Login| Sign Up| Help| Contact|

Patent Searching and Data


Title:
LOOSE-FILL MATERIAL COMPRESSING DEVICE AND METHOD FOR COMPRESSING LOOSE-FILL MATERIAL
Document Type and Number:
WIPO Patent Application WO/2018/021956
Kind Code:
A1
Abstract:
The invention relates to a loose-fill material compressing device (100) for compressing thermal insulation loose-fill material into blocks of insulation material comprising: a support surface (110) for the compressed blocks (200) of insulation, a compression device (120) with a compression surface (120a), and a feeding device (130) for feeding loose-fill material. By adapting the compression device for reciprocal movement between a first position, wherein the feeding device (130) is allowed to feed loose-fill material to a position on the support surface (110), and a second position, and to compress the loose-fill material (200) to a density of at least 160 kg/m3, a device for creating highly compressed block of loose-fill cellulose thermal insulation material that are suitable for use with the known shredding devices is provided. A corresponding method is also disclosed.

Inventors:
BYNÉLIUS, Jan-Olof (Auravägen 7, DJURSHOLM, 182 60, SE)
Application Number:
SE2017/050792
Publication Date:
February 01, 2018
Filing Date:
July 24, 2017
Export Citation:
Click for automatic bibliography generation   Help
Assignee:
CELLULOSE INSULATION PRODUCTION SCANDINAVIA CPS AB (Artillerigatan 18, STOCKHOLM, 114 51, SE)
International Classes:
B65B1/24; B30B9/30; B30B11/02; B65B35/50; B65B59/00; B65B63/02; E04B1/76; B30B15/02
Domestic Patent References:
WO2014003635A12014-01-03
Foreign References:
US3024719A1962-03-13
US3962967A1976-06-15
US20070180797A12007-08-09
US20100146908A12010-06-17
US4299074A1981-11-10
US3977155A1976-08-31
Attorney, Agent or Firm:
BERGENSTRÅHLE & PARTNERS STOCKHOLM AB (Box118 93 Stockholm, 118 93, SE)
Download PDF:
Claims:
CLAIMS

1 . A loose-fill material compressing device (100) for compressing loose-fill material into blocks of material comprising: a support surface (1 10) for the compressed blocks (200) of insulation, a compression device (120) with a compression surface (120a), and a feeding device (130) for feeding loose-fill material, c h a r a c t e r i z e d i n t h a t the compression device (120) is adapted for reciprocal movement between a first position, wherein the feeding device (130) is allowed to feed loose-fill material to a position on the support surface (1 10), and a second position, wherein, during movement from the first position to the second position of the compression device, loose-fill material (200) fed by the feeding device (130) is compressed, wherein the device is adapted to compress the loose-fill material (200) to a density of at least 160 kg/m3..

2. The device according to claim 1 , wherein the loose-fill material (200) is loose-fill thermal insulation material, preferably loose-fill cellulose thermal insulation material.

3. The device according to claim 1 or 2, wherein the compression surface (120a) is provided with protrusions (120b), such as ribs or nail-like protrusions.

4. The device according to any one of claims 1 -3, comprising a driving device for operating the compression device (120) by hydraulic, pneumatic or electrical power, such as a rotating electrical machine.

5. The device according to any one of claims 1 -4, comprising means (140, 140a, 140b) for adjusting a cross-sectional area of compressed loose-fill material.

6. The device according to claim 5, wherein the means (140, 140a, 140b) for adjusting a cross-sectional area of compressed loose-fill material comprises an adjustable wall (140), preferably a vertically adjustable upper wall, which, when the adjustable wall (140) is adjusted, adjusts the area of an opening defined by the adjustable wall, two side walls (150) and the support surface (1 10).

7. The device according to any one of claims 1 -6, comprising means (150) for decreasing the cross-sectional area of the compressed material along the support surface (1 10).

8. The device according to claim 7, wherein the means (150) for decreasing the cross-sectional area is two converging side walls (150).

9. The device according to any one of claims 1 -8, wherein the support surface (1 10) is essentially planar,

10. A method for compressing loose-fill material into a block,

c h a r a c t e ri z e d by the steps: a) feeding an amount of loose-fill material to a support surface (1 10), b) compressing the amount of loose-fill material fed in step a), thereby

creating a block of insulation (200), c) feeding an additional amount of loose-fill material to the support surface (1 10), d) compressing the additional amount of loose-fill material fed in step c),

adding compressed loose-fill material to the block of insulation (200), and e) repeating steps c) and d) until the block of insulation (200) has a

predetermined size.

1 1 . The method according to claim 10, wherein the loose-fill material (200) is compressed to a density of at least 160 kg/m3.

12. The method according to claim 10 or 1 1 , wherein each portion (200b) of the block (200) is compressed to a thickness of between 1 .25 and 2.5 cm (0.5 - 1 .0 inch).

Description:
LOOSE-FILL MATERIAL COMPRESSING DEVICE AND

METHOD FOR COMPRESSING LOOSE-FILL MATERIAL

Technical field

[0001 ] The present invention relates to a loose-fill material compressing device for compressing loose-fill material, preferably loose-fill cellulose thermal insulation, into blocks, and a method for compressing loose-fill material.

Background art

[0002] Loose-fill insulation is used to insulate structures and buildings and is a quick and convenient alternative to insulation with mineral wool isolation batts. The loose-fill insulation is with the assistance of compressed air blown by an insulation apparatus into cavities in the building structure, such as for example into walls and on attics, forming a heat and cold insulation layer. In order for the cellulosic fibers to be able to withstand the various conditions in building structures it is treated with various additives having fire retardant and other properties. Cellulosic fibers are organic and are therefore an environmental friendly and renewable insulation material. Loose-fill cellulose thermal insulation is mainly made out of recycled newspapers. These cut pieces of paper are easy and economic to produce and have a good insulation capacity at a relatively low density.

[0003] A known method of insulating building structures with loose-fill cellulose thermal insulation material can be described as follows. The loose-fill cellulose thermal insulation material is compressed into a density of 90-140 kg/m3 and put into bags to be transported to the building site. At the building site the bag is opened and the material is put into a hopper arranged in the insulation apparatus.

In the hopper there is a device for picking apart and fluff up the compressed cellulose thermal insulation material into a density and form possible to blow into the building elements by using a compressed air source. The device for fluffing up the compressed cellulose thermal insulation material has in most insulation apparatuses been one or several rotating arms making a horizontal vortex in the material. Due to the power needed to break apart pieces from the compressed material, the engine driving the rotating arms has been forced to be very powerful. With relatively long arms it is also difficult to receive an even density of the fluffed insulation material. A material with an uneven density containing lumps of material is difficult to distribute into the structure.

[0004] Normally the transportation to the building site is made by a truck and semitrailer. A material with a density of 90-140 kg/m3 contains a large amount of air and only fills 30-50% of the trailer volume. It is therefore desirable used loose- fill insulation material compressed to a greater extent. However, due to the great amount of energy needed to break apart a compressed material it is difficult to use an even more compressed loose-fill material in an insulation apparatus according to the above description.

[0005] The above mentioned difficulty is addressed by shredding devices designed by the applicant and a method using such device, see the international patent publications WO201 1 /090422A1 and WO2014/003635, incorporated herein by reference. The shredding devices comprise a rotatable shredder cylinder with protruding pins which is adapted to grate, pick apart and fluff the insulation from a compressed block format into a fluff material with an even density.

Summary of invention

[0006] An object of the present invention is to create a loose-fill material compressing device and a method for creating highly compressed block of loose- fill material that are suitable for use with the known shredding devices.

[0007] These objects are achieved by a device and a method according to the appended claims.

[0008] According to a first aspect of the invention, a device for compressing loose- fill material into blocks of material is provided, the device comprising: a support surface for the compressed blocks of insulation, a compression device with a compression surface, and a feeding device for feeding loose-fill material, the device being characterized in that the compression device is adapted for reciprocal movement between a first position, wherein the feeding device is allowed to feed loose-fill material to a position on the support surface, and a second position, and that the support surface is essentially planar, wherein, during movement from the first position to the second position of the compression device, loose-fill material fed by the feeding device is compressed and wherein the device is adapted to compress the loose-fill material to a density of at least 160 kg/m 3 .

[0009] In a preferred embodiment, the loose-fill material is loose-fill thermal insulation material, preferably loose-fill cellulose thermal insulation material.

[0010] In a preferred embodiment, the compression surface is provided with protrusions, such as ribs or nail-like protrusions. Thereby, the different portions of a block of insulation adhere to each other.

[001 1 ] In a preferred embodiment, the device comprises a driving device for operating the compression device by hydraulic, pneumatic or electrical power, such as a rotating electrical machine.

[0012] In a preferred embodiment, the device comprises means for adjusting a cross-sectional area of compressed loose-fill material. Thereby, the rate of compression of the loose-fill material can be adjusted. Preferably, the means for adjusting a cross-sectional area of compressed loose-fill material comprises an adjustable wall, preferably a vertically adjustable upper wall, which, when the adjustable wall is adjusted, adjusts the area of an opening defined by the adjustable wall, two side walls and the support surface. This provides for a mechanically simple design.

[0013] In a preferred embodiment, means for decreasing the cross-sectional area of the compressed material along the support surface is provided. This means is preferably two converging side walls. This creates a further resistance for the compressed loose-fill material and further increases the compression thereof. [0014] In a preferred embodiment, the support surface is essentially planar.

[0015] According to a second aspect of the invention, a method for compressing loose-fill cellulose thermal insulation material into a block is provided, the method being characterized by the steps: a) feeding an amount of loose-fill material to a support surface, b) compressing the amount of loose-fill material fed in step a), thereby creating a block of insulation, c) feeding an additional amount of loose-fill material to the support surface, compressing the additional amount of loose-fill material fed in step c), d) adding compressed loose-fill material to the block of insulation, and e) repeating steps c) and d) until the block of insulation has a predetermined size.

[0016] In a preferred embodiment, each portion of the block is compressed to a thickness of between 1 .25 and 2.5 cm (0.5 - 1 .0 inch).

[0017] Please note that all the embodiments or features of an embodiment as well as any method or step of a method could be combined in any way if such combination is not clearly contradictory.

Brief description of drawings

[0018] The invention is now described, by way of example, with reference to the accompanying drawings, in which:

Figs. 1 a and 1 b show a side view and an end view, respectively, of an

embodiment of a loose-fill material compressing device,

Figs. 2a-f shows different the steps in the method of compressing loose-fill material according to the invention by means of the device shown in Figs. 1 a and 1 b,

Fig. 3 shows an enlarged view of a compression device comprised in the device shown in Figs. 1 a and 1 b and a compressed block created by means of the compression device. Fig. 4 is a top view showing an embodiment of a loose-fill material compression device with converging side walls.

Description of embodiments

[0019] The invention will now be described in more detail in respect of embody- ments and in reference to the accompanying drawings. All examples herein should be seen as part of the general description and therefore possible to combine in any way in general terms. Again, individual features of the various embodiments may be combined or exchanged unless such combination or exchange is clearly contradictory to the overall function of the device.

[0020] Figure 1 a shows a loose-fill material compression device 100 for compressing loose-fill material into blocks. This loose-fill material may be thermal insulation material, preferably loose-fill cellulose thermal insulation material. The device comprises a planar or essentially planar support surface 1 10 for compressed blocks of insulation, of which one designated 200 is shown in the figure. The compressed block of insulation 200 is comprised of several portions 200b, as will be described below. The support surface 1 10 is in the embodiment shown in Fig. 1 essentially horizontal, but it could also be slanting. Two side walls 150, one of which is shown with dashed lines, are provided on the support surface 1 10.

[0021 ] A compression device 120 with a compression surface 120a is provided near a first end of the support surface 1 10. The compression device 120 is adapted for reciprocal movement between a first position, shown with solid lines in the figure, and a second position, shown with dashed lines in the figure. The compression device 120 is operated by means of a driving device (not shown) in the form of a hydraulic, pneumatic or electrical power, such as a rotating electrical machine.

[0022] A feeding device 130 is provided for feeding loose-fill material, preferably loose-fill cellulose thermal insulation material, to a position on the support surface 1 10 between the first and second positions of the compression device 120. Thus, the feeding device 130 is allowed to feed loose-fill material to this position on the support surface 1 10 when the compression device is in the first position. [0023] During movement from the first position to the second position of the compression device, loose-fill material fed by the feeding device 130 is compressed. The degree of compression can be controlled by adjusting the cross- sectional area of the compressed material by means of an adjustable upper wall 140, which can be adjusted vertically. In a preferred embodiment, this is effected by means of two screws 140a, see Fig. 1 b, showing an end view of the device 100 for compressing loose-fill material, onto which a respective nut 140b is threaded. By means of adjusting the positions of the nuts 140b, the vertical position of the adjustable upper wall 140 is adjusted, which in turn adjusts the area of the opening defined by the upper wall 140, the two side walls 1 50 and the support surface 1 10. It is preferred that the loose-fill material is compressed to a density of at least 160 kg/m 3 .

[0024] With reference to Figs. 2a-f, the operation of the device 100 for compressing loose-fill material will be explained in detail. First, in Fig 2a, an amount of loose-fill material 200a is fed by the feeding device 130 onto the support surface 1 10 with the compression device 120 in the first position. The compression device 120 is then rapidly moved from the first position to the second position, shown in Fig. 2b. With this movement, the loose-fill material 200a is compressed, thereby creating a block of material 200, see Fig. 2b. It should be noted that no counter- support is needed for this compression, i.e., the loose-fill material 200a is compressed due to the nature of the movement of the compression device 120. However, the first portion 200b created in the first cycle may get an uneven shape and compression, as indicated by the figures.

[0025] In Fig. 2c the compression device 120 has been moved to the first position and an additional amount of loose-fill material 200a is fed to the support surface 1 10. The compression device 120 is then rapidly moved from the first position to the second position, shown in Fig. 2d. With this movement, the loose-fill material 200a is compressed, thereby creating a block of material 200 comprised both of the block or portion created in the first cycle described above with reference to Figs. 2a and 2b and the additional portion 200b added in the cycle described with reference to Figs. 2c and 2d. This second portion created in the second cycle adheres to the first portion created in the first cycle, creating a block 200

comprised by two portions 200b adhering to each other.

[0026] In the second cycle described with reference to Figs. 2c and 2d, the first portion 200b functions as a counter-support, improving the compression of the second portion 200b. It will be realized that the first portion 200b is displaced to the right in the figure during the compression of the second portion 200b.

[0027] In Fig. 2e the compression device 120 has again been moved to the first position and an additional amount of loose-fill material 200a is fed to the support surface 1 10. The compression device 120 is then rapidly moved from the first position to the second position, shown in Fig. 2f. With this movement, the loose-fill material 200a is compressed, thereby creating a block of material 200 comprised both of the block created in the first cycle described above with reference to Figs. 2a and 2b, the second cycle described above with reference to Figs. 2c and 2d and the additional portion added in the cycle described with reference to Figs. 2e and 2f.

[0028] This procedure is repeated until the block of material 200 obtains a predetermined, i.e., desired size.

[0029] Each portion 200b of the block 200 has a thickness or extension in the longitudinal direction of the block 200 depending on the amount of loose-fill material fed in each cycle, the speed, power and distance of the movement of the compression device 120, the cross-sectional area of the block 200 etc. In a preferred embodiment, each portion of the block 200 is between 1 .25 and 2.5 cm (0.5 - 1 .0 inch). Thus, it is appreciated that the figures are not to scale.

[0030] In order to achieve bonding between the different portions of the block 200, the compression surface 120a may be provided with protrusions 120b, such as ribs or nail-like protrusions. This creates an uneven interface between two adjacent portions of the block 120, such as the one shown in Fig. 3, showing a sectional view of the block 200 shown in Fig. 2d. [0031 ] The division of the compressed block of insulation 200 into several portions 200b facilitates shredding of the block by means of a shredding device, such as the ones referred to in the background art section.

[0032] In order to improve the compression of the loose-fill material, the side walls 150 may be converging, see Fig. 4 showing a top view of the device 100. In this figure, the compression device 120 is shown with solid lines in the first position thereof and with dashed lines in the second position thereof. The outline of the feeding device 130 is show in dashed lines. This means that the cross-sectional area of the compressed loose-fill material decreases along the way on the support surface 1 10, creating a further resistance for the compressed loose-fill material and further increasing the compression thereof.

[0033] A device 100 for compressing loose-fill material for creating a single compressed block of insulation 200 of has been shown and described. It will be realized that two or more such devices may be provided in parallel, using the power of a single driving device to effect the reciprocal movement of the

compression device.