage pedestal from which the bases of QZ23, QZ24 and QZ25 may be further adjusted. The voltage pedestal may be set, for example, to about 500mV which, when combined with the B E of QZ23, QZ24 and QZ25, causes the common emitter node N29 to sit at roughly a bandgap voltage. This provides a convenient point for enabling other circuitry to maintain the collectors of the current splitting transistors at the same potential.

Under untrimmed conditions, the values of the trimming resistors RZ40 and RZ41 are the same, and no current flows through RZ37 which provides the AV BE to trim the current splitting transistors. Resistor RZ37 is sized to attenuate the effect of the trimming resistors which may otherwise generate a differential voltage that is too large for accurate trimming. For example, assuming the trimming resistors RZ40 and RZ41 have a value of about 5ΚΩ, and the PTAT current I P has a nominal value of about 100 μΑ, the value of RZ37 may be set to about 400 ohms to provide a few tens of mV of trimming range in the PTAT trimming voltage across RZ37. By including two trimming resistors RZ40 and RZ41 , the current splitting arrangement may be trimmed in both directions.

Resistor RZ36 may be included to provide a slight correction for beta. The value of RZ36 may be set, for example, to roughly 124 times the resistance seen looking into the bases of the larger splitting transistors QZ23 and QZ24. Resistor RZ36 does not provide alpha correction in the conventional sense. Rather, RZ36 prevents the transistor alpha from impairing the accuracy of the current division. That is, the current splitting ratio may be affected by the transistor alpha in the absence of the RZ36.

Photodiode Biasing Some additional inventive principles of this patent disclosure relate to biasing a photodiode or other detector when used with a log amp.

In some applications, a photodiode may be operated at zero bias voltage. However, a photodiode includes a series ohmic resistance that may become problematic at higher operating currents because the resistance may begin to de-bias the photodiode.

Fig. 30 illustrates an embodiment of a dynamic photodiode biasing circuit according to some inventive principles of this patent disclosure. In the embodiment of Fig. 30, the photodiode is shown as two separate components: an ideal photodiode PD, and the series ohmic resistance of the photodiode s. The logarithmic amplifier is included on an integrated circuit 72 and includes a logging transistor Q N arranged to receive a numerator current I NUM as described above. The log transistor Q may be arranged in any suitable manner such as a Patterson diode connection, common emitter connection, etc., where VS UM is taken to an input of the loop amplifier. The integrated circuit 72 includes terminals 74, 76 and 78 for a photodiode bias output PDB, a numerator current input I NUM , and a VS UM terminal, respectively.

A monitor transistor Q MON is arranged to generate I MON which is a scaled version of I NUM - The monitor transistor Q MON has an emitter area of e, while the emitter area of Q is Xe. X may be set to any suitable value, but in this example, Q MON is scaled to one-tenth the emitter area of Q N (i.e., X=10) so if the numerator input current I NUM has a range of 0-10mA, the monitor current I MON has a corresponding range of 0-lmA. The monitor current I MON is applied to a current mirror 80 having a ratio of (X+l): 1. Using X=10, the current mirror generates a photodiode bias current I PD having a range of 0-11mA.

A resistor XRs, which has X times the resistance of the series ohmic resistance Rs of the photodiode is connected between PDB and VS UM - Again, any suitable scaling factor may be used, but in this example X is assumed to have a value of ten. Because the photodiode PD operates at zero bias, and the loop amplifier maintains VS UM at the same voltage as the I NUM input, the current through XRs is always one tenth of the current through the photodiode, and the voltage at PDB relative to the I NUM terminal is the correct amount to compensate for the series ohmic resistance Rs of the photodiode at any operating current.

Although the adaptive biasing is described in context of photodiode, the inventive principles may also be applied to any type of detector having a resistive component that may become problematic when applied to a log amp. Specific currents, components, ratios, etc. are described in the context of Fig. 30 as convenient examples, but the inventive principles are not limited to these particular details. Moreover, the photodiode or other detector need not be an external component, but may be integrated on the same IC as the log amp.

Integrated System

Fig. 31 illustrates an embodiment of a complete translinear log amp system that integrates numerous inventive principles according to this patent disclosure. The

embodiment of Fig. 31 is illustrated as being fabricated on a single integrated circuit 31 1 having bond pads shown as squares for external connection terminals, but the inventive principles are not limited to a single monolithic implementation.

The logging core includes two large log transistors Q N and Q D arranged with electrometer grade op amps 312 and 313 in a manner similar to the embodiment of Fig. 28. A current mirror 314 generates a detector bias current I DB in response to I MON which is created in Q MON as a scaled replica of the numerator current I NUM through Q N . A reference current generator 315 provides a reference current I REF which may be used to provide an absolute current reference as one of the INU M or I DE N inputs.

Many of the signal points are brought out to bond pads to provide the user with flexibility in the configuration of the system. For example, the V NUM and V DEN outputs may be used directly by the user, or they may be reconnected as shown by the arrows to a temperature compensation block 316 which may provide PTAT-to-ZTAT conversion of the log output signal.

Additional features may include an output amplifier 317, and a precision voltage reference 318 such as a 1 volt reference to enable a user to anchor VS UM at 1 volt for operation from a single power supply. In a dual supply configuration, VS UM maybe set at ground or power supply common.

The current mirror 314 and detector bias current I DB may be used to bias a photodiode or other detector according to the inventive principles as described above, and the reference current generator 315 may be implemented using the inventive current generating/splitting principles described above. Likewise, the temperature compensation block 316 may be implemented with any suitable technique including the hyper-tanh or multi-tanh PTAT-to- ZTAT converters described above.

Fig. 32 illustrates an embodiment of a logging core including some additional implementation details according to some inventive principles of this patent disclosure. The embodiment of Fig. 32 may be used in conjunction with the system of Fig. 31 , but the inventive principles are not limited to any specific implementation. The logging transistors Q N and Q D are arranged to receive input currents I NUM and I DEN - monitor transistor Q MON is arranged to generate a replica current I MON that may be used for a dector biasing circuit such as that illustrated in Fig. 30. Resistor pix is arranged to impart a low-current, high- temperature correction in response to the correction IFIX, which may be generated in accordance with principles similar to those illustrated in the context of Figs. 24-28.

Two additional monitor transistors Qci and Qc 2 are arranged to generate scaled versions of the currents in Q N and Q D , respectively, which are then used to provide high- current compensation for the ohmic resistances of the logging transistors Q N and Q D . On the numerator side, the emitter of Q is connected to the terminal VNUM through resistor R4. The scaled current from Qci is then mirrored through an appropriately scaled mirror including Ql 1-Q13 and applied to the output side of R4. On the denominator side, emitter of Q D is connected to the terminal VDEN through resistor R5. The scaled current from Qc 2 is mirrored through current mirror Q14-Q16 and applied to the output side of R5.

Transistors Q1-Q10 provide base current cancellation which is applied to the logging core through Q BFX - Transistors Ql and Q3 are arranged so the base of Q3 is at VS UM plus two V BE - Thus, the bases of transistors Q4 and Q10 sit at essentially VSU M plus a V BE , while the emitter of Q2 sits at essentially VS UM plus two V BE -

The inventive principles of this patent disclosure have been described above with reference to some specific example embodiments, but these embodiments can be modified in arrangement and detail without departing from the inventive concepts. For example, some log transistors are discussed in the context of BJTs, but the inventive principles also apply to other translinear devices having an exponential characteristic such as FETs in subthreshold region of operation. Since the embodiments described above can be modified in arrangement and detail without departing from the inventive concepts, such changes and modifications are considered to fall within the scope of the following claims.